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Abstract
Commonly used evaluation metrics in multi-label
learning all involve base loss functions, and the
theoretical guarantees of multi-label learning of-
ten rely on the properties of base loss functions.
Some recent theoretical works have used the Lip-
schitz continuity of base loss functions to prove
the generalization bounds for multi-label learning,
but the impact of the smoothness of base loss func-
tions on the generalization bounds is completely
unknown. In an attempt to make up for this gap
in the generalization theory of multi-label learn-
ing, we develop some novel vector-contraction
inequalities for smooth base loss functions and
derive tight generalization bounds with no depen-
dency on the number of labels, up to logarith-
mic terms. We then exploit local Rademacher
complexity to develop some novel local vector-
contraction inequalities for smooth base loss func-
tions, which induce generalization bounds with a
tighter dependency on the number of labels and a
faster convergence rate with respect to the num-
ber of examples. In addition, we derive tight gen-
eralization bounds with no dependency on the
number of labels, up to logarithmic terms, for
Macro-Averaged AUC by exploiting the Lipschitz
continuity and smoothness of base loss functions,
respectively. Our state-of-the-art theoretical re-
sults provide general theoretical guarantees for
the generalization of multi-label learning.

1. Introduction
Multi-label learning has attracted significant attention due
to its ability to model real-world objects with rich semantics
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(Wang & Sukthankar, 2013; Sun et al., 2014; Nam et al.,
2019), where each object is represented by a single instance
associated with multiple class labels (Zhang & Zhou, 2014;
Liu et al., 2022; Hang & Zhang, 2022). The goal of multi-
label learning is to build proper classification models for
objects assigned with multiple class labels simultaneously.
In fact, multi-label scenarios widely exist in various real-
word applications, such as text categorization (Schapire &
Singer, 2000; Xun et al., 2020; Rubin et al., 2012), multi-
media content annotation (Boutell et al., 2004; Cabral et al.,
2011; Wu et al., 2014; You et al., 2020), bioinformatics
(Barutçuoglu et al., 2006; Cesa-Bianchi et al., 2012; Chen
et al., 2017) and other fields (Yu et al., 2005). Despite im-
pressive advances in algorithms for multi-label learning, the
theoretical analysis of generalization is still in its infancy.

Some recent theoretical works have made preliminary explo-
rations into the generalization of multi-label learning, and
have made some progress in the reduction of the dependency
of the generalization bounds on the number of labels c and
the explicit introduction of label correlations in the general-
ization analysis (Wu & Zhu, 2020; Wu et al., 2021a;b; Zhang
& Zhang, 2024a). However, from the perspective of learning
theory, in some aspects, the generalization performance of
multi-label learning is still completely unknown. These as-
pects that need to be explored include: 1) the establishment
of faster convergence rates with respect to the number of ex-
amples n of the generalization bounds, and 2) the impact of
the smoothness of base losses on the generalization bounds.
First, existing multi-label learning guarantees are centered
around the concepts of Rademacher complexities (Bartlett
& Mendelson, 2002; Koltchinskii & Panchenko, 2002), and
the fastest convergence rate of the generalization bounds in-
duced by Rademacher complexity is of the order Õ(1/

√
n).

The analysis based on local Rademacher complexity is ca-
pable of producing bounds with faster convergence rates
than those obtained by Rademacher complexity (Bartlett
et al., 2005; Koltchinskii, 2006), but it has not been well
explored in multi-label learning. Hence, the development
of general theoretical tools that can induce generalization
bounds with faster convergence rates with respect to n is a
crucial open problem in the theory of multi-label learning.
Second, although evaluation metrics with Lipschitz base
losses have been extensively studied in existing theoretical
work of multi-label learning, the bounds for evaluation met-
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rics with smooth base losses remain completely unexplored,
while the squared loss, as a representative of smooth base
losses, is widely used by many multi-label learning meth-
ods (Huang et al., 2015; 2016; 2018; Weng et al., 2020; Yu
& Zhang, 2022). Hence, generalization analysis is needed
to provide general theoretical guarantees for multi-label
learning methods with smooth base losses.

In this paper, we derive tight bounds with no dependency
on c and a faster convergence rate w.r.t. n for multi-label
learning, which connects the smoothness of base losses with
the tighter and faster bounds. In addition, we improve the
dependency of the bounds on c to be independent for Macro-
Averaged AUC both under Lipschitz and smooth conditions
of base losses. Our theoretical analysis induces tighter and
faster bounds and reveals the impact of smooth base losses
on generalization. Major contributions of the paper include:

• We develop novel vector-contraction inequalities for
smooth base losses, which induces tight bounds with no
dependency on c and provides general theoretical guar-
antees for multi-label learning methods with smooth
base losses.

• We develop novel local vector-contraction inequal-
ities for smooth base losses, which exploits local
Rademacher complexity and can induce bounds with
no dependency on c and a faster rate w.r.t. n.

• We derive tight bounds with no dependency on c for
Macro-Averaged AUC with both Lipschitz and smooth
base losses.

2. Related Work
We introduce the related work on generalization analysis
for multi-label learning. Wu & Zhu (2020) first showed that
one can obtain bounds of order O(c/

√
n) for multi-label

learning with the typical vector-contraction inequality (Mau-
rer, 2016) (i.e., for `2 Lipschitz losses), which drew on the
analysis of the relationship between the expectations of sev-
eral evaluation metrics in (Dembczynski et al., 2010; 2012).
Wu & Zhu (2020); Wu et al. (2021a) showed that the order
of the bounds for Subset, Hamming and reweighted con-
vex surrogate univariate loss can be improved to O(

√
c/n)

when preserving the coupling among different components
for kernel classes under the assumption of `2 Lipschitz loss.
Liu et al. (2018) also obtained a O(

√
c/n) bound for the

dual set multi-label learning with the margin loss and kernel
function classes. Zhang & Zhang (2024a) developed novel
vector-contraction inequality for `2 Lipschitz loss and de-
rived a Õ(

√
c/n) bound, which decouples the relationship

among different components. Here we derive Õ(1/
√
n)

bounds for several evaluation metrics with smooth base
losses, which improves the Õ(

√
c/n) bounds for `2 Lips-

chitz loss in (Zhang & Zhang, 2024a) by a
√
c factor.

Wu et al. (2021b) derived a O(log(nc)/nσ) bound for `∞
Lipschitz loss with norm regularized kernel classes and the
additional assumption that the regularizer is σ-strongly con-
vex. Zhang & Zhang (2024a) derived a Õ(1/

√
n) bound for

`∞ Lipschitz loss, which decouples the relationship among
different components. In addition, Yu et al. (2014) obtained
a O(1/

√
n) bound for trace norm regularized linear func-

tion classes for the decomposable loss. Xu et al. (2016)
used the local Rademacher complexity to derive a Õ(1/n)
bound for trace norm regularized linear function classes
with the assumption that the singular values of the weight
matrix decay exponentially. Busa-Fekete et al. (2022) de-
rived Õ(1/n) bounds for Hamming loss with KNN under
sparsity, margin and smoothness assumptions and sharp
bounds for Precision@κ under margin and smoothness as-
sumptions. Wu et al. (2023) obtained O(1/

√
n) bounds for

Macro-Averaged AUC and gave thorough discussions about
its relationships with the label-wise class imbalance. Here
we derive sharp Õ(1/n) bounds for smooth base losses by
exploiting local Rademacher complexity.

3. Preliminaries
Let [n] := {1, . . . , n} for any natural number n. In
the context of multi-label learning, given a dataset D =
{(x1,y1) , . . . , (xn,yn)} with n examples which are iden-
tically and independently distributed (i.i.d.) from a proba-
bility distribution P on X × Y , where X ⊆ Rd denotes the
d-dimensional input space and Y denotes the label space
with c class labels, x ∈ X , y ∈ Y ⊆ {−1,+1}c, i.e., each
y = (y1, . . . , yc) is a binary vector and yj = 1 (yj = −1)
denotes that the j-th label is relevant (irrelevant), j ∈ [c].
Multi-label learning aims to learn a multi-label prediction
function h ∈ H : X 7→ {−1,+1}c which assigns each
instance with a set of relevant labels.

3.1. Multi-Label Learning

A common strategy to solving multi-label learning is to
learn a vector-valued function f = (f1, . . . , fc) : X 7→ Rc
and derive the prediction function by a thresholding function
which divides the label space into relevant and irrelevant
label sets. We follow some definitions and notations in
(Zhang & Zhang, 2024a). The general form of the prediction
function for each label is fj(x) = 〈wj , φj(x)〉, where φj
represents a nonlinear mapping. The function class of the
multi-label learning is defined as follows:

F = {x 7→ f(x) :f(x) = (f1(x), . . . , fc(x)),

fj(x) = w>j φj(x),x ∈ X , j ∈ [c]

w = (w1, . . . ,wc) ∈ Rd×c, α(w) ≤ Λ,

β(φj(·)) ≤ A,Λ > 0, A > 0}, (1)
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where α represents a functional that constrains weights, β
represents a functional that constrains nonlinear mappings.

Here we give some concrete examples as an explanation of
the function class. For example, the DNN-based method
named CLIF (Hang & Zhang, 2022), which proposes to
learn label semantics and representations with specific dis-
criminative properties for each class label in a collaborative
way, can be expressed in the function class as φj(x) =
σReLU {W5 · [σReLU (W4x)� σsig(W3ψ(Y )j)]}, the la-
bel embeddings ψ(Y ) := σReLU (ÃσReLU (ÃY W1)W2),
where Ã denote the normalized adjacency matrix with self-
connections, Y is the node feature matrix of the label graph,
σReLU is the ReLU activation, σsig is the sigmoid activa-
tion, � is the Hadamard product, Wi are the parameter
metrices, i ∈ [5]. In addition, a class of multi-label meth-
ods based on the strategy of label-specific representation
(Zhang & Zhang, 2024b), which facilitates the discrimina-
tion of each class label by tailoring its own representations,
can be formalized in our function class. For example, the
wrapped label-specific representation method (Yu & Zhang,
2022), which presents a kernelized Lasso-based framework
with the constraint of pairwise label correlations for each
class label, can be expressed in our function class, where
fj is the kernelized linear model and the constraint α(w)
is ‖wj‖1 ≤ Λ for any j ∈ [c], and each label also has the
property of sharing which is reflected by the additionally
introduced constraint

∑c
i (1− sji)wj

>wi ≤ τ , where sji
is the cosine similarity between labels yj and yi. Besides,
the function class here is applicable to the typical Binary
Relevance methods for multi-label learning, where different
methods correspond to different nonlinear mappings φj .

For any vector-valued function f : X 7→ Rc, the predic-
tion quality on the example is measured by a loss function
` : Rc × {−1,+1}c 7→ R+. The goal of learning is to find
a hypothesis f ∈ F with good generalization performance
from the dataset D by optimizing the loss `. We define
the loss function space as L = {`(f(x),y) : f ∈ F}.
The generalization performance is measured by the ex-
pected risk: R(`(f)) = E(x,y)∼P [`(f(x),y)]. We denote
the empirical risk w.r.t. the dataset D as R̂D(`(f)) =
1
n

∑n
i=1 `(f(xi),yi). For simplicity, we slightly abuse

R(f) and R̂D(f) to represent R(`(f)) and R̂D(`(f)).

The above definitions apply to Hamming, Subset and Rank-
ing losses. However, the corresponding risk for Macro-
Averaged AUC needs to be additionally defined since it
involves the pairwise loss. The empirical risk w.r.t. Macro-
Averaged AUC is defined as follows:

R̂D(f) (2)

=
1

c

c∑
j=1

1∣∣X+
j

∣∣ ∣∣X−j ∣∣
∑
xi∈X+

j

∑
x′i∈X

−
j

`0/1 (fj(xi)− fj(x′i)) ,

where X+
j = {xi | yj = +1, i ∈ [n]} (X−j = {x′i | yj =

−1, i ∈ [n]}) corresponds to the set of test instances that are
relevant (irrelevant) to the j-th label. The expected risk w.r.t.
Macro-Averaged AUC is defined as R(f) = ED[R̂D(f)].

3.2. Related Evaluation Metrics

Many evaluation metrics are developed to measure the gen-
eralization performance of different multi-label learning
methods. Here we focus on commonly used evaluation
metrics, i.e., Hamming loss, Subset loss, Ranking loss and
Macro-Averaged AUC. However, the corresponding losses
in the above metrics are typically the 0-1 loss, which is hard
to handle in practice. Hence, one usually consider their
surrogate losses, which are defined as follows:

Hamming Loss: `H(f(x),y) = 1
c

∑c
j=1 `b (fj(x), yj) ,

where `b is the base convex surrogate loss.

Subset Loss: `S(f(x),y) = maxj∈[c] {`b (fj(x), yj)} .

Ranking Loss:

`R(f(x),y) =
1

|Y +| |Y −|
∑
p∈Y +

∑
q∈Y −

`b (fp(x)− fq(x)) ,

where Y + (Y −) denotes the relevant (irrelevant) label index
set induced by y, and | · | denotes the cardinality of a set.

The induced surrogate loss for Macro-Averaged AUC:

`M (f(xi,x
′
i),y) =

1

c

c∑
j=1

`b (fj(xi)− fj(x′i)) , (3)

where xi (x′i) corresponds to the instances that are relevant
(irrelevant) to the j-th label.

The base surrogate loss functions `b involved in the above
commonly used evaluation metrics can be various popu-
lar forms, such as Lipschitz loss functions with bounded
derivative (including the hinge, margin, absolute-value, and
logistic loss, etc) or smooth loss functions with the second
derivative is bounded (including the squared, squared hinge,
squared margin (Li et al., 2018) and smoothed ramp (Cortes
et al., 2021) loss, etc). In this paper, we use ` to refer to the
collective name for evaluation metrics such as Hamming
loss, subset loss, and Ranking loss, etc, while `b is used
specifically to refer to the base loss functions involved in
the above commonly used evaluation metrics.

3.3. Related Complexity Measures

Here we introduce the related complexity measures in-
volved in our theoretical results. The Rademacher and local
Rademacher complexity are used to perform generalization
analysis for multi-label learning.
Definition 3.1 (Rademacher complexity). Let F be a class
of real-valued functions mapping from X to R. Let D =
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{x1, . . . ,xn} be a set with n i.i.d. samples. The empirical
Rademacher complexity over F is defined by

<̂D(F) = Eε

[
sup
f∈F

1

n

n∑
i=1

εif (xi)

]
,

where ε1, . . . , εn are i.i.d. Rademacher random variables. In
addition, we define the worst-case Rademacher complexity
as <̃n(F) = supD∈Xn <̂D(F).

The vector-valued function class F of multi-label learn-
ing makes traditional analysis methods developed for the
Rademacher complexity of scalar-valued function class in-
valid. The typical vector-contraction inequality in (Maurer,
2016) shows that the Rademacher complexity of the class F
composited with an `2 Lipschitz function h can be bounded
by the maximum Rademacher complexity of the restrictions
of the function class F along each coordinate and a factor
c, and the induced bounds are not tight enough (Zhang &
Zhang, 2024a). Therefore, we need new theoretical methods
to convert the Rademacher complexity of a loss function
space into the Rademacher complexity of a tractable scalar-
valued function class for multi-label learning, especially for
smooth base losses. The Rademacher complexity can be
bounded by other scale-sensitive complexity measures, e.g.
covering number and fat-shattering dimension (Srebro et al.,
2010; Zhang & Zhang, 2023).

Definition 3.2 (Covering number). Let F be a class of
real-valued functions mapping from X to R. Let D =
{x1, . . . ,xn} be a set with n i.i.d. samples. For any
ε > 0 and p ≥ 1, the empirical `p norm covering num-
ber Np(ε,F , D) w.r.t. D is defined as the minimal number
m of a collection of vectors v1, . . . ,vm ∈ Rn such that (vji
is the i-th component of the vector vj)(

1

n

n∑
i=1

|f (xi)− vji |
P

) 1
p

≤ ε.

In this case, we call
{
v1, . . . ,vm

}
an (ε, `p)-cover of F

w.r.t. D. We also denote Np(ε,F , n) = supDNp(ε,F , D).

Definition 3.3 (Fat-shattering dimension). Let F be a
class of real-valued functions mapping from X to R. We
define the fat-shattering dimension fatε(F) at scale ε >
0 as the largest p ∈ N such that there exist p points
x1, . . . ,xp ∈ X and witnesses s1, . . . , sp ∈ R satisfying:
for any δ1, . . . , δp ∈ {−1,+1} there exists f ∈ F with

δi (f(xi)− si) ≥ ε, ∀i = 1, . . . , p.

We also use the local Rademacher complexity to derive
sharper bounds with a faster convergence rate with respect
to the number of examples for multi-label learning methods
with smooth base loss functions.

Definition 3.4 (Local Rademacher complexity). For any
r > 0, the expected local Rademacher complexity of the
local loss function space Lr associated with a real-valued
function class F is defined by

<̂D(Lr) = <̂D({`(f(x), y) : ` ∈ L, f ∈ F , R̂D(`(f)) ≤ r}),

where R̂D(`(f)) = 1
n

∑n
i=1 `(f(xi), yi).

4. Tighter Bounds for Smooth Base Losses
In this section, we first introduce the assumptions used in
the generalization analysis, i.e., the assumption about the
boundedness of functions and the assumption about the
smoothness of base loss functions. Then, we develop some
novel vector-contraction inequality for the Rademacher com-
plexity of the loss function space L with smooth base loss
functions. Finally, with these novel vector-contraction in-
equalities, we derive tight bounds for the general function
class of multi-label learning with no dependency on the
number of labels, up to logarithmic terms, which achieve
the state of the art. The proof sketches and detailed proofs
of the theoretical results in this paper are provided in
the appendix.
Assumption 4.1. Assume that the loss function and the
components of the vector-valued function are bounded:
`(·, ·) ≤ M , |fj(·)| ≤ B for j ∈ [c] where M,B > 0
are constants.

Assumption 4.1 is a pretty mild assumption. When we con-
sider the function class (1) for multi-label learning, we will
further use the constraint on weights (‖wj‖ ≤ Λ) and the
constraint on nonlinear mappings (‖φj(x)‖ ≤ A) to replace
the boundedness of the components of f , i.e., B := ΛA.
When we analyze the generalization of the specific methods
or models, we will further have ‖φj(x)‖ ≤ ρ‖x‖ (φj is ρ-
Lipschitz continuous) to take into account the differences of
various methods or models. The differences in the Lipschitz
constants between deep and shallow models are particularly
obvious. The differences in the generalization of various
methods or models are further reflected in the corresponding
Lipschitz constants ρ. This work aims to explore capacity-
based generalization bounds for smooth base loss functions
and derive bounds that are weaker dependent on the number
of labels, thereby providing general and effective theoretical
guarantees for multi-label learning methods with smooth
base loss functions. Therefore, here we only make general
assumptions and do not specify specific methods or models,
which is similar to Zhang & Zhang (2024a).

Assumption 4.2. Assume that the base loss functions `b
involved in the commonly used evaluation metrics are γ-
smooth, that is:

|∇`b(s)−∇`b(t)| ≤ γ|s− t|.
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Assumption 4.2 is a relatively mild condition. The squared,
the squared hinge, the squared margin (Li et al., 2018) and
the smoothed ramp (Cortes et al., 2021) losses all satisfy
Assumption 4.2, especially the squared loss, which is widely
used by many multi-label learning methods (Huang et al.,
2015; 2016; 2018; Weng et al., 2020; Yu & Zhang, 2022).

We then show that the smoothness of base loss functions
combined with the projection operator can induce novel
tight vector-contraction inequalities. The projection
operators are defined as pj : Rc 7→ R for any j ∈ [c] which
project the c-dimensional vector onto the j-th coordinate.
The projection function class is defined as P(F) =
{(j,x) 7→ pj(f(x)) : pj(f(x)) = fj(x),f ∈ F , (j,x) ∈
[c]×X}. With the above definitions, we develop some
novel vector-contraction inequalities for smooth base loss
functions, which show that the Rademacher complexities
of loss function spaces can be bounded by the worst-case
Rademacher complexity of the projection function class:
Lemma 4.3. Let F be the class of multi-label learning
defined by (1). Let Assumptions 4.1 and 4.2 hold. Given a
dataset D of size n. Then, we have

<̂D(LH) ≤12M√
n

+ 192
√

3cγM <̃nc(P(F))×

(1 + log2(48en2c2γM) · ln
√
nM
√
γB

),

<̂D(LS) ≤12M√
n

+ 192
√

3cγM <̃nc(P(F))×

(1 + log2(48en2c2γM) · ln
√
nM
√
γB

),

<̂D(LR) ≤12M√
n

+ 384
√

3cγM <̃nc(P(F))×

(1 + log2(192en2c2γM) · ln
√
nM
√
γB

),

where <̂D(LH), <̂D(LS) and <̂D(LR) are the empirical
Rademacher complexities of Hamming, Subset and Ranking
loss space, respectively, and <̃nc(P(F)) is the worst-case
Rademacher complexity of the projection function class.

Then, we can derive the following tight bounds for multi-
label learning with smooth base loss functions:
Theorem 4.4. Let F be the class of multi-label learning
defined by (1). Let Assumptions 4.1 and 4.2 hold. Given
a dataset D of size n. Then, for any 0 < δ < 1, with
probability at least 1− δ, the following holds for Hamming
and Subset loss with smooth base losses and any f ∈ F:

R(f) ≤R̂D(f) + 3M

√
log 2

δ

2n
+

24M√
n

+
384
√

3γMB√
n

×

(1 + log2(48en2c2γM) · ln
√
nM
√
γB

),

and the following holds for Ranking loss with smooth base
losses and any f ∈ F:

R(f) ≤R̂D(f) + 3M

√
log 2

δ

2n
+

24M√
n

+
768
√

3γMB√
n

×

(1 + log2(192en2c2γM) · ln
√
nM
√
γB

).

Remark 4.5. The term <̃nc(P(F)) ≤ B/
√
nc in Lemma

4.3, which makes the Rademacher complexity <̂D(LH),
<̂D(LS) and <̂D(LR) actually independent on c, up to
logarithmic terms, and results in tighter bounds than the
O(c/

√
n) bounds (Wu & Zhu, 2020; Wu et al., 2021a)

and Õ(
√
c/
√
n) bounds (Liu et al., 2018; Wu et al., 2021a;

Zhang & Zhang, 2024a). Evaluation metrics with Lipschitz
base loss functions have been extensively studied in previ-
ous work of multi-label learning. Wu & Zhu (2020) and Wu
et al. (2021a) derived the bounds with a linear dependency
on c for `2 norm Lipschitz losses, which comes from the
typical vector-contraction lemma in (Maurer, 2016), and
showed that the dependency of the bounds on c can be im-
proved to square-root by preserving the coupling among
different components (i.e., with the constraint ‖w‖ ≤ Λ).
Zhang & Zhang (2024a) improved the dependency of the
bounds on c from linear to square-root in the decoupling
case for `2 norm Lipschitz losses. Generalization bounds
for evaluation metrics with smooth base losses are still com-
pletely unexplored. Our theoretical results here show that
the dependency of the bounds in (Zhang & Zhang, 2024a)
on c can be improved from square-root to be independent by
exploiting the smoothness of base loss functions, up to loga-
rithmic terms, in the decoupling case. Our tight bounds with
no dependency on c, up to logarithmic terms, can provide
general theoretical guarantees for multi-label learning meth-
ods with smooth base loss functions (Huang et al., 2015;
2016; 2018; Weng et al., 2020; Yu & Zhang, 2022).
Remark 4.6. Zhang & Zhang (2024a) improved the depen-
dency of the bounds on c from linear to square-root in the
decoupling case for `2 norm Lipschitz losses. In fact, the
results in Lemma 3.6 and Theorem 3.7 in (Zhang & Zhang,
2024a) require the introduction of an additional

√
c factor,

because the third step of the proof of Lemma 3.6 in (Zhang
& Zhang, 2024a) ignores the

√
c factor in the radius of the

empirical `2 cover of P(F), i.e., the process below equation
(10) in the proof of Lemma 3.6 in (Zhang & Zhang, 2024a)
should be modified as follows:

<̂D(L)

≤ inf
α>0

(
4α+

12√
n

∫ M

α

√
logN2(

ε

µ
√
c
,P(F), [c]×D)dε

)

≤ inf
α>0

(
4α+ 48

√
cµ
√
c<̃nc(P(F)) log

1
2 (nc)

∫ M

α

ε−1dε

)
,
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which will cause the bounds in Lemma 3.6 and Theorem 3.7
to be square-root dependent on c. We find that the square-
root dependency of the bound in (Zhang & Zhang, 2024a) on
c is inevitable for `2 norm Lipschitz losses, which essentially
comes from the

√
c factor in the radius of the empirical `2

cover of the projection function class. We also find that
the smoothness of the base loss function can eliminate the√
c factor in the radius of the empirical `2 cover of the

projection function class, so that the tight bound with no
dependency on c, up to logarithmic terms, can be derived. In
addition, the method based on Sudakov’s minoration used
in (Zhang & Zhang, 2024a) to upper bound the `2 norm
covering number of the projection function class is no longer
applicable here. According to the above key points and
proof ideas, for the bound with a square-root dependency
on c for `2 Lipschitz loss in (Zhang & Zhang, 2024a), we
consider the smoothness of the base loss and improve the
bound by a factor of

√
c. In addition, the smoothness of

the base loss combined with the local loss function space
allows the development of novel local vector-contraction
inequalities, which can induce bounds that not only have a
faster convergence rate but also have a weaker dependency
on c. Although for `2 Lipschitz loss, the bounds in (Zhang
& Zhang, 2024a) is only improved by a factor of

√
c, they

are still the tightest results in multi-label learning with `2
Lipschitz loss. In addition, for Hamming loss, its Lipschitz
constant can induce the tight bounds with no dependency
on c.

5. Faster Bounds for Smooth Base Losses
In this section, we first introduce the local Rademacher
complexity used in the generalization analysis for multi-
label learning. Then, we develop some novel local vector-
contraction inequality for the Rademacher complexity of the
local loss function space Lr with smooth base loss functions.
Finally, with these novel vector-contraction inequalities, we
derive sharper bounds for the general function class of multi-
label learning with not only no dependency on the number of
labels, up to logarithmic terms, but also a faster convergence
rate with respect to the number of examples, which achieve
the state of the art.

In fact, the Rademacher complexity considers the worst-case
estimates of the complexity of the function class, it ignores
the fact that the functions selected by the algorithm have a
small error, and they are only a favorable small subset of the
entire function class. As a result, the best convergence rate
that can be obtained via the Rademacher complexity is at
least of order O(1/

√
n). The local Rademacher complexity

considers the Rademacher complexity of a small subset of
the function class and is more reasonable as a complexity
measure that yields faster convergence rates (Bartlett et al.,
2005; Srebro et al., 2010; Reeve & Kaban, 2020; Li & Liu,

2021). Combined with the definition of the Rademacher
complexity, we define the local Rademacher complexity for
multi-label learning as follows:
Definition 5.1 (Local Rademacher complexity for multi-la-
bel learning). Let F be the class of multi-label learning
defined by (1). For any r > 0, the local function class of
multi-label learning restricted by a functional is defined as:

Fr := {x 7→ f(x) : f ∈ F , R̂D(`(f)) ≤ r},

where R̂D(`(f)) = 1
n

∑n
i=1 `(f(xi),yi). The local loss

function space corresponding to Fr is defined as Lr :=
{`(f(x),y) : f ∈ Fr}. The expected local Rademacher
complexity of the local loss function space Lr associated
with the local multi-label learning class Fr is defined by

<̂D(Lr) = <̂D({`(f(x),y) : f ∈ Fr}).

This means that a much smaller class Lr consisting of the
functions f with a small error can yield sharper generaliza-
tion bounds with a faster convergence rate.

With the assumption about the smoothness of base loss
functions, we show that the local Rademacher complex-
ity of the local loss function space Lr can be bounded by
the worst-case Rademacher complexity of the projection
function class. We develop the following novel local vector-
contraction inequalities:
Lemma 5.2. Let F be the class of multi-label learning
defined by (1). Let Assumptions 4.1 and 4.2 hold. Given a
dataset D of size n. Then, we have

<̂D(LrH) ≤48
√

3γr(B + 1)√
n

+ 48
√

3cγr<̃nc(P(F))×

(1 + 4 log2(4Bn
3
2 c) log2(

√
nB)),

<̂D(LrS) ≤48
√

3γr(B + 1)√
n

+ 48
√

3cγr<̃nc(P(F))×

(1 + 4 log2(4Bn
3
2 c) log2(

√
nB)),

<̂D(LrR) ≤96
√

3γr(B + 1)√
n

+ 96
√

3cγr<̃nc(P(F))×

(1 + 4 log2(4Bn
3
2 c) log2(

√
nB)).

where <̂D(LrH), <̂D(LrS) and <̂D(LrR) are the empirical
local Rademacher complexities of local Hamming, Sub-
set and Ranking loss function spaces, respectively, and
<̃nc(P(F)) is the worst-case Rademacher complexity of
the projection function class.

The challenge in using local Rademacher complexity to im-
prove existing learning rates is to find the optimal radius
that trades off the size of the subset we select and the asso-
ciated complexity, which can be reduced to the calculation
of the fixed point of a sub-root function. We introduce the
definition and properties of the sub-root function as follows:
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Definition 5.3 (Sub-root function). A function ψ : [0,∞)
→ [0,∞) is sub-root if and only if it is non-decreasing and
the function r 7→ ψ(r)/

√
r is non-increasing for r > 0.

Lemma 5.4 (Lemma 3.2 in (Bartlett et al., 2005)). If ψ is a
non-trivial sub-root function, then it is continuous on [0,∞],
and the equation ψ(r) = r has a unique positive solution
r∗, which is known as the fixed point of ψ. Moreover, for
any r > 0, it holds that r > ψ(r) if and only if r∗ ≤ r.

Then, with these novel local vector-contraction inequalities
above and the properties of sub-root functions, we can derive
the following sharper bounds for multi-label learning with
smooth base loss functions:

Theorem 5.5. Let F be the class of multi-label learning
defined by (1). Let Assumptions 4.1 and 4.2 hold. Given
a dataset D of size n. Then, for any 0 < δ < 1, with
probability at least 1− δ, the following holds for Hamming
and Subset loss with smooth base losses and any f ∈ F:

R(f) ≤2R̂D(f) +
bM(log 1

δ + 6 log log n)

n
+

3 · 482aγ

n
×

(B + 1)2
(

1 + (1 + 4 log2(4Bn
3
2 c) log2(

√
nB))

)2

,

and the following holds for Ranking loss with smooth base
losses and any f ∈ F:

R(f) ≤2R̂D(f) +
bM(log 1

δ + 6 log log n)

n
+

3 · 962aγ

n
×

(B + 1)2
(

1 + (1 + 4 log2(4Bn
3
2 c) log2(

√
nB))

)2

,

where a = 106, b = 48.

Remark 5.6. The term <̃nc(P(F)) ≤ B/
√
nc in Lemma

5.2, which makes the local Rademacher complexity
<̂D(LrH), <̂D(LrS) and <̂rD(LR) actually independent on
c, up to logarithmic terms, and results in sharper bounds
than the Õ(1/

√
n) bounds in Theorem 4.4 with a faster con-

vergence rate Õ(1/n). Theorem 5.5 is the most advanced
theoretical result for multi-label learning so far. Although
Xu et al. (2016) also derived a generalization bound of order
Õ(1/n) by using the local Rademacher complexity, this
bound is accompanied by the trace norm regularized linear
function classes and the assumption that the singular values
of the weight matrix decay exponentially. These strong as-
sumptions lead to their bound being completely independent
of the number of labels. On the one hand, the trace norm
regularizer actually preserves the coupling among different
components. Wu & Zhu (2020) first revealed that preserv-
ing the coupling can improve the dependency of the bound
on the number of labels by a factor of

√
c in multi-label

learning. Zhang & Zhang (2024a) revealed that the trace
norm regularizer actually corresponds to the case of pre-
serving the coupling. In addition, the analysis of the linear
prediction function class in (Xu et al., 2016) rather than

the loss function space associated with the vector-valued
prediction function class in (Wu & Zhu, 2020; Wu et al.,
2021a; Zhang & Zhang, 2024a) leads to the improvement
of the dependency on the number of labels by a factor of√
c. Hence, under these strong assumptions, the bound in

(Xu et al., 2016) is independent of the number of labels. On
the other hand, the faster convergence rate Õ(1/n) of the
bound in (Xu et al., 2016) comes from the assumption that
the singular values of the weight matrix decay exponentially.
It is not obvious to satisfy such an assumption and requires
careful design of the algorithm. Hence, the bound in (Xu
et al., 2016) is not general and is heavily specific to their pro-
posed algorithm. Our bounds here are not only independent
of the number of labels, but also have a faster convergence
rate. The only assumption is that the base loss functions
involved in evaluation metrics are smooth, which is very
mild in multi-label learning since many multi-label learning
methods use smooth base loss functions (Huang et al., 2015;
2016; 2018; Weng et al., 2020; Yu & Zhang, 2022). Hence,
our bounds can provide general theoretical guarantees for
multi-label learning methods and datasets, and also explain
the good generalization performance of multi-label learning
methods with smooth base loss functions.

Remark 5.7. Busa-Fekete et al. (2022) also derived tight
bounds with a logarithmic dependency on c for Hamming
loss with KNN under the smoothness assumption of the
regression function and multi-label margin and sparsity as-
sumptions and also derived tight bounds with a logarithmic
dependency on c for Precision@κ under the margin condi-
tion and the smoothness assumption. The margin condition
ensures that the obtained bounds with a faster convergence
rate. In our work, the local loss function space is the key
to obtaining bounds with a faster convergence rate. The
smoothness condition with respect to the `∞ norm in (Busa-
Fekete et al., 2022) is a variant of Holder-continuity, which
is weaker than the standard smoothness condition. We also
find that the `∞ norm has a positive effect on obtaining tight
bound with a weaker dependency on c, i.e., tight bounds
with a logarithmic dependency on c can be derived for `∞
Lipschitz losses. However, how to improve the convergence
rate of the bounds for Lipschitz losses is still an open prob-
lem, which we will further explore in future work.

6. Tighter Bounds for Macro-Averaged AUC
In this section, we derive some tight bounds for Macro-
Averaged AUC. Specifically, we first exploit the Lips-
chitz continuity of base losses to develop a novel vector-
contraction inequality, which can induce tight bounds with
no dependency on c for Macro-Averaged AUC. Then, we
exploit the smoothness of base losses to develop a novel
vector-contraction inequality, which can also induce tight
bounds with no dependency on c for Macro-Averaged AUC.
These bounds achieve the state of the art and also reveal

7
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the relationship between Macro-Averaged AUC and class-
imbalance (Wu et al., 2023; Zhang & Zhang, 2024a).

We first introduce the following assumption about the Lips-
chitz continuity with respect to the `∞ norm:

Assumption 6.1. Assume that the loss function ` is ρ-
Lipschitz continuous w.r.t. the `∞ norm, that is:∣∣`(f(x), ·)− `(f ′(x), ·)

∣∣ ≤ ρ ∥∥f(x)− f ′(x)
∥∥
∞ ,

where ρ > 0, ‖t‖∞ = maxj∈[c] |tj | for t = (t1, . . . , tc).

The Lipschitz continuity with respect to the `∞ norm has
been considered in several literature (Foster & Rakhlin,
2019; Lei et al., 2019; Wu et al., 2021b; Zhang & Zhang,
2024a). Zhang & Zhang (2024a) showed that when the
base loss functions are ρ -Lipschitz continuous, the induced
surrogate loss for Macro-Averaged AUC in Subsection 3.2
is ρ-Lipschitz continuous. Next, we exploit the Lipschitz
continuity of base loss functions to develop a novel vector-
contraction inequality for `∞ norm Lipschitz loss:

Lemma 6.2. Let F be the class of multi-label learning
defined by (1). Let Assumptions 4.1 and 6.1 hold. Given a
dataset D of size n. Then, we have

<̂D(L) ≤12M√
n

+ 96ρ
√
c<̃nc(P(F))×

(1 + log2(4en2c2ρ2) · ln M
√
n

ρB
),

where <̃nc(P(F)) is the worst-case Rademacher complex-
ity of the projection function class.

We follow the definitions and notations of Macro-Averaged
AUC in (Zhang & Zhang, 2024a). Let pj be the probability
that the samples are relevant to the j-th label. D+

j denotes
the conditional distribution of the samples over X given that
the samples are relevant to the j-th label, and D−j denotes
the conditional distribution of the samples over X given
that the samples are irrelevant to the j-th label. We denote∣∣X+

j

∣∣ and
∣∣X−j ∣∣ in (2) as sj and tj , sj + tj = n for any

j ∈ [c], and denote the number of disjoint positive and
negative sample pairs for the j-th label as rj = min{sj , tj}.
We construct the set of positive and negative sample pairs
(xj+i ,xj−i ) (i ∈ [rj ]) by matching the samples from the set
of the samples that are relevant to the j-th label with the
samples from the set of the samples that are irrelevant to
the j-th label until one of the sets of the positive samples
and the negative samples exhausts its available samples for
selection. We denote the set of i.i.d disjoint positive and
negative sample pairs for the j-th class label as Dj , and
|Dj | = rj . Then, with these definitions and permutations in
U-process (Clémençon et al., 2008; Zhang & Zhang, 2024a),
we derive the tight bound for Macro-Averaged AUC with
Lipschitz base losses as follows:

Theorem 6.3. Let F be the class of multi-label learning
defined by (1). Let Assumptions 4.1 and 6.1 hold. Given a
dataset D of size n. Then, for Macro-Averaged AUC with
Lipschitz base losses, for any 0 < δ < 1, with probability
at least 1− δ, the following holds for any f ∈ F:

R(f) ≤R̂D(f) +
24
√

2M
√
r0

+ 18M

√
ln 4

δ

r0
+

384
√

2ρB
√
r0

×

(1 + log2(4er2
0c

2ρ2) · ln
M
√
r0

ρB
),

where r0 = nmin{minj pj ,minj(1− pj)}.
Remark 6.4. We define the empirical Rademacher complex-
ity of a loss function space associated with the multi-label
learning class F over the set of i.i.d disjoint positive and
negative sample pairs for the j-th label as <̂Dj (LM ) =

Eε
[
supf∈F

1
rj

∑rj
i=1

1
c

∑c
j=1 εi`b

(
fj(x

j+
i )− fj(xj−i )

)]
,

by using the U-process technique, we find that the gener-
alization error can be bounded by <̂Dj (LM ). Since rj is
random, we incorporate an additional Chernoff-type argu-
ment to obtain a bound that does not involve any random
quantities, and upper bound the generalization error by
<̂D0

(LM ) ≤ 12M√
r0

+ 192ρB√
r0

(1+log2(4er2
0c

2ρ2) · ln M
√
r0

ρB ).

Remark 6.5. The Õ(1/
√
r0) bound with no dependency on

c in Theorem 6.3 improve the Õ(
√
c/r0) bound in (Zhang

& Zhang, 2024a) by a factor of
√
c. When class-imbalance

is more serious, r0 will be smaller, the bound for Macro-
Averaged AUC will be looser. The Õ(

√
c/r0) bound in

(Zhang & Zhang, 2024a) is more likely to be vacuous (i.e.,
> 1) since class-imbalance makes c > r0 more likely to
occur. Hence, the Õ(1/

√
r0) bound here, rather than the

Õ(
√
c/r0) bound in (Zhang & Zhang, 2024a), can provide

a general theoretical guarantee for Macro-Averaged AUC.

Then, we develop a novel vector-contraction inequality for
Macro-Averaged AUC with smooth base loss functions:

Lemma 6.6. Let F be the class of multi-label learning
defined by (1). Let Assumptions 4.1 and 4.2 hold. Given a
dataset D of size n. Then, we have

<̂D(LM ) ≤12M√
n

+ 192
√

3cγM <̃nc(P(F))×

(1 + log2(48en2c2γM) · ln
√
nM
√
γB

),

where <̂D(LM ) is the empirical Rademacher complexities
of the loss function space of the induced surrogate loss for
Macro-Averaged AUC, and <̃nc(P(F)) is the worst-case
Rademacher complexity of the projection function class.

With the above vector-contraction inequality, we derive tight
bound for Macro-Averaged AUC with smooth base losses:
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Theorem 6.7. Let F be the class of multi-label learning
defined by (1). Let Assumptions 4.1 and 4.2 hold. Given
a dataset D of size n. Then, for any 0 < δ < 1, with
probability at least 1 − δ, the following holds for Macro-
Averaged AUC with smooth base losses and any f ∈ F:

R(f) ≤R̂D(f) +
24
√

2M
√
r0

+ 18M

√
ln 4

δ

r0
+

768
√

6γMB
√
r0

(1 + log2(48er2
0c

2γM) · ln
√
r0M√
γB

),

where r0 = nmin{minj pj ,minj(1− pj)}.

Remark 6.8. We derive tight Õ(1/
√
r0) bounds for Macro-

Averaged AUC by exploiting both Lipschitz continuity and
smoothness of base losses. Wu et al. (2023) also obtained
bounds with no dependency on c for Macro-Averaged AUC
by their proposed new McDiarmid-type inequality, and pro-
vided thorough analysis on its relationships with the label-
wise class-imbalance. However, we focus on studying the
impact of the properties of base losses on the bound, and are
committed to developing new analysis methods and theo-
retical tools under Lipschitz and smooth conditions of base
losses to reduce the dependency of the bound on c.

7. Discussion
When there is some type of label correlation between the
labels of the dataset, the label distribution may satisfy some
potential constraints, which may correspond to some addi-
tional assumptions such as sparsity assumptions or norm
regularization constraints. Therefore, when dealing with
these specific problems, we need to introduce some ad-
ditional assumptions to adjust our analysis and explicitly
introduce these potential label correlations into the general-
ization analysis. Different types of label correlations have
an important impact on the generalization analysis. How
to explicitly introduce them in generalization analysis is a
crucial open problem, and we will further explore related
work in the future. When dealing with large-scale datasets,
in practice, one often consider introducing specific strate-
gies in the label space to deal with extremely large number
of labels. In generalization analysis, it is shown that intro-
ducing effective and general specific strategies is not only
an important open problem in theory, but also extremely
challenging in practice. Therefore, it is indeed necessary
to further introduce effective assumptions to better explic-
itly analyze the role of key factors in generalization that
can effectively deal with challenging problems with large
number of labels and large-scale datasets. In summary, ef-
fective analysis for more specific problems requires further
explicit introduction of valid assumptions to reveal the im-
pact of these setting-dependent factors on the bound. For
example, for high-dimensional sparse data, one may need

to introduce sparsity assumptions into the analysis, thereby
inducing bounds that are weakly dependent on the sparsity
rate and the number of key labels.

Our theoretical results do not cover the case where the base
loss is the cross-entropy loss, mainly because the cross-
entropy loss is not bounded. On the smoothness of the
cross-entropy loss, when the model is a linear classifier, the
smoothness of the cross-entropy loss can be achieved by
the boundedness of the input, but from the perspective of
model capacity, such a result is not general. The function
class here involves general functions (i.e., nonlinear map-
pings φj), so for nonlinear models, the smoothness of the
cross-entropy loss involves not only the boundedness of the
first-order gradient of the model function but also the bound-
edness of the second-order derivative. For deep networks,
changes in parameters may cause drastic changes in the
second-order derivative, resulting in the norm of the second-
order derivative being unbounded. Hence, the smoothness
of the cross-entropy is often difficult to hold. However,
the Lipschitz continuity of the cross-entropy is often estab-
lished, and the boundedness of the gradient of the model
function is guaranteed by various strategies in practice, such
as input normalization, weight initialization, gradient clip-
ping, and regularization. This implies the need to develop
new theories and analytical methods for unbounded base
losses. Under the new theoretical analysis method, tight
bounds with no dependency on c for cross-entropy loss can
be obtained using its Lipschitz continuity, but improving the
convergence rate of its bound with respect to the number of
examples is still an urgent open problem to be solved. In
the future, we will further study the bounds with a faster
convergence rate for unbounded and Lipschitz base losses.

8. Conclusion
In this paper, we develop novel vector-contraction inequali-
ties for smooth base losses, which induces tight Õ(1/

√
n)

bounds with no dependency on c. We also derive Õ(1/n)
bounds with no dependency on c and a faster rate w.r.t. n
by exploiting local Rademacher complexity. In addition,
we derive tight bounds with no dependency on c for Macro-
Averaged AUC with both Lipschitz and smooth base losses.

In future work, we will consider experimental verification
from two aspects. On the one hand, verify whether the
functions selected by the algorithm have a small error and
whether the generalization performance of the small er-
ror functions is better. On the other hand, verify whether
the smoothness of the model function can be guaranteed
by some regularization, and explore which regularization-
induced inductive biases are more effective for generaliza-
tion in practice. We will also develop new theoretical results
to investigate the lower bound for multi-label learning to
test whether our bounds here are optimal.
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A. Appendix
A.1. Appendix Outline

In the appendix, we give the detailed proofs of our theoretical results in the main paper. Our main proofs include:

• The tight vector-contraction inequalities for multi-label learning with smooth base losses (Lemma 4.3).

• The tight bounds for multi-label learning with smooth base losses (Theorem 4.4).

• The local vector-contraction inequalities for multi-label learning with smooth base losses (Lemma 5.2)

• The faster bounds for multi-label learning with smooth base losses (Theorem 5.5)

• The novel vector-contraction inequality for `∞ norm Lipschitz loss (Lemma 6.2)

• The tight bound for Macro-Averaged AUC with Lipschitz base losses (Theorem 6.3)

• The novel vector-contraction inequality for Macro-Averaged AUC with smooth base losses (Lemma 6.6)

• The tight bound for Macro-Averaged AUC with smooth base losses (Theorem 6.7)

A.2. Preliminaries

A.2.1. THE BOUND FOR THE LOSS FUNCTION SPACE

According to McDiarmid’s inequality (McDiarmid et al., 1989) and the symmetrization technique (e.g., Theorem 4.4 in
(Mohri et al., 2018)), it is easy to obtain that for any training dataset D = {(xi,yi) : i ∈ [n]}, `(·, ·) ≤M , with probability
at least 1− δ, the following holds:

R(`(f)) ≤ R̂D(`(f)) + 2<̂D(L) + 3M

√
log 2

δ

2n
. (4)

A.3. Tighter Bounds for Smooth Base Losses

A.3.1. PROOF OF LEMMA 4.3

Proof Sketch: For Hamming loss, according to the smoothness of base loss functions, we first derive the relationship
between the empirical `2 norm covering number N2(ε,LH , D) of the loss space LH and the empirical `∞ norm covering
number N∞(ε,P(F), [c]×D) of the projection function class P(F). Then, we show that the empirical `∞ norm covering
number N∞(ε,P(F), [c]×D) of the projection function class P(F) can be bounded by the fat-shattering dimension, and
the fat-shattering dimension can be bounded by the worst-case Rademacher complexity of the projection function class P(F).
Finally, combining the above results and the refined Dudley’s entropy integral inequality, the Rademacher complexity of the
loss function space LH can be bounded by the worst-case Rademacher complexity of the projection function class P(F),
and the desired bound can be derived. For Subset loss and Ranking loss, we derive the relationships between the empirical `2
norm covering number N2(ε,LS , D), N2(ε,LR, D) and the empirical `∞ norm covering number N∞(ε,P(F), [c]×D),
respectively. Then, using the similar technique to the tight vector-contraction inequality for Hamming loss, the desired
bounds for Subset and Ranking loss can be derived.

We first introduce the following lemmas:

Lemma A.1 (Lemma A.1 in (Srebro et al., 2010)). For any H-smooth non-negative function f : R 7→ R and any t, r ∈ R
we have that

(f(t)− f(r))2 ≤ 6H(f(t) + f(r))(t− r)2.

Lemma A.2 (Khintchine-Kahane inequality (Lust-Piquard & Pisier, 1991)). Let v1, . . . ,vn ∈ H, where H is a Hilbert
space with ‖ · ‖ being the associated p-th norm. Let ε1, . . . , εn be a sequence of independent Rademacher variables. Then,
for any p ≥ 1 there holds

min(
√
p− 1, 1)

[
n∑
i=1

‖vi‖2
] 1

2

≤

[
Eε

∥∥∥∥∥
n∑
i=1

εivi

∥∥∥∥∥
p] 1

p

≤ max(
√
p− 1, 1)

[
n∑
i=1

‖vi‖2
] 1

2

,
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and

Eε

∥∥∥∥∥
n∑
i=1

εivi

∥∥∥∥∥ ≥ 2−
1
2

[
n∑
i=1

‖vi‖2
] 1

2

.

Lemma A.3 (Lemma A.2 in (Srebro et al., 2010)). For any function class F , any S with a finite sample of size n and any
ε > <̂S(F), we have that

fatε(F) ≤ 4n<̂2
S(F)

ε2
.

Lemma A.4 (Theorem 12.8 in (Anthony & Bartlett, 2009), (Lei et al., 2023)). If any function in class F takes values in
[−B,B], then for any S with a finite sample of size n, any ε > 0 with fatε(F) < n, we have

logN∞ (ε,F , S) ≤ 1 + d log2

4eBn

dε
log

4nB2

ε2
,

where d = fatε/4(F).

Lemma A.5 (Refined Dudley’s entropy integral inequality, Lemma C.5 in (Zhang & Zhang, 2024a)). Let F be a real-valued
function class with f ≤ B, f ∈ F , B > 0, and assume that 0 ∈ F . Let S be a finite sample of size n. For any 2 ≤ p ≤ ∞,
we have the following relationship between the Rademacher complexity <̂S(F) and the covering number Np(ε,F , S).

<̂S(F) ≤ inf
α>0

(
4α+

12√
n

∫ B

α

√
logNp(ε,F , S)dε

)
.

First, we derive the tight vector-contraction inequality for Hamming loss with smooth base loss functions.

Step 1: We first derive the relationship between the empirical `2 norm covering numberN2(ε,LH , D) and the empirical `∞
norm covering number N∞(ε,P(F), [c]×D) by the smoothness of base loss functions.

For the dataset D = {(x1,y1), . . . , (xn,yn)} with n i.i.d. examples:√√√√ 1

n

n∑
i=1

(
`H(f(xi),yi)− `H(f ′(xi),yi)

)2

=

√√√√√ 1

n

n∑
i=1

1

c

c∑
j=1

`b (fj(xi), yij)−
1

c

c∑
j=1

`b
(
f ′j(xi), yij

)2

≤

√√√√ 1

n

n∑
i=1

1

c

c∑
j=1

(
`b (fj(xi), yij)− `b

(
f ′j(xi), yij

))2
(Use Jensen’s Inequality)

≤

√√√√ 1

n

n∑
i=1

1

c

c∑
j=1

6γ(`b (fj(xi), yij) + `b(f ′j(xi), yij))(fj(xi)− f ′j(xi))2 (Use Lemma A.1)

≤

√√√√ 1

n

n∑
i=1

1

c

c∑
j=1

6γ(`b (fj(xi), yij) + `b(f ′j(xi), yij))
√

max
i∈[n],j∈[c]

(fj(xi)− f ′j(xi))2

≤
√

12γM max
i∈[n],j∈[c]

|fj(xi)− f ′j(xi)| (Use Assumption 4.1)

≤
√

12γM max
i

max
j
|pj(f(xi))− pj(f ′(xi)|. (The definition of the projection function class P(F))

Then, according to the definitions of the empirical `2 and `∞ covering number, we have that an empirical `∞ cover of P(F)
at radius ε/

√
12γM is also an empirical `2 cover of the loss function space LH at radius ε, and we can conclude that:

N2 (ε,LH , D) ≤ N∞
(

ε√
12γM

,P(F), [c]×D
)
. (5)
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Step 2: We show that the empirical `∞ norm covering number of P(F) can be bounded by the fat-shattering dimension,
and the fat-shattering dimension can be bounded by the worst-case Rademacher complexity of P(F).

According to Lemma A.3, for any ε > 2<̂[c]×D(P(F)), we have

fatε(P(F)) ≤
4nc<̂2

[c]×D(P(F))

ε2
.

Then, combining with Lemma A.4, for any ε ∈ (0, 2B], we have

logN∞ (ε,P(F), [c]×D) ≤ 1 + fatε/4(P(F)) log2
2

8eB2nc

ε2

≤ 1 +
64nc<̂2

[c]×D(P(F))

ε2
log2

2

8eB2nc

ε2

≤ 1 +
64nc<̃2

nc(P(F))

ε2
log2

2

8eB2nc

ε2
. (6)

Step 3: According to Assumption 4.1 in the main paper, we can obtain the lower bound of the worst-case Rademacher
complexity <̃nc(P(F)) by the Khintchine-Kahane inequality with p = 1:

<̃nc(P(F))

= sup
[c]×D∈[c]×Xn

<̂[c]×D(P(F))

= sup
[c]×D∈[c]×Xn

Eε

 sup
pj(f(xi))∈P(F)

1

nc

n∑
i=1

c∑
j=1

εijpj(f(xi))


= sup

[c]×D∈[c]×Xn
Eε

 sup
fj∈Fj

1

nc

n∑
i=1

c∑
j=1

εijfj (xi)


= sup
‖φj(xi)‖≤A:i∈[n],j∈[c]

1

nc
Eε

 sup
‖wj‖≤Λ

n∑
i=1

c∑
j=1

εij〈wj , φj(xi)〉


= sup
‖φj(xi)‖≤A:i∈[n],j∈[c]

Λ

nc
Eε‖

n∑
i=1

c∑
j=1

εijφj(xi)‖

≥ sup
‖φj(xi)‖≤A:i∈[n],j∈[c]

Λ

nc

1√
2

 n∑
i=1

c∑
j=1

‖φj(xi)‖2
 1

2

. (Use Lemma A.2)

Since ‖φj(xi)‖ ≤ A, we set sup‖φj(xi)‖≤A:i∈[n],j∈[c]
1
nc

[∑n
i=1

∑c
j=1 ‖φj(xi)‖2

] 1
2

= A√
nc

. So,

<̃nc(P(F)) ≥ ΛA√
2nc

:=
B√
2nc

. (7)

Step 4: According to Lemma A.5 and combined with the above steps, we have

<̂D(LH)

≤ inf
α>0

(
4α+

12√
n

∫ M

α

√
logN2(ε,L, D)dε

)

≤ inf
α>0

(
4α+

12√
n

∫ M

α

√
logN∞

(
ε√

12γM
,P(F), [c]×D

)
dε

)
(Use inequality (5))
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≤ inf
α>0

(
4α+

12√
n

∫ M

α

√
1 +

64nc12γM <̃2
nc(P(F))

ε2
log2

2

24eB2ncγM

<̃2
nc(P(F))

dε

)
(Use inequality (6))

≤ inf
α>0

4α+
12√
n

∫ M

α

√
1 +

64nc12γM <̃2
nc(P(F))

ε2
log2

2(48en2c2γM)dε

 (Use inequality (7))

≤ inf
α>0

(
4α+

12M√
n

+ 192
√

3cγM <̃nc(P(F)) log2(48en2c2γM)

∫ M

α

ε−1dε

)

≤12M√
n

+ inf
α>0

(
4α+ 192

√
3cγM <̃nc(P(F)) log2(48en2c2γM) · ln M

α

)
≤12M√

n
+ 192

√
3cγM <̃nc(P(F))(1 + log2(48en2c2γM) · ln M

48
√

3cγM <̃nc(P(F))
)

(Choose α = 48
√

3cγM <̃nc(P(F)))

≤12M√
n

+ 192
√

3cγM <̃nc(P(F))(1 + log2(48en2c2γM) · ln
√
nM
√
γB

). (Use inequality (7))

Second, we derive the tight vector-contraction inequality for Subset loss with smooth base loss functions.

Step 1: We first derive the relationship between the empirical `2 norm covering number N2(ε,LS , D) and the empirical `∞
norm covering number N∞(ε,P(F), [c]×D) by the smoothness of base loss functions.

For the dataset D = {(x1,y1), . . . , (xn,yn)} with n i.i.d. examples:√√√√ 1

n

n∑
i=1

(
`S(f(xi),yi)− `S(f ′(xi),yi)

)2
=

√√√√ 1

n

n∑
i=1

(
max
j∈[c]
{`b (fj(xi), yij)} −max

j∈[c]

{
`b
(
f ′j(xi), yij

)})2

≤

√√√√ 1

n

n∑
i=1

max
j∈[c]

(
`b (fj(xi), yij)− `b

(
f ′j(xi), yij

))2
≤

√√√√ 1

n

n∑
i=1

max
j∈[c]

6γ(`b (fj(xi), yij) + `b(f ′j(xi), yij))(fj(xi)− f ′j(xi))2 (Use Lemma A.1)

≤

√√√√6γ

n

n∑
i=1

max
j∈[c]

(`b (fj(xi), yij) + `b(f ′j(xi), yij))
√

max
i∈[n],j∈[c]

(fj(xi)− f ′j(xi))2

≤
√

12γM max
i∈[n],j∈[c]

|fj(xi)− f ′j(xi)| (Use Assumption 4.1)

≤
√

12γM max
i

max
j
|pj(f(xi))− pj(f ′(xi)|. (The definition of the projection function class P(F))

Then, according to the definitions of the empirical `2 and `∞ covering number, we have that an empirical `∞ cover of P(F)
at radius ε/

√
12γM is also an empirical `2 cover of the loss function space LS at radius ε, and we can conclude that:

N2 (ε,LS , D) ≤ N∞
(

ε√
12γM

,P(F), [c]×D
)
.

Step 2: The following proof process is similar to the proof Step 2-4 of the tight vector-contraction inequality for Hamming
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loss. Hence, we have:

<̂D(LS) ≤ 12M√
n

+ 192
√

3cγM <̃nc(P(F))(1 + log2(48en2c2γM) · ln
√
nM
√
γB

).

Third, we derive the tight vector-contraction inequality for Ranking loss with smooth base loss functions.

Step 1: We first derive the relationship between the empirical `2 norm covering number N2(ε,LR, D) and the empirical `∞
norm covering number N∞(ε,P(F), [c]×D) by the smoothness of base loss functions.

For the dataset D = {(x1,y1), . . . , (xn,yn)} with n i.i.d. examples:√√√√ 1

n

n∑
i=1

(
`R(f(xi),yi)− `R(f ′(xi),yi)

)2

=

√√√√√ 1

n

n∑
i=1

 1

|Y +| |Y −|
∑
p∈Y +

∑
q∈Y −

`b (fp(xi)− fq(xi))−
1

|Y +| |Y −|
∑
p∈Y +

∑
q∈Y −

`b
(
f ′p(xi)− f ′q(xi)

)2

≤

√√√√ 1

n

n∑
i=1

1

|Y +| |Y −|
∑
p∈Y +

∑
q∈Y −

(
`b (fp(xi)− fq(xi))− `b

(
f ′p(xi)− f ′q(xi)

))2
(Use Jensen’s Inequality)

≤

√√√√ 1

n

n∑
i=1

1

|Y +| |Y −|
∑
p∈Y +

∑
q∈Y −

6γ(`b (fp(xi)− fq(xi)) + `b
(
f ′p(xi)− f ′q(xi)

)
)(fp(xi)− fq(xi)− f ′p(xi) + f ′q(xi))

2

(Use Lemma A.1)

≤

√√√√6γ

n

n∑
i=1

1

|Y +| |Y −|
∑
p∈Y +

∑
q∈Y −

(`b (fp(xi)− fq(xi)) + `b
(
f ′p(xi)− f ′q(xi)

)
)×

√
max

i∈[n],p∈Y +,q∈Y −
(fp(xi)− fq(xi)− f ′p(xi) + f ′q(xi))

2

≤
√

12γM max
i∈[n],p∈Y +,q∈Y −

|fp(xi)− fq(xi)− f ′p(xi) + f ′q(xi)| (Use Assumption 4.1)

≤
√

12γM max
i∈[n],p∈Y +,q∈Y −

|(fp(xi)− f ′p(xi))− (fq(xi)− f ′q(xi))|

≤
√

12γM2 max
i∈[n],j∈[c]

|fj(xi)− f ′j(xi)|

≤2
√

12γM max
i

max
j
|pj(f(xi))− pj(f ′(xi)|. (The definition of the projection function class P(F))

Then, according to the definitions of the empirical `2 and `∞ covering number, we have that an empirical `∞ cover of P(F)
at radius ε/2

√
12γM is also an empirical `2 cover of the loss function space LR at radius ε, and we can conclude that:

N2 (ε,LR, D) ≤ N∞
(

ε

2
√

12γM
,P(F), [c]×D

)
.

Step 2: The following proof process is similar to the proof Step 2-4 of the tight vector-contraction inequality for Hamming
loss. Hence, we have:

<̂D(LR) ≤ 12M√
n

+ 384
√

3cγM <̃nc(P(F))

(
1 + log2(192en2c2γM) · ln

√
nM
√
γB

)
.
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A.3.2. PROOF OF THEOREM 4.4

We upper bound the worst-case Rademacher complexity <̃nc(P(F)) as the following:

<̃nc(P(F))

= sup
[c]×D∈[c]×Xn

<̂[c]×D(P(F))

= sup
[c]×D∈[c]×Xn

Eε

 sup
pj(f(xi))∈P(F)

1

nc

n∑
i=1

c∑
j=1

εijpj(f(xi))


= sup

[c]×D∈[c]×Xn
Eε

 sup
fj∈Fj

1

nc

n∑
i=1

c∑
j=1

εijfj (xi)


= sup
‖φj(xi)‖≤A:i∈[n],j∈[c]

1

nc
Eε

 sup
‖wj‖≤Λ

n∑
i=1

c∑
j=1

εij〈wj , φj(xi)〉


= sup
‖φj(xi)‖≤A:i∈[n],j∈[c]

Λ

nc
Eε‖

n∑
i=1

c∑
j=1

εijφj(xi)‖

≤ sup
‖φj(xi)‖≤A:i∈[n],j∈[c]

Λ

nc

Eε‖ n∑
i=1

c∑
j=1

εijφj(xi)‖2
 1

2

(Use Jensen’s Inequality)

≤ sup
‖φj(xi)‖≤A:i∈[n],j∈[c]

Λ

nc

 n∑
i=1

c∑
j=1

‖φj(xi)‖2
 1

2

≤ ΛA√
nc

:=
B√
nc
. (Use Lemma A.2) (8)

Then, we have

<̂D(LH) and <̂D(LS) ≤12M√
n

+ 192
√

3cγM <̃nc(P(F))

(
1 + log2(48en2c2γM) · ln

√
nM
√
γB

)

≤12M√
n

+
192
√

3γMB
(

1 + log2(48en2c2γM) · ln
√
nM√
γB

)
√
n

,

and

<̂D(LR) ≤12M√
n

+ 384
√

3cγM <̃nc(P(F))

(
1 + log2(192en2c2γM) · ln

√
nM
√
γB

)

≤12M√
n

+
384
√

3γMB
(

1 + log2(192en2c2γM) · ln
√
nM√
γB

)
√
n

.

Combining with (4), then for Hamming and Subset loss with smooth base losses, we have

R(f) ≤ R̂D(f) +
24M√
n

+
384
√

3γMB
(

1 + log2(48en2c2γM) · ln
√
nM√
γB

)
√
n

+ 3M

√
log 2

δ

2n
,

for Ranking loss with smooth base losses, we have

R(f) ≤ R̂D(f) +
24M√
n

+
768
√

3γMB
(

1 + log2(192en2c2γM) · ln
√
nM√
γB

)
√
n

+ 3M

√
log 2

δ

2n
.

18



Tight and Fast Bounds for Multi-Label Learning

A.4. Faster Bounds for Smooth Base Losses

A.4.1. PROOF OF LEMMA 5.2

Proof Sketch: For Hamming loss, according to the smoothness of base loss functions, we first derive the relationship
between the empirical `2 norm covering number N2(ε,LrH , D) of the local Hamming loss space LrH and the empirical
`∞ norm covering number N∞(ε,P(F), [c] × D) of the projection function class. Then, since the empirical `∞ norm
covering number N∞(ε,P(F), [c] × D) can be bounded by the worst-case Rademacher complexity of the projection
function class P(F), combining the above results and the discretized variant of Dudley’s integral inequality, the local
Rademacher complexity of the local Hamming loss function space LrH can be bounded by the worst-case Rademacher
complexity of the projection function class, and the desired bound can be derived. For Subset loss and Ranking loss, we
derive the relationships between the empirical `2 norm covering number N2(ε,LrS , D), N2(ε,LrR, D) and the empirical `∞
norm covering numberN∞(ε,P(F), [c]×D), respectively. Then, using the similar technique to the local vector-contraction
inequality for Hamming loss, the desired bounds for Subset and Ranking loss can be derived.

We first introduce the following lemmas:
Lemma A.6 (Discretized variant of Dudley’s integral inequality in (Guermeur, 2017)). Let F be a real-valued function
class and S := {s1, . . . , sn} be a finite sample of size n. Let (εj)

∞
j=0 be a monotone sequence decreasing to 0 and any

(a1, . . . , an) ∈ Rn. If

ε0 ≥

√√√√n−1 sup
f∈F

n∑
i=1

(f (si)− ai)2
,

then for any non-negative integer N we have the following relationship between the Rademacher complexity <̂S(F) and the
covering number N2(εj ,F , S)

<̂S(F) ≤ 2

N∑
j=1

(εj + εj−1)

√
logN2 (εj ,F , S)

n
+ εN .

Lemma A.7 ((Pollard, 2012)). Let F be a class of functions from X to R and let F0 be a subset. Then for any ε > 0, we
have the following relationship on covering numbers: Np(ε,F0, D) ≤ Np(ε/2,F , D).

First, we derive the local vector-contraction inequality for Hamming loss with smooth base loss functions.

Step 1: We first derive the relationship between the empirical `2 norm covering numberN2(ε,LrH , D) and the empirical `∞
norm covering number N∞(ε,P(F), [c]×D) by the smoothness of base loss functions.

For the dataset D = {(x1,y1), . . . , (xn,yn)} with n i.i.d. examples:√√√√ 1

n

n∑
i=1

(
`H(f(xi),yi)− `H(f ′(xi),yi)

)2

=

√√√√√ 1

n

n∑
i=1

1

c

c∑
j=1

`b (fj(xi), yij)−
1

c

c∑
j=1

`b
(
f ′j(xi), yij

)2

≤

√√√√ 1

n

n∑
i=1

1

c

c∑
j=1

(
`b (fj(xi), yij)− `b

(
f ′j(xi), yij

))2
(Use Jensen’s Inequality)

≤

√√√√ 1

n

n∑
i=1

1

c

c∑
j=1

6γ(`b (fj(xi), yij) + `b(f ′j(xi), yij))(fj(xi)− f ′j(xi))2 (Use Lemma A.1)

≤

√√√√ 1

n

n∑
i=1

1

c

c∑
j=1

6γ(`b (fj(xi), yij) + `b(f ′j(xi), yij))
√

max
i∈[n],j∈[c]

(fj(xi)− f ′j(xi))2

≤
√

12γr max
i∈[n],j∈[c]

|fj(xi)− f ′j(xi)| (Use Definition 5.1)
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≤
√

12γrmax
i

max
j
|pj(f(xi))− pj(f ′(xi)|. (The definition of the projection function class P(F))

Then, according to the definitions of the empirical `2 and `∞ covering number, we have that an empirical `∞ cover of
P(Fr) at radius ε/

√
12γr is also an empirical `2 cover of the local loss function space LrH at radius ε, and combined with

Lemma A.7, we can conclude that:

N2 (ε,LrH , D) ≤ N∞
(

ε√
12γr

,P(Fr), [c]×D
)
≤ N∞

(
ε

2
√

12γr
,P(F), [c]×D

)
. (9)

Step 2: According to the inequality (6), we have that the empirical `∞ norm covering number of P(F) can be bounded by
the worst-case Rademacher complexity of P(F). Let εN = 48

√
3γrmax{ 1√

n
,
√
c<̃nc(P(F))} and εj = 2N−jεN , where

N = dlog2
4
√

3γrB

48
√

3γrmax{ 1√
n
,
√
c<̃nc(P(F))}

e. According to Lemma A.6 and combined with the above steps, we have

<̂D(LrH)

≤2

N∑
j=1

(εj + εj−1)

√
logN∞ (εj ,LrH , D)

n
+ εN

≤2

N∑
j=1

(εj + εj−1)

√√√√ logN∞
(

εj
2
√

12γr
,P(F), [c]×D

)
n

+ εN (Use inequality (9))

≤2

N∑
j=1

(εj + εj−1)
1√
n

+ 2

N∑
j=1

(εj + εj−1)

√√√√ 64nc(2
√

12γr)2<̃2
nc(P(F))

ε2j
log2

2
8eB2nc(2

√
12γr)2

ε2j

n
+ εN

(Use inequality (6))

≤ 6ε0√
n

+ 2

N∑
j=1

(εj + εj−1)

√√√√ 64nc(2
√

12γr)2<̃2
nc(P(F))

ε2j
log2

2
8eB2nc(2

√
12γr)2

ε2j

n
+ εN

≤48
√

3γrB√
n

+ 2

N∑
j=1

(εj + εj−1)
8
√
c2
√

12γr<̃nc(P(F))

εj
log2

8eB2nc(2
√

12γr)
2

ε2j
+ εN (Use

ε0
2
√

12γr
≤ 2B)

≤48
√

3γrB√
n

+ 48 · 4
√

3cγr<̃nc(P(F))

N∑
j=1

log2

8eB2nc(2
√

12γr)
2

ε2j
+ εN (Use εj−1 = 2εj)

≤48
√

3γrB√
n

+ 48 · 4
√

3cγr<̃nc(P(F))

N∑
j=1

(
log2 32 · 12eB2ncγr + log2

1

ε2j

)
+ εN

≤48
√

3γrB√
n

+ 48 · 4
√

3cγr<̃nc(P(F))N log2 32 · 12eB2ncγr + 48 · 4
√

3cγr<̃nc(P(F))

N∑
j=1

log2

1

ε2j
+ εN

≤48
√

3γrB√
n

+ 48 · 4
√

3cγr<̃nc(P(F))N log2 32 · 12eB2ncγr + 48 · 4
√

3cγr<̃nc(P(F))

N∑
j=1

log2

22j

ε20
+ εN

(Use εj = 2−j · ε0)

≤48
√

3γrB√
n

+ 48 · 4
√

3cγr<̃nc(P(F))N log2 32 · 12eB2ncγr+

48 · 4
√

3cγr<̃nc(P(F))(

N∑
j=1

log2

1

ε20
+ 2 log2 2

N∑
j=1

j) + εN
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≤48
√

3γrB√
n

+ 48 · 4
√

3cγr<̃nc(P(F))N log2 32 · 12eB2ncγr + 48 · 4
√

3cγr<̃nc(P(F))N(log2

1

ε20
+ (N + 1) log2 2) + εN

≤48
√

3γrB√
n

+ 48 · 4
√

3cγr<̃nc(P(F))N log2 32 · 12eB2ncγr + 48 · 4
√

3cγr<̃nc(P(F))N log2(
2

ε0
· 1

εN
) + εN

(Use ε0 = 2N · εN )

≤48
√

3γrB√
n

+ 48 · 4
√

3cγr<̃nc(P(F))N log2 32 · 12eB2ncγr+

48 · 4
√

3cγr<̃nc(P(F))N log2(
2

4
√

3γrB
· 1

48
√

3γr 1√
n

) + εN (Use
ε0

2
√

12γr
≥ B and εN ≥ 48

√
3γr

1√
n

)

≤48
√

3γrB√
n

+ 48 · 4
√

3cγr<̃nc(P(F))N log2 32 · 12eB2ncγr + 48 · 4
√

3cγr<̃nc(P(F))N log2

√
n

6 · 48γrB
+ εN

=
48
√

3γrB√
n

+ 48 · 4
√

3cγr<̃nc(P(F))N(log2 32 · 12eB2ncγr + log2

√
n

6 · 48γrB
) + εN

≤48
√

3γrB√
n

+ 48 · 4
√

3cγr<̃nc(P(F)) log2(
4eBn

3
2 c

3
)dlog2

4
√

3γrB

48
√

3γr 1√
n

e+ εN

(Use N = dlog2

4
√

3γrB

48
√

3γrmax{ 1√
n
,
√
c<̃nc(P(F))}

e)

≤48
√

3γrB√
n

+ 48 · 4
√

3cγr<̃nc(P(F)) log2(
4eBn

3
2 c

3
)dlog2

√
nB

12
e+ εN

≤48
√

3γrB√
n

+ 48 · 4
√

3cγr<̃nc(P(F)) log2(4Bn
3
2 c) log2

√
nB

6
+ 48

√
3γrmax{ 1√

n
,
√
c<̃nc(P(F))}

≤48
√

3γr(B + 1)√
n

+ 48
√

3cγr<̃nc(P(F))(1 + 4 log2(4Bn
3
2 c) log2(

√
nB)). (Use max{a, b} ≤ a+ b)

Second, we derive the local vector-contraction inequality for Subset loss with smooth base loss functions.

Step 1: We first derive the relationship between the empirical `2 norm covering number N2(ε,LrS , D) and the empirical `∞
norm covering number N∞(ε,P(F), [c]×D) by the smoothness of base loss functions.

For the dataset D = {(x1,y1), . . . , (xn,yn)} with n i.i.d. examples:√√√√ 1

n

n∑
i=1

(
`S(f(xi),yi)− `S(f ′(xi),yi)

)2
=

√√√√ 1

n

n∑
i=1

(
max
j∈[c]
{`b (fj(xi), yij)} −max

j∈[c]

{
`b
(
f ′j(xi), yij

)})2

≤

√√√√ 1

n

n∑
i=1

max
j∈[c]

(
`b (fj(xi), yij)− `b

(
f ′j(xi), yij

))2
≤

√√√√ 1

n

n∑
i=1

max
j∈[c]

6γ(`b (fj(xi), yij) + `b(f ′j(xi), yij))(fj(xi)− f ′j(xi))2 (Use Lemma A.1)

≤

√√√√6γ

n

n∑
i=1

max
j∈[c]

(`b (fj(xi), yij) + `b(f ′j(xi), yij))
√

max
i∈[n],j∈[c]

(fj(xi)− f ′j(xi))2

≤
√

12γr max
i∈[n],j∈[c]

|fj(xi)− f ′j(xi)| (Use Definition 5.1)
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≤
√

12γrmax
i

max
j
|pj(f(xi))− pj(f ′(xi)|. (The definition of the projection function class P(F))

Then, according to the definitions of the empirical `2 and `∞ covering number, we have that an empirical `∞ cover of
P(Fr) at radius ε/

√
12γr is also an empirical `2 cover of the local loss function space LrS at radius ε, and combined with

Lemma A.7, we can conclude that:

N2 (ε,LrS , D) ≤ N∞
(

ε√
12γr

,P(Fr), [c]×D
)
≤ N∞

(
ε

2
√

12γr
,P(F), [c]×D

)
.

Step 2: The following proof process is similar to the proof Step 2 of the local vector-contraction inequality for Hamming
loss. Hence, we have:

<̂D(LrS) ≤ 48
√

3γr(B + 1)√
n

+ 48
√

3cγr<̃nc(P(F))(1 + 4 log2(4Bn
3
2 c) log2(

√
nB)).

Third, we derive the local vector-contraction inequality for Ranking loss with smooth base loss functions.

Step 1: We first derive the relationship between the empirical `2 norm covering number N2(ε,LrR, D) and the empirical `∞
norm covering number N∞(ε,P(F), [c]×D) by the smoothness of base loss functions.

For the dataset D = {(x1,y1), . . . , (xn,yn)} with n i.i.d. examples:√√√√ 1

n

n∑
i=1

(
`R(f(xi),yi)− `R(f ′(xi),yi)

)2

=

√√√√√ 1

n

n∑
i=1

 1

|Y +| |Y −|
∑
p∈Y +

∑
q∈Y −

`b (fp(xi)− fq(xi))−
1

|Y +| |Y −|
∑
p∈Y +

∑
q∈Y −

`b
(
f ′p(xi)− f ′q(xi)

)2

≤

√√√√ 1

n

n∑
i=1

1

|Y +| |Y −|
∑
p∈Y +

∑
q∈Y −

(
`b (fp(xi)− fq(xi))− `b

(
f ′p(xi)− f ′q(xi)

))2
(Use Jensen’s Inequality)

≤

√√√√ 1

n

n∑
i=1

1

|Y +| |Y −|
∑
p∈Y +

∑
q∈Y −

6γ(`b (fp(xi)− fq(xi)) + `b
(
f ′p(xi)− f ′q(xi)

)
)(fp(xi)− fq(xi)− f ′p(xi) + f ′q(xi))

2

(Use Lemma A.1)

≤

√√√√6γ

n

n∑
i=1

1

|Y +| |Y −|
∑
p∈Y +

∑
q∈Y −

(`b (fp(xi)− fq(xi)) + `b
(
f ′p(xi)− f ′q(xi)

)
)×

√
max

i∈[n],p∈Y +,q∈Y −
(fp(xi)− fq(xi)− f ′p(xi) + f ′q(xi))

2

≤
√

12γr max
i∈[n],p∈Y +,q∈Y −

|fp(xi)− fq(xi)− f ′p(xi) + f ′q(xi)| (Use Definition 5.1)

≤
√

12γr max
i∈[n],p∈Y +,q∈Y −

|(fp(xi)− f ′p(xi))− (fq(xi)− f ′q(xi))|

≤
√

12γr2 max
i∈[n],j∈[c]

|fj(xi)− f ′j(xi)|

≤2
√

12γrmax
i

max
j
|pj(f(xi))− pj(f ′(xi)|. (The definition of the projection function class P(F))

Then, according to the definitions of the empirical `2 and `∞ covering number, we have that an empirical `∞ cover of
P(Fr) at radius ε/2

√
12γr is also an empirical `2 cover of the local loss function space LrR at radius ε, and combined with

Lemma A.7, we can conclude that:

N2 (ε,LrR, D) ≤ N∞
(

ε

2
√

12γr
,P(Fr), [c]×D

)
≤ N∞

(
ε

4
√

12γr
,P(F), [c]×D

)
.
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Step 2: The following proof process is similar to the proof Step 2 of the local vector-contraction inequality for Hamming
loss. Hence, we have:

<̂D(LrS) ≤ 96
√

3γr(B + 1)√
n

+ 96
√

3cγr<̃nc(P(F))(1 + 4 log2(4Bn
3
2 c) log2(

√
nB)).

A.4.2. PROOF OF THEOREM 5.5

We first introduce the following lemma:

Lemma A.8 (Theorem 6.1 in (Bousquet, 2002)). Let F be a class of non-negative functions such that 0 ≤ f ≤ c almost
surely. Let R̂D(f) = 1

n

∑n
i=1 f(xi). Let ψn be a sub-root function such that for all r > 0,

<̂D({f : R̂D(f) ≤ r}) ≤ ψn(r).

Define r∗n as the largest solution of the equation ψn(r) = r. For all x > 0, with probability at least 1− e−x for all f ∈ F

R(f) ≤ 2R̂D(f) + 106r∗n + 48r0,

where r0 = c(x+ 6 log log n)/n.

According to Lemma A.8, for a sub-root function ψn(r), r > 0, <̂D(Lr) ≤ ψn(r), we have the following holds with
probability at least 1− δ,

R(f) ≤ 2R̂D(f) + 106r∗n +
48M(log 1

δ + 6 log log n)

n
,

where r∗n is the largest solution of the equation ψn(r) = r, i.e., the fixed point of ψn.

For Hamming loss and Subset loss, we set ψn(r) = 48
√

3γr(B+1)√
n

+48
√

3cγr<̃nc(P(F))(1+4 log2(4Bn
3
2 c) log2(

√
nB)),

which is a sub-root function, and <̂D(LrH) ≤ ψn(r), <̂D(LrS) ≤ ψn(r). Hence, solving the equation ψn(r) = r gives the
fixed point

r∗n = 3 · 482γ

(
B + 1√

n
+
√
c<̃nc(P(F))(1 + 4 log2(4Bn

3
2 c) log2(

√
nB))

)2

.

According to the inequality (8), we have that the upper bound of the worst-case Rademacher complexity is <̃nc(P(F)) ≤
B√
nc

, then combined with the above steps, we have

R(f) ≤ 2R̂D(f) +
3 · 482aγ(B + 1)2

(
1 + (1 + 4 log2(4Bn

3
2 c) log2(

√
nB))

)2

n
+
bM(log 1

δ + 6 log log n)

n
,

where a = 106, b = 48.

Using similar techniques and local vector-contraction inequality of Ranking loss, we can derive the sharp bound for Ranking
loss with smooth base loss functions:

R(f) ≤ 2R̂D(f) +
3 · 962aγ(B + 1)2

(
1 + (1 + 4 log2(4Bn

3
2 c) log2(

√
nB))

)2

n
+
bM(log 1

δ + 6 log log n)

n
,

where a = 106, b = 48.

A.5. Tighter Bounds for Macro-Averaged AUC

A.5.1. PROOF OF LEMMA 6.2

Proof Sketch: We first derive the relationship between the empirical `∞ norm covering number N∞(ε,L, D) of the loss
function space and the empirical `∞ norm covering number N∞(ε,P(F), [c]×D) of the projection function class. Then,
since the empirical `∞ norm covering number N∞(ε,P(F), [c] × D) can be bounded by the worst-case Rademacher
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complexity of the projection function class, combining the above results and the refined Dudley’s integral inequality, the
Rademacher complexity of the loss function space can be bounded by the worst-case Rademacher complexity of the
projection function class, and the desired bound can be derived.

Step 1: We first derive the relationship between the empirical `∞ norm covering number N∞(ε,L, D) and the empirical
`∞ norm covering number N∞(ε,P(F), [c]×D).

For the dataset D = {(x1,y1), . . . , (xn,yn)} with n i.i.d. examples:

max
i
|`(f(xi),yi)− `(f

′(xi),yi)|

≤ρmax
i
‖f(xi)− f ′(xi)‖∞ (Use Assumption 6.1)

≤ρmax
i

max
j
|fj (xi)− f ′j (xi) |

≤ρmax
i

max
j
|pj(f(xi))− pj(f ′(xi)|. (The definition of the projection function class P(F))

Then, according to the definition of the empirical `∞ covering number, we have that an empirical `∞ cover of P(F) at
radius ε/ρ is also an empirical `∞ cover of the loss function space L at radius ε, and we can conclude that:

N∞ (ε,L, D) ≤ N∞
(
ε

ρ
,P(F), [c]×D

)
. (10)

According to the inequality (6), we have that the empirical `∞ norm covering number of P(F) can be bounded by the
worst-case Rademacher complexity of P(F). According to Lemma A.5 and combined with the above steps, we have

<̂D(L)

≤ inf
α>0

(
4α+

12√
n

∫ M

α

√
logN∞(ε,L, D)dε

)

≤ inf
α>0

(
4α+

12√
n

∫ M

α

√
logN∞(

ε

ρ
,P(F), [c]×D)dε

)
(Use inequality (10))

≤ inf
α>0

(
4α+

12√
n

∫ M

α

√
1 +

64ncρ2<̃2
nc(P(F))

ε2
log2

2

2eB2ncρ2

<̃2
nc(P(F))

dε

)
(Use inequality (6))

≤ inf
α>0

4α+
12√
n

∫ M

α

√
1 +

64ncρ2<̃2
nc(P(F))

ε2
log2

2(4en2c2ρ2)dε

 (Use inequality (7))

≤ inf
α>0

(
4α+

12M√
n

+ 96ρ
√
c<̃nc(P(F)) log2(4en2c2µ2)

∫ M

α

ε−1dε

)

≤12M√
n

+ inf
α>0

(
4α+ 96ρ

√
c<̃nc(P(F)) log2(4en2c2ρ2) · ln M

α

)
≤12M√

n
+ 96ρ

√
c<̃nc(P(F))(1 + log2(4en2c2ρ2) · ln M

24ρ
√
c<̃nc(P(F))

)

(Choose α = 24ρ
√
c<̃nc(P(F)))

≤12M√
n

+ 96ρ
√
c<̃nc(P(F))(1 + log2(4en2c2ρ2) · ln M

√
n

ρB
). (Use inequality (7))

A.5.2. PROOF OF THEOREM 6.3

Proof Sketch: First, for the induced surrogate loss for Macro-Averaged AUC, by using the U-process technique, we define
the empirical Rademacher complexity of a loss function space associated with the multi-label learning class F over the set
of i.i.d disjoint positive and negative sample pairs for each j-th label, then with two-sided multiplicative Chernoff bound, the
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generalization error can be bounded by <̂D0(LM ) = Eε
[
supf∈F

1
r0

∑r0
i=1

1
c

∑c
j=1 εi`b

(
fj(x

j+
i )− fj(xj−i )

)]
. Second,

combining with Lemma 6.2 and the Lipschitz continuity with respect to the `∞ norm of the induced surrogate loss for
Macro-Averaged AUC, we have <̂D0

(LM ) ≤ 12M√
r0

+ 96ρ
√
c<̃r0c(P(F))(1 + log2(4er2

0c
2ρ2) · ln M

√
r0

ρB ). Finally, we

upper bound the worst-case Rademacher complexity <̃r0c(P(F)) ≤ 2B√
r0c

, the desired bound can be derived.

Rademacher complexity has proved to be a powerful data-dependent measure of hypothesis space complexity. However,
since Macro-Averaged AUC involves pairwise functions, a sequence of pairs of i.i.d. individual observation in (2) is no
longer independent, which makes standard techniques in the i.i.d case for traditional Rademacher complexity inapplicable.
We convert the non-sum-of-i.i.d pairwise function to a sum-of-i.i.d form by using permutations in U-process (Clémençon
et al., 2008; Zhang & Zhang, 2024a).

According to the definitions of the empirical risk w.r.t. Macro-Averaged AUC and the induced surrogate loss for Macro-
Averaged AUC in (2) and Subsection 3.2, for the induced surrogate loss for Macro-Averaged AUC, we define the empirical
Rademacher complexity of a loss function space associated with the multi-label learning class F over the set of i.i.d disjoint
positive and negative sample pairs for the j-th label as follows:

<̂Dj (LM ) = Eε

[
sup
f∈F

1

rj

rj∑
i=1

εi`M (f(xj+i ,xj−i ))

]
= Eε

sup
f∈F

1

rj

rj∑
i=1

1

c

c∑
j=1

εi`b

(
fj(x

j+
i )− fj(xj−i )

) , (11)

where each εi is an independent Rademacher random variable. The corresponding expected Rademacher complexity is
defined as <rj (LM ) = EDj <̂Dj (LM ). We denote supf∈F

∣∣∣ 1
rj

∑rj
i=1 εi`M (f(xj+i ,xj−i ))

∣∣∣ as RDjLM .

According to the symmetrization technique, we can obtain

EDjψ

(
sup
f∈F

∣∣∣R(f)− R̂D(f)
∣∣∣)

≤EDjψ

sup
f∈F

∣∣∣∣∣∣∣∣∣∣
1∣∣X+

j

∣∣ ∣∣X−j ∣∣
∑

xj+i ∈X
+
j

xj−k ∈X
−
j

(
`M (f(xj+i ,xj−k ))−R(f)

)
∣∣∣∣∣∣∣∣∣∣


≤EDjψ

sup
f∈F

∣∣∣∣∣∣ 1

sj ! · tj !
∑

πj+,πj−

1

rj

rj∑
i=1

(
`M (f(xj+πj+(i),x

j−
πj−(i)))−R(f)

)∣∣∣∣∣∣


≤EDjψ

sup
f∈F

1

sj ! · tj !
∑

πj+,πj−

∣∣∣∣∣ 1

rj

rj∑
i=1

(
`M (f(xj+πj+(i),x

j−
πj−(i)))−R(f)

)∣∣∣∣∣


≤EDjψ

 1

sj ! · tj !
∑

πj+,πj−

sup
f∈F

∣∣∣∣∣ 1

rj

rj∑
i=1

(
`M (f(xj+πj+(i),x

j−
πj−(i)))−R(f)

)∣∣∣∣∣
 (ψ is nondecreasing)

≤ 1

sj ! · tj !
∑

πj+,πj−

EDjψ

(
sup
f∈F

∣∣∣∣∣ 1

rj

rj∑
i=1

(
`M (f(xj+π(i),x

j−
π(i)))−R(f)

)∣∣∣∣∣
)

(Jensen’s inequality)

≤EDjψ

(
sup
f∈F

∣∣∣∣∣ 1

rj

rj∑
i=1

(
`M (f(xj+i ,xj−i ))−R(f)

)∣∣∣∣∣
)

≤EDjψ

(
sup
f∈F

∣∣∣∣∣ 1

rj

rj∑
i=1

(
`M (f(xj+i ,xj−i ))− EDj `M (f(xj+i ,xj−i ))

)∣∣∣∣∣
)
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≤EDjψ

(
sup
f∈F

∣∣∣∣∣ 1

rj

rj∑
i=1

(
`M (f(xj+i ,xj−i ))− ED′j `M (f(xj+

′

i ,xj−
′

i ))
)∣∣∣∣∣
)

(D′j is the set of samples with the same distribution as Dj)

≤EDj ,D′jψ

(
sup
f∈F

∣∣∣∣∣ 1

rj

rj∑
i=1

(
`M (f(xj+i ,xj−i ))− `M (f(xj+

′

i ,xj−
′

i ))
)∣∣∣∣∣
)

(Jensen’s inequality)

≤EDj ,D′j ,εψ

(
sup
f∈F

∣∣∣∣∣ 1

rj

rj∑
i=1

εi

(
`M (f(xj+i ,xj−i ))− `M (f(xj+

′

i ,xj−
′

i ))
)∣∣∣∣∣
)

≤1

2
EDj ,εψ

(
2 sup
f∈F

∣∣∣∣∣ 1

rj

rj∑
i=1

εi`M (f(xj+i ,xj−i ))

∣∣∣∣∣
)

+
1

2
ED′j ,εψ

(
2 sup
f∈F

∣∣∣∣∣ 1

rj

rj∑
i=1

−εi`M (f(xj+
′

i ,xj−
′

i ))

∣∣∣∣∣
)

≤EDj ,εψ

(
2 sup
f∈F

∣∣∣∣∣ 1

rj

rj∑
i=1

εi`M (f(xj+i ,xj−i ))

∣∣∣∣∣
)

(D′j with the same distribution as Dj).

Hence, we have

EDjψ

(
sup
f∈F

∣∣∣R(f)− R̂D(f)
∣∣∣) ≤ EDj ,εψ

(
2R

Dj
LM

)
. (12)

Since the maximum difference caused by replacing one element in Dj or εi is 2M
rj

, according to McDiarmid’s inequality, we
have

P (|RDjLM −<rj (LM )| ≥ ε) ≤ 2e−
ε2rj

2M2 .

Then, according to the tail bound for sub-Gaussian random variables and Theorem 2.1 in (Boucheron et al., 2013), RDjLM is a

sub-Gaussian random variable with variance proxy 16M
2

rj
. With the definition of the sub-Gaussian random variable, we have

EDj ,εe
tR
Dj
LM ≤ et<rj (LM )+ 8t2M2

rj , ∀t > 0. (13)

Then, for any ε > 0, we have

P

(
sup
f∈F

∣∣∣R(f)− R̂D(f)
∣∣∣ ≥ ε)

=P
(
et supf∈F |R(f)−R̂D(f)| ≥ etε

)
≤
EDje

(t supf∈F |R(f)−R̂D(f)|)

etε
(Use Markov’s Inequality)

≤
EDj ,εe

2tR
Dj
LM

etε
(Use inequality (12) with ψ(x) = etx)

≤e
2t<rj (LM )+ 32t2M2

rj

etε
(Use inequality (13)).

We set e
2t<rj (LM )+ 32t2M2

rj

etε = δ, then we have ε = 2<rj (LM ) + 32tM2

rj
+

ln 1
δ

t .

Hence, we upper bound the term with probability at least 1− δ:

sup
f∈F

∣∣∣R(f)− R̂D(f)
∣∣∣ ≤2<rj (LM ) +

32tM2

rj
+

ln 1
δ

t

≤2<rj (LM ) + 8M

√
2 ln 1

δ

rj
. (14)
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Next, we transform <rj (LM ) in inequality (14) into <̂Dj (LM ), according to McDiarmid’s inequality, it is easy to obtain
that the following holds with probability at least 1− δ:

<rj (LM ) ≤ <̂Dj (LM ) +M

√
ln 1

δ

2rj
. (15)

Combining inequalities (14), (15), and Union bound Inequality, we have the following holds with probability at least 1− δ:

R(f)− R̂D(f) ≤ 2<̂Dj (LM ) + 2M

√
ln 2

δ

2rj
+ 8M

√
2 ln 2

δ

rj
. (16)

Next, we incorporate an additional Chernoff-type argument to obtain a bound that does not involve any random quantities.

First, since sj ∼ Binomial(n, pj), we have E = npj . With the two-sided multiplicative Chernoff bound, we have

P (|sj − npj | ≥ rnpj) ≤ 2e−
r2npj

3 , ∀r ∈ (0, 1).

Then, we have

P
(
|sj
n
− pj | ≥ rpj

)
≤P

(
∪j{|

sj
n
− pj | ≥ rpj}

)
≤
∑
j

P
(
|sj
n
− pj | ≥ rpj

)
(Use Union Bound Inequality)

≤
∑
j

2e−
r2npj

3

≤2ce−
r2nminj pj

3 .

We set 2ce−
r2nminj pj

3 = δ, then we have r =
√

3 ln 2c
δ

nminj pj
. Hence, the following holds with probability at least 1− δ:

|sj
n
− pj | ≤ pj

√
3 ln 2c

δ

nminj pj
.

Solving the above inequality yields sj ≥ npj(1−
√

3 ln 2c
δ

nminj pj
). Similarly, we have | tjn − (1− pj)| ≤ (1− pj)

√
3 ln 2c

δ

nminj pj
,

and solving this inequality yields tj ≥ n(1− pj)(1−
√

3 ln 2c
δ

nminj pj
).

Hence, we have the following holds with probability at least 1− δ:

rj = min{sj , tj} ≥ min{npj(1−

√
3 ln 2c

δ

nminj pj
), n(1− pj)(1−

√
3 ln 2c

δ

nminj pj
)}. (17)

In order to ensure that for every j-th label, disjoint positive and negative sample pairs can be constructed, we need to derive
the lower bound for minj{rj} to obtain the number of disjoint positive and negative sample pairs that can be constructed for
every j-th label. Since

rj ≥ min
j
{rj} = min

j
{min{sj , tj}}

≥min{min
j
{npj(1−

√
3 ln 2c

δ

nminj pj
)},min

j
{n(1− pj)(1−

√
3 ln 2c

δ

nminj pj
)}}
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= min{nmin
j
pj(1−

√
3 ln 2c

δ

nminj pj
), nmin

j
(1− pj)(1−

√
3 ln 2c

δ

nminj pj
)}

≥min{1

2
nmin

j
pj ,

1

2
nmin

j
(1− pj)} (Assume that n ≥

12 ln 2c
δ

minj pj
)

=
1

2
nmin{min

j
pj ,min

j
(1− pj)}

:=
1

2
r0 (Define r0 = nmin{min

j
pj ,min

j
(1− pj)}),

then we have rj ≥ 1
2r0 with probability at least 1− δ.

Combining the inequality (16) and Union bound Inequality, we have the following holds with probability at least 1− δ:

R(f)− R̂D(f)

≤2
√

2<̂D0
(LM ) + 2M

√
ln 4

δ

r0
+ 16M

√
ln 4

δ

r0

=2
√

2<̂D0
(LM ) + 18M

√
ln 4

δ

r0
. (18)

Then, according to Lemma 6.2, we have

<̂D0(LM ) ≤ 12M
√
r0

+ 96ρ
√
c<̃r0c(P(F))(1 + log2(4er2

0c
2ρ2) · ln

M
√
r0

ρB
).

We then upper bound the worst-case Rademacher complexity <̃r0c(P(F)) as the following:

<̃r0c(P(F))

= sup
[c]×D′∈[c]×X r0

<̂[c]×D′(P(F))

= sup
[c]×D′∈[c]×X r0

Eε

 sup
pj(f(xi))∈P(F)

1

r0c

r0∑
i=1

c∑
j=1

εijpj(f(xi,x
′
i))


= sup

[c]×D′∈[c]×X r0
Eε

 sup
fj∈Fj

1

r0c

r0∑
i=1

c∑
j=1

εij (fj(xi)− fj(x′i))


= sup
‖φj(xi)‖≤A:i∈[r0],j∈[c]

1

r0c
Eε

 sup
‖wj‖≤Λ

r0∑
i=1

c∑
j=1

εij〈wj , φj(xi)− φj(x′i)〉


= sup
‖φj(xi)‖≤A:i∈[r0],j∈[c]

Λ

r0c
Eε‖

r0∑
i=1

c∑
j=1

εij (φj(xi)− φj(x′i) ‖

≤ sup
‖φj(xi)‖≤A:i∈[r0],j∈[c]

2Λ

r0c
Eε‖

r0∑
i=1

c∑
j=1

εijφj(xi)‖

≤ sup
‖φj(xi)‖≤A:i∈[r0],j∈[c]

2Λ

r0c

Eε‖ r0∑
i=1

c∑
j=1

εijφj(xi)‖2
 1

2

(Use Jensen’s Inequality)

≤ sup
‖φj(xi)‖≤A:i∈[r0],j∈[c]

2Λ

r0c

 r0∑
i=1

c∑
j=1

‖φj(xi)‖2
 1

2

≤ 2ΛA
√
r0c

:=
2B
√
r0c

. (Use Lemma A.2) (19)
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Then, we have

<̂D0
(LM ) ≤12M

√
r0

+ 96ρ
√
c<̃r0c(P(F))(1 + log2(4er2

0c
2ρ2) · ln

M
√
r0

ρB
)

≤12M
√
r0

+
192ρB
√
r0

(1 + log2(4er2
0c

2ρ2) · ln
M
√
r0

ρB
).

Combining with (18), then

R(f)− R̂D(f) ≤ 24
√

2M
√
r0

+
384
√

2ρB
√
r0

(1 + log2(4er2
0c

2ρ2) · ln
M
√
r0

ρB
) + 18M

√
ln 4

δ

r0
.

A.5.3. PROOF OF LEMMA 6.6

We first derive the relationship between the empirical `2 norm covering number N2(ε,LM , D) and the empirical `∞ norm
covering number N∞(ε,P(F), [c]×D) by the smoothness of base loss functions.

For the dataset D = {(x1,y1), . . . , (xn,yn)} with n i.i.d. examples:√√√√ 1

n

n∑
i=1

(
`M (f(xi,x′i),y)− `M (f ′(xi,x′i),y)

)2

=

√√√√√ 1

n

n∑
i=1

1

c

c∑
j=1

`b (fj(xi)− fj(x′i))−
1

c

c∑
j=1

`b
(
f ′j(xi)− f ′j(x′i)

)2

≤

√√√√ 1

n

n∑
i=1

1

c

c∑
j=1

(
`b (fj(xi)− fj(x′i))− `b

(
f ′j(xi)− f ′j(x′i)

))2
(Use Jensen’s Inequality)

≤

√√√√ 1

n

n∑
i=1

1

c

c∑
j=1

6γ(`b (fj(xi)− fj(x′i)) + `b
(
f ′j(xi)− f ′j(x′i)

)
)(fj(xi)− fj(x′i)− f ′j(xi) + f ′j(x

′
i))

2

(Use Lemma A.1)

≤

√√√√6γ

n

n∑
i=1

1

c

c∑
j=1

(`b (fj(xi)− fj(x′i)) + `b
(
f ′j(xi)− f ′j(x′i)

)
)
√

max
i∈[n],j∈[c]

(fj(xi)− fj(xi)− f ′j(xi) + f ′j(xi))
2

≤
√

12γM max
i∈[n],j∈[c]

|fj(xi)− fj(x′i)− f ′j(xi) + f ′j(x
′
i)| (Use Assumption 4.1)

≤
√

12γM max
i∈[n],j∈[c]

|(fj(xi,x′i)− f ′j(xi,x′i)|

≤
√

12γM max
i

max
j
|pj(f(xi,x

′
i))− pj(f

′(xi,x
′
i)|. (The definition of the projection function class P(F))

Then, according to the definitions of the empirical `2 and `∞ covering number, we have that an empirical `∞ cover of P(F)
at radius ε/

√
12γM is also an empirical `2 cover of the loss function space LM at radius ε, and we can conclude that:

N2 (ε,LM , D) ≤ N∞
(

ε√
12γM

,P(F), [c]×D
)
.

The following proof process is similar to the proof of Lemma 4.3. Hence, we have:

<̂D(LM ) ≤ 12M√
n

+ 192
√

3cγM <̃nc(P(F))(1 + log2(48en2c2γM) · ln
√
nM
√
γB

).
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A.5.4. PROOF OF THEOREM 6.7

The overall proof process is similar to the proof of Theorem 6.3, the difference is that according to Lemma 6.6 we have

<̂D0
(LM ) ≤ 12M

√
r0

+ 192
√

3cγM <̃r0c(P(F))(1 + log2(48er2
0c

2γM) · ln
√
r0M√
γB

).

Combined with the upper bound of the worst-case Rademacher complexity <̃r0c(P(F)) in inequality (19), we have

<̂D0(LM ) ≤ 12M
√
r0

+
384
√

3γMB
√
r0

(1 + log2(48er2
0c

2γM) · ln
√
r0M√
γB

).

Combining with (18), then

R(f)− R̂D(f) ≤ 24
√

2M
√
r0

+
768
√

6γMB
√
r0

(1 + log2(48er2
0c

2γM) · ln
√
r0M√
γB

) + 18M

√
ln 4

δ

r0
.
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