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ABSTRACT

Meta-learning of loss functions for supervised learning has been used to date for
classification tasks, or as a way to enable few-shot learning. In this paper, we
show how a fairly simple loss meta-learning approach can substantially improve
regression results. Specifically, we target forecasting of time series and explore
case studies grounded on real-world data, and show that meta-learned losses can
benefit the quality of the prediction both in cases that are apparently naive, and
in practical scenarios where the performance metric is complex, time-correlated,
non-differentiable, or not known a priori.

1 INTRODUCTION

Loss functions drive the training process of supervised machine learning models. In the vast majority
of cases, loss functions are designed to be generic enough to work well with a wide range of
application scenarios. In regression problems, including forecasting tasks, Mean Absolute Error
(MAE), Mean Square Error (MSE), or Mean squared logarithmic error (MSLE) are common choices
for expressing the loss.

In this paper, we question the assumption that a fixed and generic loss function is in fact the best
choice in regression –and more specifically forecasting– problems, and investigate how losses learned
from experience benefit the model performance in this type of task. Therefore, our work contributes to
recent efforts in meta-learning, and specifically to those aimed at so-called learning to teach (Wu et al.,
2018). In this context, several proposals have been set forth for automatically learning the parameters,
components, or shape of loss functions for neural network training. However, as extensively discussed
in Section 2, prior studies have focused on parametrizable losses for classification, and little attention
has been paid to the learning to teach paradigm in the context of regression tasks. Part of the reason
comes from the fact that loss meta-learning has been generally considered an inefficient approach for
single-task regression (Sung et al., 2017), under the assumption that losses such as MAE or MSE can
already optimally drive regressor training in that case.

Our study challenges such an assumption and shows that, in practical cases, a simple yet aptly
designed meta-learning model can in fact improve the training of regression models with respect
to legacy and presumably optimal losses. As detailed in Section 3, our proposed model, named
MetaLoss, builds on a joint co-training of the main regressor network and of the loss-learning
network, and takes advantage of controlled noise during training to implement the exploration of
the correct loss function behavior for rarely observed samples. We apply MetaLoss to the specific
problem of time series forecasting in Sections 4 and 5, and demonstrate how meta-learning of loss
functions can help forecasting tasks under both apparently naive and complex performance metrics.
In the case of naive metrics such as MAE or MSE, we disclose how the automated tailoring of
the loss to different magnitudes (and not only errors) of the prediction can provide substantial
gains on the accuracy. In the case of complex metrics, we prove that MetaLoss can successfully
learn differentiable approximations of time-correlated and non-differentiable performance measures
observed in two real-world applications, driving the regressor network towards forecasts that improve
solutions currently considered in practice.

Overall, by unveiling for the first time the advantages of meta-learning of loss functions for forecasting
tasks, our study paves the road for the adoption of this paradigm in a previously unexplored machine
learning domain.
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2 RELATED WORK

Meta-learning, also referred to as learning-to-learn, overcomes the limitations of fixed learning-based
models, and allows automatically tuning different aspects of the learning algorithm to the target
task (Hospedales et al., 2021). Meta-learning has been successfully applied to, e.g., distillation (Wang
et al., 2020), augmentation (Cubuk et al., 2019) or batching (Fan et al., 2018) of training data,
initialization (Finn et al., 2017) or optimization (Andrychowicz et al., 2016) of the model parameters,
tuning (Micaelli & Storkey, 2020) of its hyper-parameters, and discovery (Liu et al., 2019) of the
actual architecture, possibly as a composition of modules (Alet et al., 2019). Our focus is on meta-
learning of loss functions, which aims at learning the loss to be used to train the actual model. The
problem can be seen as an instance of a hierarchical optimization, where a meta-model is optimized
under a constraint represented by the main model optimization (Franceschi et al., 2018). We stress
that this is semantically different from meta-learning optimization schedules in iterative and alternate
optimization processes (Xu et al., 2019). Specifically, we distinguish two main approaches to loss
meta-learning, discussed next.

The first approach consists in having a teacher network infer the most suitable configuration of
a predefined, parametrizable loss function. In this direction, several studies have investigated the
use of decision networks to select among a set of predefined (family of) loss functions (Liu & Lai,
2020; Denevi et al., 2018), while others have focused on multi-part loss functions, where the goal
is setting (Huang et al., 2019; Zhao et al., 2019) and possibly dynamically updating (Heydari et al.,
2019) the function weights based on (live) performance metrics. In a similar way, models have been
proposed to compose a loss function from primitive mathematical operators (Li et al., 2021), or to
express the performance metric as a function of a (reduced) set of simple surrogates (Grabocka et al.,
2019; Jiang et al., 2020). Also related to the same concept are strategies such as training a network
to correct the optimization trajectory produced by a fixed loss (Huang et al., 2021), or introducing
general loss functions that contain hyper-parameters to be learned during training along with the
neural network parameters (Barron, 2019). In all these cases, the loss — independently of whether it
is expressed as a tunable function, set of primitives, or surrogates — must be designed or selected
manually, which is very challenging or even not possible when the performance metric of interest is
especially complex, non-differentiable or even not known a priori. With respect to these works, we
seek instead a solution that can learn a clean-slate loss.

The second approach to loss meta-learning is more appropriate for clean-slate losses, and thus the
one we also adopt in our work. The basic concept is representing the loss function itself via a
(typically lightweight) neural network, which is fed with relevant input (e.g., main model output,
labels, or features) and produces a fit loss to be used to train the main model. In an early work,
it was proposed the use of a teacher network to dynamically train parameters of a loss function
that adapts to the learning stage of the main model (Wu et al., 2018); yet, this approach still relies
on a generic known loss function to be parametrized by the teacher, hence suffers from the same
limitations of the studies listed above. Closer to our methodology, the seminal idea of a trainable
task-parametrized loss generator was introduced for reinforcement and supervised learning by the
meta-critic model, where an action-value function neural network learns to criticise the actions in a
specified task (Sung et al., 2017; Zhou et al., 2020). However, the meta-critic model is only applied
to supervised learning problems as a tool for pre-training that allows for the few-shot learning of new
tasks (e.g., by generalizing to unseen value ranges in the same domain). Indeed, the authors make it
explicit that, in the case of a single task, modeling the loss via a dedicated neural network creates
an indirection that makes learning more inefficient (Sung et al., 2017). We show instead that loss
meta-learning can in fact improve over presumably optimal losses also in simple single forecasting
tasks. As such, our model is in fact complementary to the meta-critic one, as MetaLoss could be
integrated with the meta-critic helper block to automatically model more tasks.

It is worth mentioning that in the vast majority of previous works, and in other studies (Shu et al., 2020;
Jiang et al., 2020; Gao et al., 2021; Jiang et al., 2020; Marchetti et al., 2021) that also include recent
proposals to employ genetic programming tools to learn loss functions (Gonzalez & Miikkulainen,
2020; 2021), the aim of the loss meta-learning strategy is on discrete-space classification tasks or
ranking problems. Little attention has been instead paid until now to loss meta-learning for regression.
By investigating meta-learning solutions that target loss functions for forecasting tasks, our work
shed new light on the advantages that this emerging paradigm can bring to a class of machine learning
problems where loss meta-learning has been overlooked to date.
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3 A MODEL FOR REGRESSION LOSS META-LEARNING

The proposed approach, named MetaLoss, consists of a loss-function-agnostic regressor that per-
forms twofold learning. First, it must learn to forecast the value of action that minimizes a certain
loss function. Second, it must also learn which is the said loss function according to the measures
obtained from the environment. This concept has obvious applications in many practical regression
problems where we can measure the performance resulting from the actions taken by the system,
but the expression of the objective cannot be characterized manually because of its complexity, or it
is directly not known a priori; in these scenarios, we cannot apply a particular or well-defined loss
function during the training phase. However, we will show that the approach can also benefit simpler
cases, where the goal is a pure prediction of a time series, and where MAE, MSE, or variants of the
same are generally considered to be very effective losses.

In the following, we first provide a formal definition of the problem, and then present the high-level
concept of MetaLoss as well as the detailed design of its architecture and operation.

3.1 PROBLEM FORMULATION

Let us denote the space of system state variables as S. We also denote the input space of the predictor
as X and the output space as Y, such that the predictor can be modeled as fWp : X → Y, and the
decision for time t + 1 taken at time t by the predictor can be written as1 ŷt+1 = fWp(xt), where
xt ∈ X includes the past observations of the system state, and Wp represents the parameters of the
predictor.

Let us denote the performance cost of the predictor’s decision taken at time t, measured at time t+ 1,
asMt+1 = fM(yt+1, ŷt+1,vt+1), where vt+1 denotes the current observations (at the time of the
measurement t+ 1) of the system variables that may impactMt+1, yt+1 denotes the actual value
that ŷt+1 attempts to predict, and fM(·) represents the a priori unknown expression of the objective.
Note that, even if this expression is not known, the performance is assumed to be measurable, and
samples of fM(·) can be obtained by observing the outcome of the predictor’s output on the system.

Since the relation fM(·) is uncharted at first, the model also has to learn it. For that, we define a
second optimization function to describe the loss-learning task. Such loss-learning task takes as inputs
(i) the predictor’s decision ŷt+1 and (ii) the current observations vt+1, and it casts a performance cost
estimate M̃t+1 = fW`(yt+1, ŷt+1,vt+1), where W` represents the parameters of the loss-learning
process.

Consequently, MetaLoss is composed of two optimization problems. First, the loss-learning task
aims at correctly characterizing fM(yt+1, ŷt+1,vt+1) through the estimated fW`(yt+1, ŷt+1,vt+1).
This is done by computing a legacy loss function (e.g., MAE or MSE). For example, if we consider
the MSE L2(a, b) = ||a− b||2, it follows that the loss-learning optimizer objective is

min
W`

L2
(
fW`(yt+1, ŷt+1,vt+1), fM(yt+1, ŷt+1,vt+1)

)
. (1)

In turn, the predictor’s objective is to minimize the performance cost of its decisions based on the
predicted performance fW`(yt+1, ŷt+1,vt+1), i.e., to solve the following optimization:

min
Wp

fW`(yt+1, fWp(xt), vt+1

)
. (2)

3.2 MODEL CONCEPT AND TRAINING

The MetaLoss model aims at solving the problem above in an effective manner. To this end, it
represents both the predictor and the loss function through Deep Neural Networks (DNN), one for
each of the two blocks, as illustrated in Figure 1. Note that MetaLoss is a conceptual model that can
accommodate diverse implementations: hence, the exact architecture of the neural networks, including
their layering and activations, can differ depending on the considered task and the complexity of the

1Hereinafter, for the sake of simplicity and clarity, we use the scalar notation to describe the predictor’s
output. Nevertheless, the proposed approach is not limited to uni-dimensional fields and can be applied to more
generic multidimensional cases.
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Figure 1: The unknown relation between the objective and the outputs of the predictor is learnt and
encoded into a loss-learning block. Then, this block acts as the loss function to train the predictor,
such that the predictor directly provides an output fitting the desired metric. The whole process is
automated.

involved data. Therefore, the detailed implementation of the two main blocks will be reported in
Sections 4 and 5, separately for each application use case.

The algorithm adopted to train the MetaLoss model is outlined in Algorithm 1. There, we make use
of the Cyclic Learning Rate (CLR) method (Smith, 2017), which lets the learning rate oscillate within
a range, with the extreme values of this range updated each batch iteration. This method reduces the
sensitivity of the system to the initial configuration, and it prevents that a wrongly selected initial
value triggers a poor performance by becoming entrenched in some local minimum. In general, CLR
accelerates the automatic convergence, which proved especially useful in contexts where the loss
function must be inferred during training. We employ the simple triangular version of CLR, with 5
cycles across the full training phase.

Algorithm 1: Training procedure of MetaLoss
Initialize predictor nn, fWp(xt, ε)
Initialize loss nn fW`(yt+1, ŷt+1,vt+1)
Initialize predictor’s learning rate αp

t
for t = {1, 2, ..., Ttraining} do

Randomly choose ε
Predict the output ŷt+1 = fWp(xt, ε)

W` ←W` − α`∇W`L2
(
fW`(yt+1, ŷt+1 + ε,vt+1), fM(yt+1, ŷt+1 + ε,vt+1)

)
Wp ←Wp − αp

t∇WpfW`(yt+1, ŷt+1 + ε,vt+1)
Update αp

t
end

Three important remarks are in order, concerning the MetaLoss concept and training.

First, the meta-learning model outlined above is able to approximate a non-differentiable objective
M by a differentiable alternative fW`(·), which is implemented by the loss-learning DNN upon
training. In turn, this allows optimizing the predictor DNN under metrics that could not be directly
used as losses by producing a suitable approximation of the same.

The second remark concerns the fact that the input of the loss-learning DNN is implemented by a
different expression than that indicated in the formal problem definition of Section 3.1. Specifically,
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as portrayed in Figure 1, instead of providing the computed action ŷt+1 to the loss-learning DNN,
we feed it with a disturbed version of ŷt+1, by adding a random noise ε that is also input to the
predictor DNN. As discussed in detail in Section 3.3, this is a methodological novelty that allows loss
exploration during training.

The third observation is that the MetaLoss model design creates the possibility of co-training the
predictor and loss-learning blocks during a same gradient descent iteration, which allows each DNN
to be informed of (and learn from) the improvements of the other: this makes the learned loss
fW`(·) adapted to the inherent forecasting limits of the predictor, and we will expound this aspect in
Section 3.4 below.

3.3 LOSS EXPLORATION

During training, the loss-learning block does not receive the exact value output by the predictor, ŷt+1,
rather it is input a disturbed version of it, ŷt+1 + ε, where ε is a random variable with zero mean. This
is reflected in Figure 1. Therefore, the weights update computed by the gradient descent are shown in
Algorithm 1, and are given by the following expressions for a particular weight of the predictor’s
DNN (ωp

t+1) and a particular weight of the loss-learning DNN (ω`
t+1):

ωp
t+1 = ωp

t − α
p
t

∂fW`(yt+1, ŷt+1 + ε, vt+1)

∂ωp
t

(3)

ω`
t+1 = ω`

t − α`
∂L2

(
fW`(yt+1, ŷt+1 + ε, vt+1), fM(yt+1, ŷt + ε, vt+1)

)
∂ω`

t

(4)

where αp
t and α` are the learning rates of the predictor and the loss-learning DNNs, respectively. The

dependency of αp
t on t is due to the use of CLR mentioned in Section 3.2.

The goal of the random variable ε is to allow for further exploration of the input values, supplying
the loss-learning block with a broader observation of the input domain beyond that provided by the
training samples. This enlargement of the input space improves the reliability of the characterization
of the loss function over the continuous domain by the loss-learning block.

Note that the noise ε is only needed during training, and it is set to 0 once the expression of the loss
fW`(·) is learnt, i.e., during model testing. In this regard, a critical design feature of MetaLoss is that
ε is also input to the regressor DNN: during training, this lets the prediction block learn the correlation
between such input and the added disturbance to its output. Then, during inference, setting ε to 0
allows producing forecasts ŷt+1 that are not biased by the loss exploration used in training.

3.4 CO-TRAINING OF PREDICTOR AND LOSS

MetaLoss is implemented as two cascaded DNNs, as illustrated in Figure 1, where the loss-learning
block is fed by the current observations and the forecast output by the predictor. This allows us to
jointly optimize the two blocks through the same backpropagation process. Specifically, and as also
summarized in Algorithm 1, the weights of the two DNNs are optimized during training as follows.

First, during the forward pass, the predictor is fed with a set of past observations of the system state
from N previous time instants (as well as other possibly relevant inputs), and it outputs a prediction
for t+ 1 (or, more generally, for the next M next time instants) at time t, fWp(xt, ε). At time t+ 1,
the current observations are measured and passed to the loss-learning system, which computes the
estimated performance function M̃t+1 = fW`

(
yt+1, fWp(xt, ε) + ε,vt+1

)
. At the same time, the

actual performance of the taken decisionMt+1 = fM
(
yt+1, fWp(xt, ε) + ε,vt+1

)
is measured.

Then, the mismatch between estimated and true performance is evaluated via a legacy or standard loss
function, and backpropagated first to the loss-learning DNN. Here, the loss-learning DNN updates its
weights ω`

t+1 to better capture the relation betweenMt+1 and the combined values of the prediction
ŷt+1 and the system state vt+1 and yt+1. Within the same iteration, the updated loss is sequentially
backpropagated to predictor DNN, which allows improving the alignment of the forecast with the
optimal decision that minimizesMt+1.
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This design increases the efficiency of the training phase with respect to the case where each block is
optimized independently, e.g., by feeding the loss-learning block with random predictions and, once
the loss has been learned, using it to train the predictor. Indeed, co-training allows learning a loss
fW`(·) that is adapted to the intrinsically limited accuracy of the predictor; as an example, co-training
may lead to learning diverse shapes of the loss depending on the magnitude of the target variable
yt+1 if the quality of the prediction is found to be affected by the absolute value of yt+1. We will
observe practical situations where this type of adaptation occurs in Sections 4 and 5.

It is worth noting that such a co-training represents a major novelty of our model with respect to
previous related proposals (Sung et al., 2017; Wu et al., 2018). Indeed, the end-to-end backpropagation
training was not possible in prior models, and the two elements (e.g., the learning-to-act block and
the learning-to-correct block) were trained either iteratively or in a nested manner only.

4 EXPERIMENTS: TIME SERIES FORECASTING

We first investigate the performance of MetaLoss in plain time series forecasting tasks. In these
tests, we compare the one-step forecast returned by a same predictor DNN, which is trained under
the MetaLoss model (i.e., via co-training with a loss-learning DNN), and with a MAE loss. The
predictor DNN is identical in the two cases, as all of the hyperparameters are kept the same between
the classical MAE and the MetaLoss approach; also, the architecture (number and type of layers,
number of neurons per layer) are the same, and the same holds for the predictor learning rate, the
number of epochs, and the activation functions. The starting seed is also fixed at the start of both
trainings to be the exact same in order to reduce randomness as most as possible. The results are
presented on MinMaxscaled datasets and averaged with 5 different runs for each experiment.

We remark that the design of the predictor can vary across the forecasting tasks on different datasets
later listed in Section 4.1, and we do not detail those here for the sake of brevity. What matters is
that the architecture of the predictor DNN is identical under MetaLoss and MAE, which allows
juxtaposing the results obtained under the two approaches. Concerning the loss-learning block
employed by MetaLoss, we use for all considered datasets a simple Multi-Layer Perceptron (MLP).
The size of the MLP depends on the number of input, i.e., on the size of v.

Importantly, we assess the quality of the prediction in terms of MAE itself. Therefore, a static
MAE loss that we use as a benchmark for MetaLoss represents the apparently optimal –and very
commonly adopted– choice to drive the optimization of the predictor.

4.1 DATASETS

Experiments are run using different real-world datasets. The first dataset describes the mobile data
traffic demand generated by four video streaming services (Facebook Live, Netflix, Twitch, and
Youtube) in a large metropolitan area during several consecutive months (Marquez et al., 2017). The
data was collected and aggregated by the mobile network operator using passive measurement probes,
resulting in traffic levels (in bytes) every five minutes, for a total of more than 22,000 samples for
each of the four services.

The second dataset describes the hourly energy consumption in a part of the Eastern Interconnection
grid in the United States of America between 2002 and 2018. The data comes from a regional
transmission organization (RTO) (Mulla, 2018), and it incorporates information from different power
providers, each one them managing a different geographical area. Overall, the time series consists of
more than 145,000 samples.

A third dataset describes the energy consumption evolution within a single household over time,
using outdoor and indoor characteristics such as temperature, humidity or wind speed as inputs.
These data are provided every 10 minutes for more than 4 months, and include over 20,000 data
points (Candanedo et al., 2017).

4.2 RESULTS

The results for the application of MetaLoss to standard loss functions are shown in Table 1 and
Figure 2. For each one of the analyzed time series, Table 1 shows the MAE performance (mean and
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Table 1: MAE measured in the one-step forecasting of different time series, when a same predictor
DNN is trained with a static MAE loss function and with a loss learned via MetaLoss. The rightmost
column reports the percent gain in MAE scored by the MetaLoss approach over the static MAE loss.

Dataset MAE (×10−2) MetaLoss (×10−2) Gain (%)
Facebook Traffic 2.44±0.05 2.33±0.03 4.51
Netflix Traffic 4.38±0.08 4.35±0.05 0.68
Twitch Traffic 3.81±0.07 3.75±0.04 1.57
Youtube Traffic 3.71±0.03 3.68±0.03 0.81
Power Grid 2.68±0.04 2.55±0.03 4.85
House Energy 2.33±0.03 2.27±0.02 2.58

(a) Facebook, MAE (b) Facebook, MetaLoss (c) Power, MAE (d) Power, MetaLoss

Figure 2: Loss function and error distributions for the top and bottom 10% of predicted values, for
the Facebook Live traffic under (a) MAE loss and (b) MetaLoss, and for the energy demand under
ca) MAE loos and (d) MetaLoss.

standard deviation) obtained from (i) training the predictor block with standard MAE loss function
(leftmost column), and (ii) using the approach MetaLoss presented above, where the loss function
is also learned (central column), as well as the percentage gain of MetaLoss over standard learning.
Table 1 shows how MetaLoss reduces costs for standard loss function as MAE up to 5% in the best
cases observed. This represents a significant gain, considering that the predictor architecture is the
same for a MAE loss and for our model, especially if we take into account that MetaLoss is trained
to learn the MAE loss function. Thus, MetaLoss succeeds in learning more than the teacher knows.

This excellent performance mostly comes from the fact that MetaLoss adapts its shape to the input
data and, therefore, it optimizes the training phase almost independently for different input values.
We can clearly see this phenomenon happening in plots (c) and (d) of Figure 2, where the loss learned
by MetaLoss has learned and evolved during training in order to minimize the loss for both sets
represented (the 10% highest and 10% lowest value samples), whereas with the standard model one
of these sets is clearly biased at the end of the training phase. This can also be seen from a different
perspective within the case of Facebook Traffic (plots (a) and (b)): Although the bias correction
is only visible to a lesser extent, we can clearly see how the loss learning function has actually a
different shape for each one of the two sets considered.

5 EXPERIMENTS: APPLICATION USE CASES

Having proven the advantage that MetaLoss can yield in the context of plain time series forecasting
tasks that aim at minimizing the MAE of the one-step prediction, we consider the more convoluted
case where the relation between the decision space output by the predictor and the objective perfor-
mance is a complex, non-differentiable, and possibly not (fully) known function of the prediction. We
analyze two different use cases with strong practical applications, i.e., (i) anticipating the resources to
be allocated in a mobile network to serve real-world traffic demands, and (ii) managing power grid
settings to serve the energy demand in a nationwide scenario. These use cases employ the first two
datasets outlined in Section 4.1, and are characterized by entangled and diverse relations between the
prediction and the performance metric, as detailed next.
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Table 2: Operator cost of an anticipatory allocation of network resources measured for the mobile
data traffic generated by four different services, when a same predictor DNN is trained with a static
α-OMC loss function (Bega et al., 2019) and with a loss learned via MetaLoss. The rightmost
column reports the cost reduction achieved by the MetaLoss approach over the static α-OMC loss.

Dataset α-OMC (×10−1) MetaLoss (×10−1) Gain (%)
Facebook Traffic 1.37±0.06 1.26±0.04 8.03

Netflix Traffic 1.57±0.09 1.52±0.07 3.29
Twitch Traffic 1.53±0.07 1.47±0.05 3.92

Youtube Traffic 1.36±0.05 1.31±0.04 3.68

(a) Facebook, α-OMC (b) Facebook, MetaLoss (c) Power, MetaLoss (d) Power, learned 3D loss

Figure 3: Loss function and error distributions for the top and bottom 10% of predicted values,
for the network resource allocation to the Facebook Live service under (a) α-OMC loss and (b)
MetaLoss, and for the power grid management with MetaLoss, with a (c) two-dimensional and (d)
three-dimensional representation of the learned loss.

5.1 USE CASE I: ANTICIPATORY NETWORK RESOURCE ALLOCATION

Metric. The goal of the operator at time t is forecasting the required network resources (e.g., data
transport capacity) needed to serve the demand for each of four streaming services (Facebook Live,
Netflix, Twitch, and YouTube) in the following 5-minute time step. A plain prediction is insufficient
in this case, as the cost is asymmetric: specifically, the operator seeks to (i) avoid an expensive
monetary fee β owed to the service provider in case insufficient resources are allocated and the future
traffic yt+1 cannot be served, and (ii) prevent unnecessary overdimensioning beyond yt+1 in case of
prediction errors with a positive sign. Formally, the cost incurred by the operator is

Mt+1 = β · 1ŷt+1<yt+1
+ (ŷt+1 − yt+1) · 1ŷt+1≥yt+1

. (5)

This expression is clearly not differentiable due to the presence of the indicator functions 1C , which
takes value 1 if the condition C in the subscript is met, and takes the value 0 otherwise. Recent
studies in the computer networking literature have proposed an expert-designed loss function, termed
α-OMC, which is a manually devised differentiable approximation of Equation (5) above (Bega
et al., 2019). We employ α-OMC as a state-of-the-art fixed loss benchmark to be used as a term of
comparison for MetaLoss.

Network architecture. In this experiment, we employ as the predictor fWp a multi-layer RNN
regressor. The loss-learning neural network fW` is an MLP with the simplest possible case for
MetaLoss, using only yt+1 and ŷt+1 as input. The predictor RNN is also trained using the α-OMC
loss function for comparison purposes. Results are provided in the Table 2 for the four services.

Results. We can see in Table 2 how MetaLoss yields cost reductions over α-OMC that range from
3% to 8%, which correspond to significant operating expense cuts in mobile network infrastructure
management. This is made possible by the fact that MetaLoss learns a loss that is better tailored to the
performance metric in Equation 5 than a human-designed version developed with full knowledge of
the metric itself. In a sense, the result proves how meta-learning losses for regression via MetaLoss
allows apprehending more than the teacher knows. Indeed, co-training the predictor and loss-learning
block as done in our proposed model enables discovering a loss that is optimized for different absolute
values of the predicted variable.
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This adaptation is illustrated in the first two plots in Figure 3, where the losses and error distributions
are told apart for the 10% of cases with lowest and highest traffic demands, under (a) the α-OMC
loss and (b) MetaLoss. While the learned loss in MetaLoss always captures the general behavior of
Equation 5, we can observe slight shifts in the error ŷt+1 − yt+1 that minimizes the cost, depending
on the absolute value of yt+1. In other words, MetaLoss learns a loss that naturally compensates for
the different accuracy of the predictor in anticipating traffic values of diverse magnitude. Such an
adaptation is impossible to ascertain by just looking at the performance metric (i.e., the “teacher”), as
it inherently depends on the prediction quality; yet, it is successfully learned by our model.

5.2 USE CASE II: POWER GRID MANAGEMENT

Metric. The complex field of power grid management and the study of smart grids are ruled by a
significant number of diverse Key Performance Indicators (KPI) (Pow, 2012; Personal et al., 2014;
Harder, 2017). One of the fundamental dimensions that define the performance in such scenarios is
the reliability of the network, i.e., how often the network fails to provide the required power.

Interestingly, the reliability in power management is not only measured by the frequency of power
cuts due to the under-provisioning, but also by the duration of these cuts (Pow, 2012). The service
provider is especially interested in preventing under-estimations, as in the previous use case of
network resource allocation; however, the metric applied to capacity forecasting cannot be considered
to this scenario because it does not take into account the duration of the under-provisioning. Now, we
require a cumulative metric that incorporates some memory. Hence, the metric considered for the
Power Grid Management use case is as follows:

Mt+1 = (β +Mt · 1ŷt<yt
) · 1ŷt+1<yt+1

+ (ŷt+1 − yt+1) · 1ŷt+1≥yt+1
. (6)

We can see that, in the case of overdimensioning, the cost scales linearly with the unnecessary
estimated power as for the previous use case. Yet, the cost is considerably different in case of
underestimation: if the previous forecast was also underestimated, the current cost is added to the
precedent cost in a recursive manner. Thus, this metric depends on the previous state of the network.

Network architecture. In this experiment the predictor fWp used is also a multi-layer RNN regressor.
The loss neural network fW` is a MLP using 3 inputs, i.e., yt+1 and ŷt+1, plus the number of previous
successive under-provisioned samples v (maxed at 5), which is a time-dependent variable. Designing
a loss function matching this metric is nothing simple and would not even make sense. MetaLoss
allows to use such metric which would not be possible otherwise. As 3 values are used as input of
the loss neural network fWp , the resulting loss function is a 3 dimensional shape in a 4-dimension
space. This resulting loss after training is presented in plot (d) of Figure 3, where the color describes
the v dimension and where only discretized values are presented corresponding to the number of
successive past underprovisioned samples.

Loss-learning results. For this use case, we are particularly interested in showing how MetaLoss
can adapt to complex cost relations. This can be observed in plots (c) and (d) of Figure 3: MetaLoss
precisely learns the complex and recursive cost function, which depends on previous samples. The
result shows the potential of the proposed approach to characterize unknown and non-trivial loss
functions for generic regression problems.

6 CONCLUSIONS

We have proposed MetaLoss, a meta-learning model for regression losses, and unveiled how this
previously overlooked approach can in fact yield significant gains in forecasting tasks. Experiments
with heterogeneous datasets prove how MetaLoss can improve the performance of plain one-step
predictors in minimizing the MAE of the forecast, with respect to the common practice of employing
a fixed MAE loss. Similarly, our tests demonstrate how MetaLoss can successfully learn losses that
capture complex, time-correlated and non-differentiable metrics. Finally, we highlight for the first
time how MetaLoss co-training of prediction and loss allows learning more than the teacher knows,
since the loss can be tailored to the inherent (in)accuracy of the predictor, e.g., for different values of
the target variable.
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ETHICS STATEMENT

In our work, we employ de-personalized datasets that report information on mobile service usage and
energy consumption aggregated over millions of individuals. This makes re-identification of data
subjects from the data impossible, hence our research do not involve risks for the mobile subscribers
or power grid customers.

REPRODUCIBILITY STATEMENT

We commit to make the source code of MetaLoss publicly available upon publication of the paper,
so as to ensure the reproducibility of our results. Also, the power grid and house energy datasets
are openly accessible at (Mulla, 2018) and (Candanedo et al., 2017), respectively, which will allow
regenerating the results in plots (c) and (d) of Figures 2 and 3.
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and Joshua M. Susskind. Addressing the loss-metric mismatch with adaptive loss alignment. In
Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of International Conference
on Machine Learning, ICML, volume 97 of Proceedings of Machine Learning Research, pp.
2891–2900. PMLR, June 2019.

Chen Huang, Shuangfei Zhai, Pengsheng Guo, and Josh M. Susskind. Metricopt: Learning to
optimize black-box evaluation metrics. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2021, virtual, June 19-25, 2021, pp. 174–183. Computer Vision Foundation /
IEEE, 2021.

Qijia Jiang, Olaoluwa Adigun, Harikrishna Narasimhan, Mahdi Milani Fard, and Maya Gupta.
Optimizing black-box metrics with adaptive surrogates, 2020.

Hao Li, Tianwen Fu, Jifeng Dai, Hongsheng Li, Gao Huang, and Xizhou Zhu. Autoloss-zero:
Searching loss functions from scratch for generic tasks, 2021.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019.

Qingliang Liu and Jinmei Lai. Stochastic loss function. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(04):4884–4891, Apr. 2020.

Francesco Marchetti, Sabrina Guastavino, Michele Piana, and Cristina Campi. Score-oriented loss
(sol) functions, 2021.

Cristina Marquez, Marco Gramaglia, Marco Fiore, Albert Banchs, Cezary Ziemlicki, and Zbigniew
Smoreda. Not all apps are created equal: Analysis of spatiotemporal heterogeneity in nationwide
mobile service usage. In Proceedings of the 13th International Conference on Emerging Networking
EXperiments and Technologies, CoNEXT ’17, pp. 180–186. Association for Computing Machinery,
2017. URL https://doi.org/10.1145/3143361.3143369.

Paul Micaelli and Amos Storkey. Non-greedy gradient-based hyperparameter optimization over long
horizons, 2020.

Rob Mulla. Pjm hourly energy consumption data (version 3). 2018. URL https://www.kaggle.
com/robikscube/hourly-energy-consumption.

Enrique Personal, Juan Ignacio Guerrero, Antonio Garcia, Manuel Pena, and Carlos Leon. Key
performance indicators: A useful tool to assess smart grid goals. Energy, 76:976–988, 2014. ISSN
0360-5442.

Jun Shu, Qian Zhao, Keyu Chen, Zongben Xu, and Deyu Meng. Learning adaptive loss for robust
learning with noisy labels. arXiv preprint arXiv:2002.06482, 2020.

Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter conference
on applications of computer vision (WACV), pp. 464–472. IEEE, 2017.

Flood Sung, Li Zhang, Tao Xiang, Timothy M. Hospedales, and Yongxin Yang. Learning to learn:
Meta-critic networks for sample efficient learning. arxiv, abs/1706.09529, 2017.

11

https://doi.org/10.1145/3143361.3143369
https://www.kaggle.com/robikscube/hourly-energy-consumption
https://www.kaggle.com/robikscube/hourly-energy-consumption


Under review as a conference paper at ICLR 2022

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A. Efros. Dataset distillation, 2020.

Lijun Wu, Fei Tian, Yingce Xia, Yang Fan, Tao Qin, Jianhuang Lai, and Tie-Yan Liu. Learning to
teach with dynamic loss functions. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, NIPS’18, pp. 6467–6478, Red Hook, NY, USA, 2018. Curran
Associates Inc.

Haowen Xu, Hao Zhang, Zhiting Hu, Xiaodan Liang, Ruslan Salakhutdinov, and Eric Xing. Autoloss:
Learning discrete schedule for alternate optimization. In International Conference on Learning
Representations, 2019.

Sen Zhao, Mahdi Milani Fard, Harikrishna Narasimhan, and Maya Gupta. Metric-optimized example
weights. In International Conference on Machine Learning, pp. 7533–7542. PMLR, 2019.

Wei Zhou, Yiying Li, Yongxin Yang, Huaimin Wang, and Timothy M. Hospedales. Online meta-critic
learning for off-policy actor-critic methods, 2020.

12


	Introduction
	Related work
	A model for regression loss meta-learning
	Problem formulation
	Model concept and training
	Loss exploration
	Co-training of predictor and loss

	Experiments: time series forecasting
	Datasets
	Results

	Experiments: application use cases
	Use case I: Anticipatory network resource allocation
	Use case II: Power grid management

	Conclusions

