
Under review as a conference paper at ICLR 2024

EMU: EFFICIENT NEGATIVE SAMPLE GENERATION
FOR KNOWLEDGE GRAPH LINK PREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge graph embedding (KGE) models encode information in knowledge
graphs for the purpose of predicting new links. In order to effectively train
these models, it is essential to learn to discriminate between positive and nega-
tive samples. Although prior research has demonstrated that enhancing the qual-
ity of negative samples can lead to significant improvements in model accuracy,
identifying superior-quality negative samples remains a challenging task. To this
end, our paper proposes Embedding Mutation and Unbounded label Smooth-
ing (EMU), a novel approach to generating hard negative samples, in contrast
to traditional endeavors aimed at identifying more difficult negatives within the
training data. By corrupting the negative samples with mutations derived from
true samples, EMU creates more challenging and informative negative samples
that are harder to distinguish from true samples. Importantly, EMU’s simplic-
ity allows it to be seamlessly integrated with existing KGE models and any
negative sampling methods. Our experiments show consistent improvement of
link prediction performance with various KGE models and negative sampling
methods. An implementation of the method and experiments are available at
https://anonymous.4open.science/r/EMU-KG-6E58.

1 INTRODUCTION

Knowledge Graphs (KGs) are graph databases, consisting of a collection of facts about real-world
entities that are represented in the form of (head, relation, tail)-triplets. With their logical struc-
ture reflecting human knowledge, KGs have proven themselves to be a crucial component of many
intelligent systems that tackle complex tasks, such as question answering (Huang et al., 2019), rec-
ommender systems (Guo et al., 2022), information extraction (Gashteovski et al., 2020), machine
reading (Weissenborn et al., 2018), and natural language processing, such as language modeling
(Yang & Mitchell, 2017; Logan et al., 2019), entity linking (Radhakrishnan et al., 2018), and ques-
tion answering (Saxena et al., 2022). Popular KGs such as Freebase (Bollacker et al., 2008), YAGO
(Suchanek et al., 2007), and WordNet (Miller, 1995) have been instrumental in driving advance-
ments in both academic research and industrial applications.

One of the major challenges that KGs face is their incompleteness; there may be numerous factually
correct relations between entities in the graph that are not covered. To address this issue, the task
of link prediction has emerged as a fundamental research topic, aimed at filling in the missing
links between entities in the graph. Among the various approaches to predicting these missing
links, Knowledge Graph Embedding (KGE) methods have proven to be particularly effective. KGE
methods encode entities and relations information into a low-dimensional embedding vector space,
thus enabling link prediction using neural networks (Bordes et al., 2013; Yang et al., 2015; Trouillon
et al., 2016; Sun et al., 2019).

Various methods have been developed to improve the accuracy of KGE predictions. For instance,
Ruffinelli et al. (2020) showed that using contrastive learning improves the model’s prediction ac-
curacy, irrespective of the embedding models used. However, to effectively train a model with
contrastive learning, it is essential to prepare hard-negative samples that are sufficiently challenging
for the model to avoid penalizing true triplets. Although there has been a significant amount of re-
search into effective negative sampling methods (Bordes et al., 2013; Sun et al., 2019; Zhang et al.,
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2019; Ahrabian et al., 2020), finding a powerful yet efficient negative sampling method remains an
open problem in the research community.

In this paper, we propose EMU, a novel negative sample generation method for the task of KG
link prediction. Instead of searching informative negative samples in the training dataset, EMU
creates challenging negative samples for the triples used during the training by mutating them with
components extracted from the positive one. By merging the embedding vector components of the
samples, EMU can effectively control the cosine similarity of the negative samples to the positive
ones, a technique we refer to as ”Embedding Mutation” in subsection 3.2. To ensure that the true
sample components are not erroneously penalized in the generated negative samples, we also in-
troduce ”Unbounded Label Smoothing” as an effective regularization method. Figure 1 shows a
schematic diagram that illustrates the proposed method. Importantly, EMU’s simplicity allows it to
be seamlessly integrated with existing KGE models and any negative sampling methods. Through
a comprehensive set of experiments, we demonstrate that EMU yields consistent performance im-
provements across various models and datasets, underscoring its potential as a powerful tool in the
field of link prediction.

In summary, the followings are the contributions of our work:

• We propose EMU, a novel technique for generating hard and informative negative samples
in KG link prediction tasks.

• We designed EMU to be easily incorporated into existing KGE models and any negative
sampling methods.

• We conducted a comprehensive set of experiments to demonstrate the effectiveness of
EMU, which shows that EMU consistently improves the performance across different
KGE models, datasets, and various negative sampling methods.

2 BACKGROUND

Link prediction is a task that consists of finding new links among entities in a graph by leveraging
the existing entities and relations. Given a triple (head, relation, tail), one of the elements is omitted
(e.g., (head, relation, ?)), and the model is required to predict the missing element to create a new
correct triple 1 KGE models have proven to be effective methods for this task because they learn
to represent the knowledge of a given graph in a vector space. During training, KGE methods em-
ploy negative sampling techniques because KGs contain only information on positive links. Thus,
appropriate negative samples are crucial for learning the structure of the KG in embedding space.
Negative samples correspond to node pairs that are known not to be connected, while positive sam-
ples refer to node pairs that are known to be connected. By incorporating negative samples during
training, KGE models can improve their ability to distinguish between positive and negative sam-
ples, leading to better predictions regarding the presence or absence of links in a graph. To generate
good quality negative samples, a range of different techniques are commonly employed. The most
frequently utilized approach is Uniform Sampling (Bordes et al., 2013), which corrupts positive
samples by substituting the head or the tail of the triple with a uniformly sampled replacement from
the KG. However, this technique has limitations since the samples are not sufficiently informative
and thus do not enhance training. To address this issue, different negative sampling methods to pro-
duce harder samples, or samples that help the model effectively discriminate between positive and
negative links, have been proposed, e.g., (Ahrabian et al., 2020).

3 EMU

This section contains a comprehensive overview of EMU. We first introduce the notation, followed
by an explanation of the mutation mechanism, and conclude with the explanation of unbounded
label smoothing.

1If either ”head” or ”tail” is omitted, it is denoted as ”entity prediction”; If ”relation” is omitted, it is denoted
as ”relation prediction”. Although we mainly discussed the ”tail” prediction case in the paper for simplicity,
our method can also be applied to the other cases.
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Figure 1: EMU is the combination of the embedding mutation module, and the Unbounded Label
Smoothing (ULS). The figure illustrates a typical example that generate hard negative tails.

3.1 NOTATION

We introduce the definition of triplets: x = (h, r, t) where (h, r, t) denote (head, relation, and tail).
These triplets are typically large collections of discrete concepts such as (‘Joe Biden’, ‘president of’,
‘USA’), or (‘Tokyo’, ‘capital of’, ‘Japan’). Due to their sparsity, the triplets in this format are difficult
to handle for machine learning models. Thus, they are usually projected onto a continuous low-
dimensional latent space z ∈ Rd, where d is the dimensionality of the latent space. The projection
is carried out by a projection (embedding) function G. For instance, to obtain the projection of the
head, we can use the equation zh = G(h|θh) where θh is the weight parameter of the embedding
model. The inference continues with scoring the triplet feasibility with a scoring function S(z) = s
where z is the triple formed by the latents of the input triple z = (zh, zr, zt) and s is the resulting
score. Depending on the method, the scoring function S can measure different metrics such as the
Euclidean distance as used in TransE (Bordes et al., 2013), or the dot-product as used in DistMult
(Yang et al., 2015).

The training is carried out by minimizing a contrastive-type loss function that employs the positive
sample score of the true triplet and a set of negative sample scores generated by corrupting the true
triple (+) with negative samples (−) as input:

L(s+, {s0, s1, ...}−) (1)

The loss function increases the score of the true triple while simultaneously decreasing the score of
negative ones. Depending on the method, this can result in a reduction or increase in distances, such
as in the case of TransE, or maximizing and minimizing similarities, as in the case of DistMult and
others (Trouillon et al., 2016; Sun et al., 2019).

3.2 EMBEDDING MUTATION

EMU is inspired from the gene ‘mutation‘ technique utilized in evolutionary algorithms. In this
study, we propose a new non-linear mixing approach that replaces a certain amount of the embedding
vector components in the negative sample with the corresponding parts of the true positive vector
components. This technique is a simple yet effective means of enhancing the difficulty of negative
samples by increasing their similarity to the true positive. Figure 2 provides a two-dimensional
visualization of this phenomena.

The formal definition of the EMU technique is presented as follows:

z̃EMU = λEMU ⊙ z+ + (1− λEMU)⊙ z−, (2)
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where λEMU ∈ Rd is the EMU mixing vector that controls the number of embedding vector compo-
nents to be mutations, which is denoted as nP. λEMU is a binary-valued vector whose components
are generated through a random sampling process that selects either zero or unity, with the proba-
bility of (1 − nP/d, nP/d). 2 The symbol ⊙ denotes element-wise multiplication, and z+ and z−

correspond to the positive and negative vectors to be mutated, respectively.

For the application of knowledge-base link prediction, we utilize Equation 2 to create the EMU neg-
ative tail sample by substituting zt,k = (z+t , {zt,0, zt,1, · · · }−). We employ the generated samples
as the EMU negative samples.

3.3 UNBOUNDED LABEL SMOOTHING

Label smoothing is a well-known technique used to regularize classifier models (Szegedy et al.,
2016). It is originally proposed to address the overconfidence issue that certain classifiers such
neural networks may exhibit during training. It works by smoothing the class label as follows:

yLS = ŷ(1− βLS) + βLS/K, (3)

where ŷ = {y0, y1, ..., yK} is the one-hot label encoding, βLS is a label smoothing parameter that
controls the model confidence, and K is the number of classes. Note that the resultant smoothed
label maintains the total sum equal to unity. However, when applied to problems with a high number
of classes, label smoothing leads to small values for the negative class label (or elements for the
contrastive learning case), which still induces an overly strong penalty on the EMU negative samples
whose vector component include the true positive sample vector that should not be penalized. To
address this issue, we propose a new approach called Unbounded Label Smoothing (Unbounded-
LS), which is defined as follows:

yULS
k =

{
1 if k ∈ (+)
β otherwise,

, (4)

where β is the softening parameter over the negative samples. The above modification of the negative
sample labels does not affect the probabilistic interpretation of the model output, as it does not
change the model output itself. Our unbounded LS discourages the model from penalizing the
negative samples excessively.

3.4 OVERALL LOSS TERMS

Inspired by knowledge distillation (Hinton et al., 2015), we combine the EMU loss function with the
usual Cross-entropy loss function, enabling the model to learn from the vanilla negative samplings
(i.e., sampled using the existing methods) as well. The overall loss function is expressed as:

L = LCE(s
+, {s0,Mut, s1,Mut, · · · }−, yULS) + αLCE(s

+, {s0, s1, · · · }−; ŷ), (5)

where LCE is the cross-entropy loss function, ŷ and yULS are the one-hot and Unbound LS labels,
respectively. The numerical coefficient α is utilized for weight balancing between the losses.

4 EXPERIMENTS

In this section, we perform experimental evaluation of EMU for the link prediction problem. To en-
sure an extensive evaluation, we picked commonly used KG embedding models (ComplEX (Trouil-
lon et al., 2016), DistMult (Yang et al., 2015), TransE (Bordes et al., 2013), and RotatE (Sun et al.,
2019)) to test with EMU. Furthermore, we evaluate them on three widely-used knowledge graphs,
namely, FB15k-237 (Toutanova & Chen, 2015), WN18RR (Dettmers et al., 2018), and YAGO3-10
(Mahdisoltani et al., 2013).

2More concretely, the component of the vector λEMU ∈ Rd is composed by nP unities and d − nP zeros
whose order is randomly determined, e.g., {0, 1, 1, 0, 0, 0, · · · }. For simplicity we use the random sampling.
The study of the better mutation vector λEMU is our future work.
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Figure 2: A simple 2D example that illustrates
the impact in the latent space of the proposed em-
bedding mutation algorithm.

Dataset #entities #relations #triples

FB15K-237 14,541 237 310,079
YAGO3-10 123,188 37 1,179,040
WN18-RR 40,943 11 93,003

Table 1: Knowledge Graph dataset statistics.
training, validation and testing refer to the num-
ber of triples under each split.

4.1 DATASETS

FB15k-237 (Toutanova et al., 2015) is a commonly used benchmark for Knowledge Graph link
prediction tasks and a subset of Freebase Knowledge Base (Bollacker et al., 2008). FB15k-237
was created as a replacement for FB15k, a previous benchmark that was widely adapted until the
dataset’s quality came into question in subsequent work (Toutanova et al., 2015) due to an excess of
inverse relations.

YAGO3-10 (Mahdisoltani et al., 2013) is a subset of YAGO (Yet Another Great Ontol-
ogy)(Suchanek et al., 2007), a large semantic knowledge base that augments WORDNET and which
was derived from WIKIPEDIA (Wikipedia contributors, 2004), WORDNET (Miller, 1995), WIKI-
DATA (Ahmadi & Papotti, 2021), and other sources. Because of its origins, YAGO entities are
linked to WIKIDATA and WORDNET entity types. The dataset contains information about individu-
als, such as citizenship, gender, profession, as well as other entities such as organizations and cities.
The subset YAGO3-10 contains triples with entities that have more than 10 relations.

WN18RR (Dettmers et al., 2018) is a link prediction dataset created from WN18 (Bordes et al.,
2013), which is a subset of WORDNET, a popular large lexical database of English nouns, verbs,
adjectives and adverbs. WORDNET contains information about relations between words, such as
hyponyms, hypernyms and synonyms (Miller, 1995). However, similarly to the issues that
occurred in FB15K, many test triples in WN18 are obtained by inverting triples from the training
set. Therefore, WN18RR dataset was created in the same work as FB15K-237, in order to make a
more challenging benchmark for link prediction.

4.2 EXPERIMENTAL SETUP

In order to enable a fair comparison between the different models and to ensure that all methods are
evaluated under the same conditions, we implemented all the methods. The code to replicate our ex-
periments can be found here: https://anonymous.4open.science/r/EMU-KG-6E58.

Training Settings Here we describe the general settings we used to train all the models. The opti-
mization was performed using Adam (Kingma & Ba) for 105 iterations3 with 256 negative samples4.
The hyper-parameter tuning was performed with Optuna (Akiba et al., 2019). During the training,
we monitored the loss over the validation set and selected the best model based on its performance
on the validation set. For models trained with SAN negative samples, we utilized the default training
setup from (Ahrabian et al., 2020).

3The total iteration number is the same as the one used in the SAN repository (Ahrabian et al., 2020) to
reproduce their best result.

4In Appendix D, the influence of the number of negative samples on the outcomes is analyzed, and it is
demonstrated that EMU outperforms the uniform-sampling approach in almost all instances.
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Figure 3: MRR for the datasets: FB15k-237, YAGO3-10, and WN18RR. The blue, orange, green,
and red colored bars mean the result of using the following negative sampling methods: ”SAN”,
”SAN with EMU”, ”uniform”, and ”uniform with EMU”, respectively.

Evaluation Settings To ensure that all the methods were evaluated under the same conditions, we
utilized standard metrics to report results, specifically the Mean Reciprocal Rank (MRR) and Hits at
K (H@K). If multiple true tails exist for the same (head, relation)-pair, we filtered out the other true
triplets at test time. To minimize model uncertainty resulting from random seeds or multi-threading,
we performed three trials for each experiment and reported the mean and standard deviation of the
evaluation scores.

Baselines Among all existing baselines, we consider vanilla uniform negative sampling (Bordes
et al., 2013) and SAN (Ahrabian et al., 2020) as the most relevant to compare our work against.
Additionally, We included NSCaching (Zhang et al., 2019) as another baseline method, with its
results provided in Appendix C 5

4.3 RESULTS

This section provides a summary and discussion of the obtained results.

Figure 3 illustrates the quantitative results in Table 6, displaying three plots for the MRR results
obtained for the FB15k-237, YAGO3-10, and WN18rr datasets. Each plot includes four groups of
column bars, representing the results for ComplEX (Trouillon et al., 2016; Lacroix et al., 2018)
(CE), DistMult (Yang et al., 2015; Dettmers et al., 2018; Salehi et al., 2018) (DM), RotatE (Sun
et al., 2019) (RE), and TransE (Bordes et al., 2013) (TE). The columns are distinguished by colors
that correspond to the results obtained from running the SAN (in blue), SAN EMU (i.e.: SAN
negative sampling method with EMU, in orange), uniform sampling (green), and uni EMU (i.e.:
simple uniform negative sampling with EMU, in red). The results indicate that in most cases,
the use of EMU enhances the scores by a significant margin, regardless of the embedding model
employed. This is discussed in detail in subsection 4.5.

4.4 ABLATION STUDY

In this subsection, we present the results of our ablation study to understand the individual contribu-
tions of the two main components of EMU, i.e. the Embedding Mutation and the Unbounded-LS.
To achieve this goal, we used the FB15k-237 dataset as a reference benchmark and performed a
set of experiments by decoupling the embedding mutation from the Unbounded-LS. We trained the
KGE models under three different scenarios: 1) the EMU, which represents the proposed EMU
combining Embedding Mutation and Unbounded-LS; 2) the baseline without Unbounded-LS (w/t
Unbounded-LS); 3) the baseline without the Embedding Mutation (w/t Emb.Mut.), and 4) the case
without EMU (w/t EMU). The aim of the experiments was to compare the performance reduction
by removing one of the components, thereby gaining insights into their relative importance.

The results obtained from the ablation study are presented in Table 2, with the first two columns
indicating the target model and the experiment setup, and the last two columns showing the MRR

5Due to the inherent intricacy involved in assessing the impact of different implementations (specifically,
SAN-based and NSCaching-based codes) on performances, we relocated he results obtained with NSCaching
to the Appendix.

6



Under review as a conference paper at ICLR 2024

Model Ablation MRR HITS@10

ComplEX EMU 0.344 0.532
w/t Unbounded-LS 0.252 (-0.092) 0.411 (-0.121)
w/t Emb.Mut. 0.302 (-0.042) 0.477 (-0.055)
w/t EMU 0.306 (-0.038) 0.486 (-0.046)

DistMult EMU 0.332 0.513
w/t Unbounded-LS 0.254 (-0.076) 0.415 (-0.098)
w/t Emb.Mut. 0.300 (-0.032) 0.477 (-0.036)
w/t EMU. 0.311 (-0.021) 0.489 (-0.024)

RotatE EMU 0.329 0.514
w/t Unbounded-LS 0.236 (-0.093) 0.386 (-0.128)
w/t Emb.Mut. 0.312 (-0.017) 0.496 (-0.018)
w/t EMU 0.305 (-0.024) 0.484 (-0.030)

TransE EMU 0.323 0.503
w/t Unbounded-LS 0.260 (-0.063) 0.423 (-0.080)
w/t Emb.Mut. 0.308 (-0.015) 0.491 (-0.012)
w/t EMU 0.314 (-0.009) 0.479 (-0.024)

Table 2: Ablation study results on FB15K-237. The number in the parentheses are the difference
from the ”EMU” results. ”LS” means Label Smoothing, and ”Emb.Mut.” means Embedding Muta-
tion.

and HITS@10 results with the performance loss compared to the baseline. Our results consistently
demonstrate that Unbounded-LS has a strong impact on all models6. This is quite natural because
EMU without Unbounded-LS penalizes not only pure negative samples but also true sample embed-
ding because of Embedding Mutation. We also hypothesize that the effectiveness of Unbounded-LS
can also stem from its ability to effectively allow large gradient flow values from negative samples.
This is attributed to the relatively large negative sample labels (typically larger than 0.1) and the
tendency of Embedding Mutation to create harder negatives, which results in larger loss values. The
resulting gradients affect both the positive and negative sample components, ultimately leading to
an improved representation of their embedding. In conclusion, Embedding Mutation combined with
Unbounded-LS consistently (EMU) improves performance of multiple and diverse models.

4.5 MUTATION EFFECT

In this subsection, we analyze and discuss the mutation effect in terms of embedding similarity. We
use DistMult as a reference model and train it on FB15k-237 and WN18RR datasets. We visualize
the embedding vector of the negative tail obtained with EMU to compare it with other negative
sampling strategies, i.e., uniform random sampling and SAN negative sampling.

Figure 4 shows the cosine similarity of negative samples provided by the three strategies. The
similarity distributions of negative samples produced by the uniform and SAN methods are quite
low, resulting in ”easy” negative samples. In contrast, the negative samples generated by EMU
exhibits a much larger similarity, indicating that Embedding Mutation generates harder negative
samples than the other methods.

Figure 5 depicts the distribution of true-tails and negative tails for two different datasets, namely
FB15k-237 and WN18RR, by plotting the first and second PCA components. The left panel of
each figure shows the distribution when negative tails are uniformly sampled, while the right panel
depicts the distribution using EMU negative-tails. In the Figure 5, the distribution around a true
tail is anisotropic for uniform-negative sampling, while EMU negative-tails show an isotropic dis-
tribution. We conjecture that this is representative of the distribution of negative samples around a
positive tail, because the first and the second PCA components capture crucial information of the
high dimensional embedding. Thus, a tighter isotropic distribution translates to harder negatives,
while an anisotropic distribution to easier ones. Moreover, the distributions for FB15k-237 are quite

6We also compared Unbounded-LS and vanilla LS (Szegedy et al., 2016) in Appendix F and found that
Unbounded-LS is more effective than the usual LS

7



Under review as a conference paper at ICLR 2024

varied in comparison to those of WN18RR. This could be an explanation for the higher performance
gain when using EMU for FB15k-237 (see Table 6)

0.2 0.0 0.2 0.4 0.6 0.8
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

cosine sim ilarity of posit ive-negat ive pairs

EMU

uniform

SAN

Figure 4: Cosine similarity between positive and
negative sample pair for DistMult trained on
FB15k-237 dataset. The used negative samples
are: uniform, EMU, and SAN. The larger, the
more similar.

Model Method MRR HITS@10

ComplEX uni EMU 0.344 0.532
uni MIXUP 0.324 0.517

DistMult uni EMU 0.332 0.513
uni MIXUP 0.319 0.507

RotatE uni EMU 0.329 0.514
uni MIXUP 0.281 0.454

TransE uni EMU 0.323 0.503
uni MIXUP 0.269 0.421

Table 3: MRR and Hit@10 of the results
on FB15K-237 datasets. ”uni EMU” means
the uniform negative sampling with EMU and
”uni MIXUP” means the uniform negative sam-
pling with MIXUP. The shown results are the av-
erage with the standard deviation of three trials
of the randomly determined initial weights.
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Figure 5: Results of the analysis of EMU of DistMult model trained on FB15k-237 (Left) and
WN18RR (Right) dataset. Left: The distribution of real-tail and uniformly-sampled negative-tail in
terms of the 1st and 2nd PCA components. Right: The distribution of real-tail and EMU negative-
tail in terms of the 1st and 2nd PCA components.

4.6 COMPARISON TO MIXUP

In section 5, we discussed a well-known approach called MIXUP, which shares a similar philosophy
with the Embedding Mutation. To compare their performance, we replaced the Embedding Mutation
step with MIXUP and present the results in Table 3. The findings consistently demonstrate that EMU
outperforms MIXUP. We hypothesize that the linear nature of MIXUP-generated examples limits
the magnitude of gradients while preserving their direction, thereby restricting its effectiveness. In
contrast, EMU overcomes this limitation by generating updates that can explore multiple directions,
thereby enhancing model training

5 RELATED WORK

KGE Models KGE models such as TransE(Bordes et al., 2013), DistMult (Yang et al., 2015;
Dettmers et al., 2018; Salehi et al., 2018), ConvE (Dettmers et al., 2018), ComplEX (Trouillon
et al., 2016; Lacroix et al., 2018), RotatE (Sun et al., 2019) are commonly used when solving the
knowledge base completion task. Each model implements a scoring function which maps a given
triple to a real-valued number. These models also differ in the embedding spaces used to learn the
latent embedding, for instance RotatE (Sun et al., 2019) utilizes the complex vector space.

Negative sampling While training a KGE model for the link prediction task, it is essential to sam-
ple high-quality negative data points adequately from the graph. Poor quality negative samples can
hinder the performance of KGE models by failing to guide the model during training. With this in
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mind, many approaches were proposed for generating better-quality negative samples, i.e., hard neg-
atives. The earliest sampling method is Uniform Sampling (Bordes et al., 2013). Another commonly
used method relies on Bernoulli Sampling where the replacement of the heads or tails of the triples
follows the Bernoulli distribution. (Wang et al., 2014). Newer methods that are based on Generative
Adversarial Networks (GAN) are also used such as KBGAN (Cai & Wang, 2018) and IGAN (Vig-
naud, 2021) where the generator is adversarially trained for the purpose of providing better quality
negative samples where a KGE model is used as the discriminator. Building on this NScasching
(Zhang et al., 2019) proposed a distilled version of GAN-based methods by creating custom clusters
of candidates entities used for the negative samples. Structure Aware Negative Sampling (SANS)
(Ahrabian et al., 2020) leverages the graph structure in the KG by selecting negative samples from
a node’s k-hop neighborhood. In addition, the subject continues to be actively studied (Zhang et al.,
2021; Islam et al., 2022; Xu et al., 2022) . Unlike the prior work mentioned above, EMU generates
hard negative samples, distinct from traditional approaches aimed at identifying more difficult neg-
ative samples. Furthermore, an additional benefit of EMU is its compatibility with any of the above
negative sampling methods, allowing for seamless integration.

Model Regularization Methods for Classification Tasks To obtain a good representation of the
embedding vector of a machine learning model, it is common to consider regularization methods.
In particular, there have been several regularization techniques for a better generalization power in
the case of the cross entropy loss function. MIXUP (Zhang et al., 2018) is one of the most popular
and powerful regularization methods, originally developed for image and speech processing. This
method generates new training samples by convexly mixing two different training data during the
training, resulting in a network with a better generalization because of Vicinal Risk Minimization
(Chapelle et al., 2000). Consequently MIXUP has gained popularity in computer vision (Liu et al.,
2021; He et al., 2022; Wang et al., 2021) and voice recognition (Meng et al., 2021; Fang et al., 2022),
among other fields (Tolstikhin et al., 2021; Kalantidis et al., 2020; Roy et al., 2022; Che et al., 2022).
CUTMIX Yun et al. (2019) is a variant of MIXUP that combine two input images as MIXUP but by
cutting and pasting patches among images. Our Feature Mutation shares a similar philosophy but
the crucial difference is that feature mutation combines positive and negative tails in ”feature” space
that has not yet been tried in any existing work as far as we know.

Label Smoothing (Szegedy et al., 2016; Müller et al., 2019) is also known as a very effective regu-
larization method when combined with cross entropy loss. Label Smoothing prevents overconfident
predictions from the model by artificially reducing the true labels to be less than unity.

6 DISCUSSION AND CONCLUSION

In the present study, we proposed our method, EMU, which aims to generate challenging and in-
formative negative samples for knowledge base link prediction by introducing Embedding Mutation
and Unbounded Label Smoothing techniques to enhance the embedding model’s ability to distin-
guish true samples. Our comprehensive experimental findings demonstrate that EMU consistently
outperforms all the baseline negative sampling methods, including uniform sampling, SAN, and
NSCaching in almost all the KGE models and datasets. Moreover, we observed that EMU’s effi-
cacy was largely invariant across embedding models and datasets. Our analysis showed that EMU
generates negative samples that are closer to true samples in terms of cosine-similarity, and that the
generated samples exhibit a more isotropic distribution around the true sample in the embedding
space compared to other methods. Although EMU involves tuning a few hyper-parameters, we
observed that its performance is not heavily reliant on them (refer to Appendix E). 7.

Limitations MUTUP scope is restricted to KG missing link prediction model trained using the
cross-entropy loss function with negative samples. It cannot be applied to neither 1-VS-ALL method
nor the other loss functions for the moment.

7(Che et al., 2022) introduced an application of MIXUP to KGE. Their approach involved utilizing more
challenging samples for mixing in order to enhance performance. However, it is worth noting that our Un-
bounded LS technique achieves superior performance compared to their method, even without employing
score-based harder sample mixings.
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Olivier Chapelle, Jason Weston, Léon Bottou, and Vladimir Vapnik. Vicinal risk minimization.
Advances in neural information processing systems, 13, 2000.

Feihu Che, Guohua Yang, Pengpeng Shao, Dawei Zhang, and Jianhua Tao. Mixkg: Mixing for
harder negative samples in knowledge graph. arXiv preprint arXiv:2202.09606, 2022.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. In AAAI, 2018.

Qingkai Fang, Rong Ye, Lei Li, Yang Feng, and Mingxuan Wang. STEMM: Self-learning with
speech-text manifold mixup for speech translation. In ACL, 2022.

Kiril Gashteovski, Rainer Gemulla, Bhushan Kotnis, Sven Hertling, and Christian Meilicke. On
aligning OpenIE extractions with knowledge bases: A case study. In NLP (workshop), 2020.

Q. Guo, F. Zhuang, C. Qin, H. Zhu, X. Xie, H. Xiong, and Q. He. A survey on knowledge graph-
based recommender systems. IEEE Transactions on Knowledge and Data Engineering, 2022.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In CVPR, 2022.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping Li. Knowledge graph embedding based
question answering. 2019.

Md Kamrul Islam, Sabeur Aridhi, and Malika Smail-Tabbone. Negative sampling and rule mining
for explainable link prediction in knowledge graphs. Knowledge-Based Systems, 250:109083,
2022. ISSN 0950-7051. doi: https://doi.org/10.1016/j.knosys.2022.109083. URL https://
www.sciencedirect.com/science/article/pii/S0950705122005342.

Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and Diane Larlus. Hard
negative mixing for contrastive learning. NeurIPS, 2020.

Diederik P. Kingma and Jimmy Ba. In ICLR (Poster).

10

https://doi.org/10.1145/1376616.1376746
https://aclanthology.org/N18-1133
https://www.sciencedirect.com/science/article/pii/S0950705122005342
https://www.sciencedirect.com/science/article/pii/S0950705122005342


Under review as a conference paper at ICLR 2024

Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical tensor decomposition for
knowledge base completion. In International Conference on Machine Learning, pp. 2863–2872.
PMLR, 2018.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In ICCV, 2021.

Robert Logan, Nelson F. Liu, Matthew E. Peters, Matt Gardner, and Sameer Singh. Barack’s
wife hillary: Using knowledge graphs for fact-aware language modeling. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 5962–5971, Florence,
Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1598. URL
https://aclanthology.org/P19-1598.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian M. Suchanek. YAGO3: A Knowledge Base
from Multilingual Wikipedias. In CIDR, Asilomar, United States, January 2013. URL https:
//hal-imt.archives-ouvertes.fr/hal-01699874.

Linghui Meng, Jin Xu, Xu Tan, Jindong Wang, Tao Qin, and Bo Xu. Mixspeech: Data augmentation
for low-resource automatic speech recognition. In ICASSP, 2021.

George A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):39–41, Novem-
ber 1995. ISSN 0001-0782. URL https://doi.org/10.1145/219717.219748.

Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing help? Ad-
vances in neural information processing systems, 32, 2019.

Priya Radhakrishnan, Partha Talukdar, and Vasudeva Varma. ELDEN: Improved entity linking
using densified knowledge graphs. In Proceedings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pp. 1844–1853, New Orleans, Louisiana, June 2018. Association for
Computational Linguistics. doi: 10.18653/v1/N18-1167. URL https://aclanthology.
org/N18-1167.

Aniket Roy, Anshul Shah, Ketul Shah, Prithviraj Dhar, Anoop Cherian, and Rama Chellappa. Felmi
: Few shot learning with hard mixup. In NeurIPS, 2022.

Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. You can teach an old dog new tricks! on
training knowledge graph embeddings. 2020.

Farnood Salehi, Robert Bamler, and Stephan Mandt. Probabilistic knowledge graph embeddings.
2018.

Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla. Sequence-to-sequence knowledge graph
completion and question answering. In Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 2814–2828, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.201. URL
https://aclanthology.org/2022.acl-long.201.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A core of semantic knowl-
edge. In Proceedings of the 16th International Conference on World Wide Web, WWW ’07,
pp. 697–706, New York, NY, USA, 2007. Association for Computing Machinery. ISBN
9781595936547. doi: 10.1145/1242572.1242667. URL https://doi.org/10.1145/
1242572.1242667.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding
by relational rotation in complex space. In ICLR, 2019.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In CVPR, 2016.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. NeurIPS, 2021.

11

https://aclanthology.org/P19-1598
https://hal-imt.archives-ouvertes.fr/hal-01699874
https://hal-imt.archives-ouvertes.fr/hal-01699874
https://doi.org/10.1145/219717.219748
https://aclanthology.org/N18-1167
https://aclanthology.org/N18-1167
https://aclanthology.org/2022.acl-long.201
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/1242572.1242667


Under review as a conference paper at ICLR 2024

Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text
inference. In Alexandre Allauzen, Edward Grefenstette, Karl Moritz Hermann, Hugo Larochelle,
and Scott Wen-tau Yih (eds.), CVSC, 2015.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury, and Michael
Gamon. Representing text for joint embedding of text and knowledge bases. In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1499–1509,
Lisbon, Portugal, September 2015. Association for Computational Linguistics. URL https:
//www.aclweb.org/anthology/D15-1174.
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