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Reproducibility Summary1

Scope of Reproducibility2

We perform extensive ablation studies reproducing the results of the paper “Comprehensive Attention Self-Distillation3

for Weakly-Supervised Object Detection.” In this paper the authors propose a method of regularisation via aggregating4

attention maps to improve the accuracy of weakly supervised object detectors. They propose to aggregate attention maps5

from different layers of the network, and across different views of the same image, and use these maps to encourage6

features with better object coverage. The paper claims that this allows them to train an object detector in a weakly7

supervised manner and achieves state-of-the-art results.8

Methodology9

Using the official code released by the authors we have re-run the ablation experiments on the Pascal VOC 2007 dataset10

using our own GPU compute resources. We made changes to the released code to further investigate the effects of other11

model components, extending the ablation studies. We have also performed an in-depth analysis of the code itself to12

assess code quality for ease of modification and reuse.13

Results14

We found that we were able to meet or exceed the published results. Further ablation studies showed that we were able15

to achieve the same results without the proposed attention regularisation. Our results do not agree with the original16

paper’s claims that the novel regularisation provides an improved object detector. We performed further ablation studies17

to identify the source of the improvement, attributing it to the ContextLocNet-style head, Inverted Attention module,18

regression branch, and stronger data augmentation.19

What was easy20

The fundamental concept is simple and intuitive. The figures in the paper work to make it even clearer, and provide a21

strong motivation as to why this might be useful. Some parts of the codebase are reused from other public weakly-22

supervised object detection codebases, anyone familiar with those works will have an easier time following this23

one.24

What was difficult25

There was significant difficulty in working with the code due to poor coding practices, poorly documented requirements,26

and errors in the code. Experimentation was limited due to the slow training process, which owes both to the27

computational cost of this approach as well as some inefficient implementation choices.28

Communication with original authors29

We had no direct communication with the original authors. We browsed public communications via GitHub issues30

posted to the public code repository.31
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1 Introduction32

Weakly Supervised Object Detection attempts to train object detection models utilising only image-level class labels33

(as opposed to the typical bounding-box level annotations). This alleviates the high annotation cost associated with34

constructing quality object detection datasets. Since the training annotations are less granular than the desired model35

predictions, this problem is fundamentally ill-posed and many strategies have been proposed to overcome it.36

The authors propose that there is a degree of noise introduced into the training process due to the inconsistency between37

model predictions on different views of the same image. In the fully supervised setting, if you train a model with38

multi-scale inputs, flips, etc. the box annotations are transformed alongside the image. In the weakly supervised setting,39

which typically generates box-level pseudo-annotations from its own predictions as a self-training procedure, there is40

no guarantee that the same annotations would be selected in different scales or flips of an image. They acknowledge41

that typically the pseudo-annotations are incomplete, and that different views often identify different instances or object42

parts, all of which are desirable to identify. As such the authors propose to aggregate information between views43

and across network layers into a maximal attention map, which they then use to regularise the network to encourage44

consistent attention between views whilst also increasing object coverage.45

2 Methodology46

2.1 Implementation(s)47

We utilised the published implementation by the authors for the majority of our experiments. We first performed an48

extensive examination of the implementation to understand precise details of the method that are not discussed in the49

paper. We found that the published code had some errors that prevent it from running as of the time of writing. We50

fixed these issues to the best of our ability in our implementation, noting all changes in the source.51

We also made changes for the purposes of our experiments. We instrumented the codebase with the Weights and Biases52

platform introduced by Biewald [2020] for experiment tracking and analysis. We also added some configuration flags,53

and utilised them to enable and disable model components by configuration for our ablation studies.54

2.2 Dataset55

We selected Pascal VOC 2007 introduced by Everingham et al. [2007] as the dataset on which to perform our ablation56

studies. VOC07 is a popular choice for ablation studies amongst weakly supervised works as it is relatively small, and57

so more experiments can be completed on a limited time/resource budget.58

As is standard practice we omit annotations labelled “difficult”, and during evaluation we ignore detection of these59

instances. We trained the model on the union of the training and validation sets (‘trainval’ containing 5011 images) and60

evaluate on the public test set. This setting is the same as the ablation studies performed in the original paper, and is the61

standard format used in prior weakly-supervised object detection works.62

2.3 Hyperparameters63

We use the same hyperparameters as the original paper for all experiments.64

2.4 Resources65

We utilised the two NVIDIA Titan RTX GPUs recommended by the original authors for all experiments.66

2.5 Model Breakdown67

To perform our ablation studies we need to define the individual components of the network and training procedure.68

2.5.1 Initial Configurations69

The original paper identifies eight configurations in their ablation studies. They provide a baseline, three progressively70

more complex versions of Image-wise CASD, Layer-wise CASD, combined Image-wise and Layer-wise (i.e. ‘Full’)71

CASD, as well as adding a regression branch and extra augmentations to the full version.72
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2.5.2 Additional Configurations73

By analysing the code we identify two other components that are not evaluated in the ablation studies. We first note that74

the model makes use of the pseudo-labelling algorithm introduced by Tang et al. [2018a] for all experiments. To assess75

general applicability we also consider the simpler maximum scoring pseudo-labelling algorithm presented in Tang et al.76

[2017].77

We also note that rather than the multiple instance head introduced by Bilen and Vedaldi [2016] that is typical of78

OICR-like weakly supervised object detection models, the authors utilise the ContextLocNet Contrastive-S model from79

Kantorov et al. [2016]. This head is significantly more computationally expensive, but produces better initial seed labels80

than WSDDN.81

For the additional configurations we only consider their impact on the baseline, and full versions of CASD.82

3 Code Analysis83

An in-depth review of the code was performed to both identify any key details that are absent from the paper, as well as84

to determine the ease of reuse and modification of the work for others that wish to reproduce the results or build on top85

of them. It is important that research code is of high quality to ensure correctness of the results as well as reproducible86

science.87

3.1 Initial Setup88

The initial setup required only some small tweaks to ensure the program launched. Some required libraries are included89

with version information, such as Python, PyTorch, and CUDA. Others are listed as required but absent version numbers90

mean that the most current version in the repositories may not be suitable. At time of writing this was the case with the91

‘scipy’ library, which is currently at version 1.7 but requires a version below 1.3. Another library is entirely absent from92

the requirements, ‘easydict’. Finally the listed version of CUDA is in-fact incorrect, causing unexpected and somewhat93

cryptic errors with library loading. As of time of writing the listed CUDA requirement is CUDA 10.0, however the94

actual requirement is 9.0.95

Although not especially difficult to debug, it would be preferable to include tested version numbers for as many libraries96

and packages as possible. At a minimum the Python package versions should be stated for all required packages, if not97

managed by a virtual environment package list such as pipenv or conda. It is also essential that when version numbers98

are listed they are correct.99

3.2 Implementation Bugs100

There are several issues which prevent the program from running as expected or running at all. There are multiple101

cases where arguments are passed incorrectly, either with the wrong types or in the wrong places, resulting in crashes.102

Anyone desiring to leverage this work will have to fix these issues before being able to run the code.103

There are also user arguments passed in when running an experiment that are overwritten by program code. The104

provided shell script for training requires the user select a GPU by providing an index, however in the python script that105

is subsequently launched to perform training, the selection is overwritten with the constant value “0,1” (corresponding106

to the first two GPUs on the system). This may cause issues in multi-tenancy systems or if other experiments are107

running, since the code forces the usage of GPUs regardless of the selection of the user.108

Another issue with the public implementation is that Image-wise CASD is missing from the loss calculation in the latest109

version of the public code. During the loss calculation step Image-wise CASD is calculated, however it is never added110

to the total loss value. As such the implementation does not actually make use of it without a user modifying the code111

to add it back into the final loss summation, along with it’s corresponding weighting factor γ.112

3.3 Missing Components113

The final major issue with the public code is that it does not appear to contain a functioning Layer-wise CASD114

implementation. There is present a function ca_lw() however it is never called in the program and as such does not115

contribute. Additionally the ca_lw() function does not appear to implement the Layer-wise CASD as described in the116

paper, rather it performs CASD over the image and its flip more akin to an incomplete version of Image-wise CASD.117
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We made best efforts to re-implement Layer-wise CASD, however due to the complexity of the codebase and the118

limited description in the paper we were unable to do so. As such all our experiments will lack the Layer-wise CASD119

component.120

3.4 General Code Quality121

A review of the public implementation revealed several issues that make it extremely difficult to understand and modify.122

There are several instances of no-operation or unclear lines such as for i in range(1) (which assigns i to the value123

0 and executes the ‘loop’ once only). This adds a large cognitive overhead to working with the codebase as any potential124

users need to interpret what these lines are actually doing and whether they have any impact on the program flow.125

The code also has a high amount of repetitiveness. There are many cases where lines or blocks of code are repeated126

with minor changes such as which variables are being used, index values, etc. This can make it difficult for a reader to127

determine whether these blocks of code are doing the same thing, or how they differ, as there may only be one or two128

characters difference between the lines, or they may even be the same with another variable having changed between129

repeated blocks. This means that if a user wishes to modify the program (for example if they want to build on top of it)130

they must make sure that they find all of these repeated blocks and make the same changes. Good development practice131

would say that these repeated blocks should be either functions for those that are the same but operating on different132

variables, or loops for those where the code is the same but an index variable has changed between repeated blocks.133

The code also frequently switches between utilising PyTorch and NumPy for representing tensors. Both libraries134

provide highly similar interfaces for working with tensors, however only PyTorch includes the automatic differentiation135

components for performing backpropagation. Utilising both PyTorch and NumPy heavily can make it difficult to136

determine which type is being used to represent a given tensor at various points in the program. As mentioned in137

Section 3.2 the public implementation includes an error introduced by this issue, which causes the program to crash138

when one method expecting a NumPy array is passed a PyTorch tensor instead.139

The switching between PyTorch and NumPy also lowers the computational efficiency, as only PyTorch operates on140

high-speed GPU devices. As such, conversions between the two involve a copy from GPU memory to system memory,141

and then execute on the CPU, before potentially being copied again to GPU memory. These copy operations add a time142

and space overhead that could be avoided in many cases by writing pure PyTorch code.143

Overall the code quality issues make this work a poor choice for reuse. The code quality issues make it too easy to144

accidentally make changes that do not do what they are intended to, or fail to make the changes uniformly across the145

program.146

4 Results147

4.1 Reproducibility148

Method Original Reproduction
Baseline 48.9 52.47

Image-wise w/o IA 52.6 52.47
Image-wise 54.1 54.12
Layer-wise 52.3 N/A
Full CASD 56.8 57.77
Table 1: Original vs Reproduced results

As can be seen in Table 1, the results of our reproduction mostly met or exceeded the original published results.149

The results of the baseline and Image-wise with no Inverted Attention are identical, which was unexpected. Deeper150

inspection of the code showed that this was because there is a flag in the code that is always set to false, disabling151

Image-wise CASD. Regardless of this, we were able to reproduce the Image-wise results with and without Inverted152

Attention to within ±0.15. Furthermore, our experiments exceeded the published result of Full CASD even though both153

Layer-wise and Image-wise CASD are absent. These results suggest that CASD is not essential to achieving this results,154

and may be a hindrance (although further experiments would need to be performed to establish this).155

Due to time constraints and the slow turnaround time for experiments we were unable to re-evaluate the results after156

the Image-wise bug was found. We were able to run some preliminary experiments which showed that the CASD157

Image-wise loss was on the order of 10−5 whilst the other losses were on the order of 10−1. This suggests that the158
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impact would be extremely minimal, and this is also supported by an issue on the public GitHub that was opened by159

another user1.160

4.2 General Applicability161

Pseudo-Labelling method Method mean Average Precision
OICR Baseline 52.00

CASD 56.73
PCL Baseline 52.47

CASD 57.77
Table 2: CASD with different labelling functions

Table 2 shows the results of using the simpler top-1 pseudo-labelling algorithm that was originally introduced with162

Tang et al. [2017]. As can be seen there is a significant improvement regardless of the pseudo-labelling method,163

however there is slightly more when using PCL. This suggests that the changes are generic and provide improvement164

regardless of the pseudo-labelling method used. The use of a regression branch has been covered in prior works by165

Ren et al. [2020], Wang et al. [2018] and is well known to improve performance even under the weakly supervised166

setting. Stronger data augmentation is also a common practice for improving image processing models of all types,167

and is extremely well studied. The results suggest that the Inverted Attention proposed by Huang et al. [2020a] is also168

useful for weakly-supervised object detection.169

4.3 Effect of ContextLocNet170

Method With Without
Baseline 52.47 39.38
CASD 57.77 45.58

Table 3: CASD with and without ContextLocNet-style neck and head

As shown in Table 3 the results drop drastically with the exclusion of the ContextLocNet-style head. The difference in171

performance between the baseline and ‘CASD’ is maintained, further strengthening the argument that the improvements172

are agnostic to the model structure. The approximately 12 point reduction does however suggest that the overall173

accuracy is primarily driven by the inclusion of this component instead of the simpler WSDDN-style head that is used174

in most prior works such as Ren et al. [2020], Tang et al. [2017, 2018a,b], Wang et al. [2018].175

5 Discussion176

By re-running the original ablation studies on our own hardware we are able to say with a high degree of confidence that177

the overall accuracy of the work is reproducible. By utilising the author’s code it is possible to train a state-of-the-art178

weakly supervised object detection model. However, our further studies pose questions as to whether the source of the179

improvement is as presented.180

The results from Section 4.1 suggest that only the Inverted Attention and flip-and-scale+colour augmentation are181

important components in achieving strong WSOD results. This is further supported by the decision of the original182

authors to not enable the Image-wise or Layer-wise CASD regularisation in their public implementation. Unfortunately183

due to the state of the code discussed in 3 we missed the flag disabling Image-wise CASD, and due to time constraints184

were unable to re-run all experiments and evaluation after fixing this bug. Anecdotal evidence from our own and others’185

experiments as discussed supports the impact being minimal, however further experiments would need to be conducted186

to confirm this.187

Since the public implementation lacked CASD Layer-wise completely, and we were unable to implement it ourselves,188

we can only speculate on its efficacy. Because we were able to exceed the published final result we can show that it189

isn’t essential to achieving good results, however it is possible that it would provide further improvements. It is likely190

though that similar to Image-wise CASD the loss value is extremely low. Both use the same method for computing the191

regularisation term, just applied to different sets of attention maps.192

1https://github.com/DeLightCMU/CASD/issues/6
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The results of Section 4.3 show that the methods proposed in Kantorov et al. [2016] are a major contributing factor to193

the results. Although Kantorov et al. [2016] showed this method to be effective, only a small number of later works such194

as Wan et al. [2019b,a] utilise it. This is most likely due to the high computational and memory cost, which includes195

three separate passes through the fully connected layers (the most expensive parts of the network). Our results suggest196

that it would be valuable to reconsider the inclusion of this method in modern works, as well as considering alternatives197

that achieve similar results with a lower computational cost.198

As discussed in Section 3 one of the largest barriers to utilising this work is the state of the public code. Improved199

dependency management via an environment manager such as conda or pipenv would resolve most of the dependency200

issues, being able to provide correct versions of all python libraries. Although the CUDA version issue may be201

resolvable by conda, when dealing with system libraries it may be easier to manage those externally, or provide a202

reproducible container via Docker.203

Implementation bugs and missing components are a significant barrier to reproducible work. All authors should204

endeavour to set up and run their public implementation in a clean environment to ensure that such bugs do not exist at205

release. It would be ideal if these issues were caught in tests written to ensure the correctness of the released program,206

however this is not yet standard practice and is a problem in the wider machine learning research community.207

The general code quality issues are likely a symptom of the modern ‘publish or perish’ mindset, where researchers of all208

levels are encouraged or required to publish as frequently as possible. This disincentives spending time on maintenance209

tasks such as refactoring code, writing tests, etc. to ensure that it is easily utilised and reproduced. Poorly written code210

has significant risk associated with it, as it makes mistakes more difficult to identify. We believe this is the case with211

CASD Image-wise being disabled in the public implementation, as it was difficult to find all the required locations to212

enable it.213

5.1 What was easy214

The fundamental idea of the paper is simple and intuitive. The authors explanation is clear and straightforward, with215

diagrams to improve clarity.216

5.2 What was difficult217

The running of experiments was extremely slow on our Titan RTX GPU(s). Although the code allows for the usage of218

more than one GPU, it does not do this in an efficient way and as a result receives almost no benefit from this method219

of training. The Inverted Attention step and the ContextLocNet-style head are also both computationally expensive220

operations to perform, this is unavoidable but contributes to this problem.221

Experiments on the small Pascal VOC 2007 dataset took approximately 70 hours (approx. 3 days) to complete a full222

training cycle plus a single test. To extrapolate from this, experiments on the larger VOC 2012 dataset would take223

around 6 days and MS COCO would take over a week. In comparison, the public implementation of OICR can be224

trained to achieve approximately 53 mAP in only 8 hours on a single GPU2.225

The code quality issues discussed in 3 also made the implementation difficult to work with. Configurations that are226

ignored, ‘magic numbers’, unused functions and variables, and no-op lines make it a slow process to verify that any227

changes have been made in all the appropriate locations, and are complete to take effect. This challenge presented itself228

in this report with the absence of Image-wise CASD, since a flag is set to false inside the code at all times.229

5.3 Communication with original authors230

We did not have any direct communications with the authors. Several people (including us) have attempted to231

communicate with the authors via the GitHub Issues on the public repository, and those issues were read and considered232

when writing this reproducibility report.233

6 Conclusions234

This report sought to assess the reproducibility of the paper “Comprehensive Attention Self-Distillation for Weakly-235

Supervised Object Detection” by Huang et al. [2020b]. We found that whilst the final results could be reproduced or236

exceeded with the publicly released implementation, this implementation included neither a working implementation237

of Image-wise or Layer-wise CASD as proposed in the paper. We performed extensive ablation studies to determine238

2https://github.com/ppengtang/pcl.pytorch
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which components contribute most to the model performance and found that the data augmentation, regression branch,239

and utilisation of a constrastive weakly supervised head were all key factors. We also performed an analysis of the code,240

identifying many issues that make it difficult to apply to new problems, or build on top of for future works. Overall we241

believe that further investigation needs to be done to verify the usefulness of the Image-wise and Layer-wise CASD242

regularisation techniques.243
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