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Abstract—In this letter, we introduce OmniDrones, an efficient
and flexible platform tailored for reinforcement learning in drone
control, built on Nvidia’s Omniverse Isaac Sim. It employs a
bottom-up design approach that allows users to easily design and
experiment with various application scenarios on top of GPU-
parallelized simulations. It also offers a range of benchmark
tasks, presenting challenges ranging from single-drone hovering
to over-actuated system tracking. In summary, we propose an
open-sourced drone simulation platform, equipped with an exten-
sive suite of tools for drone learning. It includes 4 drone models,
5 sensor modalities, 4 control modes, over 10 benchmark tasks,
and a selection of widely used RL baselines. To showcase the
capabilities of OmniDrones and to support future research, we also
provide preliminary results on these benchmark tasks. We hope this
platform will encourage further studies on applying RL to practical
drone systems.

Index Terms—Reinforcement learning, simulation and anima-
tion, machine learning for robot control, software tools for
benchmarking and reproducibility, cooperating robots.

I. INTRODUCTION

ULTI-ROTOR drones and multi-drone systems are re-
M ceiving increasing attention from both industry and
academia due to their remarkable agility and versatility. The
ability to maneuver in complex environments and the flexibility
in configuration empower these systems to efficiently and effec-
tively perform a wide range of tasks across various industries,
such as agriculture, construction, delivery, and surveillance [1].
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Fig. 1. Visualization of the various drone systems in OmniDrones, for which
we offer highly efficient simulation, reinforcement learning environments, and
benchmarking of baselines.

Recently, deep reinforcement learning (RL) has made im-
pressive progress in robotics applications such as locomotion
and manipulation. It has also been successfully applied to
drone control and decision-making [2], [3], [4], [5], improving
the computational efficiency, agility, and robustness of drone
controllers. Compared to classic optimization-based methods,
RL-based solutions circumvent the need for explicit dynamics
modeling and planning and allow us to approach these chal-
lenging problems without accurately knowing the underlying
dynamics. Moreover, for multi-drone systems, we can further
leverage Multi-Agent RL (MARL), which is shown to be effec-
tive in addressing the complex coordination problems that arise
in multi-agent tasks [6], [7], [8].

Efficient and flexible simulated environments play a central
role in RL research. They should allow researchers to conve-
niently build up the problem of interest and effectively evaluate
their algorithms. Extensive efforts have been made to develop
simulators and benchmarks for commonly studied robot models
like quadrupedals and dexterous arms [9], [10], [11], [12].
However, although a range of drone simulators already exists,
they suffer from issues such as relatively low sampling efficiency
and difficult customization.
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To help better explore the potential of RL in building powerful
and intelligent drone systems, we introduce OmniDrones, a
platform featuring:

e Efficiency: Combining PyTorch-based multi-rotor dynam-
ics and Nvidia Isaac Sim [13], [14], OmniDrones can
notably achieve over 10° steps per second in terms of data
collection, which is crucial for applying RL-based methods
at scale.

¢ Flexibility: We provide drone models commonly used in
related research while making it straightforward for users
to extend the existing models, import new models, and add
customized dynamics to meet diverse research needs.

e RL-support: OmniDrones includes a diverse suite of 10+
single- and multi-agent tasks, presenting different chal-
lenges and difficulty levels. The tasks can be easily ex-
tended and integrated with modern RL libraries.

To demonstrate the features and functionalities of Om-
niDrones and provide preliminary results, we implement and
benchmark a spectrum of popular single- and multi-agent RL
algorithms on the proposed tasks.

II. RELATED WORK

Simulated environments play a crucial role in the RL litera-
ture. We highlight the motivation of our work by reviewing the
solutions developed out of various considerations, and related
research in RL-based control of drones.

A. Simulated Environments for Drones

A common option in the control literature is to use Matlab to
perform numerical simulations. This approach enjoys simplicity
but has difficulty building complex and realistic tasks and is
less friendly to reinforcement learning. Flightmare [15] and
Airsim [16] leverage game engines such as Unity and Unreal
Engine that enable visually realistic simulation. Flightmare’s
efficient C++ implementation can notably achieve 10° FPS but
at the cost of being inflexible to extend. Simulators based on the
Robot Operating System (ROS) and Gazebo [17] have also been
widely used [18], [19] as they provide the ecosystem closest
to real-world deployment. For example, RotorS [18] provides
very fine-grained simulation of sensors and actuators and built-in
controllers for the included drone models, enabling sim-to-real
transfer of control policies with less effort. However, Gazebo
suffers from poor scalability and sample efficiency. Additionally,
the working mechanism of ROS makes environment interaction
asynchronous, which violates the common implementation prac-
tice in RL. To provide an RL-friendly environment, PyBullet-
Drones [20] introduced an OpenAl Gym-like environment for
quadrotors based on PyBullet physics engine [21]. However, it
relies on CPU multiprocessing for parallel simulation, which
limits its scalability and leads to fewer steps per second. Aerial
Gym [22] builds upon Isaac Gym to achieve efficient simulation
of cluttered environments but is limited to one specific quadrotor
model and navigation tasks.

Our platform aims firstly for efficiency and a friendly work-
flow for RL. While the highly parallelized GPU-based simula-
tion ensures a high sampling performance, it is also convenient
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to customize and extend the environment at Python level and
seamlessly work with modern RL libraries such as TorchRL [23].

B. Reinforcement Learning of Drone Control

Reinforcement learning is seen as a potential approach
for control and decision-making for multi-rotor drones. Prior
works explored end-to-end training of visual-motor control poli-
cies [2], [24], [25], [26] to avoid the need for explicit dynam-
ics modeling and hand-engineered control stack. Model-based
reinforcement learning can combine learned forward dynamics
models with planning methods, such as model predictive control
(MPC), and has been investigated in [3], [27]. Applications
to agile drone racing [4], [28] also demonstrated RL-based
policies’ ability to cope with highly dynamic tasks, generating
smooth and near-time-optimal trajectories in real-time. [29]
benchmarked different choices of action spaces and control
levels regarding learning performance and robustness. More
recently, [5] trains a single adaptive policy that can control vastly
different quadcopters, showing the potential of reinforcement
learning in terms of generalization and adaptation capabilities.

To fully uncover the potential of RL on drones, a flexible
and versatile platform that supports various research purposes is
highly desirable. Therefore, OmniDrones is designed to be both
efficient and flexible to meet the diverse needs.

III. OMNIDRONES PLATFORM

At a high level, OmniDrones consists of the following main
components: (1) A simulation framework featuring GPU par-
allelism and flexible extension; (2) Utilities to manipulate and
extend the drone models and simulation for various purposes;
(3) A suite of benchmark task scenarios built from (1) and (2),
serving as examples and starting points for customization.

An overview of OmniDrones is presented in Fig. 2. For
comparison, Table I contrasts OmniDrones with existing drone
simulators, highlighting the advantages of our platform. In the
following subsections, we describe the details of these compo-
nents and provide examples to demonstrate the overall capability
of OmniDrones.

A. Simulation Framework

We achieve efficiency and flexibility by decoupling the simu-
lation into a drone-specific part, namely actuator models (rotors)
and aerodynamics effects such as downwash, and a general part
including articulated and rigid-body dynamics and rendering,
etc. We implement the former using PyTorch, which can be
efficiently computed on GPUs as tensor operations, and let
Isaac Sim handle the latter. This combination allows us to
conveniently manipulate the physical configuration of the drones
while enjoying GPU parallelism.

Regarding the multi-rotor dynamics, we follow the general
model given by:

. . 1
XWw = Vw VW:ERWBf-‘rg-l-F (1)
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Overview of OmniDrones. OmniDrones provides a foundational library of various sensors and drone models and offers multiple configurations to form

diverse drone systems for multifaceted testing. In addition, OmniDrones incorporates several benchmark task logics, enabling the evaluation of the performance
of different drone systems across various task objectives. Furthermore, we have implemented and assessed the capabilities of multiple learning algorithms on our

benchmark tasks, serving as a baseline for subsequent work.

TABLE I
COMPARISON BETWEEN OMNIDRONES AND OTHER COMMONLY USED SIMULATED ENVIRONMENTS

Physics Engine Renderer Vectorization Drone Model Runtime Operation Sync. / Steppable Sensor User Interface
Y gt CPU GPU | Quad. Hexa. Omni. | Configuration Randomization | Physics & Rendering Task Spec RL API
RotorS [18] Gazebo-based OpenGL v X v v v X X X IMU, RGBD - -
Airsim [16] PhysX Unreal Engine v X v X X X X X IMU, RGBD, S C++&Python  Single&Multi.
Flightmare [15] Flexible Unity v X v X X X v* v IMU, RGBD, S C++ Single
PyBullet-Drones [20] Bullet OpenGL v X v X X X X v IMU, RGBD, S Python Single&Multi.
FlightGoggles [30] Flexible Unity v X v X X X X X IMU, RGBD, S C+ -
CrazyS [31] Gazebo-based OpenGL v X v v v X X X IMU, RGBD -
OmniDrones (ours) | PhysX Omniverse RTX | v/ v oV v v v v | v | IMU, RGBD, S, F, C | Python Single+Multi.
In Drone Model columns, Quad., Hexa., Omni. stand for quadcopter, b pter, and idirectional, respectively. In Sensor column, S stands for segmentation, F stands for force sensors, and C stands for contact sensors.

where xy and vy indicate the position and velocity of the drone
in the world frame. Ry p is the rotation matrix from the body
frame to the world frame. J is the diagonal inertia matrix, m is
the body mass, and g denotes Earth’s gravity. q is the orientation
(quaternion), and w is the angular velocity. ® denotes quaternion
multiplication. F and T account for the external wrench (force
and torque) introduced by, e.g., the drag and downwash effects.
The collective thrust f and body torque 7 are derived from single
rotor thrusts f; as:

£=3 R ke 3)
n="> TY xf; +knc; 4)

where ng) and Rg) are the local translation and orientation (tilt)
of the i-th rotor in the body frame. The thrust and momentum are
computed from rotor rotation c¢; and the force and momentum

constants k¢ and k,,,. By default, c; changes according to c;[t +

1] = c;i[t] + T(Crarget — €i[t]) at each time step where Ciarger iS
the commanded rotation.

The physical configuration of a drone model is specified by
a Universal Scene Description (USD) file, which can be con-
verted from the MJCF and URDF descriptions commonly used
in existing workflows. Notably, with Isaac Sim, it is possible
to programmatically edit the physical configuration, which we
detail in the next section.

We offer a range of typical drone models with which users
can build their applications. For example, Crazyflie is a small
X-configuration quadrotor widely used for education; Hum-
mingbird and Firefly are medium-sized quadrotor and hexa-
copter, respectively; Omav is an omnidirectional drone with
tiltable rotors. They vary in size, design, and dynamic fea-
tures. Moreover, our simulator provides an array of sensors
such as IMUs, RGB-D cameras, segmentation sensors, force
sensors, and contact sensors, addressing specific requirements
for state estimation and perception. For most drones, we also
implement the PD controllers introduced in [32]. They provide
different control modes, including position/velocity, body rate,
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and attitude, and can be used to construct the action spaces for
RL.

B. Extending the Drone Models

Certain applications may require additional payloads to be at-
tached. Also, it might be desirable to create multi-drone systems
to cope with tasks beyond a single drone’s capability, e.g., to
carry a bulky payload. With the flexible simulation framework,
a key feature of OmniDrones is the support for building and
extending a drone model’s physical/logical configuration in a
highly parameterizable way.

Here, we introduce examples of interesting configurations
provided in OmniDrones, some of which are shown in Fig. 2. The
formed configurations considerably change the system dynam-
ics and therefore present challenges for conventional controller
design.

® Payload & InvPendulum: A single drone is con-

nected to a weight through a rigid link. The attached
weight will alter and destabilize the drone’s dynamics.
The arrangement with the payload at the bottom is called
Payload, while the arrangement with the payload on top
is called InvPendulum.

® Over-actuated Platform (Over): An over-

actuated platform consists of multiple drones connected
through rigid connections and 2-DoF passive gimbal
joints, similar to [33]. Each drone functions as a tiltable
thrust generator. By coordinating the movements of the
drones, it becomes possible to control their positions
and attitudes independently, allowing for more complex
platform maneuvers.

® Transport: A transportation system comprises multiple

drones connected by rigid links. This setup allows them
to transport loads that exceed the capacity of a single
drone. Drones need to engage in coordinated control and
collaboration for stable and efficient transportation.

® Dragon: A multi-link transformable drone as described

in [34]. Each link has a dual-rotor gimbal module. The
links are connected via 2-Dof joint units sequentially. The
ability to transform enables highly agile maneuvers and
poses a challenging control problem.

C. Domain Randomization

Due to the unavoidable gaps between the simulated dynamics
and reality, domain randomization is an important technique
for obtaining robust control policies that can be easily trans-
ferred and deployed to real-world robots. The parallel simulation
capability allows us to efficiently collect diverse randomized
trajectories. We list example factors that users can manipulate
in Table II and train an adaptive control policy with them in the
experiment section.

D. Benchmark Tasks

Based on the simulation framework and utilities introduced
above, 15 tasks of varying complexity and characteristics are
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TABLE II
RANDOMIZABLE SIMULATION ASPECTS

Aspect Examples Startup  Runtime

Physical config.
Inertial prop.
Rotor param.
External forces

rigid connection, object scale X
mass, inertia, center of mass

force constant, motor gain

wind, drag

developed for benchmarking. They are formulated as decen-
tralized partially observable Markov Decision Process (Dec-
POMDP) [35], where partial observability comes from limited
sensor capability and ignorance of other agents’ policy. A task
specifies the POMDP on top of a certain configuration, similar
to DMControl [36]. For example, InvPendulum-Hover is a
task in which the agent (drone) is required to hover an inverted
pendulum system introduced before at a desired state. For those
that do not have a special configuration, we omit the first part.

According to their formulations and challenges, we divided
the task specifications into categories that each might apply
to a set of configurations. Here, we list and introduce several
representative examples:

e Hover: The drone(s) need to drive the system to reach
and maintain a target state. This basic task is simple for
most configurations except the inherently unstable ones,
e.g., InvPendulum.

e Track: The drone(s) are required to track a reference
trajectory of states. The ability to (maybe not explicitly)
predict how the trajectory would evolve and plan for a
longer horizon is needed for accurate tracking.

e FlyThrough: The drone(s) must fly the system through
certain obstacles in a skillful manner, avoiding any crit-
ical collision. The obstacles are placed such that a long
sequence of coherent actions is needed. Such a task often
challenges the RL algorithm in exploration.

® Formation: A group of drones needs to fly in a specific
spatial pattern. This task examines the ability to deal with
coordination and credit assignment issues.

Generally, each drone observes kinematic information such
as relative position, orientation (in quaternions), and linear and
angular velocities. They are concatenated with task-specific
information such as the relative position of the target. The action
space is such that the drones receive the target rotor throttles
which go through a first-order system to obtain the thrusts and
moments. For detailed specifications, please refer to the code.

Additionally, by integrating given with controllers, we can
transform the action space to allow for the usage of higher-level
control commands. We provide 4 control modes (rotor, velocity,
rate, and attitude) for ordinary multi-rotor drones.

E. Reinforcement Learning With OmniDrones

It is common for robotics to have complex input and output
structures due to, e.g., multi-modal sensory data and hetero-
geneous agents. Therefore, to have a flexible interface that
conveniently handles tensors in batches, we follow TorchRL [23]
in the environment specification and use TensorDict as the data
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TABLE III
SIMULATION PERFORMANCE (FPS) OF OMNIDRONES

#Envs Track Over-Hover
(1 agents) (4 agents)
1024 Envs 196074 +3754 115244 4+1973
2048 Envs 385027 £ 6688 204556 +7511
4096 Envs 732109+ 10362 310027 £ 12233

interface. We also provide utilities to transform the observation
and action space for common purposes, such as discretizing
action space, wrapping a controller, and recording state-action
history.

With that, we implement and evaluate various algorithms to
provide preliminary results and serve as baselines for subsequent
research. They include PPO [37], SAC [38], DDPG [39], and
DQON for single-agent tasks and MAPPO [8], HAPPO [40],
MADDPG [41], and QMIX [42] for multi-agent ones. More
algorithms can be easily added or adopted from other libraries.

IV. EXPERIMENTS

Leveraging the simulation framework and benchmark tasks,
our platform can serve as a starting point for subsequent investi-
gations. In this section, we showcase the features and functional-
ities of OmniDrones through experiments and evaluate a range of
popular RL algorithms on the proposed tasks. In all the following
experiments, we use a simulation time step dt = 0.016, i.e., the
control policy operates at around 60 Hz.

A. Simulation Performance

We select a single-agent (Track) and a multi-agent (Over -
Hover) task, respectively, to demonstrate the efficient simu-
lation capabilities of our simulator under different numbers of
environments.

As shown in Table III, the efficient PyTorch dynamics im-
plementation and Isaac Sim’s parallel simulation capability al-
low OmniDrones to achieve near-linear scalability with over
10° frames per second (FPS) during rollout collection. The
results were obtained on a desktop workstation with NVIDIA
RTX4090, Isaac Sim 2022.2.0. The control policy is a 3-layer
MLP with 256 hidden units per layer implemented with Py Torch.
Note that there are additional computations for the observa-
tions/rewards and logging logic besides simulation.

B. Benchmarking RL Baselines

The algorithms are adapted following open-source implemen-
tations and modified to be compatible with large-scale training.
All runs follow a default set of hyper-parameters without ded-
icated tuning. All the experiments in this part use direct rotor
control.

For single-agent tasks, we evaluate PPO, SAC, DDPG, and
DQN using Hummingbird and Firefly, which have 4 and 6 action
dimensions, respectively, and differ in many inertial properties.
For DQN, we discretize the action space by quantizing each
dimension to its lower and upper bounds. We train each policy
in 4096 parallel environments for 125 Million steps and repeat
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using 3 different seeds. As suggested in Fig. 3(a), PPO, SAC, and
DDPG are all good baselines for most tasks. However, various
failures are observed in tasks that require substantial exploration
to discover the optimal behavior, i.e., F1yThrough. DQN fails
to make progress in all tasks.

Notably, PPO-based agents can be trained within 10-20 min-
utes. On the other hand, SAC and DDPG generally exhibit better
sample efficiency. However, they require a longer wall time,
since they need a significantly higher number of gradient steps
with more data for each update.

For the more challenging multi-agent coordination tasks, we
evaluate MAPPO, HAPPO, MADDPG, and QMIX using Hum-
mingbird. We train all algorithms for 150 M steps. The results
are shown in Fig. 3(b). The two PPO-based approaches are
similar, and both achieve reasonable performance. The failure
of MADDPG is potentially due to its exploration strategy being
insufficient in multi-agent settings without careful tuning of the
exploration noise. To apply the value-decomposition method,
QMIX, we discretize the action space as we did for DQN. The
results suggest that PPO-based algorithms may serve as robust
baselines when the dynamics of the multi-drone system are hard
to analyze directly.

C. Drone Models and Controllers

Different drone models can vary substantially in their dy-
namics and hence the task difficulties. We compare the 4 drone
models on three tasks and the results are shown in Fig. 4.
Interestingly, although being the most complex (with 12 rotors
and 6 tilt units), Omav can achieve comparable or even better
performance on the same budget. This reveals the potential of RL
in quickly obtaining a control policy for unusual drone models.

Moreover, the choice of action space can have a vital impact
on the performance and robustness of learned policies [29].
Considering controllers as transforms of the action space, we
verify this point using Firefly with the following control modes:
(1) rotor,i.e., the policy directly commands the target throttle
for individual rotors; (2) velocity, where the policy outputs
the target velocity and yaw angle; (3) rate, where the policy
outputs the target body rates and collective thrust; (4) atti-
tude, where the policy outputs the target attitude and collective
thrust. The actions are scaled and shifted to a proper range for
each approach.

As shown in Fig. 5, direct rotor control and rate control
consistently give the best performance, while velocity control
appears to be insufficient for tasks that demand more fine-
grained control. We remark that tuning the controller parameters
can lead to better parameters. Nonetheless, the results suggest
that arelatively low-level action space, despite being more subtle
to transfer, is still necessary for agile and accurate maneuvers.

D. Domain Randomization and Adaptation

The ability to compensate for the mismatch between simula-
tion and reality and adapt accordingly is vital for policy deploy-
ment. We showcase training of an adaptive control policy similar
to that presented in [5], using Hummingbird. The simulation
and drone parameters being randomized are shown in Table I'V.
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TABLE IV
RANDOMIZED PARAMETERS

Parameter Range Parameter Range
*mass [0.26, 1.74] Tk [0.5556,2.23]
*inertia [0.026, 1.974] “km [0.625,2.5]

com [-0.05, 0.05] *payload mass [0.01,1.0]
T [0.2, 1.0] payload z [-0.1,0.1]

A star ( *) indicates the range is relative to the default value.

We additionally attach a payload with a degree of freedom
along the z-axis. The values of these parameters, which we term
“privileged observations”, are only available in the simulation.
The adaptive policy is trained to infer these parameters from its
observation-action history on the fly. To do this, we first train
an expert policy with access to the privileged observations and

TABLE V
COMPARISON OF PERFORMANCE EVALUATED IN RANDOMIZED
ENVIRONMENTS, NORMALIZED BY THE EXPERT

Policy Expert Baseline GRU Adaptive
Return  1.0£0.006 0.82+0.017  0.894+0.008  0.97+0.008
Error ~ 1.0£0.011  1.244+0.082 1.19+0.011  0.96£0.007

subsequently train an adaptation module to recover the features
from past trajectories. We compare the episode reward (return)
and tracking errors of the baseline, a recurrent policy using a
GRU [43], the expert, and the adaptive policy. Refer to [5], [44]
for more details. All policies are implemented based on PPO.

Asshownin Table V, the gap between the expert policy and the
baseline indicates the importance of the privileged observations.
Adding a GRU helps by incorporating history observations to
better infer the state information. The adaptive policy, which
explicitly adapts to the environment by identifying the privileged
information, achieves comparable performance to the expert. We
believe the results could serve as a reference and starting point
to facilitate sim-to-real transfer.

V. CONCLUSION AND FUTURE WORK

In this letter, we presented the OmniDrones: a platform for
conducting RL research on multirotor drone control. Leveraging
the parallel simulation capabilities of more GPUs, OmniDrones
provides efficient and flexible simulation and a suite of RL tasks
for multi-rotor drones. Through experiments, we demonstrate
the features of the proposed platform and offer initial results on
the tasks. We hope OmniDrones serves as a good starting point
toward building more powerful drone systems regarding control
and system design with reinforcement learning. In the future, we
will provide long-term support and continue our development
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to provide utilities for sim-to-real deployment. While this work
focuses more on low-level control in an end-to-end setting, more
complex and realistic scenarios, and higher-level tasks will be
incorporated to complete the picture.
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