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Abstract

This paper presents a case study on bridging the translational gap between advanced
causal machine learning and scientific practice in financial economics, directly
addressing the core questions of the CauScien workshop. We tackle a fundamental
scientific question: what are the causal drivers of stock market troughs? Moving
beyond the "black box" prediction paradigm, we implement a novel, two-stage
comparative causal analysis designed for a complex, real-world setting. We first
establish a baseline using Double/Debiased Machine Learning (DML) for a stan-
dard partially linear model. Recognizing the limitations of this assumption in a
non-linear domain, we then employ a more flexible DML specification to estimate
the Average Partial Effect (APE), which is better suited to our binary, interactive
setting. The comparison reveals that conclusions about economic causality are
critically sensitive to model specification. The more flexible APE model corrects
the economic interpretation of key indicators and uncovers robust causal roles for
the volatility in options-implied risk appetite and market liquidity—relationships
obscured or misrepresented by the simpler linear model. By integrating these
findings with intermediary asset pricing theories, we demonstrate how translating
modern causal inference methods to a complex social science domain can yield
new scientific insights.

1 Introduction

Understanding the forces that trigger stock market troughs is a problem of immense economic
importance where causality inherently manifests. However, moving from pure prediction to credible
causal inference in this domain presents a formidable challenge, exemplifying the translational gap
between causal learning theory and applied science. The complex, non-linear, and high-dimensional
nature of financial markets can easily lead to spurious conclusions if overly simplistic models are used.
This paper directly confronts this challenge, asking: how can we best integrate causality with domain
expertise and real-world scientific data to accelerate discovery in complex, high-stakes domains like
finance?

The "credibility revolution" in econometrics, powered by tools like Double/Debiased Machine
Learning (DML) from Chernozhukov et al. [2018], offers a path forward. DML provides a framework
for obtaining statistically valid causal estimates even in the presence of high-dimensional confounding.
While these methods are gaining traction in finance [Feng et al., 2020], their application to macro-
finance questions remains nascent. Crucially, as recent research underscores, causal conclusions
drawn from these sophisticated methods can themselves be highly sensitive to specification choices
and the potential for unobserved confounding [Chernozhukov et al., 2022].
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This paper tackles this challenge directly through a novel, comparative causal framework, presenting
a case study on achieving robust causal inference in financial economics. We first establish a baseline
using DML for the canonical partially linear model (DML-PLR). Recognizing its limitations, we
then implement an advanced DML framework to estimate the Average Partial Effect (APE). This
comparison reveals that the more flexible APE model is essential for credible inference, correcting
misinterpretations from the linear model and uncovering new causal pathways. By interpreting these
robust findings through the lens of intermediary asset pricing theories [He and Krishnamurthy, 2013],
we demonstrate a successful translation of causal ML from a black-box tool to an instrument for
generating new scientific insights within our domain, aligning with the workshop’s goal of fostering
research that starts with concrete, real-world problems.

2 From Prediction to a Causal Target Variable

A credible causal analysis first requires a well-defined target variable and a robust predictive signal.
We identify significant market troughs in the S&P 500 from 2013-2025 using a modified Bry and
Boschan [1971] algorithm. A key methodological challenge is that identifying a trough is inherently
retrospective, creating a data-leakage paradox. We resolve this by framing our objective as a nowcast:
estimating in real-time the probability that the current period will eventually be identified as a trough,
using only features available up to that day. This provides a timely signal (yt = 1 if day t is in a
trough period, 0 otherwise) suitable for causal analysis.

To capture the state of the market, we engineer a high-dimensional feature set (>200 indicators)
based on established factors from the financial economics literature, categorized into structural and
sentiment indicators. Full details on the construction and rationale for these features are provided
in Appendix A.4. A Support Vector Machine (SVM) classifier, with hyperparameters tuned via a
strict forward-chaining time-series cross-validation, trained on these features demonstrates strong
out-of-sample predictive power (ROC AUC of 0.89). The success of this predictive model is not
the end goal, but a necessary prerequisite to ensure our subsequent causal analysis is based on a
meaningful and well-specified relationship. As detailed in Appendix A.2, we conducted extensive
testing to confirm this signal is stable and robust against common failure modes like covariate shift
and concept drift.

3 A Comparative Causal Framework

While the SVM model is predictive, it does not establish causality. To do so, we employ a DML
framework, which we implement in two stages to test the sensitivity of our conclusions to model
assumptions. Our causal identification for both models relies on the unconfoundedness assumption,
detailed further in Appendix A.1.

3.1 Baseline Model: DML for a Partially Linear Model (DML-PLR)

Our baseline causal model is the Partially Linear Regression (PLR) [Chernozhukov et al., 2018], a
common benchmark:

Y = θD+ g(X) + ϵ

Here, Y is the binary trough outcome, D is the treatment variable (a specific indicator), and X is a
high-dimensional vector of all other features serving as confounders. DML provides a

√
N -consistent

estimate for the constant treatment effect θ by using machine learning to flexibly model the nuisance
functions g(X) and E[D|X]. In simple terms, this model assumes that a one-unit change in a
treatment has the exact same impact on trough probability, regardless of whether the market is calm
or in a full-blown panic. However, this model’s core assumption—that the causal effect θ is constant
and additively separable—is highly restrictive in financial markets where interactions are paramount.

3.2 Primary Model: DML for the Average Partial Effect (DML-APE)

To address the PLR’s limitations, our primary analysis uses a more flexible DML estimator for an
interactive model, which is better suited to a binary outcome:

P (Y = 1|D = d,X = x) = l(d, x)
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The causal parameter of interest is the Average Partial Effect (APE), θ0, representing the average
change in the trough probability for a one-unit increase in the treatment, averaged across the entire
data distribution:

θ0 = ED,X

[
∂l(D,X)

∂D

]
Estimating the APE requires a Neyman-orthogonal score function, the derivation of which is detailed
in Appendix A.6. The estimation process requires learning three nuisance functions (the outcome,
treatment mean, and treatment variance models) using machine learning. A key practical challenge is
that noise in these nuisance models can create extreme outliers in the score distribution; we address
this by using the sample median as our point estimator—a robust approach justified in Appendix
A.7—to prevent outliers from biasing our results. The resulting estimate for θ0 is robust to first-order
estimation errors and allows the treatment effect to vary non-linearly with X. This θ0 thus measures
the average effect across all possible market conditions, allowing for the possibility that a change in a
treatment has a huge effect during a panic but a negligible effect during a calm period.

3.3 Robustness and Identification

For both models, we implement a strict protocol to avoid multicollinearity and "bad controls" by
excluding features that are mechanistic components of the treatment. Crucially, all statistically
significant causal claims are subjected to a formal sensitivity analysis using the method of Cinelli and
Hazlett [2020]. This quantifies how strong an unobserved confounder would need to be to invalidate
our results, ensuring our findings are robust.

4 Empirical Results: The Importance of Model Specification

Our comparative causal analysis reveals that the choice of model specification is critical for drawing
credible economic conclusions. The DML-APE model’s ability to capture non-linear interactions
uncovers a richer, more intuitive set of causal drivers than the restrictive DML-PLR baseline. Table 1
highlights four key insights from this comparison, while the complete sets of robust causal estimates
for both models are provided in Appendix A.3. The full, unabridged results for all 200+ features are
available in the online appendix, detailed in Appendix A.8.

First, a small set of core drivers are robust to either specification. For example, both models find
that an upward trend in the Fed Funds futures slope (ffr_slope_scaled_trend), which signals market
expectations of future monetary easing, has a statistically significant, negative causal impact on
trough probability. This agreement suggests a powerful, unambiguous stabilizing force.

Second, the move to a more flexible specification helps discard potentially spurious findings. The
DML-PLR model finds that higher volatility in credit spreads (credit_spread_scaled_std) is stabilizing.
This counter-intuitive effect vanishes in the DML-APE model, suggesting the linear model’s finding
was an artifact of its failure to account for interactions with broader market volatility.

Third, and most critically, the DML-APE model identifies new causal pathways entirely missed by
the linear model. It finds that the volatility of options-based risk appetite measures (e.g., Gamma
Exposure (GEX), Volatility Risk Premium (VRP)) are robust causal drivers. This points to a more
sophisticated mechanism where it is not just the level of fear, but its rate of change and persistence,
that causally contributes to market capitulation.

Finally, the DML-APE model reverses the sign of several key estimates, resolving counter-intuitive
results from the linear model. For instance, the PLR model finds that volatility in the trend of market
illiquidity (amihud_illiquidity_trend_z_scaled_std) is stabilizing. The APE model reverses this,
finding a robust positive effect. This correction aligns with economic theory: rising instability in
market liquidity is a causal precursor to a trough.

5 Interpretation and Scientific Contribution

Our work demonstrates how causal ML, when integrated with domain expertise, can produce specific
scientific discoveries in financial economics. The robust findings from our DML-APE model are
not just a list of important features; they provide high-frequency empirical validation for modern
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Table 1: Comparative DML Causal Estimates: PLR vs. APE Models
Theme Treatment Variable (D) Model Coeff. (θ̂) p-value Robust?
Finding 1: Consistent Negative Effect of Easing Expectations
Monetary Policy ffr_slope_scaled_trend PLR -0.1436 0.0010 Yes

APE -0.0073 <0.0001 Yes

Finding 2: Effect of Credit Spread Volatility Lost Robustness
Credit Conditions credit_spread_scaled_std PLR -0.0524 <0.0001 Yes

APE - - No

Finding 3: New Volatility-Based Drivers Gained Robustness
Options Risk Appetite gex_oi_trend_z_scaled_std PLR - - No

APE 0.0773 <0.0001 Yes
Volatility Risk Premium vrp_roc63_scaled_std PLR - - No

APE -0.0021 0.0099 Yes

Finding 4: Causal Sign Reversal for Liquidity and Sentiment
Market Liquidity amihud_illiquidity_trend_z_scaled_std PLR -0.0608 0.0001 Yes

APE 0.0160 <0.0001 Yes
Market Sentiment pcr_oi_roc63_scaled_std PLR -0.0549 0.0057 Yes

APE 0.0241 <0.0001 Yes
Notes: The comparison shows how moving to the flexible APE model is essential for credible inference,
revealing findings that are consistent, lose robustness, gain robustness, or reverse in sign. The coefficient

magnitudes between PLR and APE models are not directly comparable due to different parameter
interpretations; the analysis focuses on sign and statistical significance

intermediary asset pricing theories [He and Krishnamurthy, 2013]. This framework posits that market
stability is determined by the risk-bearing capacity of a specialized financial intermediary sector. A
market trough represents a phase transition into a constrained, non-linear regime where this capacity
is exhausted.

Our causal findings paint a clear, empirical picture of this theoretical state. The APE model’s discovery
that the volatility of options-implied risk measures causally drives troughs points to an erratic market
price of risk, precisely as predicted when constrained intermediaries cannot smoothly absorb shocks.
Similarly, the corrected, positive causal effect for illiquidity volatility is the empirical signature of
intermediaries withdrawing from the market, triggering fire-sale dynamics. The stabilizing effect
of monetary easing expectations fits perfectly, as the prospect of easier future funding conditions
causally boosts intermediaries’ risk-bearing capacity today.

By moving beyond linear assumptions, our causal analysis provides a more theoretically coherent
account of how latent risks described by structural economic models manifest as observable market
events. This confirms the value of translating flexible causal methods to social science, where they can
correct misinterpretations from simpler models and provide a richer empirical validation of scientific
theory. This integration of methods and domain knowledge directly embodies the bottom-up research
paradigm advocated by the workshop.

6 Conclusion

This paper presents a successful translation of advanced causal machine learning to financial eco-
nomics, addressing the workshop’s central theme of bridging theory and scientific practice. Our
primary contribution is a comparative causal analysis demonstrating that credible scientific conclu-
sions about the drivers of market troughs are critically dependent on using flexible models that can
capture non-linear interactions. The DML-APE model proved superior, correcting interpretations
from a simpler linear model and identifying the causal role of volatility in risk appetite and liquid-
ity. These findings provide novel, high-frequency empirical support for intermediary asset pricing
theories. This work serves as a practical case study illustrating how the dual tools of prediction and
causal inference can be combined to move from black-box models to robust scientific discovery in a
complex, real-world domain.
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Broader Impacts Statement

This research has the potential for positive societal impacts by contributing to a better understanding
of financial stability, which could aid regulators and policymakers in developing more effective tools
to mitigate market crises. However, potential negative impacts must also be considered. The causal
factors identified could, in principle, be exploited to build predatory trading algorithms designed to
profit from or even exacerbate market instability. We believe this risk is partially mitigated by the
"nowcasting" nature of our target variable, which serves more as a real-time risk indicator than a
simple, forward-looking predictive signal for automated trading.
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A Appendix: Supplementary Materials

A.1 Causal Identification and Estimation Details

Our causal analysis rests on a standard identification strategy and a robust, data-driven estimation
procedure for the nuisance functions required by the Double/Debiased Machine Learning (DML)
framework.

• Identification Assumption: Our causal identification relies on the assumption of uncon-
foundedness (also known as conditional ignorability). This assumption posits that, condi-
tional on the high-dimensional set of covariates X (which includes over 200 engineered
features capturing market structure, dealer positioning, sentiment, and macroeconomic con-
ditions), the assignment of the treatment variable D is independent of the potential outcomes
for a market trough. Formally, Y(d) ⊥ D|X for all values d in the support of D. While this
assumption is untestable, its plausibility is strengthened by the comprehensive nature of our
feature set, which is designed to control for a wide range of potential confounding factors.

• Time-Series Cross-Fitting and Nuisance Learners: A critical concern with time-
series data is preventing data leakage. Our DML procedure explicitly avoids this by
using a forward-chaining (or ’rolling-origin’) cross-fitting scheme (implemented via
‘sklearn.model_selection.TimeSeriesSplit‘). For K folds, each fold (k) trains on all data
from time 1 to Tk and generates out-of-sample (OOS) predictions for the subsequent block
of data from Tk + 1 to Tk+1. This strictly preserves the temporal order and ensures that nui-
sance models are only ever fit on past data to generate predictions for the "future" validation
fold.

• Within-Fold Horse Race: The "horse-race" mentioned in the main text is conducted on the
OOS predictions generated by this time-aware procedure. For each nuisance function (e.g.,
E[D|X]), we trained multiple learners (‘GradientBoostingRegressor‘ and ‘LassoCV‘) on the
training portion of each fold. We then computed the out-of-sampleR2 for each learner on the
validation portion. The learner with the superior OOS R2 across all folds was dynamically
selected, and its OOS predictions were used to construct the final Neyman-orthogonal score.
This ensures our nuisance model selection is both data-driven and robust against look-ahead
bias.

• Inference for Correlated Data: We acknowledge that while our use of a median estimator
(Appendix A.7) and a standard non-parametric bootstrap provides robustness to outliers
in the score distribution, it does not explicitly account for potential autocorrelation in the
scores themselves. The suggestion to verify inference coverage using time-series-specific
methods, such as a block-bootstrap or simulations with autocorrelated pseudo-outcomes, is
a valuable direction for future research to further strengthen the statistical validity of the
confidence intervals.

A.2 Predictive Model Robustness and Stability Analysis

A critical challenge for any predictive model in finance is structural breaks. To validate the resilience
of our primary SVM prediction model, we conducted a series of diagnostic tests on the hold-out
sample (July 2023 - June 2025) to detect common failure modes, namely performance degradation,
covariate shift, and concept drift.

• Model Performance Stability: We calculated the model’s Brier score over a 63-day rolling
window to track its accuracy and calibration over time. As shown in Figure 1, the model
is highly stable. The rolling Brier score remains exceptionally low for the vast majority
of the test period. The score exhibits brief, sharp spikes that correctly coincide with the
actual trough events, and crucially, it quickly reverts to its low baseline afterward. This
demonstrates that the model’s performance does not persistently degrade after a crisis event.

• Covariate Shift Analysis: We tested for covariate shift by comparing the distributions of
our most important input features between the training and testing periods. Figure 2 shows
that the distributions exhibit a high degree of overlap. This absence of significant covariate
shift provides strong evidence that the statistical properties of the key predictors did not
fundamentally change in the hold-out period, enhancing the credibility of the model’s test
set performance.
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• Concept Drift Analysis: We tested for concept drift, where the relationship between features
and the outcome changes, by analyzing the stability of SHAP feature importance over time.
We split the hold-out test set chronologically and generated SHAP plots independently for
each half. As shown in Figure 3, the feature importance rankings are highly consistent across
both periods. This stability is strong evidence that the underlying economic relationships the
model learned remained valid throughout the test period, confirming its robustness against
concept drift.
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Rolling 63-Day Brier Score on Hold-Out Set (Primary SVM (RF Select))

Figure 1: Model Performance Stability on the Hold-Out Test Set. The figure plots the Brier score of
the primary SVM model’s calibrated probability forecasts, calculated over a 63-day rolling window.
The rapid return to a near-zero baseline following trough events (spikes) demonstrates performance
stability.

A.3 Full DML Estimation and Sensitivity Analysis Results

This section contains the complete set of treatment variables for which the DML analysis yielded
a statistically significant causal estimate (p < 0.05) that was also robust to the formal sensitivity
analysis of Cinelli and Hazlett [2020]. Table 2 lists the robust findings from the baseline DML-PLR
model. Table 3 lists the robust findings from our primary DML-APE model.
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Figure 2: Covariate Shift Analysis for Top Predictive Features. The figure compares kernel density
estimates (KDEs) for key features between the Main Set (training/validation, blue) and the Test Set
(hold-out, orange). The high degree of overlap suggests the absence of significant covariate shift.
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Figure 3: Stability of SHAP Feature Importance on the Hold-Out Test Set. The high degree of
consistency in feature rankings and their relative magnitudes between the two periods indicates that
the model’s learned relationships are stable and robust against concept drift.

9



Table 2: Complete Robust Causal Estimates from the DML-PLR Model

Treatment Variable Coeff. (θ̂) p-value bias_phi Adj. 95% CI Lower Adj. 95% CI Upper Benchmark R2
Y Benchmark R2

D

ffr_slope_trend_z_scaled_last -0.0157 0.0000 0.0000 -0.0216 -0.0098 0.0520 0.0000
ffr_slope_roc63_scaled_last -0.0228 0.0000 0.0048 -0.0368 -0.0087 0.0518 0.0159
credit_spread_scaled_std -0.0524 0.0000 0.0000 -0.0743 -0.0306 0.0433 0.0000
credit_spread_trend_z_scaled_std -0.0522 0.0000 0.0000 -0.0747 -0.0297 0.0424 0.0000
fx_rv_6j_21d_trend_z_scaled_mean -0.0143 0.0000 0.0000 -0.0207 -0.0078 0.0664 0.0000
ffr_slope_roc63_scaled_mean -0.0122 0.0001 0.0000 -0.0181 -0.0062 0.0520 0.0000
ffr_slope_scaled_last -0.0154 0.0001 0.0000 -0.0230 -0.0079 0.0518 0.0000
amihud_illiquidity_trend_z_scaled_std -0.0608 0.0001 0.0000 -0.0917 -0.0299 0.0569 0.0000
ffr_slope_scaled_mean -0.0145 0.0003 0.0000 -0.0224 -0.0066 0.0520 0.0000
fx_rv_6j_21d_trend_z_scaled_last -0.0153 0.0005 0.0000 -0.0238 -0.0067 0.0656 0.0000
ffr_slope_scaled_trend -0.1436 0.0010 0.0000 -0.2293 -0.0579 0.0515 0.0000
fx_rv_6j_21d_scaled_mean -0.0128 0.0025 0.0038 -0.0248 -0.0007 0.0656 0.0069
pcr_oi_roc63_scaled_std -0.0549 0.0057 0.0000 -0.0938 -0.0160 0.0932 0.0000
risk_neutral_skewness_scaled_trend -0.1346 0.0069 0.0000 -0.2321 -0.0370 0.0448 0.0000
risk_neutral_skewness_trend_z_scaled_trend -0.1533 0.0082 0.0000 -0.2669 -0.0397 0.0446 0.0000
flow_concentration_10d_scaled_std 0.0636 0.0124 0.0000 0.0138 0.1134 0.0533 0.0000
fx_rv_6j_21d_scaled_last -0.0096 0.0135 0.0000 -0.0172 -0.0020 0.0682 0.0000
ffr_basis_roc63_scaled_mean 0.0111 0.0177 0.0000 0.0019 0.0202 0.0520 0.0000
risk_neutral_kurtosis_trend_z_scaled_mean 0.0186 0.0196 0.0000 0.0030 0.0342 0.0448 0.0000
flow_concentration_10d_trend_z_scaled_mean -0.0093 0.0202 0.0000 -0.0172 -0.0015 0.0523 0.0000
flow_concentration_10d_trend_z_scaled_std 0.0404 0.0219 0.0000 0.0059 0.0750 0.0546 0.0000
flow_concentration_10d_roc63_scaled_std 0.0515 0.0228 0.0000 0.0072 0.0958 0.0594 0.0000
ffr_basis_roc63_scaled_last 0.0081 0.0260 0.0000 0.0010 0.0152 0.0526 0.0000
ffr_slope_trend_z_scaled_trend -0.0834 0.0306 0.0000 -0.1590 -0.0078 0.0520 0.0000
risk_neutral_kurtosis_scaled_mean 0.0173 0.0306 0.0000 0.0016 0.0329 0.0448 0.0000
risk_neutral_skewness_roc63_scaled_trend -0.0946 0.0359 0.0000 -0.1829 -0.0062 0.0465 0.0000
pcr_oi_trend_z_scaled_std -0.0337 0.0420 0.0000 -0.0662 -0.0012 0.1126 0.0000

Notes: This table reports the set of statistically significant (p < 0.05) causal estimates from the DML-PLR
model that are robust to unobserved confounding. Robustness is assessed using the formal sensitivity analysis of

Cinelli and Hazlett [2020]. Benchmark R2
Y and Benchmark R2

D report the out-of-sample partial R2 of the
outcome and the treatment explained by the observed confounders, respectively. These values serve as a

benchmark for the plausible strength of an unobserved confounder. The results are deemed robust if the adjusted
95% confidence interval, which accounts for potential bias from a hypothetical confounder as strong as the
observed ones, still excludes zero. These results are a subset of the full analysis; the complete results for all

features can be found in the online appendix referenced in Appendix A.8.
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Table 3: Complete Robust Causal Estimates from the DML-APE Model

Treatment Variable Coeff. (θ̂) p-value bias_phi Adj. 95% CI Lower Adj. 95% CI Upper Benchmark R2
Y Benchmark R2

D

fx_rv_6j_21d_roc63_scaled_std 0.0057 0.0000 0.0000 0.0046 0.0069 0.1085 0.0000
risk_neutral_kurtosis_trend_z_scaled_std 0.0485 0.0000 0.0000 0.0413 0.0557 0.0366 0.0000
fx_rv_6j_21d_trend_z_scaled_std 0.0072 0.0000 0.0000 0.0061 0.0083 0.1085 0.0000
risk_neutral_kurtosis_roc63_scaled_std 0.0382 0.0000 0.0000 0.0339 0.0425 0.0366 0.0000
ffr_slope_trend_z_scaled_std 0.0092 0.0000 0.0000 0.0083 0.0100 0.0427 0.0000
fx_rv_6e_21d_scaled_std 0.0100 0.0000 0.0000 0.0089 0.0110 0.0913 0.0000
amihud_illiquidity_trend_z_scaled_std 0.0160 0.0000 0.0000 0.0129 0.0191 0.0375 0.0000
risk_neutral_skewness_trend_z_scaled_std 0.0343 0.0000 0.0000 0.0301 0.0384 0.0366 0.0000
risk_neutral_skewness_scaled_std 0.0359 0.0000 0.0000 0.0320 0.0397 0.0366 0.0000
risk_neutral_skewness_roc63_scaled_std 0.0399 0.0000 0.0000 0.0320 0.0479 0.0366 0.0000
pcr_oi_trend_z_scaled_std 0.0213 0.0000 0.0000 0.0196 0.0231 0.1064 0.0000
fx_rv_6e_21d_roc63_scaled_mean -0.0016 0.0000 0.0000 -0.0020 -0.0012 0.0913 0.0000
ffr_slope_roc63_scaled_std 0.0063 0.0000 0.0000 0.0057 0.0070 0.0427 0.0000
pcr_oi_scaled_std 0.0191 0.0000 0.0000 0.0178 0.0203 0.1064 0.0000
fx_rv_6e_21d_roc63_scaled_std 0.0061 0.0000 0.0000 0.0048 0.0074 0.0913 0.0000
pcr_oi_roc63_scaled_std 0.0241 0.0000 0.0000 0.0214 0.0268 0.1064 0.0000
ffr_slope_scaled_std 0.0103 0.0000 0.0000 0.0099 0.0107 0.0427 0.0000
ffr_slope_scaled_last 0.0177 0.0000 0.0000 0.0146 0.0209 0.0427 0.0000
fx_rv_6j_21d_scaled_std 0.0051 0.0000 0.0000 0.0039 0.0063 0.1085 0.0000
risk_neutral_kurtosis_scaled_std 0.0957 0.0000 0.0000 0.0726 0.1189 0.0366 0.0000
fx_momentum_6e_21d_trend_z_scaled_std 0.0047 0.0000 0.0000 0.0035 0.0058 0.0913 0.0000
ffr_slope_scaled_trend -0.0073 0.0000 0.0000 -0.0092 -0.0054 0.0427 0.0000
gex_oi_trend_z_scaled_std 0.0773 0.0000 0.0186 0.0381 0.1165 0.0331 0.0391
fx_momentum_6e_21d_scaled_std 0.0038 0.0000 0.0000 0.0028 0.0049 0.0913 0.0000
fx_rv_6j_21d_trend_z_scaled_last -0.0018 0.0000 0.0000 -0.0023 -0.0012 0.1085 0.0000
fx_momentum_6j_21d_trend_z_scaled_std 0.0026 0.0000 0.0000 0.0018 0.0035 0.1085 0.0000
fx_rv_6e_21d_roc63_scaled_last -0.0012 0.0000 0.0000 -0.0017 -0.0008 0.0913 0.0000
ffr_slope_trend_z_scaled_trend -0.0066 0.0000 0.0000 -0.0090 -0.0042 0.0427 0.0000
fx_rv_6e_21d_trend_z_scaled_mean -0.0012 0.0000 0.0000 -0.0017 -0.0008 0.0913 0.0000
fx_rv_6e_21d_trend_z_scaled_last -0.0009 0.0000 0.0000 -0.0013 -0.0006 0.0913 0.0000
fx_rv_6j_21d_trend_z_scaled_trend 0.0037 0.0000 0.0000 0.0020 0.0054 0.1085 0.0000
fx_rv_6j_21d_trend_z_scaled_mean -0.0017 0.0001 0.0000 -0.0025 -0.0009 0.1085 0.0000
ffr_slope_roc63_scaled_last -0.0006 0.0001 0.0000 -0.0009 -0.0003 0.0427 0.0000
fx_rv_6e_21d_scaled_mean -0.0009 0.0003 0.0000 -0.0014 -0.0004 0.0913 0.0000
flow_concentration_10d_trend_z_scaled_mean -0.0013 0.0003 0.0000 -0.0021 -0.0006 0.0424 0.0000
risk_neutral_kurtosis_scaled_mean 0.0051 0.0008 0.0000 0.0021 0.0081 0.0366 0.0000
fx_rv_6e_21d_trend_z_scaled_trend 0.0024 0.0009 0.0000 0.0010 0.0038 0.0913 0.0000
flow_concentration_10d_scaled_std 0.0021 0.0013 0.0000 0.0008 0.0034 0.0424 0.0000
ffr_basis_roc63_scaled_trend -0.0020 0.0034 0.0000 -0.0033 -0.0006 0.0427 0.0000
ffr_slope_scaled_mean 0.0011 0.0085 0.0000 0.0003 0.0019 0.0427 0.0000
ffr_basis_scaled_last 0.0007 0.0096 0.0000 0.0002 0.0012 0.0427 0.0000
vrp_roc63_scaled_std -0.0021 0.0099 0.0000 -0.0036 -0.0005 0.0367 0.0000
flow_concentration_10d_roc63_scaled_std 0.0018 0.0114 0.0000 0.0004 0.0031 0.0424 0.0000
risk_neutral_kurtosis_trend_z_scaled_trend -0.0060 0.0233 0.0000 -0.0111 -0.0008 0.0366 0.0000
ffr_basis_roc63_scaled_last -0.0003 0.0299 0.0000 -0.0006 0.0000 0.0427 0.0000
risk_neutral_kurtosis_scaled_trend -0.0043 0.0313 0.0000 -0.0082 -0.0004 0.0366 0.0000
ffr_basis_scaled_mean 0.0006 0.0345 0.0000 0.0000 0.0011 0.0427 0.0000
flow_concentration_10d_trend_z_scaled_std 0.0011 0.0360 0.0000 0.0001 0.0021 0.0424 0.0000

Notes: This table reports the set of statistically significant (p < 0.05) causal estimates from the DML-APE
model that are robust to unobserved confounding. The coefficient (θ̂) is the Average Partial Effect (APE). The
point estimate is the median of the Neyman-orthogonal scores, and the 95% confidence intervals and p-values
are derived from a non-parametric bootstrap of these scores. Benchmark R2

Y and Benchmark R2
D report the

out-of-sample partial R2 of the outcome and the treatment explained by the observed confounders, respectively.
These values serve as a benchmark for the plausible strength of an unobserved confounder. The results are

deemed robust if the adjusted 95% confidence interval, which accounts for potential bias from a hypothetical
confounder as strong as the observed ones, still excludes zero. The complete results for all features can be found

in the online appendix referenced in Appendix A.8.
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A.4 Feature Engineering and Descriptive Statistics

This section provides details on the key indicators engineered for the predictive and causal models,
along with their descriptive statistics. We categorize indicators into physical/structural and psycho-
logical/sentiment groups. Tables 4 and 5 detail the construction and economic rationale for key
parent indicators. Table 6 provides summary statistics for these parent indicators, revealing the high
persistence and non-normality that motivate the use of non-parametric scaling and non-linear models.

Table 4: Physical/Structural Indicators (zt) and Economic Rationale

Name Mathematical Definition Economic Intuition Reference(s)
GEX (OI)

∑
i(ΓC,i ·OIC,i − ΓP,i ·OIP,i)× 100 Measures dealer gamma exposure from open positions. High

positive GEX may suppress volatility, while low or negative
GEX can amplify it. Capitulation troughs often occur in negative
gamma regimes.

SqueezeMetrics

GEX (Volume)
∑

i(ΓC,i ·VC,i − ΓP,i ·VP,i)× 100 Measures dealer gamma exposure from the day’s trading volume,
capturing intraday hedging pressures.

Delta Exposure
∑

i(∆C,i ·OIC,i+∆P,i ·OIP,i)×100 Measures net market delta positioning. Extremely low or neg-
ative values indicate bearish positioning and potential for short
covering, often seen near troughs.

SqueezeMetrics

Credit Spread YldHY −YldRF The premium for bearing credit risk. A widening spread signals
deteriorating economic conditions and heightened risk aversion,
which peaks near market troughs.

Fama and French [1989]

Amihud Illiquidity ∥Rdaily∥
V$, daily

Measures price impact. High values indicate illiquidity, as small
volumes cause large price changes. Liquidity often vanishes near
troughs.

Amihud [2002]

FFR Slope PC1 −PC3 Spread between 1st and 3rd Fed Funds futures. A steepening
(more positive slope) can signal expectations of easier future
policy, often a response to market stress.

Table 5: Psychological/Sentiment Indicators (ut) and Economic Rationale

Name Mathematical Definition Economic Intuition Reference(s)

Realized Volatility
√
252 · (

∑M−1
i=1 r2i,intra + r2overnight) Historical volatility from high-frequency data. Spikes in RV

indicate panic and forced liquidation, which characterize market
bottoms.

Andersen et al. [2003]

VIX CBOE VIX Index methodology Market’s expectation of 30-day implied volatility. High VIX
signals fear and demand for portfolio insurance, peaking at market
troughs.

Whaley [2000]

Volatility Risk Premium VIXt −RVt The premium investors pay for protection against volatility. A
negative VRP (realized > implied) often signals panic and delever-
aging, a common feature of troughs.

Bollerslev et al. [2009]

PCR (OI)
∑

Put OI∑
Call OI Ratio of open put to call contracts. High values indicate extreme

bearish sentiment and hedging, which often precedes a market
reversal.

Billingsley and Chance [1988]

PCR (Volume)
∑

Put Volume∑
Call Volume Ratio of traded put to call volume. Spikes indicate intense intra-

day fear and panic buying of puts, characteristic of capitulation
lows.

Pan and Poteshman [2006]

RN Skewness EQ[(
K−µK

σK
)3] Third moment of the risk-neutral distribution. Highly negative

skew indicates high demand for OTM puts (crash protection),
which is most pronounced at bottoms.

Bakshi et al. [2003]

RN Kurtosis EQ[(
K−µK

σK
)4] Fourth moment of the risk-neutral distribution. High kurtosis

("fat tails") indicates the market is pricing in a high probability of
extreme moves.

Bakshi et al. [2003]

Table 6: Descriptive Statistics for Parent Indicators (2013-2025)

Indicator Mean Std. Dev. Skewness Kurtosis Min Max ρ(1)

Panel A: Physical/Structural
gex_oi 6.65e+04 2.21e+06 41.417 1790.665 -8.14e+06 1.03e+08 0.682
credit_spread 0.049 0.016 0.258 0.024 0.014 0.114 0.998
amihud_illiquidity 9.94e-12 3.47e-11 0.000 0.000 0.000 1.17e-09 -0.049
ffr_slope 0.066 0.237 1.807 6.425 -0.615 1.203 0.995

Panel B: Psychological/Sentiment
RV 12.700 9.840 4.105 32.356 0.758 133.842 0.669
VIX 17.812 6.942 2.730 13.973 9.140 82.690 0.970
VRP 3.336 5.042 -3.574 30.486 -58.725 16.729 0.662
PCR_OI 1.819 0.185 0.178 -0.554 1.389 2.489 0.987

Notes: This table reports summary statistics for the untransformed "parent" indicators. The final column, ρ(1),
reports the first-order autocorrelation coefficient.
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A.5 Time-Series Properties and Stationarity

A valid concern for financial data is the high persistence in many indicators, as evidenced by the
high ρ(1) values in Table 6. The DML framework’s i.i.d. assumption is a potential concern for such
time-series.

Our feature engineering methodology—which aggregates features over a rolling lookback window
(e.g., calculating _std, _trend)—is explicitly designed to mitigate this by transforming non-stationary
parent series into stationary features. To validate this, we performed Augmented Dickey-Fuller (ADF)
tests on both the raw parent indicators and the final set of aggregated features used as inputs for
our models. The results, summarized in Table 7, confirm the effectiveness of this approach. While
a portion of the parent indicators are non-stationary, 100% of the aggregated features used in our
analysis are stationary (p < 0.05), making them far more appropriate inputs for the DML estimation
and better satisfying its underlying statistical assumptions.

Table 7: Augmented Dickey-Fuller (ADF) Stationarity Test Results
Feature Set Features Tested % Stationary (p < 0.05)
Parent Indicators 147 90.62%
Aggregated Features (Model Inputs) 588 100.00%

Notes: The table shows the percentage of features in each set that are stationary according to the ADF test. The
aggregation process (calculating mean, std, trend, last) successfully transforms the persistent parent indicators

into a 100% stationary feature set for the model.

A.6 Derivation of the Neyman-Orthogonal Score for the APE

This appendix outlines the Neyman-orthogonal score function used for the estimation of the Average
Partial Effect (APE), following the double/debiased machine learning framework of Chernozhukov
et al. [2018].

A.6.1 Model Setup and Parameter of Interest

We consider a structural model where the outcome Y is determined by a continuous treatment D
and confounders X through a general function l0(D,X) = E[Y|D,X]. The analysis rests on the
standard unconfoundedness assumption.

The causal parameter of interest is the Average Partial Effect (APE), θ0:

θ0 = E
[
∂l0(D,X)

∂D

]
The expectation is taken over the joint distribution of (D,X).

A.6.2 The Neyman-Orthogonal Score

To obtain a robust,
√
n-consistent estimate of θ0, we rely on a Neyman-orthogonal score function.

This property ensures that first-order estimation errors in the nuisance functions do not bias the final
estimate of θ0. The general score function for the APE is:

ψ(W; θ, η) =
∂l(D,X)

∂D
− θ − 1

p(D|X)

∂p(D|X)

∂D
(Y − l(D,X))

where W = (Y,D,X) and η = (l, p) is the set of nuisance functions, including the conditional
density of the treatment p(D|X).

A.6.3 A Practical Score via a Semi-Parametric Assumption

Directly estimating the conditional density and its derivative is challenging. Following standard
practice, we adopt a flexible semi-parametric assumption that the treatment is conditionally Gaussian:

D|X ∼ N (m0(X), v0(X))
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Under this assumption, the general score simplifies to the practical form we implement, which only
requires estimating the conditional mean m(X) and variance v(X) as nuisance functions:

ψ(W; θ, η) =
∂l(D,X)

∂D
− θ +

D−m(X)

v(X)
(Y − l(D,X))

where the nuisance functions are now η = (l,m, v). A formal proof of Neyman-orthogonality
involves showing that the Gateaux derivative of the expected score with respect to the nuisance paths
is zero at the true values, a standard result in this literature.

A.7 Robustness of the Median Estimator for the APE

A key practical challenge in implementing the APE score function is its sensitivity to estimation
noise in the nuisance models. The bias correction term is inversely proportional to the estimated
conditional variance of the treatment, v̂(X). When the ML model predicts a value of v̂(X) that is
close to zero for some observations, this term can generate extreme outliers in the distribution of the
estimated scores, ψ̂i.

In such cases, the sample mean becomes an unreliable estimator of the distribution’s central tendency.
Figure 4 illustrates this problem for one of our treatment variables. The distribution is clearly
heavy-tailed and asymmetric. A naive interpretation of the sample mean would be misleading.
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Figure 4: Distribution of Neyman-Orthogonal Scores for the APE. The histogram shows the calculated
scores (ψ̂i) for the treatment amihud_illiquidity_trend_z_scaled_std. The red dashed line indicates
the sample mean (0.0010), while the green solid line marks the sample median (0.0160). The mean is
pulled toward zero by outliers, whereas the median robustly captures the positive central tendency.

To overcome this, we employ the sample median of the scores as our robust point estimator for
θ0. The median is insensitive to the magnitude of extreme outliers in the tails. Furthermore, since
analytical formulas for the standard error are also unreliable for heavy-tailed distributions, we use
a non-parametric bootstrap on the calculated scores to construct robust confidence intervals and
p-values. This median-of-scores and bootstrap inference framework ensures our causal estimates
are resilient to the noisy outputs of the nuisance models, reducing the risk of reporting spurious null
findings.
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A.8 Online Appendix with Complete Results

The complete, unabridged results for the DML-PLR and DML-APE estimation and sensitiv-
ity analyses, covering all 200+ features, are provided in a supplementary online appendix.
github.com/jackraorpl/market-trough-prediction-appendix.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction claim that model specification is critical for
causal inference in this domain and that a flexible APE model corrects and refines the
conclusions from a simpler linear model. Sections 4 and 5 directly support this claim
through a comparative analysis and by linking the APE model’s findings to established
economic theory.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper explicitly states in Appendix A.1 that the core identification relies
on the untestable unconfoundedness assumption. We acknowledge that while our high-
dimensional feature set makes this assumption more plausible, the potential for unobserved
confounders can never be fully eliminated.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Appendix A.1 details the model setup and the core unconfoundedness assump-
tion. Appendix A.5 presents the derivation of the practical score function, explicitly stating
the semi-parametric assumption of a Gaussian conditional distribution for the treatment
variable, which is required for its implementation.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides a comprehensive description of the methodology. Appendix
A.1 details the causal identification and nuisance learner selection, Appendix A.4 provides
definitions for all parent indicators, and Section 3 describes the DML estimation procedure,
including the use of cross-fitting and the specific causal models being compared.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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In the case of closed-source models, it may be that access to the model is limited in
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to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The financial data used in this study is proprietary and subject to licensing
restrictions, preventing its public release. The code will not be released at this time to
maintain alignment with the blind review process.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Appendix A.1 details our data-driven approach for selecting nuisance learners
(‘GradientBoostingRegressor‘ vs ‘LassoCV‘) within each cross-fitting fold. Appendix A.2
describes the hold-out test set (July 2023 - June 2025) used for validating the predictive
model’s stability.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: All causal estimates reported in Table 1, as well as the full results in Tables 2
and 3, are presented with p-values and 95% confidence intervals. The caption for Table 3
clarifies that the inference for the APE model is based on a non-parametric bootstrap of the
Neyman-orthogonal scores.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The computational resources required for this analysis are not substantial.
The entire DML pipeline for all treatment variables can be executed in under an hour on a
standard multi-core CPU workstation, and no specialized hardware like GPUs was required.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research uses anonymized market data and does not involve human
subjects. It adheres to all aspects of the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper has a "Broader Impacts Statement" section after the conclusion.
For positive impacts, this research could lead to a better understanding of financial stability,
potentially aiding regulators and policymakers in creating more effective tools to mitigate
market crises. For negative impacts, the causal factors identified could potentially be
exploited to build predatory trading algorithms that seek to profit from or even exacerbate
market instability. However, the "nowcasting" nature of the target makes this more of a
real-time risk indicator than a simple predictive signal for trading.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not release a high-risk model or dataset (e.g., a large language
model or scraped personal data
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All software packages used (e.g., scikit-learn, statsmodels, NumPy) are
standard open-source libraries, and their licenses (e.g., BSD, MIT) are respected. We credit
the authors of the key methodological papers, such as Chernozhukov et al. [2018]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce or release any new datasets, models, or software

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This research does not involve crowdsourcing or human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This research does not involve human subjects and therefore does not require
IRB approval
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Large language models were not used as part of the core research methodology
or data generation process in this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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