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ABSTRACT

Comparing human and model performance offers a valuable perspective for under-
standing the strengths and limitations of embedding models, highlighting where
they succeed and where they fail to capture meaning and nuance. However, such
comparisons are rarely made, as human performance on embedding tasks is difficult
to measure. To fill this gap, we introduce HUME: Human Evaluation Framework
for Text Embeddings. While frameworks like MTEB provide broad model evalua-
tion, they lack reliable estimates of human performance, limiting the interpretability
of model scores. We measure human performance across 16 MTEB datasets span-
ning reranking, classification, clustering, and semantic textual similarity across
linguistically diverse high- and low-resource languages. Humans achieve an av-
erage performance of 77.6% compared to 80.1% for the best embedding model,
though with substantial variation: models reach high performance on some datasets
while struggling on notably low-resource languages. Our human annotation also
reveals multiple notable dataset issues. We also benchmark nine LLMs as anno-
tators, finding they fall short of human performance (76.1% vs. 81.2%) despite
offering scalability advantages. We provide human performance baselines, insights
into task difficulty patterns, and an extensible evaluation framework that enables a
more meaningful interpretation of the model and informs the development of both
models and benchmarks. Our code, dataset, and leaderboard are publicly available
atlanonymized_url.
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Figure 1: Overall ranking of human performance versus 13 embedding models across 16 tasks.
Human annotators achieve 4th place with a score of 77.6, demonstrating competitive but not domi-
nant performance. The ranking reveals significant variation in model performance across different
parameter scales and architectures. Darker shades of blue means a larger model.


anonymized_url

1 INTRODUCTION

Embedding models are central to modern NLP systems, powering applications such as search, recom-
mendation, semantic analysis, and information retrieval. Many benchmarks test the performance of
embedding models, with the most comprehensive offering a diverse suite of tasks that test their gener-
ality and robustness (Muennighoff et al.| 2022} Xiao et al.l 2025} |[Enevoldsen et al., |2025). Despite
these advances, the interpretation and quality of these scores are often unclear as it is absent of human
performance references. Current metrics define performance in terms of theoretical maxima (e.g.,
MAP = 1.0) that assume perfect consensus on task outcomes. However, many NLP tasks inherently
involve ambiguity and disagreement (Plankl 2022), making a model’s score difficult to meaningfully
interpret without reasonable references. This interpretability gap has serious consequences. When
benchmarks reward models for fitting noisy labels, labels where even human annotators disagree, the
field risks "blind optimization": expending R&D resources to replicate annotation artifacts rather
than achieve semantic progress. For instance, if a model achieves 0.85 MAP in reranking, it is unclear
whether this should be considered strong, mediocre, or beyond what annotators typically achieve.
This disconnect highlights the need for human-centered evaluation that contextualizes benchmark
results. Importantly, human performance should not be treated as an upper bound but as a diagnostic
signal: a way to understand where tasks are inherently noisy, where models may surpass typical
annotator agreement, and where model behaviour diverges from human judgment.

To address this, we introduce HUME: a Human Evaluation framework for text embedding tasks.
HUME evaluates annotator performance across four task categories: reranking, classification, clus-
tering, and semantic textual similarity (STS), using 16 diverse datasets from the Massive Text
Embedding Benchmark (MTEB) (Muennighoff et al.|[2022]), adapted for human annotation feasibility.
Through multi-annotator experiments, we analyze task difficulty, quantify variation across humans,
and compare results directly against state-of-the-art embedding models.

Our contributions are threefold: (1) a generalizable framework for human evaluation of embedding
tasks, (2) empirical evidence of how humans perform across diverse datasets and task types, and
(3) comparative analysis of models and humans that highlights strengths, weaknesses, and ambiguities
in both benchmarks and models that yield actionable insights. Together, these contributions establish
a foundation for human-aligned evaluation of embedding models and guide future benchmark design.

Beyond human evaluation, we also investigate whether Large Language Models (LLMs) can serve as
scalable proxies for human judgment. The promise of LLM-as-annotator approaches is compelling: if
LLMs can reliably replicate human judgments, they could enable large-scale benchmark development
at lower cost. However, this assumes LL.Ms capture the same semantic distinctions humans make,
rather than exhibiting systematic biases. We evaluate nine state-of-the-art LLMs (GPT-5, GPT-4.1,
Gemini, Mistral, and Qwen3 variants) on identical annotation tasks to assess their viability as human
proxies and identify task-specific limitations.

2 RELATED WORK

2.1 TEXT EMBEDDING MODELS AND MTEB

Text embedding models map natural language into dense vectors that capture semantic information.
They have progressed from static embeddings (Mikolov et al., 2013} |Pennington et al.l 2014) to
contextual encoders (Devlin et al.| 2019; |Liu et al.,2019) and more recently to models optimized for
embeddings like Sentence-BERT (Reimers & Gurevych, 2019), ES (Wang et al., 2022)), and GTE (L1
et al.| 2023)), powering applications such as search, classification, and clustering.

To evaluate these models across its diverse use-cases, MTEB (Muennighoff et al., 2022; [Enevoldsen
et al., 2025) has risen as the de facto benchmark framework for embeddings and consolidates
evaluation across diverse tasks and datasets. Despite its breadth and community-driven extensions —
spanning multilingual, multimodal, and domain-specific variants (Xiao et al., 2025} [Kasmaee et al.}
2025} Tang & Yang| 2025} Xiao et al.,[2024; |Ciancone et al.,|2024} Enevoldsen et al., 2024} Zinvandi
et al.| 2025} |Wehrli et al.|, 2024} |[Poswiata et al., 2024} |Snegirev et al.| 2024)), MTEB lacks human
performance baselines, making it difficult to contextualize model achievements.



2.2 HUMAN EVALUATION IN NLP

Human evaluation is well established in NLP, especially for generative tasks like machine translation
(Graham et al., 2013), summarization (Fabbri et al., [2021), and dialogue (Gupta et al., 2019)). In
contrast, embedding-based tasks have relied almost exclusively on automated metrics, with little
attention to human baselines.

In information retrieval, initiatives such as TREC (Voorhees & Tice| [2000) collect human relevance
judgments, but these serve as gold standards rather than benchmarks of human performance under
model metrics (e.g., nDCG, MRR). Similarly, GLUE, SuperGLUE (Wang et al.,|2018;2019), and
MERA (Fenogenova et al.| 2024)) — a Russian GLUE-like benchmark — report human baselines, but
mainly for classification and reasoning tasks. For embeddings, works like STS (Cer et al., [2017)
report inter-annotator agreement, yet these are not converted into model-comparable performance
scores. This leaves a gap: human performance on embedding benchmarks such as MTEB remains
largely unquantified.

3 METHODOLOGY

3.1 FRAMEWORK DESIGN

Our framework builds on MTEB by establishing reproducible human evaluation protocols that align
directly with model evaluation. It consists of task-specific annotation interfaces, principled dataset
sampling, a standardized results format, and the use of aligned metrics. This design reveals where
evaluation practices introduce ambiguity or inconsistency.

3.2 TASKS, DATASETS, AND METRICS

Our selection criteria ensures comprehensive coverage across multiple dimensions: (1) linguistic
diversity: including both high-resource languages (English, Arabic, Russian) and lower-resource
languages (Norwegian Bokmal, Danish) []_-] to test cross-lingual generalization, (2) domain variety:
spanning news, social media, encyclopedic content, scientific literature, and forum discussions
to capture real-world application diversity, (3) construction methods: including both curated
human annotations and synthetic dataset creation to understand how dataset origin affects human-
model alignment, (4) task relevance: using tasks from established benchmarks widely adopted
in the embedding evaluation community, and (5) task complexity variation: ranging from binary
classification to fine-grained similarity judgments. This systematic selection ensures our findings
generalize across the diverse landscape of embedding applications while maintaining direct relevance
to existing evaluation frameworks.

Each task category uses a primary evaluation metric to enable consistent human—-model comparisons.
We summarize the datasets, their domains, and the primary metrics applied in Detailed

task examples are provided in

Retrieval Proxy via Reranking We use Reranking as a human-evaluable proxy for Information
Retrieval. Direct human evaluation of large-scale retrieval is methodologically infeasible—requiring
annotators to evaluate thousands of candidate documents per query. Reranking preserves the core
semantic challenge of discriminating query-candidate relevance while remaining tractable: humans
evaluate only the top-k candidates, establishing a baseline conceptually equivalent to embedding-
space behavior and ensuring human-model comparability.

3.3 INSTRUCTIONS

Human instructions are designed to match the task definitions exactly (e.g., identical label sets for
classification, same 1-5 scale for STS) to ensure valid comparisons. However, formal, detailed
annotation protocols are not publicly available for many MTEB datasets, which limits our ability
to verify alignment. To mitigate this, we designed instructions based on the original dataset papers’

"'With 0 being "The Left-Behinds" and 5 being "The Winners", we cover eng: 5, ara: 5, rus: 4, dan: 3, nob: 1
according to the 0-5 scale by (Joshi et al.||2021]).



task descriptions, ensuring annotators understood the semantic distinctions required for each task.
Instructions were piloted with a small subset before full annotation to identify and resolve ambiguities.

3.4 ANNOTATION PROCEDURE

Our annotations process follows a trend similar to recent embedding benchmarks [Enevoldsen et al.
(2025); | Xiao et al.| (2025)) focusing on a diverse set of tasks with fewer samples rather than large
singular tasks. We choose this approach as it allow us to better cover the broad scopes of current
benchmark. Annotators were recruited with a focus on cultural and language diversity.

All annotations are conducted in Argilla (Argilla Project Contributors, [2025)) using task-specific inter-
faces: binary relevance for reranking, categorical labels for classification, free cluster ID assignment
for clustering, and 0-5 similarity scores for STS. Sample sizes balance task complexity: reranking
(2049 queries), classification (40-48 examples), clustering (30 items), and STS (30-50 pairs).

All annotators were male, aged 20-35, from culturally diverse backgrounds, and experienced NLP
practitioners with native or near-native proficiency in the evaluated languages. They followed
structured guidelines and completed all annotations independently, without access to ground truth or
model predictions. The downsampled task subsets used for comparisons are included in the MTEB

package, with detailed task examples provided in

English tasks were annotated by two annotators to enable agreement analysis. Multilingual tasks were
annotated by a single annotator with corresponding language expertise. Inter-annotator agreement
was assessed with task-appropriate metrics: Fleiss” kappa (Fleiss,|1971) for classification, pairwise
ARI (Strehl & Ghosh, [2003)) for clustering, pairwise Spearman correlation (Agirre et al.,[2012a)) for
STS, and mean Spearman/Kendall’s tau (Manning et al., 2008)) for reranking. A detailed agreement
analysis is provided in This controlled evaluation setup minimizes potential confounds
from dataset variation and enables direct performance comparisons on identical evaluation instances.

3.5 MODEL SELECTION AND EVALUATION

We evaluate 13 embedding models chosen to cover multiple dimensions: (1) parameter scale
(22M-7B), (2) architecture (encoder- and decoder-based), (3) instruction tuning (instruction-tuned
and standard), and (4) multilingual capability (English and multilingual). This selection spans
diverse computational budgets and training paradigms, capturing the current embedding landscape.

All evaluated models are provided in

All models are evaluated on the downsampled instances annotated by humans, using identical
metrics, protocols, and computational settings. Human performance is computed using the metrics
in mirroring MTEB protocols. For primary analyses, we report MAP for reranking,
Accuracy for classification, V-Measure for clustering, and Spearman correlation for STS.

To account for sample size constraints, we determine statistical significance using 95% confidence
intervals computed via Wilson Score Intervals (accuracy) and Fisher z-transformations (correlation),

as detailed in

3.6 LLM-AS-ANNOTATOR EVALUATION

To assess whether automated evaluation can proxy human judgment, we evaluate nine state-of-the-art
Large Language Models (LLMs) as annotators on the exact same tasks. We employ GPT-5 (full
and mini), GPT-4.1 (full and mini), Gemini 2.5 Flash, Mistral Small-24B-Instruct, and three Qwen3
variants (30B, 32B, Coder-30B), prompting them with identical instructions provided to human

annotators (see[Appendix C).

LLMs receive the same task instances, evaluation metrics, and scoring protocols as human annotators,
enabling direct performance comparisons. For classification and STS tasks, LLMs provide categorical
labels or numerical similarity scores. For reranking, LLMs rank candidate documents by relevance to
the query. Clustering tasks were excluded from LLM evaluation due to fundamental difficulties in
eliciting consistent, structured cluster assignments from generative models.

This controlled setup determines whether LLMs can serve as scalable, low-cost proxies for human
evaluation or whether they exhibit systematic biases that limit their utility for benchmark development.



By evaluating LLMs on the same instances as humans and embedding models, we can directly
compare their annotation quality and identify task-specific strengths and limitations.

4 RESULTS AND ANALYSIS

provides an overview of human performance relative to 13 state-of-the-art embedding
models across 16 tasks. Human annotators rank 4th overall with a score of 0.776, trailing 3 large
models but outperforming 10 others. However, a raw ranking obscures the nuance of task difficulty
and data reliability. As shown in[Table T} humans neither represent a uniform performance ceiling nor
a lower bound, but rather occupy a middle ground that varies significantly by task category, language,
and dataset quality.

We computed 95% confidence intervals for human performance using metric-appropriate methods
(Wilson Score Intervals for classification accuracy, Fisher z-transformation for correlation-based
metrics, and empirical annotator ranges for clustering and reranking). Models perform outside
human Cls in 14 of 26 tasks (p < 0.05), often on datasets with low inter-annotator agreement where
“superhuman” performance may reflect artifact fitting rather than genuine capability (see
for methodology and complete results). Below we analyze performance patterns by task category and

language, with full per-task results in

Classification Clustering Reranking STS Overall

Model ara eng nob rus ara dan eng rus dan eng nob ara eng rus

Number of datasets M @ @ O O M @ 1 1 @D 1 1)y @ (1 (20
all-MiniLM-L6-v2 57.2 58.8 51.7 55.5 35.2 24.5 55.1 31.4 78.4 93.7 71.2 6.2 83.5 33.1 619
all-mpnet-base-v2 53.5 62.0 47.0 60.5 21.4 22.9 59.7 36.9 79.0 93.3 80.5 13.2 83.0 42.2 634
e5-mistral-7b-instruct 74.5 70.0 70.5 70.0 68.5 76.0 82.7 77.7 90.6 96.4 86.1 16.0 85.9 63.0 78.2
embeddinggemma-300m 71.0 58.6 54.0 73.5 19.2 43.7 65.1 36.9 74.3 86.9 71.4 36.7 69.9 66.2 64.2
gte-Qwen2-1.5B-instruct 75.2 76.5 70.8 74.5 73.7 67.1 75.9 72.2 84.3 95.3 87.8 28.8 84.0 54.2 775
jasper_en_vision_language_v1 63.5 87.1 70.5 79.8 64.3 54.7 83.2 43.7 90.1 95.8 90.0 40.9 88.1 69.5 80.1
multilingual-e5-base 75.8 64.7 73.8 77.2 35.9 40.6 45.6 36.2 92.2 94.4 87.5 31.0 85.2 62.7 68.2
multilingual-e5-large 77.0 64.9 75.0 80.0 34.6 31.0 52.5 46.9 95.0 95.3 92.2 33.8 86.3 68.8 70.4
multilingual-e5-small 72.2 62.2 69.2 81.2 35.5 38.0 51.7 59.1 88.6 94.2 88.3 28.8 85.2 60.3 69.0
mxbai-embed-large-v1 57.2 66.4 52.2 59.0 26.5 34.2 61.9 30.5 90.8 94.5 82.0 12.7 87.6 43.7 66.6
Qwen3-Embedding-0.6B 77.2 74.7 59.8 74.8 78.8 58.5 68.4 68.3 90.0 95.5 83.6 38.0 88.5 60.3 76.8
SFR-Embedding-Mistral 77.5 69.8 68.8 72.5 73.1 71.2 85.1 68.9 89.2 96.3 86.1 15.3 86.4 64.0 78.3
stella_en_1.5B_v5 65.8 84.0 67.0 79.2 36.8 42.6 78.6 46.7 91.7 96.0 88.6 37.2 86.7 62.1 76.9
Human 95.0 70.3 85.0 92.5 76.0 62.7 67.4 68.0 91.4 87.2 89.8 67.5 83.1 58.7 77.6

Table 1: Human performance compared to 13 embedding models across task categories and languages.
Bold indicates highest performance (human or model), underline indicates best model performance.
Humans achieve top performance in 5 of 14 aggregated task-language pairs, particularly excelling in
non-English sentiment analysis and Arabic semantic similarity. Overall results are aggregated over
the 26 task-language pairs.

4.1 PERFORMANCE PATTERNS BY TASK CATEGORY

shows human performance relative to model performance across all 26 task-language pairs.
Each task shows human performance (point) positioned within the full spectrum from worst to best
model performance (range bars). Humans consistently perform in the upper portion of model ranges,
typically exceeding median model performance (61.5% of tasks) while rarely matching the best
models (15.4% of tasks). Classification tasks show the strongest human performance, with humans
outperforming all models in 3 of 7 tasks, while clustering and reranking reveal consistent gaps where
humans fall short of top-performing models. Detailed gap analysis can be found in[Appendix G|

Classification: Human performance averages 70.3, ranging from 45.8 on emotion classification
(k = 0.39, fair agreement) to 95.0 on Arabic sentiment analysis. Models generally exceed human
performance (best: 87.1), but humans outperform models on non-English sentiment analysis, particu-
larly in Arabic (95.0 vs. 77.5) and Russian (92.5 vs. 81.2), likely benefiting from native cultural and
linguistic understanding that current models fail to capture.
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Figure 2: Comprehensive view of human performance relative to all model performance ranges across
16 tasks by language.

Clustering: Humans average 67.4 V-measure with extreme variation. Near-perfect performance
on WikiCities (97.6, ARI = 0.91) contrasts sharply with poor performance on ArXiv papers (49.2,
ARI = —0.001). Models consistently outperform humans (best: 85.1%). The poor inter-annotator
agreement on ArXiv indicates fundamental task ambiguity rather than human limitation.

Reranking: Humans achieve strong performance (87.2 average MAP) with high inter-annotator
agreement (p = 0.64-0.85), demonstrating intuitive relevance understanding. Models exceed human
performance (best: 96.4), but the high human agreement suggests these tasks align well with human
judgment and provide reliable evaluation targets.

STS: Humans average 83.2 Spearman correlation, with notable variation: STS12 achieves 91.2 while
STS22-Russian drops to 58.7, likely reflecting dataset quality issues discussed in §4.3] Models achieve
comparable performance (best: 88.5), with moderate inter-annotator agreement (p = 0.58-0.77).

These results reveal a critical insight that challenges conventional evaluation paradigms: human
performance variation often reflects task quality rather than human limitations. Tasks with high human
performance and agreement (reranking, toxicity classification) represent well-specified problems
with clear ground truth, while tasks with low human agreement (emotion classification, academic
clustering) may suffer from ambiguous annotation guidelines or inherently subjective judgments.
Models achieve “superhuman’ performance by reproducing consistent label patterns from training
data, but this consistency may mask fundamental issues with task specification. Rather than treating
low human performance as a ceiling to surpass, our findings suggest that it often signals the need for
improved task design and clearer annotation frameworks.

4.2 CROSS-LINGUAL PERFORMANCE ANALYSIS

Human win rates vary substantially by language and comparison baseline (see for
detailed breakdown). Against the best models, humans win only 15% of tasks overall, but this rises
to 62% against median models. The advantage is strongest for non-English tasks: humans achieve a
29% win rate on multilingual tasks versus 0% on English-only tasks against best models.

Arabic exhibits the strongest human advantage: a 67% win rate against the best models and 100%
against the mean, with the largest gap in semantic similarity (67.5% vs. 40.9%, a 26.6-point margin).



Russian and Norwegian also show consistent human superiority in sentiment analysis, where humans
achieve 92.5% and 85.0%, respectively, substantially outperforming the best models. These advan-
tages likely stem from cultural and contextual knowledge that models fail to capture, especially in
lower-resource languages.

English tasks are more balanced, with models generally matching or exceeding humans, reflecting
the language’s dominance in training data. Danish shows mixed outcomes, possibly due to stronger
multilingual coverage for Germanic languages.

4.3 DATASET QUALITY AND EVALUATION CHALLENGES

Our analysis reveals systematic quality issues in several MTEB datasets that fundamentally com-
promise their reliability as evaluation benchmarks. Human performance variation often correlates
with underlying ambiguity rather than genuine human limitations, providing a diagnostic tool for
identifying problematic evaluation targets. See for further qualitative analysis of these
failure modes; below, we highlight two such examples.:

Emotion Classification Ambiguity: The emotion classification dataset exemplifies inherent labeling
ambiguity, achieving only fair inter-annotator agreement (x = 0.39) with 52.1% consensus. Real
examples demonstrate the fundamental challenges: “I feel like such a noob when the customers make
really dull and stupid jokes that im supposed to find funny” could reasonably be labeled as sadness (0),
anger (3), or even surprise (5) depending on interpretation. Similarly, “I am feeling very indecisive
and spontaneous” contains mixed emotional states that resist single-label categorization. Sarcastic
expressions like “I got paid too much because I get so many deliveries at work Im feeling a bit shamed”
present surface emotions that differ from intended meaning. When human experts fundamentally
disagree on correct answers for such inherently ambiguous cases, the apparent “superhuman” model
performance (87.1% vs. 45.8% human) likely reflects consistent reproduction of arbitrary majority
label patterns rather than superior emotional understanding.

ArXiv Clustering Breakdown: Academic paper clustering shows complete breakdown of human
agreement (ARI=-0.001), indicating fundamental disagreement about how to categorize academic
papers. Real examples illustrate the core ambiguity: papers like “Self-Supervised Audio-Visual
Representation Learning with Relaxed Cross-Modal Synchronicity* could legitimately cluster with
computer vision, machine learning, or audio processing groups depending on the annotator’s perspec-
tive on primary methodology versus application domain. “The architecture of innovation: Tracking
face-to-face interactions with ubicomp technologies” spans social science, computer science, and
architecture domains. Such interdisciplinary papers create fundamental disagreement about correct
clustering approaches, with no objectively correct answer. The task uses derived labels from ArXiv
categories, but the core issue is that academic papers often span multiple domains, making any
single clustering scheme inherently ambiguous. The high model performance (84.6% vs. 49.2%
human) suggests that the models are reproducing consistent labeling patterns rather than solving the
fundamental categorization challenge.

High-Quality Benchmark Identification: Conversely, tasks with high human agreement provide
reliable evaluation targets. Reranking tasks achieve strong inter-annotator agreement (p = 0.64—0.85)
with clear performance targets, while toxicity classification shows moderate agreement (x = 0.55)
with 77.8% annotator consensus. These represent genuine evaluation challenges where model
improvements likely reflect meaningful progress rather than pattern matching to flawed labels.

These patterns suggest that apparent “superhuman’ model performance often occurs precisely where
human agreement is lowest, indicating that models excel not through superior understanding but
through consistent reproduction of systematic labeling patterns. This raises concerns about the label
quality in embeddings benchmarks, and we encourage future benchmark developers to critically
examine the datasets before including them in a benchmark, potentially using human annotations
framework like HUME. Detailed analysis of specific quality issues is provided in[Appendix D]

4.4 CAN LLMsS REPLACE HUMAN ANNOTATORS?

We benchmark nine LLMs as annotators to assess whether they can serve as reliable proxies for
human judgment. As shown in[Table 2] the best-performing LLM (GPT-4.1-mini) achieves 76.1%



Task Human GPT-5 GPT-4.1 Gemini Mistral Qwen3 Best Emb.
Full Mini | Full Mini | 2.5 Flash | Small-24B-1| 30B 32B Coder Score
Classification  79.1 789 772 176.6 76.1 77.6 73.8 742 73.0 76.3 |80.3 (jasper)
Reranking 88.3 75.1 755|757 712 76.2 78.0 75.6 748 73.8 94.8 (e5)
STS 76.5 73.0 69.0 | 74.9 749 69.3 75.0 67.1 68.6 71.3 |77.1 (jasper)
Average 81.2 \75.8 74.1 \75.8 76.1 \ 74.5 \ 75.5 \72.4 722 73.9 \ -

Table 2: LLM-as-annotator performance compared to human annotators and best embedding models
per task category. Human and LLM performance is computed over 19 task-language pairs (clustering
tasks excluded due to difficulty eliciting cluster assignments). Best embedding model per task category
shown with abbreviated name: jasper (jasper_en_vision_language_v1), SFR (SFR-Embedding-
Mistral), e5 (multilingual-e5-large). Bold indicates best LLM performance (humans and embedding
models consistently outperform LLMs and are not bolded).

average accuracy, falling short of human performance (81.2%). We exclude clustering tasks in this
comparison due to the difficulty of eliciting cluster assignments from generative models.

Task-specific patterns reveal important limitations. On classification, LLMs approach human perfor-
mance (GPT-5: 78.9% vs. Human: 79.1%). However, a substantial gap emerges in reranking, where
humans achieve 88.3% compared to the best LLM at 78.0% (Mistral-Small): a 10-point deficit on
tasks where humans show high agreement (p = 0.64-0.85). For STS, humans (76.5%) outperform
all LLMs (best: 75.0%, Mistral-Small). Embedding models achieve the highest scores across all
categories (Classification: 80.3%, Clustering: 79.1%, Reranking: 94.8%, STS: 77.1%). Detailed

per-task LLM performance is provided in

To assess whether humans and LLMs face similar challenges, we computed Spearman rank correla-
tions between human and LLM performance across the 19 task-language pairs. The moderate positive
correlation (p = 0.52, p < 0.05, n = 19) indicates that tasks where humans perform well also tend
to be tasks where LLMs perform well, suggesting partially shared difficulty patterns. However, the
correlation is moderate rather than strong, indicating that humans and LLMs do not face identical
challenges across all tasks (see[§ I.T|for detailed correlation analysis).

5 DISCUSSION

5.1 TASK QUALITY AND EMBEDDING EVALUATION RELIABILITY

Our analysis reveals a striking pattern: models achieve their highest relative performance precisely
where human experts show the least agreement. This confirms that on low-quality datasets, current
metrics do not measure semantic understanding but rather the model’s ability to reproduce consistent
annotation artifacts.

This finding reframes the role of human evaluation in benchmark design. Rather than serving merely
as a performance benchmark, human consensus establishes a validity threshold for evaluation tasks.
When models significantly exceed this bound on low-agreement tasks, it signals that the benchmark
itself has lost its descriptive power: the task may be measuring annotation artifacts rather than the
capability it claims to assess. HUME provides the empirical mechanism to identify and deprecate
these invalid evaluation targets, ensuring that leaderboards measure genuine capability rather than
overfitting to noise.

Tasks with high human agreement, such as reranking and toxicity classification, provide reliable
evaluation targets. Conversely, low-agreement tasks (e.g., ArXiv clustering, Emotion classification)
suffer from ambiguous guidelines or subjective judgments. Cultural factors add another dimension
to evaluation reliability. Humans retain substantial advantages in Arabic semantic similarity and
multilingual sentiment analysis, revealing genuine model limitations in cross-cultural understanding.

These findings suggest reliable evaluation depends as much on task quality as model capability.
Rather than treating high model performance as automatic progress, we recommend prioritizing
high-agreement tasks for development, addressing cultural competence gaps, and critically examining
whether apparent model superiority on ambiguous tasks reflects genuine capability or evaluation



bias. Novel benchmarks should report human agreement alongside model scores: 85% accuracy on
emotion classification (185% of human performance, x = 0.39) represents a fundamentally different
achievement than 85% on reranking (97% of human performance, p = 0.75).

5.2 LLM-BASED EVALUATION

Our LLM annotation experiments reveal important limitations for using LLMs as proxies for human
judgment. While LLMs achieve competitive performance on classification tasks, a substantial
gap emerges on reranking, where humans significantly outperform even the best LLMs. Notably,
reranking tasks show strong inter-annotator agreement (p = 0.64—0.85), suggesting LLMs struggle
with precisely the nuanced relevance judgments where human consensus is highest. This pattern
contrasts with classification, where lower human agreement (x = 0.24-0.55) coincides with near-
parity between humans and LLMs.

This has important implications for benchmark development. The reranking gap suggests that LLMs
may not reliably capture the semantic distinctions humans make on well-defined tasks, even as they
approach human performance on more ambiguous ones. Using LLMs for large-scale annotation
may therefore introduce systematic biases, particularly for tasks requiring fine-grained semantic
judgments. The architectural mismatch between generative LLMs and discriminative evaluation tasks
further limits their utility, as evidenced by our inability to evaluate clustering tasks.

While LLMs offer scalability advantages, these limitations suggest they should augment rather
than replace human annotation, particularly for benchmark development where task quality directly
impacts model development priorities. Future work should explore hybrid approaches that leverage
LLM efficiency for initial annotation while reserving human judgment for high-agreement tasks and
uncertain cases.

5.3 IMPLICATIONS FOR MODEL DEVELOPMENT AND EVALUATION PRACTICES

Our findings reveal concrete directions for both embedding model development and evaluation
methodology that address the fundamental quality issues we’ve identified.

Prioritize High-Agreement Tasks for Development: Development efforts should focus on tasks
where humans demonstrate both high performance and agreement, as these provide the most reliable
benchmarks for measuring genuine progress. Reranking tasks, with their clear performance targets
and strong agreement (p = 0.64 — 0.85), offer dependable evaluation where the persistent model-
human gap (96.4% vs. 87.2%) represents meaningful challenges requiring better modeling of
relevance relationships. Toxicity classification, despite moderate agreement (x = 0.55), provides
another reliable target with 77.8% human consensus. In contrast, optimizing for tasks with poor
human agreement (emotion classification x = 0.39, ArXiv clustering ARI = —0.001) may lead
models to excel at reproducing arbitrary labeling patterns rather than developing genuine semantic
capabilities.

Address Cultural and Linguistic Competence Gaps: The substantial human advantages in non-
English tasks reveal critical model limitations that scaling training data alone cannot address. Arabic
semantic similarity shows the largest human advantage (67.5% vs. 40.9% best model), while multilin-
gual sentiment demonstrates consistent human superiority in non-English languages (95.0% Arabic,
92.5% Russian). These gaps suggest that current models lack the cultural and contextual knowledge
necessary for cross-lingual understanding, requiring architectural innovations or training approaches
that go beyond simple data scaling to capture cultural nuances and contextual understanding.

Replace Problematic Benchmark Datasets: Our analysis identifies specific datasets that compro-
mise benchmark reliability and should be replaced in future MTEB iterations: emotion classification ,
ArXiv clustering, and STS22-Russian (systematic parsing artifacts). These tasks provide unreliable
evaluation targets that may mislead model development efforts by rewarding pattern matching to
flawed gold standards. Replacement datasets should demonstrate reasonable human agreement and
clear task specifications, validated through human evaluation before inclusion in benchmark suites.

Report Dataset Quality Measures: Model performance should be interpreted in light of dataset
quality indicators to provide proper context for evaluation results. We propose that benchmark leader-
boards report human agreement metrics alongside model scores. A model achieving 85% accuracy



on emotion classification (185% of human performance, x = 0.39) represents a fundamentally
different achievement than 85% on reranking (97% of human performance, p = 0.75). High model
performance on low-agreement tasks should be viewed skeptically as potential artifacts of flawed
evaluation targets rather than genuine capability improvements. For tasks where human agreement
falls below established thresholds (x < 0.4 or p < 0.6), we recommend either improving task
specifications or removing the dataset from benchmark suites entirely. However, it is important to
recognize that some degree of human disagreement reflects natural variability in judgment rather than
dataset flaws. Future benchmarks could incorporate evaluation frameworks that preserve and leverage
this variability rather than collapsing it to single gold labels (Plank} 2022; [Basile et al., 2021).

5.4 LIMITATIONS

Our study has several limitations. First, our prioritization of breadth over depth—covering 16 diverse
tasks—resulted in smaller sample sizes per task (20-50 instances). While we provide significance
analyses to validate our statistical conclusions, larger samples would better capture the full complexity
of human performance variation and provide more robust estimates of human judgment distributions.

Second, our multi-task design constrained task-specific training. Annotators were average or above-
average raters without specialized training; experts would likely perform better, particularly on
technical tasks. This was compounded by sparse annotation guidelines in original datasets, making
alignment with original procedures difficult—though this reflects realistic annotation scenarios where
perfect replication is often infeasible.

Third, while three annotators participated overall, only two annotations were collected for most tasks,
limiting our ability to fully characterize agreement patterns. Additionally, while we ensured cultural
and linguistic diversity among annotators, they were all male and aged 20-35, which does not fully
represent human judgment distributions across broader demographic groups.

Fourth, While our study quantifies where models diverge from human performance, it does not
fully explain why these gaps arise. Identifying the underlying factors - such as gaps in training data
coverage, domain or cultural biases, and linguistic variability, particularly in low-resource settings -
remains a critical direction for future research. However, detailed information about model training
corpora is often unavailable, limiting such analysis.

Finally, while our study evaluates human performance across diverse tasks, we did not systemat-
ically investigate how task design features—such as specification clarity versus meaningful chal-
lenge—affect human agreement and model discrimination. The field needs rigorous research on these
design principles to avoid both ambiguity, which depresses human agreement, and oversimplification,
which diminishes discriminative power.

6 CONCLUSION

We introduce HUME, a comprehensive human evaluation framework for MTEB, addressing a critical
gap in understanding empirical performance bounds for embedding models. By measuring human
performance across 16 datasets spanning reranking, classification, clustering, and STS, we establish
statistically robust baselines that reframe how model achievements should be interpreted.

Our findings show that human performance varies substantially by task categories. Tasks with high
agreement provide reliable benchmarks, while low-agreement tasks often reveals design issues in the
task formulation.

Finally, our benchmarking of nine LLM-as-annotator systems demonstrates that while they offer
scalability, they cannot yet replace human judgment entirely. The best LLM (GPT-4.1-mini, 76.1%)
falls short of human performance (81.2%), particularly on reranking. This suggests that future
benchmarks should leverage LLMs to augment, but not replace, human evaluation.

6.1 ETHICAL CONSIDERATIONS

Annotators were co-authors who consented to the study. There were no external crowd workers
involved in any part of the annotation process.
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A  DATASET SPECIFICATIONS

details the 16 datasets selected for this study, including their domains, descriptions, and the
primary metrics used for evaluation.

Datasets Description Metrics
% Corel7, News21, Information retrieval benchmarks (news, documents) MAP,
2 Robust04 (Weller et al}, 2024) MRR@10,
£ WikiMulti (Enevoldsen et al, ~ Wikipedia article reranking (eng, dan, nob) nDCG@10
e [2025)
5§ Emotion (Saravia et al.,2018) Emotion classification from social media text
.‘:% Tweet Senti (Barbieri et al.| Sentiment analysis of tweets Accuracy, F1,
< 2022) Weighted F1
§ Toxicity (cjadams et al.,[2019) Toxic content detection
O Multilingual Sentiment Sentiment classification (ara, eng, nob, rus)

(Mollanorozy et al.||[2023))
2 WikiCities (Foundation)) Entity clustering from Wikipedia
'S ArXiv (arXiv.org submitters,  Academic paper topic clustering (derived labels) V-Measure,
Z [029) ARI, AMI
O Reddit (Geigle et al.|[2021) Forum discussion topic clustering

SIB200 (Adelani et al.}[2023)  Multilingual sentence clustering (ara, dan, eng, rus)

STSBenchmark (May,|2021)  General semantic similarity benchmark

(ﬁ SICK-R (Marelli et al.,[2014)  Semantic relatedness and entailment Spearman,
v2 STS12 (Agirre et al.,2012b) ~ Shared task semantic similarity Pearson
STS22 (Chen et al.,|2022) Multilingual semantic similarity (ara, eng, rus)

Table 3: Complete list of 16 datasets and evaluation metrics used for human annotation. For the
metrics we use MAP (Manning et al., 2008), MRR (Manning et al., 2008), nDCG (Jarvelin &
Kekaldinen, 2002)), Accuracy/F1 (Sokolova & Lapalmel 2009), V-Measure (Rosenberg & Hirschberg,
2007), ARI (Hubert & Arabiel [1985), AMI (Vinh et al.,[2010), Spearman/Pearson (Spearman, [2010)
(Pearsonl, [1895)), following the MTEB implementations.

B DETAILED RESULTS BY TASK CATEGORY

This section provides comprehensive results for all tasks, organized by category. Each table includes
human performance alongside all 13 evaluated models, with inter-annotator agreement metrics where
available.

Table 4] presents full results of the clustering tasks. [Table 5| presents full results of the classification
tasks. [Table 6] presents full results of the reranking tasks. [Table 7] presents full results of the STS
tasks.

C TASK EXAMPLES

This section provides screenshots of the actual Argilla annotation interfaces used in our study,
illustrating the annotation challenges and interface design that human annotators encountered.

ioesn t help that i got sick on black friday and was forced against my will to maintain my promise to stay in but being
city feels amazing

Figure 3: Emotion Classification annotation interface showing the 6-category emotion labeling task.
This task achieved fair inter-annotator agreement (x = 0.39) due to ambiguous emotional states and
mixed emotions in social media text. Human performance: 45.8%, Best model: 87.1%.
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a [submitted - | = Fiters ¢ sort
R ted Sentiment

© Submitted

= Discard a s Save as draft © Submit
st Text

Good morning to you, however it's night time for me, so | am off to bed *hugs* Have a great day.

Figure 4: Tweet Sentiment Classification annotation interface demonstrating sentiment polarity
annotation. This task achieved moderate inter-annotator agreement (v = 0.48) with reasonable
consensus on positive/negative sentiment. Human performance: 84.4%, Best model: 90.9%.

2 ((submited | = Fiters i Sort
Cluster ID *

eper Abstrac @ Discard a5 Save as draft “ Submit
Accessibilty percolation in random fitness landscapesThe fitness landscape encodes the mapping of genotypes to fitness and

provides a succinct representation of possible trajectories followed by an

evolving population. Evolutionary accessibilty s quantified by the existence

of fitness-monotonic paths connecting far away genotypes. Studies of

accessibility percolation use probabilistic fitness landscape models to explore

the emergence of such paths as a function of the intal fitness, the

parameters of the landscape or the structure of the genotype graph. This

chapter reviews these studies and discusses their implications for the

predictability of evolutionary processes.

Figure 5: ArXiv Clustering annotation interface showing academic papers that caused complete
annotator disagreement (ARI = —0.001) due to interdisciplinary research overlap. Papers could be
categorized by methodology, application domain, or research community, leading to fundamental
disagreement. Human performance: 49.2%, Best model: 84.6%.

Q [sumited -] = Fiters ¢ Sort -
L J Cluster ID *

s

o sumited §

ample = Discard s Save as draft « submit
The show originally featured amateur voice actors, local to East Texas.

Figure 6: Reddit Clustering annotation interface demonstrating thematic grouping of discussion
topics. This task achieved fair agreement (ARI = 0.34) due to overlapping themes across different
discussion topics. Human performance: 68.8%, Best model: 100%.

a [suomited | = Fiters ¢ Sort
o Cluster ID *

s

51-200 Example: = Discard ' Save as draft ~ submit
The show originally featured amateur voice actors, local to East Texas.

Figure 7: SIB200 Clustering annotation interface showing multilingual sentence clustering task. This
task achieved moderate inter-annotator agreement (ARI = 0.42) with variation across languages
depending on cultural context and sentence complexity.
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inat o Loy am aperet = ot
Dacument 6 Reevance

Consultation Process Section 7 consultation for critical habtat will focus on the effects of actions on tortoise habitat whether or not tis
currently oceupied. The presence or absence of tortoises willnot factor into the determination of actions that trigger section 7. Any action that

may affect critcal habitat wil riggs 7 consultation. o modification of crical habltat is an Document 7 Relevance *

incremental section 7 consideration above and beyond section 7 review necessary to evaluate jeopardy and incidental take. A required by 50 P

CFR 40214, a Federal agency must consult with the Service f it determines an action may affect a listed species or s critcal habitat. Federal

agencies are responsible for determining whether or not 1o consult with the Service and should consider a number of factors when >

determining f a proposed action may affect critical habitat. To the extent possible, agencies should consuit on a programmatic basis. The % Discard 5] Save s draft - Submit

Service will co

Figure 8: Robust04 Reranking annotation interface showing document relevance assessment for
information retrieval queries. This task achieved strong inter-annotator agreement (p = 0.72). Human
performance: 88.5%, Best model: 98.8%.
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Figure 9: Wikipedia Multilingual Reranking annotation interface demonstrating cross-lingual rele-
vance judgment. This task achieved moderate agreement (p = 0.64) due to cross-lingual complexity.

= Fiers i sont
Similarity Score *

POOOO®O

= Discard a5 Save s draft - submit

o Submitted §

twice the quanity or amount of something

a quantity thatis twice as great as another

Figure 10: STS12 annotation interface showing semantic similarity assessment using a 0-5 scale.
This well-curated dataset achieved strong inter-annotator agreement (p = 0.77). Human performance:
91.2%, Best model: 92.0%.

R Crantiicll ] Similarity Score *

\." ®O: @+ s

= Discara s Savessdrat - submit

A woman is putting on eyeshadow

The woman is removing make-up

Figure 11: SICK-R annotation interface showing semantic relatedness and entailment task. This task

achieved moderate agreement (p = 0.68) due to task complexity. Human performance: 82.6%, Best
model: 94.1%.
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Model Arxiv  Reddit SIB200 WikiCities

all-MiniLM-L6-v2 61.8 56.5 33.2 73.8
all-mpnet-base-v2 56.0 63.0 33.2 86.7
eS-mistral-7b-instruct 77.2 74.9 73.8 100.0
embeddinggemma-300m 73.0 72.8 36.0 70.3
gte-Qwen2-1.5B-instruct 70.8 88.4 72.3 73.6
jasper_en_vision_language_v1 83.9 95.1 59.0 95.1
multilingual-e5-base 31.9 60.0 34.4 66.2
multilingual-e5-large S51.1 55.4 37.8 69.2
multilingual-e5-small 30.5 76.9 38.7 72.6
mxbai-embed-large-v1 48.3 72.1 33.0 90.8
Qwen3-Embedding-0.6B 69.1 76.3 65.5 74.8
SFR-Embedding-Mistral 75.5 81.4 74.8 100.0
stella_en_1.5B_v5 84.6  100.0 442 86.4
Human 49.2 68.8 65.2 97.6

Table 4: Full clustering results.

Model Emotion MultilSenti ToxicConvo TweetSenti
all-MiniLM-L6-v2 42.1 57.9 66.4 59.6
all-mpnet-base-v2 44.0 61.5 60.4 58.4
eS-mistral-7b-instruct 473 75.9 68.0 75.8
embeddinggemma-300m 40.4 64.6 66.4 67.8
gte-Qwen2-1.5B-instruct 56.2 78.1 78.7 79.3
jasper_en_vision_language_v1 75.4 77.3 86.7 90.9
multilingual-e5-base 36.2 78.6 66.0 69.1
multilingual-e5-large 38.5 81.1 63.3 65.3
multilingual-e5-small 33.8 75.8 65.1 69.6
mxbai-embed-large-v1 42.1 64.4 68.7 65.8
Qwen3-Embedding-0.6B 51.9 74.1 74.4 87.8
SFR-Embedding-Mistral 46.7 77.1 67.3 75.6
stella_en_1.5B_v5 71.9 76.1 82.9 89.1
Human 45.8 87.5 73.3 84.4

Table 5: Full Classification results.

D TASK QUALITY ANALYSIS

D.1 DATASET QUALITY ISSUES
Our analysis revealed quality issues across multiple datasets that significantly impact human-model

performance comparisons. These issues fall into several categories that help explain performance
patterns observed in our study.

D.1.1 STS22-RUSSIAN

The Russian subset of “STS22” dataset shows patterns that may help explain the comparatively low
human agreement we observed.
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Model Corel7 News2l Robust0O4 Wikipedia

all-MiniLM-L6-v2 95.6 98.8 96.3 77.8
all-mpnet-base-v2 98.6 98.6 97.8 79.2
e5S-mistral-7b-instruct 98.8 99.5 98.8 88.4
embeddinggemma-300m 84.2 914 89.8 76.0
gte-Qwen2-1.5B-instruct 97.5 99.2 98.5 86.1
jasper_en_vision_language_vl1 98.2 100.0 98.7 88.8
multilingual-e5-base 96.2 98.6 96.9 88.5
multilingual-e5-large 95.7 97.8 97.2 92.6
multilingual-e5-small 95.6 98.1 97.5 87.6
mxbai-embed-large-v1 97.2 98.0 98.6 85.6
Qwen3-Embedding-0.6B 97.0 100.0 98.5 86.8
SFR-Embedding-Mistral 97.9 99.7 98.8 87.9
stella_en_1.5B_v5 98.6 100.0 98.3 89.2
Human 85.2 92.7 88.5 87.9

Table 6: Full Reranking results.

Model SICK-R STS12 STS22 STSB
all-MiniLM-L6-v2 91.5 85.7 48.4 81.8
all-mpnet-base-v2 89.8 83.7 54.3 78.4
eS-mistral-7b-instruct 93.2 89.1 58.5 85.9
embeddinggemma-300m 72.6 779 579 58.3
gte-Qwen2-1.5B-instruct 93.4 86.9 60.3 80.0
jasper_en_vision_language_v1 93.8 92.0 67.2 88.7
multilingual-e5-base 91.5 86.5 63.3 82.9
multilingual-e5-large 89.4 89.9 65.9 83.6
multilingual-e5-small 88.6 87.6 63.3 81.9
mxbai-embed-large-v1 93.4 91.1 53.9 88.9
Qwen3-Embedding-0.6B 93.3 91.8 63.6 90.9
SFR-Embedding-Mistral 94.1 89.2 59.3 86.4
stella_en_1.5B_v5 92.3 89.1 64.3 87.1
Human 82.6 91.2 68.2 80.4

Table 7: Full STS results.

Context Expansion Issues:

» Sentence pairs labeled as “4” (identical meaning) where one sentence contains basic infor-
mation and the paired sentence includes additional backstory or context

* Translated example pattern: “Company reports earnings” vs. “Company reports earnings of
$X million, exceeding expectations due to strong performance in sector Y”

* Human annotators correctly identify these as semantically different (similarity 2-3), while
gold labels mark them as identical
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* This explains the low human performance on STS22-Russian (58.5%) compared to models
(69.5%)

Parsing and Processing Errors:

* Incomplete sentence parsing affecting semantic interpretation

* Parsing artifacts from web pages (e.g., page numbers, lists of automatically generated related
news, ads)

D.1.2 MULTILINGUAL SENTIMENT CLASSIFICATION-RUSSIAN

The Russian subset of “MultilingualSentimentClassification” consists of news articles from different
news sites. The task is to classify each text as “positive” or “negative”. However, the dataset presents
several challenges:

Neutral and Ambiguous Content:
* Many samples are based on press releases from companies or government departments,
which are often neutral in tone and difficult to categorize as positive or negative.

* Translated example: “The total amount of pension savings accumulated in JSC *Unified
Accumulative Pension Fund’ (UAPF) as of September 1, 2016, amounted to about 6.41
trillion tenge, the press center of the pension fund said, KazTAG reports. ...”

* Such sentences are more informative than sentiment-bearing.
Parsing and Processing Errors:

* Similar to the issues described in[§ D.I.1] the dataset contains parsing artifacts from web
pages.

D.1.3 EMOTION CLASSIFICATION
The emotion classification dataset suffers from inherent label ambiguity that explains the low human
agreement (x = 0.39):
Mixed Emotional States:
» Texts expressing multiple emotions simultaneously: “i am feeling very indecisive and

spontaneous” (labeled as fear but could be surprise)

* “i was feeling pretty anxious all day but my first day at work was a very good day and that
helped a lot” (contains both fear and joy)

* “1 am feeling crampy and cranky” (physical discomfort mixed with anger)
Sarcastic and Ironic Expressions:
* “i got paid too much because i get so many deliveries at work im feeling a bit shamed so

will curb the spending for a bit” (sarcasm about being “overpaid”)

* “i feel like such a noob when the customers make really dull and stupid jokes that im
supposed to find funny” (surface sadness but underlying anger/frustration)

* “i feel very cheated since i am supporting the family and doing all the other stuff while he
spends hours a day gaming” (labeled as joy but clearly expressing anger)

Contextual and Subjective Interpretation:

* “i feel shame in a strange way” (ambiguous emotional context, labeled as surprise)
* “i feel all funny sometimes” (vague emotional description that could be multiple categories)

* “i feel underappreciated and under valued” (could be sadness, anger, or fear depending on
interpretation)

21



D.1.4 ARXIV CLUSTERING CHALLENGES

Academic paper clustering presents fundamental categorization difficulties that explain the complete
breakdown of human agreement (ARI = —0.001). This task uses derived labels from ArXiv paper
categories:

Interdisciplinary Research Papers:

* “Self-Supervised Audio-Visual Representation Learning with Relaxed Cross-Modal Syn-
chronicity” (could cluster with computer vision, audio processing, or self-supervised learn-
ing)

* “The architecture of innovation: Tracking face-to-face interactions with ubicomp technolo-
gies” (spans social science, computer science, and architecture)

* “PIINET: A 360-degree Panoramic Image Inpainting Network Using a Cube Map” (computer
vision, graphics, or deep learning focus)

Methodological vs. Application Domain Confusion:

* “Convergent Actor-Critic Algorithms Under Off-Policy Training and Function Approxima-
tion” (reinforcement learning methodology vs. control theory application)

* “Learning-Based Adaptive IRS Control with Limited Feedback Codebooks” (machine
learning method vs. wireless communications application)

* “Structure-preserving numerical methods for stochastic Poisson systems” (numerical meth-
ods vs. mathematical physics)

Emerging and Cross-Domain Research:

* “The modularity of action and perception revisited using control theory and active inference”
(cognitive science, control theory, or neuroscience)

* “Food-chain competition influences gene’s size” (evolutionary biology, computational biol-
ogy, or mathematical modeling)

* “Wavelet Analysis of Dengue Incidence and its Correlation with Weather and Vegetation
Variables in Costa Rica” (epidemiology, signal processing, or environmental science)

D.2 IMPACT ON EVALUATION
These quality issues have several critical implications for embedding evaluation:

1. Artificial Model Advantages: Models may achieve “superhuman” performance by consis-
tently reproducing systematic labeling patterns rather than demonstrating superior semantic
understanding. This is particularly evident in tasks with low human agreement where models
can exploit consistent but incorrect labeling patterns.

2. Misleading Benchmarks: Tasks with fundamental quality issues provide unreliable targets
for model development. High model performance on such tasks may not indicate genuine
capability improvements but rather successful pattern matching to flawed gold standards.

3. Cultural and Linguistic Bias: Quality issues disproportionately affect non-English tasks,
potentially masking genuine model limitations in cross-cultural understanding while artifi-
cially inflating performance on problematic English datasets.

4. Evaluation Validity: The validity of using these datasets as benchmarks is questionable
when human experts cannot agree on correct answers, suggesting fundamental issues with
task specification rather than human limitations.

E STATISTICAL ROBUSTNESS ANALYSIS

E.1 CONFIDENCE INTERVAL METHODOLOGY

Given sample size constraints (N = 20 — 50), we computed 95% Confidence Intervals (ClIs) for
human performance using metric-specific analytical methods rather than generic approximations:
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 Classification (Accuracy): Wilson Score Interval (Wilsonl [1927)), which is robust for
binomial proportions with small sample sizes and avoids the “zero-width” errors of normal
approximations.

* STS (Correlation): Fisher z-transformation (Fisher,|1915) to compute CIs for Spearman
correlations, ensuring valid bounds within [—1, 1].

* Clustering & Reranking: Empirical range between annotators as a conservative bound
given Nannotators = 2.

Statistical significance (*) is determined by a non-parametric overlap test: a model is considered
significantly different if its score falls outside the human 95% CI (corresponding to p < 0.05).

E.2 DETAILED RESULTS WITH CONFIDENCE INTERVALS

[Table 8] presents human performance with 95% confidence intervals for all 26 task-language pairs.
Models perform outside the human confidence interval in 14 of 26 tasks, indicating statistically
significant differences. Crucially, this separation often occurs in tasks with low to moderate inter-
annotator agreement. For example, in EmotionClassification, the best model (75.4) significantly
exceeds human performance (45.8, CI:[32.6, 59.7]), but the low agreement (x = 0.39) suggests this
“superhuman” performance may reflect fitting to annotation artifacts rather than genuine semantic
superiority. Conversely, in MultilingualSentiment (Arabic) and STS22 (Arabic), humans significantly
outperform models, highlighting genuine cultural gaps that current models fail to bridge.

Task Lang N K Tot Human (95% CI) IAA Best Model
Classification

EmotionClassification eng 48 2 96 45.8 [32.6, 59.7] x=10.39 75.4*
MultilingualSentiment ara 40 1 40 95.0 [83.5, 98.6] N/A 77.5*
MultilingualSentiment eng 40 2 80 77.5[62.5, 87.7] k=0.24 95.5*
MultilingualSentiment nob 40 1 40 85.0[70.9, 92.9] N/A 75.0
MultilingualSentiment rus 40 1 40 92.5 [80.1, 97.4] N/A 81.3
ToxicConversations eng 45 2 90 73.3[59.0, 84.0] x = 0.55 86.7*
TweetSentimentExtraction  eng 45 2 90 84.4[71.2,92.3] rk =041 90.9
Clustering

ArxivClusteringP2P eng 30 2 60 49.2[35.3,63.2] ARI=-0.00 84.6"
RedditClusteringP2P eng 30 2 60 68.8 [63.2, 74.4] ARI=0.42 100.0*
SIB200ClusteringS2S ara 30 1 30 76.0 [58.4, 87.8] N/A 78.8
SIB200ClusteringS2S dan 30 1 30 62.7 [44.9, 77.6] N/A 76.0
SIB200ClusteringS2S eng 30 2 60 54.0 [41.8, 66.3] ARI=0.15 83.3"
SIB200ClusteringS2S rus 30 1 30 68.1[50.2, 81.9] N/A 77.7
WikiCitiesClustering eng 30 2 60 97.6[95.2,100.0] ARI=0.91 100.0
Reranking

Corel7Instruction eng 20 2 40 85.2 [83.6, 86.8] p =0.80 98.8*
News21Instruction eng 31 2 62 92.7[91.3,94.1] p=0.85 100.0*
RobustO4Instruction eng 49 2 98 88.5[82.2, 94.8] p=0.75 98.8*
WikipediaMultilingual dan 30 1 30 91.4[76.2,97.3] N/A 95.0
WikipediaMultilingual eng 30 2 60 82.4[75.6, 89.1] p=0.64 90.6”
WikipediaMultilingual nob 30 1 30 89.8 [74.1,96.4] N/A 92.3
STS

SICK-R eng 40 2 80 82.7[69.4,90.5] p=0.63 94.1%
STS12 eng 50 2 100 91.2[84.9,94.9] p=0.77 92.0
STS22 ara 30 1 30 67.6 [41.7, 83.3] N/A 40.9*
STS22 eng 30 2 60 78.4 [59.0, 89.2] p=0.75 82.9
STS22 rus 30 1 30 58.7 [28.8, 78.2] N/A 69.5
STSBenchmark eng 50 2 100 80.4[67.7, 88.4] =0.58 90.9"

Table 8: Human performance with 95% confidence intervals. N = number of samples; K = number of
annotators; Tot = total annotations (N x K). CIs computed via Wilson Score Interval (Classification),
Fisher’s z-transformation (STS), and Annotator Range (Clustering/Reranking). * indicates model
score outside human 95% CI (p < 0.05). IAA = Inter-Annotator Agreement.
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F INTER-ANNOTATOR AGREEMENT ANALYSIS

F.1 AGREEMENT METRICS BY TASK CATEGORY

This section provides detailed inter-annotator agreement analysis using task-appropriate metrics.
Agreement levels follow standard guidelines: « > 0.8 (excellent), 0.6 < x < 0.8 (substantial),
0.4 < k £ 0.6 (moderate), 0.2 < x < 0.4 (fair), & < 0.2 (poor). For correlations: p > 0.7 (strong),
0.4 < p < 0.7 (moderate), p < 0.4 (weak).

F.1.1 CLASSIFICATION TASKS
* Emotion Classification: « = 0.39 (fair agreement)

— 2 annotators, 48 items, 96 total annotations
— Mean percentage agreement: 52.1%
— Performance: Human 45.8%, Best model 87.1%

* Toxicity Classification: x = 0.55 (moderate agreement)

— 2 annotators, 45 items, 90 total annotations
— Mean percentage agreement: 77.8%
— Performance: Human 73.3%, Best model 86.7%

* Tweet Sentiment Classification: x = 0.41 (moderate agreement)

— 2 annotators, 45 items, 90 total annotations
— Mean percentage agreement: 62.2%
— Performance: Human 84.4%, Best model 90.9%

* Multilingual Sentiment Classification: Agreement only for English

— English: k = 0.24 (fair agreement), 2 annotators, 40 items, 62.5% agreement
— Arabic, Norwegian, Russian: Single annotator (no agreement metrics)
— Performance: Human advantages in non-English variants

F.1.2 CLUSTERING TASKS
* ArXiv Clustering: ARI = —0.001 (no agreement)

— 2 annotators, 30 items, 60 total annotations
— Complete breakdown of consensus on academic paper categories
— Performance: Human 49.2%, Best model 84.6%

* Reddit Clustering: ARI = 0.42 (moderate agreement)

— 2 annotators, 30 items, 60 total annotations
— Moderate consensus on discussion topic groupings
— Performance: Human 68.8%, Best model 100%
» WikiCities Clustering: ARI = 0.91 (excellent agreement)

— 2 annotators, 30 items, 60 total annotations
— High consensus on geographical entity groupings
— Performance: Human 97.6%, Best model 100%

» SIB200 Clustering: Agreement only for English

— English: ARI = 0.15 (weak agreement), 2 annotators, 30 items
— Arabic, Danish, Russian: Single annotator (no agreement metrics)
— Performance varies significantly across languages
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F.1.3 RERANKING TASKS

* News21: p = 0.85 (strong agreement)

— 2 annotators, 31 items, 62 total annotations

— Mean Kendall tau: 0.85, Binary kappa: 0.83

— Performance: Human 92.7%, Best model 100%
* Corel7: p = 0.80 (strong agreement)

— 2 annotators, 20 items, 40 total annotations

— Mean Kendall tau: 0.80, Binary kappa: 0.78

— Performance: Human 85.2%, Best model 98.8%
* Robust04: p = 0.75 (strong agreement)

— 2 annotators, 49 items, 98 total annotations

— Mean Kendall tau: 0.75, Binary kappa: 0.72

— Performance: Human 88.5%, Best model 98.8%

* Wikipedia Multilingual Reranking: Agreement only for English

English: p = 0.64 (moderate agreement), 2 annotators, 30 items
Mean Kendall tau: 0.64, Binary kappa: 0.60

Danish, Norwegian: Single annotator (no agreement metrics)
Performance varies across languages

F.1.4 STS TASKS
» STS12: p = 0.77 (strong agreement)

— 2 annotators, 50 items, 100 total annotations
— Performance: Human 91.2%, Best model 92.0%

* STSBenchmark: p = 0.58 (moderate agreement)

— 2 annotators, 50 items, 100 total annotations
— Performance: Human 80.4%, Best model 90.9%

e SICK-R: p = 0.63 (moderate agreement)

— 2 annotators, 40 items, 80 total annotations
— Performance: Human 82.6%, Best model 94.1%

* STS22: Agreement only for English

— English: p = 0.75 (strong agreement), 2 annotators, 30 items
— Arabic, Russian: Single annotator (no agreement metrics)
— Performance varies significantly by language

F.2 AGREEMENT PATTERNS AND TASK RELIABILITY
F.2.1 HIGH-AGREEMENT TASKS (RELIABLE BENCHMARKS)
Tasks with high human agreement (x > 0.6 or p > 0.7) consistently demonstrate:

* Clear, objective task specifications with minimal ambiguity
* Adequate context for making informed judgments

* Cultural and linguistic familiarity for annotators

* Well-defined evaluation criteria with concrete examples

* Minimal dataset quality issues or processing artifacts

* Consistent performance patterns across annotators

Examples: WikiCities clustering, News21/Corel7/Robust04 reranking, STS12, STSBenchmark
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F.2.2 LOW-AGREEMENT TASKS (PROBLEMATIC BENCHMARKS)

Tasks with low agreement (x < 0.4 or p < 0.6) often exhibit:

* Ambiguous annotation guidelines or subjective judgment requirements

* Cross-cultural interpretation challenges

« Insufficient context for accurate assessment

Systematic dataset quality issues or processing artifacts
Inherently subjective or multi-faceted concepts

Inconsistent or contradictory gold standard labels

Examples: Emotion classification, ArXiv clustering, STS22-Russian

G ADDITIONAL HUMAN VS MODEL ANALYSIS
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Figure 12: Human win rates across task categories and languages. Top left: By task category
shows humans perform moderately in classification but struggle in clustering, reranking, and STS
against best models. Top right: English-only vs multilingual tasks reveals humans perform better on
multilingual tasks (29% vs 0% against best models). Bottom left: Performance varies dramatically
by baseline comparison (15% vs best, 62% vs mean models). Bottom right: Language-specific
breakdown shows varying performance across different language codes.

This section contains additional analysis on human vs model. [Figure T4]shows the human performance
gaps versus median-performing models over all tasks by language. shows the task
difficulty categorization based on human performance levels. [Figure 16| shows the model consistency
analysis showing performance ranges across tasks. [Figure 2|shows a comprehensive view of human
performance relative to all model performance ranges across 16 tasks by language.
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Figure 13: Human performance gaps versus best-performing models across 26 task-language pairs.
Humans outperform the best models on only 4 tasks (15.4%), with largest advantages in Arabic

semantic similarity and sentiment analysis. The analysis reveals systematic model advantages in
technical domains (clustering, reranking) versus human advantages in culturally-informed tasks.

H MODELS EVALUATED

shows information about each evaluated model.

Parameters
Model (Millions)
Alibaba-NLP/gte-Qwen2-1.5B-instruct Ei et al. li 1780
google/embeddinggemma-300m |Vera et al.| (2025) 300
intfloat/e5-mistral-7b-instruct Wang et al./(2023;2022) 7111
intfloat/multilingual-e5-large [Wang et al.| 560
intfloat/multilingual-e5-base [Wang et al. 278
intfloat/multilingual-e5-small [Wang et al.| (2022 118
mixedbread-ai/mxbai-embed-large-v1 Lee et al[(2024); [Li & Li|(2023) 335
NovaSearch/jasper_en_vision_language_v1 [Zhang et al.| (2025a)) 1999
Qwen/Qwen3-Embedding-0.6B [Zhang et al.[(2025b 596
Salesforce/SFR-Embedding-Mistral (Meng et al.|[2024) 7110
sentence-transformers/all-MiniLM-L6-v2|Reimers & Gurevych| (2019 22.7
sentence-transformers/all-mpnet-base-v2 Reimers & Gurevych| 109

Table 9: List of all evaluated models. Model sizes are in millions of parameters
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Figure 14: Human performance gaps versus median-performing models across 26 tasks by language.
Humans achieve 61.5% win rate against median models, demonstrating competitive performance
when compared to typical rather than best-performing models. This analysis reveals that human
performance is much more competitive when compared against representative model performance
rather than cherry-picked best results.
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Figure 15: Task difficulty categorization based on human performance levels. The majority of tasks
(69%) fall into the “easy” category (human performance > 0.7), shown in green. Only two tasks fall
below 0.5 (shown in red), both with notably low inter-annotator agreement, suggesting fundamental
task ambiguity rather than limitations of human ability.
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Figure 16: Model consistency analysis showing performance ranges across tasks. Higher value
indicates greater variability across models (lower consistency). Tasks with small ranges (high con-
sistency) often align with high human agreement, whereas tasks with large ranges (low consistency)
typically correspond to tasks where humans also struggle. This pattern suggests that both human and
model performance reflect underlying task quality and clarity of task specification.
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I DETAILED LLM-AS-ANNOTATOR RESULTS

This section provides detailed LLM-as-annotator performance for each task-language pair. LLMs
were not evaluated on clustering tasks due to the difficulty of eliciting cluster assignments from
generative models.

Dataset Human GPT-5 GPT-4.1 | Gemini Mistral Qwen3

Full Mini | Full Mini | 2.5 Flash | Small-24B-1 | 30B 32B Coder
Emotion [eng] 45.8 37.5 333 |41.7 29.2 354 43.1 37.5 38.3 42.1
Multilingual Sentiment [ara] 95.0 92.5 95.0 |190.0 90.0 92.5 90.5 92.8 85.5 91.2
Multilingual Sentiment [eng] ~ 77.5 100.0 100.097.5 95.0 97.5 97.2 99.0 93.0 96.5
Multilingual Sentiment [nob] ~ 85.0 92.5 85.0 |87.5 825 85.0 86.8 86.8 77.2 88.5
Multilingual Sentiment [rus] 92.5 87.5 85.0 |75.0 85.0 92.5 64.0 74.2 75.8 78.0
Toxic Conversations [eng] 73.3 733 66.7 |73.3 75.6 71.1 69.6 60.0 68.2 66.9
Tweet Sentiment [eng] 84.4 68.9 756 |71.1 75.6 68.9 65.6 68.9 72.9 70.7
Average 79.1 \ 789 772 \76.6 76.1 \ 77.6 \ 73.8 \74.2 73.0 76.3

Table 10: Detailed LLM-as-annotator results for classification tasks. Bold indicates best performance
per row.

Dataset Human GPT-5 GPT-4.1 | Gemini Mistral Qwen3

v Full Mini | Full Mini | 2.5 Flash | Small-24B-I | 30B 32B Coder
Corel7 [eng] 85.2 76.6 83.2 7277 78.0 76.8 74.4 89.8 742 722
News21 [eng] 92.7 |729 78.7|75.1 782 | 75.0 77.4 80.5 779 752
Robust04 [eng] 88.5 75.7 84.0(79.5 79.3 79.7 77.2 84.6 79.2 73.6
Wikipedia [dan] 914 [84.7 783|858 83.6| 82.8 84.0 76.6 79.8 79.9
Wikipedia [eng] 82.4 69.6 61.0 |70.8 68.6 74.2 75.1 59.8 734 69.5
Wikipedia [nob] 89.8 |71.5 68.1|70.6 75.8| 68.6 79.6 62.6 642 723
Average 883 |75.1 755|757 712| 762 | 78.0 |75.6 748 738

Table 11: Detailed LLM-as-annotator results for reranking tasks. Bold indicates best performance
per row.

Dataset Human GPT-5 GPT-4.1 | Gemini Mistral Qwen3

Full Mini | Full Mini | 2.5 Flash | Small-24B-1 | 30B 32B Coder
SICK-R [eng] 82.6 |685 67.5]669 729| 59.0 66.7 594 57.3 68.8
STS12 [eng] 91.2 832 82.7|873 87.8 83.8 83.9 83.8 81.7 845
STS22 [ara] 67.5 |57.1 455|569 55.8| 43.1 56.9 35.3 504 479
STS22 [eng] 784 |67.8 80.3 |81.6 79.7 81.3 78.2 74.1 762 764
STS22 [rus] 58.7 719 513|672 66.6| 649 78.6 659 624 67.0
STSBenchmark [eng]  80.4 89.3 86.7 |89.7 86.3 83.8 854 84.3 84.0 829
Average 765 |73.0 69.0|749 749| 693 | 75.0 |67.1 68.6 713

Table 12: Detailed LLM-as-annotator results for sts tasks. Bold indicates best performance per row.

1.1 HUMAN-LLM TASK DIFFICULTY CORRELATION

To assess whether humans and LLMs face similar challenges, we computed Spearman rank correla-
tions between human and LLM performance across the 19 task-language pairs (excluding clustering).
A positive correlation indicates that tasks where humans perform well also tend to be tasks where
LLMs perform well.

The overall correlation is moderate and statistically significant (p = 0.52, p = 0.023), suggesting
partially shared difficulty patterns.
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LLM Model Spearman p  p-value

GPT-5 Full 0.47 0.042
GPT-5 Mini 0.52 0.023
GPT-4.1 Full 043 0.066
GPT-4.1 Mini 0.57 0.012
Gemini 2.5 Flash 0.50 0.029
Mistral Small 0.30 0.215
Qwen3-30B 0.50 0.031
Qwen3-32B 0.52 0.022
Qwen3-Coder 0.57 0.011
Average (all LLMs) 0.52 0.023

Table 13: Spearman rank correlation between human and LLM performance across 19 task-language
pairs (clustering excluded). A positive p indicates that tasks where humans score high also tend to
be tasks where LLMs score high. Values with p < 0.05 indicate statistically significant correlations.
The moderate positive correlations suggest partially shared task difficulty patterns between humans
and LLMs.

J LLM USAGE STATEMENT

Large language models were used to assist with formatting, citation integration, and writing polish
during the preparation of this manuscript. Specifically, we used LLMs for:

» Formatting assistance for LaTeX tables and mathematical notation
* Integration and standardization of citation formats
* Minor writing improvements for clarity and flow

* Code documentation and data processing script organization

All substantive content, including research design, data analysis, interpretation of results, and
scientific conclusions, was developed entirely by the authors. The core contributions, methodology,
and findings presented in this work are the original intellectual contribution of the research team.
LLM assistance was limited to technical formatting and presentation improvements that did not
influence the scientific content or conclusions of the study.
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