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Abstract

Distributed deep learning algorithms have shown eminent performance in learning
from data that are privately allocated between several agents. Recent advances in
sensor technology have enabled the cheap collection of spatial and temporal high-
resolution data for agriculture across a wide geographical area. This continuous
increase in the amount of data collected has created both the opportunity for, as
well as the need to deploy distributed deep learning algorithms for a wide variety
of decision support tasks in agriculture. Distributed deep learning algorithms are
typically divided into two major categories: centralized vs decentralized learning
algorithms, depending on whether a central parameter server exists for gathering
information from participating agents. In the case of rural agriculture applications,
transferring a large amount of high-resolution data (e.g., images, videos) collected
with IoT devices to a central server/cloud could be very expensive especially with
limited communication infrastructure. This suggests the need for decentralized
learning approaches, which also naturally provide some measure of privacy. Here,
autoencoders are trained using a decentralized optimization algorithm to create
a latent representation of growing maize plants in a large-scale field experiment
involving several hundred cameras deployed in a maize genome diversity growth
experiment. We trained the autoencoders for different communication network
topologies of the field-deployed cameras. The feature representations from these
autoencoders are then utilized to solve downstream tasks such as anomaly detection
and image retrieval. Experimental results show that distributed deep learning
is effective in learning from large datasets distributed among several learning
agents associated with different cameras. Anomaly detection in particular was
useful to make course corrections in imaging protocol and identify localized crop
management.

Introduction
Recent dramatic advances in sensor technology have enabled remote (drone, ground) as well as
proximal (soil sensors, touch sensors) data acquisition that can target a large range of features
(coarse vs. fine spatial resolution, high vs. low temporal frequency, visible vs. hyperspectral
wavelengths, chemical vs. physiological attributes) for different decision support tasks in agriculture.
Distributed AI-enabled advances are helpful to extract informative agronomic and physiological traits
from the large amounts of raw sensor data collected from agricultural fields. Typically distributed
deep learning algorithms are divided into two main categories; centralized McMahan et al. [2017],
Kairouz et al. [2019] and decentralized Lian et al. [2017], Nedić et al. [2018] learning depending
on whether a central parameter server is participating in the learning process Tang et al. [2020].
Centralized learning refers to the class of algorithms which generally contain a parameter server
that aggregates information i.e. gradients, model parameters, etc. from the participating agents and
performs parameter updates. On the other hand, in decentralized learning, agents communicate
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based on some graph topologies to update parameters Lyu et al. [2021]. However, in agriculture
applications, transferring a large amount of data (e.g., images, videos) which are collected with IoT
devices to a central server/cloud is computationally expensive. Additionally, the central parameter
server can act as a single point of failure. Therefore, decentralized deep learning algorithms Kempe
et al. [2003], Xiao and Boyd [2004], Boyd et al. [2006], Dekel et al. [2012], Lian et al. [2017], Jiang
et al. [2017], Yu et al. [2019], Koloskova et al. [2019], Nadiradze et al. [2019], Balu et al. [2021],
Esfandiari et al. [2021] appear to act as a better alternative. As a result, we consider DPMSGD Lian
et al. [2017] which is a decentralized learning algorithm as the method to train deep learning models
in a distributed fashion.

Identification of inputs that lie far away from the training distribution (in-distribution) is called Out-of-
distribution (OOD) detection, anomaly detection or outlier detection Grubbs [1969]. OOD detection
has been used in broad range of safety-critical applications including medical diagnosis Caruana et al.
[2015], autonomous driving Evtimov et al. [2017], cyber-security Kruegel and Vigna [2003], and
biometric authentication Gunther et al. [2017]. In this paper, we deal with the challenging scenario of
fully unsupervised outlier detection where the goal is the goal is to detect outliers from data containing
both normal and outlier patterns. We are using LOF Breunig et al. [2000] and cluster-conditioned
detection Sehwag et al. [2021] methods for performing anomaly detection using the autoencoders
which are trained in a distributed fashion. Content-based image retrieval (CBIR) technique Knorr
et al. [2000] is the computer vision based process of retrieving images that are similar to visual
content of a query image from an extensive archive. In the case of anomaly detection, the query
image would be a anomaly example. Early research for CBIR considered the global (shape, color,
and texture) and local descriptors Mikolajczyk and Schmid [2005], Arampatzis et al. [2013] of an
image as a feature vector to perform the retrieval procedure Flickner et al. [1995], Huang et al. [2001].
Recently, representations from deep learning models have been highly efficient for image retrieval
tasks Chen et al. [2021]. In this work, we use the nearest neighbors algorithm on the features from
the CNN model for the image retrieval task.

Contributions: Specifically, in this paper (i) the use of distributed learning algorithms to train models
from real-world agricultural datasets is investigated. (ii) the efficacy of the autoencoder models are
shown, (iii) downstream tasks such as anomaly detection, and image retrieval using these models are
performed followed by the discussion on the results and future work.

Figure 1: Workflow of the proposed method

Framework
Figure 1 shows the different algorithms used in the training and inference pipeline.Distributed Deep
Learning: As discussed before, there are several methods for decentralized distributed learning
among them DPMSGD Lian et al. [2017] has shown to produce prominent results in learning from
IID data distributions. In this algorithm, each agent is assigned a model for its portion of the data set.
After each agent has computed a local stochastic gradient, it then fetches the optimization variables
from neighbors and calculates the neighborhood weighted average. The local optimization variables
are then updated using the neighborhood weighted average and the gradients. The consensus model
is then achieved by averaging all the local model parameters. Anomaly Detection: Local Outlier
Factor(LOF) is a density-based unsupervised outlier detection algorithm that detects outliers by
calculating the local deviation of a given data point Breunig et al. [2000]. The points that contains
substantially lower density than its neighbors are considered outliers. We used euclidean distance for
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identifying the nearest neighbors and used 20 nearest neighbor points to calculate the density of a data
point. Cluster-conditioned detection Sehwag et al. [2021] method uses the feature representations
learnt by the autoencoder for the outlier detection. We assume that majority of the samples in the
data are inliers. Then we calculate the centroid of the feature representations of the complete data
to represent the inlier data. Then, we use the Mahalanobis Mahalanobis [1936] distance metric to
identify the outlier data points that are farthest away from the centroid feature representation. Image
Retrieval: In the first step, feature maps of the dataset and query image are extracted using the trained
CNN model. Then, we use the ball tree method Andoni and Indyk [2017] based nearest neighbors
search on the feature maps to identify the k nearest neighbors of the query feature.

Experimental Setup and Results
We empirically evaluate the effectiveness of our framework by using the trained model to perform
downstream tasks such as anomaly detection and image retrieval on real-world agricultural dataset.
To explore the algorithm performance under different topologies, the experiments are performed
using 10 learning agents.The agricultural dataset consists of images of 655 rows of field-grown Maize
plants. Figure 2a shows the imaging setup of the field-deployed stationary camera. The images
were collected at an interval of 20 minutes from 8:00 AM to 5:00 PM over a period of two and half
months in 2019 in the midwestern United States. Each row consists of 6 maize plants of a specific
genotype. These field photos of maize plants are high-resolution 5152 × 3864 RGB images. A
stationary camera was used to collect data from each row separately and a total of 655 cameras were
used. In our experiments, data from a diverse subset of 30 cameras are used to create a dataset of
74 k images. The images were resized to 128 × 128 pixels each for computational efficiency and
the data collection process is described thoroughly elsewhere. We use a deep convolutional neural
network (CNN) autoencoder (with 3 convolutional layers with 12, 24, 48 filters in the encoder section
and 3 layers with 24, 12, 3 filters for the decoder, ReLU activation is used in convolutional layers).
A mini-batch size of 128 is used, the initial step-size is set to 0.01. The step size is decayed with a
constant 0.981. The stopping criterion is a fixed number of epochs and the momentum parameter
(β) is set to be 0.98. We start our analysis in learning real-world agricultural datasets. In these
experiments, data from 30 cameras are divided between 10 learning agents so each agent has access
to data from 3 distinct cameras. Figure 2b shows that DPMSGD is converging for the agricultural
dataset for all the three graph topologies. We then compare the original images in the dataset with
their reconstructed counterparts to further analyze the model. Figure 3 shows that the autoencoder is
moderately effective in reconstructing the images.

(a) (b)

Figure 2: a) Illustration of imaging setup used for data collection from a single row of infield Maize
plants b) Average training loss for DPMSGD method on agricultural dataset with 10 training agents

The trained autoencoder model is then used to perform anomaly detection and image retrieval
tasks. Figure 4 shows the anomaly predictions of cluster-conditioned detection and LOF methods.
Identification of anomalies was particularly useful in making course corrections to imaging protocols
of field-deployed stationary cameras. We then use the same model to perform image retrieval.
Figure 5 shows some examples of image retrieval results by the nearest neighbors algorithm. These
results show that the models trained in decentralized distributed fashion are effective to do image
retrieval tasks on diverse images (normal weather, rainy weather, or from tilted cameras).
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(a) (b)

Figure 3: Sample original (left) vs reconstructed (right) images for agricultural dataset with 10
training agents

Figure 4: Anomaly detection on agricultural dataset using (top) cluster-conditioned detection (bottom)
LOF method

Figure 5: Image retrieval on agricultural dataset. The top images show the query images and the
bottom ones are the similar images returned by nearest neighbors algorithm

Conclusion
In this paper, the viability of distributed learning to train autoencoders which learn from real-world
agricultural datasets gathered from field-deployed stationary cameras was discussed. Experiments
conducted on this dataset showed that our proposed framework is effective to perform anomaly
detection and image retrieval tasks. Future work includes: comparing different distributed learning
algorithms, proposing graph topologies to optimize the communications between the cameras, and
conducting experiments using larger datasets.
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