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ABSTRACT

Recent works has widely adopted large language model pretraining for source
code, suggested source code-specific pretraining objectives and investigated the
applicability of various Transformer-based language model architectures for
source code. This work investigates another important aspect of such models,
the effect of different subtokenization options, and aims at identifying most ef-
fective and length-efficient subtokenizations, taking into account source code
specifics. We propose subtokenziation that reduces average length by 17–40%
without downstream performance drop, and show that a carefully chosen subtok-
enization may significantly improve quality by 0.5-2%, possibly with some length
increase.

1 INTRODUCTION

With the inspiration from the success of large language model (LM) pretraining in natural language
processing (NLP), BERT-like models have been widely adopted for source code processing (Feng
et al., 2020; Kanade et al., 2020), as code has a similar discrete sequential structure to natural text.
Being trained on huge source code corpora in a self-supervised manner, large LMs often substan-
tially outperform domain-specific models developed purposely for applied tasks, especially in the
tasks with limited parallel / labelled data (Ahmad et al., 2021a). These tasks include fixing code
bugs, generating text from code and vice versa, or translating code from one programming language
to another.

Recent works advanced large LM pretraining on source code in two main directions. First, various
model kinds were utilized for source code: CodeBERT (Feng et al., 2020) and CuBERT (Kanade
et al., 2020) rely on the classic encoder-only RoBERTa (Liu et al., 2019), CodeGPT (Lu et al.,
2021) uses decoder-only GPT (Radford & Narasimhan, 2018), PLBART (Ahmad et al., 2021a) is
based on the denoising sequence-to-sequence BART (Lewis et al., 2020) model, and CodeT5 (Wang
et al., 2021b) utilizes multitask sequence-to-sequence T5 (Raffel et al., 2020). Second, a range of
code-specific self-supervised pretraining tasks were proposed to enrich the classic masked language
modeling (MLM) objective, e. g. GraphCodeBERT (Guo et al., 2021) predicts data flow connections
during pretraining (one variable is computed from another variable), and CodeT5 (Wang et al.,
2021b) and DOBF (Roziere et al., 2021) use a variable naming objective.

This work is devoted to investigating one more important component which is usually not paid much
attention when pretraining large LMs on source code — subtokenization. Modern LMs usually
preprocess sequences using open-vocabulary models such as Byte-pair encoding (BPE) which split
long tokens into smaller subtokens, in order to ensure the relatively high frequency of all subtokens.
Though this process is often referred to as tokenization, we call it subtokenization, to underline its
smaller granularity.

Though subtokenization is often chosen with only superficial deliberation, it is one of the essential
model components which may affect both quality and prediction speed. First, an inaccurately chosen
subtokenization procedure may substantially increase sequence lengths and consequently slow down
prediction. As a simple example, the work on CodeT5 (Wang et al., 2021b) notices that using
BPE trained specifically on source code corpora makes sequences 30–45% shorter than using BPE
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BPE-50K

UnigramLM-10K (3-19% length increase)

Grouping punctuation without quality drop

F req Lists = [ [ 0 , 0 ] for i in range ( voc Sz ) ]

+0.5-2% quality

17% length reduction

Freq List s = [ [ 0 , 0 ] for i in range ( vo c S z ) ]

Freq Lists =[[ 0 , 0 ] for i in range ( voc S z )]

Commonly used

Grouping frequent combinations 40% length reduction
(sometimes quality drop)

Freq List s=[ [0,0] for_i_in_range (vo c S z )]

Figure 1: Example subtokenizations (all numbers compared to the commonly used BPE-50k).

trained on natural text. Second, a line of works indicates the positive effect of the carefully chosen
subtokenization procedure on the model effectiveness in NLP. For example, Bostrom & Durrett
(2020) show that using a UnigramLM (Kudo, 2018) algorithm for subtokenization instead of BPE
improves the quality of BERT-based question answering or textual entailment in English by 1%,
and Ding et al. (2019) show that tuning BPE vocabulary size in machine translation may produce
+4 BLEU. At the same time, for large LMs, the particular subtokenization procedure chosen at the
pretraining stage becomes an inseparable part of the model and must later be used in applied tasks.
This underlines the need for a careful choice of subtokenization options when pretraining large LMs.

In this work, we conduct a deep study of subtokenization options for large LM pretraining on source
code, using PLBART as a testing ground. In addition to investigating general aspects, e. g. the
subtokenization algorithm and the vocabulary size, we study the ways of adapting subtokenization
to the specific properties of code, such as a large amount of punctuation marks and frequently-used
token combinations, a variety of complex identifiers (e. g. variable or function names), or relative
similarity of programming languages. We aim at choosing optimal subtokenization options that
(a) lead to the best performance or (b) minimize sequence lengths (and thus speed up the model)
without downstream performance drop. Our contributions are as follows - we show that for large
LMs pretrained on source code:

• Grouping punctuation chars in single tokens reduces the average length by 17% without
downstream performance drop (we call this approach CodeBPE or CodeUnigramLM), and
allowing more complex composite tokens reduces lengths by 40%, sometimes with quality
drop (Section 3);

• UnigramLM is generally preferable over BPE (Section 4);
• Smaller vocabularies may improve quality with 3–19% length increase (Section 5);
• Subtokenizers are well transferable between programming languages (Section 6);
• BPE-dropout may improve quality in tasks with small data (Section 7).

Our length-efficient subtokenization procedure (see examples in Figure 1) compresses sequences by
17–40% without quality drop and our most effective subtokenization improves quality by 0.5–2%
significantly in three out of eight tasks and by one standard deviation – in other two tasks.

2 METHODOLOGY AND EXPERIMENTAL SETUP

The existing works on large LMs for source code usually choose a particular subtokenization li-
brary, for example the same as in the base LM the work uses, and train the subtokenizer with
the vocabulary size of 30-50K on source code corpora used for pretraining. Often code is pre-
processed before subtokenization, e. g. by replacing \n with NEW_LINE, and split into tokens
on white-spaces and punctuation marks so that these tokens are further split into subtokens,
e. g. for i in range (vocSize) will be split into [‘for’, ‘i’, ‘in’, ‘range’, ‘(’,
‘vocSize’, ‘)’] even if for i in is generally a frequent combination. The latter principle
appears to be intuitively reasonable, since it ensures that subtokenization preserves syntactically
meaningful boundaries of tokens (Kanade et al., 2020). We refer to this principle as prohibiting
composite tokens. More details on subtokenization in different pretrained LMs for code are given in
Section 8.

We treat the described commonly-used approach as a baseline, and conduct a series of experiments,
each modifying the baseline subtokenization procedure in one dimension, e. g. changing the subto-
kenization algorithm, and pretraining PLBART with the new subtokenization. The dimensions we
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vary are as follows: the allowed complexity of composite tokens, the subtokenization algorithm,
the vocabulary size, the set of languages the subtokenizer is trained on, and the use of stochastic
subtokenization. These dimensions are inspired either by the specifics of source code or by recent
works on subtokenization in NLP.

Experimental setup. As our base model, we use PLBART (Ahmad et al., 2021a), since it comes
with the released pretraining code and data preprocessing routine. We use the same model size, the
pretraining dataset size and other hyperparameter settings, including finetuning hyperparameters, as
in PLBART. Particularly, we use an encoder-decoder Transformer architecture with 6 layers in each
part, with the model dimension of 768 and 12 heads (140M parameters). The pretraining data con-
sists of 230M Python functions, 470M Java functions and 47M natural language (NL) descriptions,
called sequences below.

We pretrain all our PLBART models for 100k updates, as in the original paper. We clip all se-
quences by 510 subtokens, which remains the majority (96-99.1%) of sequences unclipped in all
subtokenizations. The average length reported in the paper is computed on the randomly chosen
subset of pretraining data before clipping.

As applied tasks, we consider three tasks from the PLBART paper: code generation (generating a
Java function based on an NL description; CONCODE (Iyer et al., 2018) dataset, CodeBLEU (Ren
et al., 2020) metric), code summarization (generating an NL description for a Python or Java func-
tion; CodeSearchNet (Husain et al., 2020) dataset, BLEU metric), code clone detection (classifying
whether two Java functions implement the same functionality; BigCloneBench dataset (Svajlenko
& Roy, 2015); F1 metric), and one additional task of code translation (translating code from Python
to Java and vice versa; AVATAR dataset (Ahmad et al., 2021b)). Here we consider original data
with the CodeBLEU metric (Code Translation-1) and the smaller version of data with tests and
the Computational Accuracy metric – which portion of generated functions passed all tests (Code
Translation-2). We chose tasks so that we have both code generative and discriminative tasks and
that datasets are in Python or Java.

Baseline subtokenization. Following Ahmad et al. (2021a), we use a SentencePiece (Kudo &
Richardson, 2018) library, which is today one of the most widely used solutions for subtokeniza-
tion. We train subtokenizers on 10M functions and NL descriptions randomly selected from the
pretraining data. Though Ahmad et al. (2021a) use BPE subtokenization algorithm, our baseline
subtokenization uses another algorithm, UnigramLM, because it was shown to be quantitetively and
qualitatively more suitable for pretraining in NLP than BPE (Bostrom & Durrett, 2020). We also
perform their comparison for code in Section 4. We set the vocabulary size to 50K (the commonly
used size for large LMs of code) and character coverage to 99.99% (enough to cover English chars
and punctuation).

We also use PLBART’s preprocessing which includes removing comments and docstrings, replacing
\n, indents and dedents in Python with NEW_LINE, INDENT and DEDENT tokens as they are a part
of the language syntax, and removing formatting in Java as it does not affect the language syntax.
Our baseline subtokenizer follows the commonly used strategy of prohibiting composite tokens
described above. The only exception we make is that we do not split identifiers by underscores _
because they do not represent a syntax unit, as other punctuation chars do.

3 SUBTOKENIZATION GRANULARITY

In contrast to natural text in which a portion of punctuation chars is small and thus their separation
in subtokenization does not affect lengths much, in source code, punctuation constitutes 12.8% of
chars and often forms frequent combinations joining which into composite tokens may substantially
reduce lengths. Further, the presence of a large amount of commonly used patterns is another specific
feature of source code, e. g. for (int i = 0; in Java or def __init__ (self): in
Python, and these patterns again may form composite tokens. This section investigates the effects
of the use of composite tokens on performance and length-efficiency.

We consider several levels of allowed complexity of composite tokens listed in Table 1 and empir-
ically compare them in Figure 2. The two extreme cases are no composite tokens (Level 0, equal
to the baseline subtokenization) and unrestricted composite tokens complexity (Level 4, composite
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Level Description Example
0 Whitespaces in the middle of tokens

are prohibited and each punctuation
char is treated as a separate token (ex-
cept ‘_’)

[‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.’, ‘shape’, ‘[’, ‘1’,
‘]’, ‘)’, ‘:’, ‘NEW_LINE’, ‘INDENT’, ‘print’, ‘(’, ‘i’, ‘)’,
‘NEW_LINE’, ‘print’, ‘(’, ‘df’, ‘.’, ‘columns’, ‘[’, ‘i’, ‘]’,
‘)’]

1 Similar to Level 0, but tokens consist-
ing of several punctuation chars are
allowed

[‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.’, ‘shape’, ‘[’,
‘1’, ‘] ) :’, ‘NEW˙LINE INDENT’, ‘print’, ‘(’, ‘i’,
‘) NEW˙LINE’, ‘print’, ‘(’, ‘df’, ‘.’, ‘columns’, ‘[’, ‘i’,
‘] )’]

2 Similar to Level 1, but dots are al-
lowed in tokens

[‘for’, ‘i’, ‘in’, ‘range’, ‘(’, ‘df’, ‘.shape’, ‘[’, ‘1’, ‘] ) :’,
‘NEW˙LINE INDENT’, ‘print’, ‘(’, ‘i’, ‘) NEW˙LINE’,
‘print’, ‘(’, ‘df’, ‘.columns’, ‘[’, ‘i’, ‘] )’]

3 Whitespaces and single punctuation
chars allowed in tokens, except
NEW_LINE

[‘for i in range’, ‘( df’, ‘. shape [ 1’, ‘] ) :’,
‘NEW˙LINE INDENT’, ‘print’, ‘( i’, ‘) NEW˙LINE’,
‘print’, ‘( df’, ‘. column’, ‘s [ i’, ‘] )’]

4 Composite tokens of arbitrary com-
plexity are allowed

[‘for i in range’, ‘( df’, ‘. shape’, ‘[ 1 ]’, ‘)’, ‘: NEW˙LINE’,
‘INDENT print’, ‘( i )’, ‘NEW˙LINE print’, ‘( df’,
‘. columns’, ‘[ i ] )’]

Table 1: Different levels of allowed composite tokens complexity considered in the paper. Green
emphasizes tokens which could not be obtained in the previous level, and gray emphasises the re-
maining tokens that could not be obtained in Level 0. Levels list allowed merges, but what particular
merges to perform is chosen by the tokenizer.

44 46
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Code transl.-1 (Py, CodeBLEU)    

55 60 65

Code transl.-2 (Py, Comp. Acc.)
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Code summ. (Py, BLEU)

37 38
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Figure 2: Results on various subtokenization granularity, averaged over 4 finetuning runs (mean ±
standard deviation). Level 0 – baseline subtokenization. Numerical data for all plots is given in
Appendix.

tokens constitute 48.6% of the vocabulary). The average sequence length in Level 4 is 40% less than
that in Level 0. At the same time, the effect on performance depends on the task: in code-generative
tasks (translation and generation), Level 4 performs significantly worse than Level 0, and in code
understanding tasks, Level 4 is either similar / marginally worse than Level 0 (code summarization)
or even significantly better (clone detection). Because of quality loss encountered in several tasks,
we consider intermediate levels.

Level 1 makes one step further from Level 0 and allows punctuation char merges, e. g. ‘})’ or
‘]):’. Though such punctuation composite tokens only occupy 3.4% of the vocabulary, their use
reduces average length by 17%: from 97 to 80.7, and since this level does not mix punctuation with
other chars, it presumably should not complicate code processing much. Level 2 makes one more
step further and allows merging dots . with textual tokens. This reduces the average length by 23%
compared to Level 0. The motivation for Level 2 is that a lot of API name tokens almost always
go with the dot, e. g. .join or .split in Python. Figure 2 shows that Level 1 model performs
similar or better than Level 0 model in all tasks, and Level 2 performs similar or better than Level
0 in six tasks, marginally worse – in Python code summarization and significantly worse – in Java
code generation.

Level 3 makes a step back from Level 4 and restricts the complexity of composite tokens such
that each composed token may represent either a simple one-line code pattern or a punctuation
combination, but could not combine them. Quantitatively, Level 3 performs generally better than
the next Level 4, but (marginally of significantly) worse than the previous Level 2 in six tasks and
similarly – in two tasks (generation and clone detection).
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To sum up, punctuation combinations (Level 1) results in sequence lengths reduction by 17% without
performance drop in all tasks – we call this approach CodeBPE or CodeUnigramLM. Length reduc-
tion could be increased up to 24% in most tasks by allowing dots attaching to tokens (Level 2) and
up to 40% in most code understanding tasks – by allowing arbitrary subtoken combinations (Level
4). However, one should note that some subtoken combinations are programming language-specific,
we investigate the transferability of subtokenizers between programming languages in Section 6.

One of the potential issues with using composite tokens in code-generative tasks is that an inaccurate
generation of a “long” token may change all the following generated code. For example, in Java–
Python code translation, a cycle which traverses all unique element pairs in an array, converts to

for l in range ( 0 , arr_size - 1 ) :
for r in range ( l + 1 , arr_size ) :

While the Level 0 model generates exactly the specified cycle and the Level 1 model only modi-
fies the first cycle: range ( arr_size - 1 ), making it even more concise, Level 3 model
generates

for l in range ( 0 , arr_size ) :
for r in range ( 0 , arr_size ) :

which results in traversing some elements twice. Here the first cycle was begun with tokens
‘for l in’ and ‘range ( 0 ,’ and the second cycle was begun with tokens ‘for r in’ and
‘range ( 0 ,’ where the latter one repeats the previously used token and starts an incorrect line.
However, according to our manual prediction analyses, such an inaccurate generation, if it happens,
rarely results in the wrong code and often does not affect code semantics. For example, the Level
3 model may generate [‘range ( 0 ,’, ‘n )’] instead of equivalent range(n). Or this model
may generate [ [ 0 ] * column for i in range ( row ) ] instead of two nested
cycles by beginning it with tokens ‘[ [’ and ‘0 ] *’, resulting in even more concise code.

As for composite tokens in Level 1, they contain only punctuation and are “simpler” than in Level
3. Besides, Level 1 composite tokens more often serve for statement closing, e. g. ‘)):’ at the end
of the cycle specification, than for a harder starting of new statements: 46.3% of Level 1 composite
tokens contain only closing brackets, 12.8% – only opening brackets and 26.7% contain both. We
also check that using punctuation composite tokens does not deteriorate syntactic correctness: in
Java-Python code translation-1, Level 0 and Level 1 models generate a similar number of syntac-
tically correct test code snippets: 1226 and 1239 correspondingly. At the same time, for Level 3
model, this quantity only equals 1163.

Berard et al. (2021) point out that in sequence-to-sequence Transformer, the decoder’s autoregressive
generation is much slower than the encoder’s forward pass. Thus we now check that the length
statistics of sequences generated by the models comprising composite tokens are close to those of
the data. While groundtruth sequences at Levels 1 and 3 are 13.5% and 50% shorter than at Level 0,
the generated sequences at these levels are 15% and 40% shorter than sequences generated at Level
0 (numbers for Java-Python translation-1).

4 SUBTOKENIZATION ALGORITHM

Bostrom & Durrett (2020) compare two most popular subtokenization approaches, BPE and Uni-
gramLM (Kudo, 2018), for pretraining of large language models on natural text data. While BPE
constructs the vocabulary in the bottom-up fashion, starting from characters and gradually joining
them, the UnigramLM algorithm works in the top-down fashion, staring from a large vocabulary and
gradually filtering it. The paper finds that UnigramLM outperforms BPE in a range of downstream
tasks and suggests several reasons for the superiority of UnigramLM, including better alignment
with morphology and the more efficient vocabulary allocation. Since most existing pretrained LMs
on source code use BPE (and one model, CuBERT, uses a custom algorithm, see Section 8), we
decided to compare two algorithms for source code.

Figure 3 compares BPE and UnigramLM for PLBART. In five tasks, UnigramLM outperforms BPE,
with the difference in performance up to one standard deviation, in two tasks UnigramLM performs
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Figure 3: Comparison of BPE and UnigramLM subtokenizers and of several vocabulary sizes. Uni-
gramLM 50K – baseline subtokenization.

Original token UnigramLM subtok-
enization

BPE subtokenization Native subtokenization
(Camel- or snake case)

fromDottedString [’from’, ’Dotted’,
’String’]

[’from’, ’Dot’, ’ted’,
’String’]

[’from’, ’Dotted’, ’String’]

isInstantiated [’is’, ’Instantiate’, ’d’] [’isIn’, ’stanti’, ’ated’] [’is’, ’Instantiated’ ]

GridBagConverter [’Grid’, ’Bag’,
’Converter’]

[’GridBag’, ’Converter’] [’Grid’, ’Bag’, ’Converter’]

isSameSize
Horizontally

[’isSame’, ’Size’,
’Horizontally’]

[’isSame’, ’Size’, ’H’,
’orizontally’]

[’is’, ’Same’, ’Size’,
’Horizontally’]

PA_Hierarchy_ID [‘PA’, ‘_’, ‘Hierarchy’, ‘_ID’] [‘PA’, ‘_H’, ‘ierarchy’,
‘_ID’]

[‘PA’, ‘_’, ‘Hierarchy’, ‘_’,
‘ID’]

Table 2: Example subtokenization of identifiers by UnigramLM and BPE subtokenizers.

marginally worse than BPE and in one – significantly worse. Since the average length of two tok-
enizations is similar, we recommend using UnigramLM for source code, though the gain in perfor-
mance is not large.

Bostrom & Durrett (2020) argue that one of the potential reasons for the superiority of UnigramLM
subtokenization is that it is better aligned with natural text morphology and thus simplifies the com-
position of words by parts. We find that a similar effect appears for identifiers in source code:
although 80% of identifiers are subtokenized identically by UnigramLM and BPE, for some of the
remaining 20%, UnigramLM provides more “reasonable” splits into subtokens, see examples in Ta-
ble 2. More formally, we observe that UnigramLM subtokenization better resembles splitting into
subtokens based on CamelCase or snake_case, which we call a native subtokenization. To
estimate this effect quantitatively, we consider the Python corpus and randomly select a set of 150k
identifiers with different UnigramLM and BPE subtokenizations consisting of ⩾ 2 native subto-
kens, and measure the average Jaccard similarity J(A,B) = |A ∪ B|/|A ∩ B| between the set
of native subtokens and the set of subtokens produced by each subtokenizer. The resulting score
for UnigramLM, 26.6%, is much higher than for BPE, 15.2%. As could be observed from the
third and the fourth rows in Table 2, sometimes subtokenizers join two native subtokens into one
(isSame, GridBag). If we split each subtoken produced by a tokenizer based on CamelCase
or snake_case to eliminate this effect and then again measure average Jaccard similarities, Uni-
gramLM’s score, 55.2%, is still much higher than BPE’s, 47.9%, again indicating that UnigramLM’s
tokenization is better aligned with the native one.

A relatively frequent pattern is that BPE tends to detach the first uppercase letter from native subto-
kens (H orizontally in row 4, _H ierarchy in row 5). Among 150k identifiers considered
in the previous paragraph, 14.6% of BPE tokenizations contain at least one single uppercase letter X
and 4.4% — at least one subtoken of kind _X, while for UnigramLM these scores are significantly
less and equal to 11.8% and 1.4% correspondingly. On the other hand, BPE merges two native
subtokens more frequently (GridBag in row 3): 45.8% BPE tokenizations contain at least one to-
ken which could be split into two or more based on CamelCase, while for UnigramLM this score
only equals to 39.2%.
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5 VOCABULARY SIZE

This section studies the effect of vocabulary size, one of the main subtokenizer’s hyperparameters,
on the downstream quality of PLBART. Though the existing pretrained LMs for code use relatively
large vocabularies of 30–50K tokens, we are interested, whether using smaller and less length-
efficient vocabularies could result in better performance, and if yes, how large is the length increase.

Figure 3 presents the comparison of PLBARTs trained with vocabulary sizes 50K (large), 10K
(medium) and 2K (small). We find that in code translation, all vocabularies lead to similar per-
formance, except Python-Java translation-2 where 10K vocabulary performs best. In code sum-
marization and code generation, small and medium vocabularies outperform the large one by one
standard deviation. Finally, in clone detection, increasing the vocabulary size deteriorates quality.
At the same time, with the large vocabulary, sequences are shorter than with the smaller vocabulary
by 9.5% (10K) and 33% (2K), but the model size is larger (139M for 50K, 108M for 10k, and 102M
for 2k). We conclude that vocabulary size reduction may lead to a slight performance improvement
but with sequences elongation, thus it may be helpful in applications with high cost of errors and
weak restrictions on sequences lengths.We note that compared to the BPE 50k subtokenizer which
is used in a lot of existing large LMs of source code, the UnigramLM 10k subtokenizer improves
performance significantly in three tasks and by one standard deviation – in other two tasks.

Reducing vocabulary size increases the granularity of identifiers subtokenization, e. g. reachable
is subtokenized as reachable with the 50K vocabulary, reach able – with 10K and
re ach able – with 2K. In other words, vocabulary size reduction may be seen as even stronger
prohibition of composite tokens than Level 0 in Section 3. Our results on the effectiveness of smaller
granularity agree with the machine translation results of (Ding et al., 2019). Programs in code gen-
eration and summarization data are more identifier-centered, e. g. the model often needs to choose
a correct API based on the natural language description – which seems to be easier by composing
from smaller subtokens. On the contrary, in code translation, data is more algorithmic-centered,
with mostly short identifiers which are encoded in 1–2 subtokens with all vocabulary sizes. The
length increase of 10k vocabulary compared to 50k one is 6–19% in the former two tasks (6% in
generation, 19% in summarization) and only 3.5% in the latter one (code-translation-1).

6 TRANSFERABILITY BETWEEN PROGRAMMING LANGUAGES

Due to the high computational cost of large LM pretraining and relative programming languages
similarity, e. g. compared to how dissimilar natural languages could be, pretrained LMs on source
code are often used for programming languages that were not considered during pretraining. In this
section, we investigate the effect of using a subtokenizer trained on one programming language for
another programming language.
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Figure 4 visualizes the number of tokens having particular fre-
quencies in Python and Java languages, and black rectangles de-
note language-specific areas. We find that the baseline Level 0
granularity vocabulary seems to be language-universal: the ma-
jority of subtokens have large frequencies in both languages, and
only a small number of subtokens, 12.6%, are frequent in one
language and rare in another. Interestingly, for Level 4 vocab-
ulary, this quantity is not much larger: 20.1%, though it should
include all language-specific composite tokens. As composite to-
kens occupy almost half of the Level 4 vocabulary, the remaining
30% composite tokens are common for two languages.

Analysing sequence lengths (Figure 5), we observe that train-
ing the subtokenizer without Java (Only Py) shortens Python se-
quences marginally and increases Java sequences by 6.5% compared to the baseline subtokenizer
trained on all data (Py+Ja). The latter happens because some widely used Java identifiers were not
merged into single tokens as they are not used in Python; still, the length increase is not so large.
For the Level 4 granularity subtokenizer, Only Py’s length increase on Java is larger, 13%, since
it contains more language-specific composite tokens. However, due to common composite tokens,
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Ja
(Py+Ja)    

Ja
     (Only Py)

125.9 124.6

83.3 88.7

Average length

Figure 5: Results of transferability between programming languages. Py+Ja – subtokenizer is
trained on all data (baseline), Only Py – subtokenizer is trained on Python and natural language
data only.

the resulting Level 4 Only Py’s Java average length is still smaller than Level 1 Only Py’s Java
sequences: 79 vs. 83.

As for downstream performance, using the Only Py subtokenizer instead of Py+Ja changes quality
up to one standard deviation and could both increase and decrease it on Java data (quality increase
may be caused by the increased subtokenization granularity). Note that we only change subtokenizer
configuration – PLBART is still pretrained on all languages, this may happen in practice if LM’s
developers use the subtokenizer from another project, e. g. for comparison purposes. Summing
up, we conclude that the baseline subtokenizer is universal and, if needed, could be used for other
programming languages it was not trained on, with small length increase and slight quality change.

7 STOCHASTIC SUBTOKENIZATION

Kudo (2018), Provilkov et al. (2020) propose stochastic subtokenization to improve the quality
of machine translation. For example, BPE-Dropout (Provilkov et al., 2020) skips some subtoken
merges during sequence encoding and thus improves the model’s capabilities to compose new words.
In this section, we investigate the effect of using BPE-Dropout for large LMs pretrained on source
code.

Since pretraining a separate LM with BPE-Dropout is computationally expensive in practice, we
plug BPE-Dropout into finetuning, for BPE-50k-based PLABRT. We find that BPE-Dropout im-
proves quality in small-resource Code translation-2 and does not provide consistent improvement in
other tasks. This agrees with results of Wang et al. (2021a) on finetuning BERT with BPE-Dropout
on English data and may potentially be improved with their multi-view subword regularization.

45 46

No dr
BPE-Dr. Ft.

Code transl.-1
(Py, CodeBLEU)

67.5 70.0

Code transl.-2
(Py, Comp. Acc.)

19.0 19.5

Code summ.
(Py, BLEU)

37 38

Code gen.
(Ja, CodeBLEU)

47 48

No dr
BPE-Dr. Ft.

Code transl.-1
(Ja, CodeBLEU)

57.5 60.0

Code transl.-2
(Ja, Comp. Acc.)

18.5 19.0

Code summ.
(Ja, BLEU)

97.5 98.0

Clone detection
(Ja, F1)

Figure 6: Results of finetuning with BPE dropout.

8 RELATED WORK

Subtokenization studies for NLP. Subtokenization has become an essential component of mod-
ern NLP pipelines and thus — a subject of a line of empirical NLP studies. While word-based
models suffer from the out-of-vocabulary problem, subtoken-based (open-vocabulary) as well as
char-based approaches cover arbitrary novel words. Among various open-vocabulary approaches,
BPE (Sennrich et al., 2016), WordPiece (Wu et al., 2016) and UnigramLM (Bostrom & Durrett,
2020) became most widely used, and UnigramLM was shown to outperform BPE for LM pre-
training (Bostrom & Durrett, 2020). A line of studies investigate the optimal granularity of word
subtokenization: Ding et al. (2019) find that in Transformer-based neural machine translation, small
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vocabularies of 0–4K subtokens outperform large ones by up to 4 BLEU, and VOLT (Radford et al.,
2018) automates the search of a proper subtoken vocabulary with a proper size by formulating it
as an optimal transport problem. The smallest char-based granularity is often avoided because of
substantial sequences elongation, but has particular strengths, e. g. much less number of hyperpa-
rameters and better robustness, and thus appears to be a promising research direction (Gupta et al.,
2019; Clark et al., 2021; Tay et al., 2021). Provilkov et al. (2020); Bostrom & Durrett (2020)
propose stochastic subtokenization as a way to improve new words composition and (Wang et al.,
2021a) adapt it to pretrained LMs. Finally, an actively studied challenge is that various natural
languages need different subtokenization decisions and are hard to subtokenize with one common
model (Chung et al., 2020; Rust et al., 2021). Our work investigates most of the specified directions
for source code. For a more detailed review on subtokenization, see (Mielke et al., 2021).

Subtokenization practices in neural source code processing. Subtokenization was first tested
for source code in (Karampatsis et al., 2020) and later used in the majority of Transformer-based
models. Almost all LMs pretrained on source code use BPE-like subtokenization with large vocabu-
lary: CodeBERT uses the WordPiece (Wu et al., 2016) algorithm (a modified BPE, 50K), CuBERT –
an algorithm from the Tensor2Tensor project (Vaswani et al., 2018) (50K), PLBART and CodeGPT
– BPE (50K), CodeT5 – byte-level BPE (32k), DOBF uses a subtokenizetion procedure of either
CodeBERT or Roziere et al. (2020) (BPE 64K) for fair comparison. To the best of our knowledge,
existing works do not investigate the effect of using composite tokens for source code. Our Level 4
composite tokens are conceptually similar to code idioms used in (Iyer et al., 2019; Shin et al., 2019)
for code generation, but the mentioned works develop specific procedures for mining idioms, which
need separate implementation, while we rely on the commonly-used subtokenization procedure.

9 CONCLUSION AND DISCUSSION

In this work, we conducted an empirical study of varying subtokenization options for large LMs pre-
training on source code. We proposed a punctuation combination approach, which we call CodeBPE
or CodeUnigramLM depending on the used subtokenization algorithm, that shortens sequences by
17% without quality drop. The approach could be extended with more complex subtoken combi-
nations, shortening lengths up to 40% without performance drop in most code understanding tasks
but with significant drop in code-generative tasks. We also showed that using the UnigramLM-10k
subtokenizer may be 0.5–2% more effective than the commonly-used BPE 50k, but with 3.5–19%
length increase.

The main work’s limitation is that we consider only the PLBART model, due to the limited com-
putational resources. However, we believe that the provided recommendations will simplify the
process of the subtokenizer’s tuning for future works, and that models with both most efficient and
most effective subtokenizations will be released. Another limitation is that we focus on finding
optimal subtokenization options only for source code, though some downstream tasks also include
the processing of natural language. Investigating the ways of choosing optimal subtokenization for
both source code and natural language may be an interesting direction for future research. Another
interesting direction is to investigate the influence of BPE-dropout on subtokenizations of larger
granularity.
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A APPENDIX

Table 3 presents the numerical results for figures in the main text.

Subtokenizer CT1
(Py)

CT1
(Ja)

CT2
(Py)

CT2
(Ja)

CS
(Py)

CS
(Ja)

CG
(Ja)

CD
(Ja)

UnigramLM 50k Level 0 46.1 48.2 65.3 57.1 19.7 18.9 38.2 97.8
UnigramLM 50k Level 1 45.9 48.4 67.3 57.8 19.7 19.4 38.2 98.3
UnigramLM 50k Level 2 45.9 48.0 67.0 56.8 19.5 19.3 37.3 98.2
UnigramLM 50k Level 3 45.0 47.7 56.7 45.5 19.5 19.1 37.5 98.5
UnigramLM 50k Level 4 44.2 46.7 54.3 43.7 19.5 18.9 36.7 98.3
BPE 50K Level 0 45.5 47.7 69.0 57.4 19.3 18.8 37.7 98.0
UnigramLM 10k Level 0 45.8 48.6 65.7 59.4 19.9 19.2 39.1 97.7
UnigramLM 2k Level 0 46.2 48.0 66.1 56.2 19.8 19.2 39.1 97.5
UnigramLM 50k Level 0
(Only Py)

46.1 47.5 68.3 58.6 19.8 18.8 38.6 98.0

BPE 50K Level 0 +
BPE-Dropout

45.8 47.5 70.2 59.2 19.4 19.0 37.7 97.6

Table 3: Numerical data for figures in the main text. CT1: Code Translation-1 (CodeBLEU), CT2:
Code Translation 2 (Computational Accuracy), CS: Code Summarization (BLEU), CG: Code Gen-
eration (CodeBLEU), CD: Clone Detection (F1). Py – Python, Ja – Java.
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