MLAE: Encoder-decoder Pre-training with Non-autoregressive Modeling

Anonymous ACL submission

Abstract

Encoder-decoder pre-training has proven suc-
cessful in natural language processing. Most
of the existing works on encoder-decoder pre-
training are based on the autoregressive archi-
tecture. In this paper, we introduce MLAE, a
new pre-training framework based on a non-
autoregressive encoder-decoder architecture. It
behaves like a masked autoencoder and re-
constructs the masked language tokens in a
non-autoregressive manner. Our model com-
bines the best of two worlds: the advantages of
the encoder-only models on the understanding
tasks and the capabilities of the autoregressive
encoder-decoder on the generation tasks. Ex-
tensive experiments show that MLAE outper-
forms strong baselines on various benchmarks,
including language understanding, autoregres-
sive generation, as well as non-autoregressive
generation.'

1 Introduction

Recent years have witnessed a trend towards large-
scale pre-trained language models (Devlin et al.,
2019; Liu et al., 2019; Joshi et al., 2020; Song
et al., 2019; Raffel et al., 2020; Lewis et al., 2020;
Qi et al., 2021). The pre-trained models signifi-
cantly improve the performance on downstream
tasks. From the perspective of the model archi-
tecture, we can classify current language models
into three categories: non-autoregressive (NAR)
encoder (Devlin et al., 2019; Liu et al., 2019), au-
toregressive (AR) decoder (Radford et al., 2018),
and encoder-decoder (Raffel et al., 2020; Lewis
et al., 2020). AR decoders (e.g., GPT) show im-
pressive performance of in-context learning, while
the others are better at fine-tuning on the down-
stream tasks.

The NAR encoders, or the encoder-only models
(e.g., BERT, RoBERTa%, etc) are superior on natu-
ral language understanding (NLU) tasks, such as

"We will release the code for reproducibility.

Encoder-only Encoder-Decoder

BERT, MLAE
NAR RoBERTa, etc (This work)

AR T5, BART, etc

83 19

82 18

81 17

80 16 ‘

79 15

NLU NLG

= MLAE = RoBERTa = T5

Figure 1: Top: the architectures of the mainstream pre-
trained language models. Bottom: the average score on
the NLU tasks(GLUE benchmark) and ROUGE-2 on
the NLG tasks(XSum dataset) for MLAE, RoBERTa
and T5.

text classification and question answering. How-
ever, due to the lack of pre-trained decoder, they
can not naturally be fine-tuned on natural language
generation (NLG) tasks. Therefore, current works
usually adopt the vanilla encoder-decoder archi-
tecture (e.g., TS5, BART, etc). Although the vanilla
encoder-decoder pre-training provides a pre-trained
decoder, its AR decoder undermines the ability of
the encoder, which hurts the quality of generation.

In this paper, we introduce a simple yet effective
pre-training framework based on NAR encoder-

Wa—

[FFN ’
[

—

t X N

\[Multl -head Attention
—

| to eat an

want

W

[FFN ’
[

—

t XM

\[Multl -head Attention
—

I

— (M] (M]

[M] to eat an [M]

f

want to eat an apple

Figure 2: Overview for the pre-training of MLAE. The encoder only processes the unmasked tokens. After the en-
coder, the masked tokens are concatenated with latent representations. A light-weight decoder non-autoregressively

reconstructs the masked tokens from a full set of tokens.

decoder architecture, named as Masked Language
AutoEncoder (MLAE). The proposed MLAE not
only provides a pre-trained decoder for generation
tasks but also significantly improves the encoder’s
ability. As shown in Figure 1, the encoder part of
MLAE is more powerful than the counterpart of
the vanilla encoder-decoder, even the encoder-only
model. Besides, we introduce scheduled masking
to bridge the gap between pre-training and genera-
tion for MLAE. Above all, our model has shown
superior performance on both NLU and NLG tasks.
Especially for NAR generation, MLAE outper-
forms strong baselines by an improvement of 3.03
ROUGE-2 on XSum dataset.

2 Background

We begin with the observation: while pre-trained
encoder-decoder models are good at language gen-
eration, they trade off the encoders’ ability. Dur-
ing pertaining, the encoder maps the unmasked
tokens into latent representations, while the de-
coder autoregressively reconstructs the masked to-
kens. However, this architecture makes the model
more rely on the AR decoder to generate target
tokens rather than the encoder. Therefore, the en-
coders pre-trained through AR encoder-decoder

models are generally weaker than the encoder-only
model (Liu et al., 2019).

To verify the above observation, we pre-train a
12L RoBERTa and a 12L-4L. T5 with the combi-
nation of English-Wikipedia and the BookCorpus.
The performance on NLU tasks is a good metric for
the ability of encoder. We thus evaluate ROBERTa
and TS5 encoder on the large tasks of GLUE bench-
mark (Wang et al., 2019) and SQuAD?2 dataset (Ra-
jpurkar et al., 2018). We use the same fine-tuning
method and hyper-parameters for a fair comparison.
Table 1 demonstrates that RoOBERTa outperforms
TS5 encoder on both two datasets. It shows that
although the AR encoder-decoder pre-training pro-
vides a pre-trained decoder to benefit generation
tasks, the ability of its encoder is undermined by
AR decoder.

In this work, inspired by the recent success of
Masked Autoencoder (MAE), we explore a way to
combine the best of two worlds: the architecture of
encoder-decoder models and the NAR objective of
encoder-only models.

3 MLAE

In this section, we first introduce the model ar-
chitecture of MLAE. Then we demonstrate the

fine-tuning methods for NLU and NLG tasks, in-
cluding two generation paradigms: AR and NAR
generation, respectively.

3.1 Pre-training

MLAE is based on asymmetric NAR Transformer
encoder-decoder. Figure 2 shows the overview for
pre-training of our model. Similar to the MAE (He
et al., 2021), it uses a decoder to reconstruct the
masked tokens at the corresponding positions dur-
ing pre-training. Given blocks of sentences, we
randomly mask a portion of input tokens. The un-
masked tokens are first processed by a series of
Transformer blocks, including a self attention layer
followed by a feed forward layer. After the encoder,
the masked tokens are concatenated with latent rep-
resentations, then feed into a light-weight decoder.
The decoder is designed to reconstruct the masked
tokens bidirectionally from a full set of tokens.

Compared with vanilla encoder-decoder mod-
els (Raffel et al., 2020; Lewis et al., 2020), the
decoder of ML AE utilizes bidirectional informa-
tion to reconstruct the masked tokens. Besides, we
adopt an asymmetric encoder-decoder architecture:
the decoder has less layers than the encoder. Both
of them prevent the model more rely on the de-
coder, thus provide a more challenging task for the
encoder.

3.2 Fine-tuning for Understanding Tasks

For NLU tasks, we directly use the encoder part of
MLAE as feature extractor. After the encoder, we
add a linear layer followed by softmax classifier
as the task layer. The encoder generates latent
representations from source sentences. Then the
task layer projects the representation corresponding
to [EOS] into the label space.

3.3 Fine-tuning for Generation Tasks

For NLG tasks, we introduce two fine-tuning meth-
ods for MLAE, which are UniLM-style (Dong
et al., 2019) fine-tuning and Seq2seq-style fine-
tuning.

For UniLM-style fine-tuning, we modify the
attention mask as Seq2Seq mask in each self-
attention layer of the decoder. With Seq2Seq mask,
a token in the source segment can attend to all the
tokens within segment, while a token in the target
segment can only attend to the leftward tokens. The
encoder first generates latent representations from
source sentences. After the encoder, we concate-
nate the latent representations with target tokens,

Algorithm 1 Scheduled Masking

Input: source sentence [z1,Z2, ..., T»] and target sentence
[y1, Y2, .-, Yn], initial mask ratio mo and maximum train-
ing updates 7.
fort =0toT do

// feed source sentence into the encoder

[hilicpi,n) ¢ Encoder([zilic(i,n))

// Masking scheduler

me < mo — =0¢

[Y1s e M, ooy] = Mask(fyilicis m, me)

// feed masked target sentence into the decoder
[y;}iG[l,n] — DeCOder([yh ey M7 ey yn]7 [h’b]’LE[LTL])

Loss = ZL fyi' yi)

end for

then feed them into the decoder. The decoder au-
toregressively predicts target tokens conditioned on
the leftward tokens.

For Seq2seq-style fine-tuning, we insert cross-
attention layers into each layer of MLAE decoder,
then fine-tune it as the vanilla encoder-decoder.
The decoder autoregressively generates target to-
kens conditioned on the encoder output through
cross-attention layers. To make full use of pre-
trained modules, we initialize each cross-attention
layer by the weights of self-attention layer.

The experiments in Section 5.1 demonstrate that
Seq2seq-style fine-tuning is better for MLAE on
generation task. We achieve greater gains with
more pre-trained modules of MLAE.

3.4 Scheduled Masking

There are two major gaps between the MLM task
and the AR generation. During the pre-training,
MLAE decoder is designed to bidirectionally re-
construct the masked tokens from latent represen-
tations generated by the encoder. However, in the
fine-tuning for AR generation, the decoder aims
to predict the target tokens given the leftward to-
kens within target segment and source tokens. Be-
sides, the input of decoder is blocks of target tokens
without the masked tokens introduced during the
pre-training.

To bridge the MLM task and AR generation,
we design a simple yet effective strategy for the
decoder input, named as masking scheduler. We
deploy the linear masking decay for the scheduler
to train the model from easier data to harder one.

We summarize the training process with mask-
ing scheduler in Algorithm 1. At the beginning
of fine-tuning, we randomly mask a portion of in-
put tokens for the decoder. Since the decoder has
already learned to bidirectionally reconstruct the

Models Arch. Obj. SQuAD2 | MNLI-(m/mm) QNLI QQP SST Avg.
T5 Enc-dec AR -/- 85.56/85.20 89.30 84.76 93.54 87.67
T5 Encoder 77.87/80.83 85.54/85.40 9232 8799 9327 88.90
RoBERTa | Enc-only NAR | 79.14/81.86 85.88/86.10 92.39 87.60 93.16 89.03
MLAE Enc-dec NAR | 79.93/82.84 86.15/86.05 93.05 88.08 93.62 89.39

Table 1: Results for TS5, TS5 encoder, RoOBERTa and MLAE on the dev set of SQuAD2 and GLUE benchmark. We

report EM/F1 scores for SQuAD?2.

masked tokens in the pre-training, masking sched-
uler creates easier samples for the decoder. As the
training progresses, the mask ratio is linearly de-
cayed to zero, which makes the decoder gradually
adapt from NAR reconstruction to AR generation.
Similarly in the fine-tuning for NAR generation,
the decoder non-autoregressively generates target
tokens from a full set of the unknown tokens. We re-
place the unknown tokens with the masked tokens
used in the pre-training. Then we adopt Masked-
and-predict (Ghazvininejad et al., 2019) strategy
to narrow the gap between NAR generation and
the MLM pre-training. The number of the masked
tokens is sampled from a uniform distribution be-
tween one and the maximum sequences’ length.

4 Experiments

In this section, we first introduce the setup of
pre-training, then conduct experiments on both
NLU tasks (i.e., the GLUE benchmark and extrac-
tive question answering), and NLG tasks (i.e., ab-
stractive summarization), including AR and NAR
paradigms.

4.1 Setup

Models We pre-train RoBERTa, TS and MLAE
with the same corpus. RoBERTa has a 12-layer en-
coder. T5 is based on the vanilla encoder-decoder,
which has a 12-layer encoder and 4-layer decoder.
For a fair comparison, MLAE has the same depth
for the encoder and the decoder, respectively. We
adopt the BERT-base setting: the hidden dimension,
intermediate dimension of feed-forward layers and
attention heads for all models are 768, 3072 and 12
respectively.

Data Following Devlin et al. (2019), we use
the BookCorpus (Zhu et al., 2015) and English-
Wikipedia as the pre-training corpus. The Book-
Corpus is a large collection of free novel books writ-
ten by unpublished authors, which contains 800M
words. We remove non-text parts for English-
Wikipedia, which leads to 2.5B words.

For all models, we set the mask ratio as 15%.
The maximum length is 512 tokens. We randomly
mask consecutive spans rather than tokens. The
average length of span is 3 tokens. We adopt
the masked language modeling as the pre-training
task for RoBERTa and MLAE, span corruption
for T5. The vocabulary is built from a Sentence-
Piece (Kudo and Richardson, 2018) tokenizer with
64K tokens.

Training We train our model and the baselines
with Adam (Kingma and Ba, 2015) optimizer for
125K steps. The batch size is set as 2,048. The
whole training procedure takes about 2 days on
64 NVIDIA Tesla V100 GPUs. The other hyper-
parameters used in pre-training are detailed in Ta-
ble 7 of Appendix A.

4.2 Results of Understanding Tasks

We evaluate our model and the baselines on the
large tasks of GLUE benchmark and SQuAD2
dataset. For T5 encoder and MLAE, we only use
their encoder as feature extractor, then add a task
layer for them. Besides, we reformat the text clas-
sification to text-to-text generation, and directly
fine-tune TS without any modifications. More de-
tails are in Table 8 and Table 9 of Appendix A.

GLUE benchmark (Wang et al., 2019) is a col-
lection of nine language understanding tasks, in-
cluding linguistic acceptability, question answer-
ing, sentiment analysis and textual entailment.
We choose the large tasks of GLUE benchmark,
namely MNLI, QNLI, QQP and SST.

SQuAD2 (Rajpurkar et al., 2018) is one of the
most popular benchmarks for extractive question
answering, which combines SQuAD (Rajpurkar
et al., 2016) with unanswerable questions.

We report the results of our model and the base-
lines in Table 1. T5 encoder outperforms T5 by
a gain of 1.23 average score on the large tasks of
GLUE benchmark. It shows that reformatting text
classification to generation leads to the degradation
of performance. Besides, RoBERTa outperforms

Models Arch. Obj. | RG-1 RG-2 RG-L
RoBERTza (Liu et al., 2019) Enc-only NAR | 40.19 17.50 38.83
T5 (Raffel et al., 2020) Enc-dec AR | 41.29 18.37 39.55
[1] MLAE (Ours) 42.58 19.30 40.73
[2] [1] - scheduled maskin 41.50 18.62 39.94
[3] [2]- asymmetric architicture Enc-dec NAR | 1150 1758 38.83
[4] [2] - pretrain w/o cross-attn 41.29 18.40 39.75

Table 2: Results of RoOBERTa, T5 and MLAE for AR generation on the test set of XSum dataset.

Models RG-1 RG-2 RG-L
RoBERTa | 37.03 15.03 3141
T5 40.43 17.50 34.21
MLAE 40.74 17.78 34.61

Table 3: Results of ROBERTa, T5 and MLAE for AR
generation on the test set of CNN/DM dataset.

T5 encoder on both two dataset, which verifies
our analysis that the vanilla encoder-decoder pre-
training undermines the ability of its encoder.

Furthermore, our model achieves gains of 0.36
average score on the large tasks of GLUE bench-
mark, 1.28 EM and 1.27 F1 on SQuAD?2 dataset
compared with RoBERTa. It demonstrates that
MLAE creates a more powerful encoder than
RoBERTa and the encoder part of T5.

4.3 Results of AR Generation

For AR generation, we conduct experiments on
two popular benchmarks, Extreme summarization
(XSum) and CNN/Daily Mail (CNN/DM) dataset.

XSum (Narayan et al., 2018) is a collection of
227K online articles and single sentence summaries
harvested from the British Broadcasting Corpora-
tion(BBC). The average input and output lengths
are 359 and 21 respectively.

CNN/DM (Hermann et al., 2015; Nallapati et al.,
2016) contains online news articles accompanying
with multi-sentence summaries. The average to-
kens of input and output are 781 and 56 respec-
tively.

For RoBERTa, due to lack of pre-trained decoder,
we add a randomly initialized 4-layer decoder for
it, and fine-tune the whole model as the vanilla
encoder-decoder. For MLAE, we adopt Seq2seq-
style fine-tuning and initialize the cross-attention
layers by the weight of self-attention layers. The
masking scheduler is also deployed for the decoder:
we randomly mask 60% tokens of decoder input at
beginning and linearly decay the mask ratio to 0 as

the training progresses.

We fine-tune our model and the baselines for
30K updates on CNN/DM dataset, SOK updates on
XSum dataset; and select the best checkpoint based
on their validation loss. For a fair comparison,
we use the same hyper-parameters for all models.
More details can be found in Table 10 and Table 11
of Appendix A. For inference, we truncate the in-
puts to be 512 tokens and use beam search strategy
to generate target sentences. We set beam size as 0,
length penalty as 1.0. We use ROUGE (Lin, 2004)
as the evaluation metric for all experiments.

Table 2 and Table 3 summarize the results of our
model and the baselines on the test set of XSum
and CNN/DM dataset, respectively. TS and MLAE
outperform RoBERTa by a large gain on both two
datasets. It verifies that the pre-trained decoder
can significantly improve the quality of generation.
Furthermore, compared with T5, MLAE achieves
improvements of 0.93 ROUGE-2 on XSum dataset,
and has comparable performance on CNN/DM
dataset. It shows the effectiveness of our model
on AR generation.

4.4 Results of NAR Generation

For NAR generation, we choose iNAT (Lee et al.,
2018), InsT (Stern et al., 2019), LevT (Gu et al.,
2019) and CMLM (Ghazvininejad et al., 2019) as
the baselines trained from the scratch.

To explore the impact of pre-training strategy,
we pre-train the T5-NAR model on the 16G corpus.
The only difference between T5-NAR and TS5 lies
on the design of the decoder. The input of TS-NAR
decoder is a full set of the masked tokens. In the
self-attention layer of T5-NAR’s decoder, we re-
move the masking for the rightward tokens to allow
bidirectional information. Above all, the decoder
of T5-NAR is designed to non-autoregressively re-
construct the target tokens from the masked tokens.

We pre-train MLAE with cross-attention layers
on the same 16G corpus, then directly load our

Models RG-1 RG-2 | RG-L
iNAT (Lee et al., 2018) 20.71 4.39 | 22.94
InsT (Stern et al., 2019) 2144 6.77 | 24.66
LevT (Gu et al., 2019) 25.02 7.41 | 27.15
CMLM (Ghazvininejad et al., 2019) | 29.24 7.70 | 28.93
T5-NAR 31.48 9.02 | 30.80
MLAE (Ours) 39.08 14.81 | 37.25

Table 4: Results of MLAE and the baselines for NAR generation on the test set of XSum dataset. All models are
trained with a 12-layer encoder and a 4-layer decoder for a fair comparison.

AR NAR
Models Layers | # Params RG-1 RG-2 RG.L | RG-1 RG-2 RG.L
BANG (Qi et al.,, 2021) | 6L-6L 41.09 1837 3322 | 3471 1171 29.16

6L-6L | 100M | 41.69 1863 3993 |38.56 1441 36.76
MLAE (Ours) 9L-4L 42.10 18.76 4022 | 3925 14.74 37.21

Table 5: Results of BANG (Qi et al., 2021) and MLAE on the test set of XSum dataset, including AR and NAR
generation paradigm. AL-BL refers to A-layer encoder and B-layer decoder.

model into the CMLM. For masking scheduler, we
adopt Masked-and-predict (Ghazvininejad et al.,
2019) strategy.

We evaluate our model and the baselines on
XSum dataset. Despite knowledge distillation can
improve the quality of NAR generation, the re-
sults highly depend on the distilled dataset. To
enable other researchers to reproduce our results
more easily, we do not perform knowledge distilla-
tion for our model and the baselines. Since NAR
models need more updates to converge, we set the
maximum updates as 300K. The NAR baselines
trained from the scratch are integrated into Fairseq
library (Ott et al., 2019). We implement these base-
lines with default settings”. For a fair comparsion,
all models have a 12-layer encoder and a 4-layer
decoder.

For inference, we truncate the inputs to be 512
tokens and use iterative decoding strategy. The
tokens with low confidence will be masked and
re-generated in the next cycle until the iterations
reaches a manually set number. Following Qi et al.
(2021), the maximum iteration is set as 10. We
merge consecutive repeated tokens to ease the prob-
lem of repeated tokens.

Table 4 presents the results of MLAE and the
baselines. T5S-NAR and MLAE achieve a gain of
over 1 ROUGE-2 compared with the other base-
lines trained from the scratch. It shows that via
pre-training the performances for NAR generation

%Fairseq NAR baselines

are significantly improved. Further, with a more
powerful encoder, ML AE outperforms T5-NAR by
improvements of 5.79 ROUGE-2 on XSum dataset.
It shows the effectiveness of MLAE pre-training
on the NAR generation paradigm.

4.5 Comparison with BANG

We compare our model with BANG (Qi et al.,,
2021) on XSum dataset. BANG is based on vanilla
encoder-decoder, which fuses AR and NAR objec-
tives through different attention mechanisms. It has
a 6-layer encoder, 6-layer decoder and 768 hidden
dimension.

MLAE is trained with a 9-layer encoder, a 4-
layer decoder and the same hidden dimension, re-
sulting in up to 100M backbone parameters for
a fair comparison. Besides, we train MLAE
with symmetric architecture. The pre-training cor-
pus is the same as BANG. The fine-tuning hyper-
parameters and methods of MLAE on AR and
NAR generation are consistent with the experi-
ments presented in Section 4.3 and Section 4.4
respectively. We adopt the same evaluation scripts
following Qi et al. (2021).

We report the results of our models and BANG
on Table 5. It demonstrates that 6L.-6L and 9L-4L
MLAE both has consistently better performance
than BANG on AR and NAR generation paradigm.
Especially, 9L-4L. ML AE outperforms BANG by
an improvement of 3.03 ROUGE-2 on the NAR
generation.

https://github.com/facebookresearch/fairseq/blob/v0.9.0/examples/nonautoregressive_translation/scripts.md

MLAE fine-tuning SM | RG-1 RG-2 RG-L

UniLM-style 40.46 17.75 39.18
[1] Seq2seq-style X 40.22 17.64 38.94
[2] [1]+ MLAE decoder 40.92 18.19 39.52
[3] [2] + shared self & cross attn 41.50 18.62 39.94
[4] [3]+ Const. scheduler 4 4146 18.50 39.99
[5] [3]+ Linear decay scheduler 42.58 19.30 40.73

Table 6: Comparisons between different fine-tuning strategies and implementations of the masking scheduler for
MLAE. SM indicates whether to use scheduled masking for fine-tuning. For [4] and [5], the initial mask ratio is

set as 60%.

5 Ablation Study

In this section, we conduct the ablation studies
on the fine-tuning strategies for NLG tasks in Sec-
tion 5.1, model architecture and scheduled masking
in Section 5.2 and Section 5.3, respectively.

5.1 Fine-tuning Strategies

We present comparisons between UniLM-style and
Seq2seq-style fine-tuning for AR generation on
XSum dataset. For a fair comparison, we do not
apply masking scheduler for all the experiments.

For UniLM-style fine-tuning, we use the bidi-
rectional mask for the encoder and Seq2seq mask
for the decoder. With the Seq2seq mask, MLAE
decoder can auto-regressively generate the target
tokens conditioned on the representations of source
tokens and leftward tokens within the target seg-
ment. For Seq2seq-style fine-tuning, we insert
cross-attention layers into each layer of MLAE de-
coder, then fine-tune the model as a vanilla encoder-
decoder.

To explore the impact of pre-trained decoder, we
conduct experiments for Seq2seq-style fine-tuning
with a randomly initialized decoder. As shown in
Table 6, the model with MLAE decoder outper-
forms it with random decoder by a gain of 0.55
ROUGE-2. However, the newly inserted cross-
attention modules are still randomly initialized,
which provides the room to use more pre-trained
modules to improve the performance. Therefore,
we further use each self-attention layer’s weights
of MLAE decoder to initialize correspond cross-
attention layer’s weights. The results show that
with more pre-trained modules, we achieve greater
gain for the quality of generation.

Besides, Table 6 shows that Seq2seq-style fine-
tuning with a "fully" pre-trained decoder is a better
way for MLAE on AR generation task: it outper-
forms UniLM-style fine-tuning by an improvement

of 0.87 ROUGE-2 on XSum dataset.

5.2 Ablation on the Architecture

We compare MLAE based on symmetric and
asymmetric architecture, with and without cross-
attention layers for the decoder during the pre-
training. The masking scheduler is not applied
for all the experiments for a fair comparison.

We first compare MLAE with symmetric and
asymmetric architecture for AR generation on
XSum dataset. For symmetric architecture, we
train MLAE with an 8-layer encoder, an 8-layer
decoder and 768 hidden dimension, which leads
to the same amount of parameters. We report the
results of 8L-8L, 12L-4L. MLAE in Table 2. It
shows that asymmetric architecture is preferred for
AR generation. This results from that the ability of
the encoder is more crucial for the quality of AR
generation.

Further we present comparisons for MLAE with
and without cross-attention layers for the decoder
during the pre-training. For a fair comparison,
we pre-train a Base-size, 12L-4L. MLAE with
cross-attention layers on the same corpus. As
shown in Table 2, MLAE pre-training without
cross-attention layers slightly outperforms it with
cross-attention layers by an improvement of 0.22
ROUGE-2 for AR generation.

5.3 Effect of Scheduled Masking

We first compare different implementations of the
masking scheduler: the mask ratio is set as a con-
stant, and linearly decayed to O as the training pro-
gresses. As shown in Table 6, linear decay is a
better scheduler function for AR generation.
Further, we explore the impact of different initial
mask ratio for the masking scheduler. We vary the
initial mask ratio from 0% to 90% with an interval
of 15%. Figure 3 shows the ROUGE-2 scores for
AR generation on XSum dataset. It demonstrates

19.4

=
©
[N)

ROUGE-2
=
©
o

-
©
©

18.61

0.00 0.15 0.30 0.45 0.60 0.75 0.90
Mask Ratio

Figure 3: ROUGE-2 scores of MLAE for AR genera-
tion on the test set of XSum dataset varying the initial
mask ratio of masking scheduler from 0% to 90%.

that replacing a small portion (15%) of decoder
input with the masked token can significantly im-
prove the performance of generation. As shown
in Figure 3, a relatively high initial mask ratio,
approximately 45% to 75%, is preferred for AR
generation.

6 Related Work

Language model pre-training. The perfor-
mance of downstream tasks benefits from the large-
scale pre-trained models. BERT (Devlin et al.,
2019) introduces MLM to pre-train the encoder-
only Transformer, which allows the model to use
bidirectional information to generate latent repre-
sentations. A greater gain can be achieved by pre-
training longer with more training data (Liu et al.,
2019) and masking consecutive spans rather than
tokens (Joshi et al., 2020).

However, although the encoder-only models
achieve great success on NLU tasks, due to lack of
pre-trained decoder, they are not effectively fine-
tuned for NLG tasks. Besides, BERT reconstructs
the masked tokens bidirectionally rather than auto-
regressively, which broadens the gap between pre-
training and fine-tuning for AR generation. To
address these issues, UniLM (Dong et al., 2019)
pre-trains BERT with different mask mechanisms
for attention layers. With their proposed Seq2seq
mask, UniLM can generate target tokens autore-
gressively with the encoder-only architecture.

Another line of research is to adopt vanilla
encoder-decoder framework for pre-training.
MASS (Song et al., 2019) randomly masks
consecutive tokens for the input sentences. The
encoder takes the corrupted sentences as input,
including the masked and unmasked tokens; its
decoder reconstructs the masked tokens. Different

from MASS, BART (Lewis et al., 2020) feeds
the corrupted sentences into the encoder, the
uncorrupted sentences into the decoder, which
reduces the mismatch between pre-training and
fine-tuning. TS (Raffel et al., 2020) aims to unify
all text-based language problems into text-to-text
format, which adopts vanilla encoder-decoder
framework with span corruption.

NAR generation. Gu et al. (2017) first introduce
vanilla Transformer encoder-decoder for NAR ma-
chine translation. NAR generation removes the
assumption that each output word is conditioned
on previously generated outputs. Although this
parallel generation largely speeds up the inference,
it is troubled by the repeated tokens problem. A
lot of efforts are proposed to ease this issue (Lee
et al., 2018; Gu et al., 2019; Stern et al., 2019;
Ghazvininejad et al., 2019). Qi et al. (2021) intro-
duces BANG to bridge AR and NAR generation
with large-scale pre-training, which fuses AR and
NAR objectives by different attention mechanisms.

Masked autoencoders. He et al. (2021) first in-
troduces masked autoencoder for self-supervised
vision pre-training. With a light-weight decoder
and high masking ratio, MAE avoids wasting the
model capacity on short-range dependencies, cre-
ates a more powerful encoder from reconstructing
unsemantic pixels of the masked patches. After
that, masked autoencoders are adopted for video
pre-training (Tong et al., 2022; Feichtenhofer et al.,
2022) and vision-language pre-training (He et al.,
2022; Geng et al., 2022).

7 Conclusion

We propose MLAE, a new pre-training paradigm
based on masked autoencoders. With MLAE, we
not only have a pre-trained decoder for NLG tasks,
but also a more powerful encoder compared with
the encoder part of vanilla encoder-decoder, even
the encoder-only model. Besides, we design a
simple yet effective method, named as masking
scheduler, to bridge MLM pre-training and gener-
ation. The proposed ML AE combines the best of
two worlds: the encoder-only models’ good per-
formance on NLU tasks and the vanilla encoder-
decoders’ good performance on NLG tasks, includ-
ing AR and NAR paradigms. It shows that MLAE
is a preferred alternative compared with vanilla
encoder-decoder.

8 Limitations

While this work empirically finds that non-
autoregressive modeling improves language model
pre-training, the mechanism behind this inductive
bias needs more in-depth analysis. In addition,
we do not explore the multilingual pre-training of
MLAE in the paper, which will be left as future
work. Like most of the existing pre-trained models,
our method may have some potential bias originat-
ing from the pre-training data.

References

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171-4186. Association for Computational
Linguistics.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language model
pre-training for natural language understanding and
generation. In Advances in Neural Information Pro-
cessing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pages
13042-13054.

Christoph Feichtenhofer, Haoqi Fan, Yanghao Li, and
Kaiming He. 2022. Masked autoencoders as spa-
tiotemporal learners. CoRR, abs/2205.09113.

Xinyang Geng, Hao Liu, Lisa Lee, Dale Schuurams,
Sergey Levine, and Pieter Abbeel. 2022. Multimodal
masked autoencoders learn transferable representa-
tions. CoRR, abs/2205.14204.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel
decoding of conditional masked language models.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 6111-6120.
Association for Computational Linguistics.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O. K.
Li, and Richard Socher. 2017. Non-autoregressive
neural machine translation. CoRR, abs/1711.02281.

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019.
Levenshtein transformer. In Advances in Neural
Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems

2019, NeurIPS 2019, December 8-14, 2019, Vancou-
ver, BC, Canada, pages 11179-11189.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li,
Piotr Dollar, and Ross B. Girshick. 2021. Masked
autoencoders are scalable vision learners. CoRR,
abs/2111.06377.

Sunan He, Taian Guo, Tao Dai, Ruizhi Qiao, Chen
Wu, Xiujun Shu, and Bo Ren. 2022. VL-
MAE: vision-language masked autoencoder. CoRR,
abs/2208.09374.

Karl Moritz Hermann, Tomds Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Information
Processing Systems 28: Annual Conference on Neu-
ral Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada, pages 1693—
1701.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. Trans. Assoc. Comput. Linguistics, 8:64—
77.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
CoRR, abs/1808.06226.

Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018, pages 1173—-1182.
Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7871-7880.
Association for Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74—81, Barcelona, Spain.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c20bb2d9a50d5ac1f713f8b34d9aac5a-Abstract.html
https://doi.org/10.48550/arXiv.2205.09113
https://doi.org/10.48550/arXiv.2205.09113
https://doi.org/10.48550/arXiv.2205.09113
https://doi.org/10.48550/arXiv.2205.14204
https://doi.org/10.48550/arXiv.2205.14204
https://doi.org/10.48550/arXiv.2205.14204
https://doi.org/10.48550/arXiv.2205.14204
https://doi.org/10.48550/arXiv.2205.14204
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
http://arxiv.org/abs/1711.02281
http://arxiv.org/abs/1711.02281
http://arxiv.org/abs/1711.02281
https://proceedings.neurips.cc/paper/2019/hash/675f9820626f5bc0afb47b57890b466e-Abstract.html
http://arxiv.org/abs/2111.06377
http://arxiv.org/abs/2111.06377
http://arxiv.org/abs/2111.06377
https://doi.org/10.48550/arXiv.2208.09374
https://doi.org/10.48550/arXiv.2208.09374
https://doi.org/10.48550/arXiv.2208.09374
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/afdec7005cc9f14302cd0474fd0f3c96-Abstract.html
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
http://arxiv.org/abs/1808.06226
https://doi.org/10.18653/v1/d18-1149
https://doi.org/10.18653/v1/d18-1149
https://doi.org/10.18653/v1/d18-1149
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692

Ramesh Nallapati, Bowen Zhou, Cicero Nogueira dos
Santos, Caglar Giilgehre, and Bing Xiang. 2016.
Abstractive text summarization using sequence-to-
sequence rnns and beyond. In Proceedings of the
20th SIGNLL Conference on Computational Natural
Language Learning, CoNLL 2016, Berlin, Germany,
August 11-12, 2016, pages 280-290. ACL.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium, October 31 -
November 4, 2018, pages 1797-1807. Association
for Computational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. CoRR, abs/1904.01038.

Weizhen Qi, Yeyun Gong, Jian Jiao, Yu Yan, Weizhu
Chen, Dayiheng Liu, Kewen Tang, Hougiang Li,
Jiusheng Chen, Ruofei Zhang, Ming Zhou, and Nan
Duan. 2021. BANG: bridging autoregressive and
non-autoregressive generation with large scale pre-
training. In Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24
July 2021, Virtual Event, volume 139 of Proceedings
of Machine Learning Research, pages 8630-8639.
PMLR.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1-140:67.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. CoRR, abs/1806.03822.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions
for machine comprehension of text. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pages 2383-2392.
The Association for Computational Linguistics.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. MASS: masked sequence to se-
quence pre-training for language generation. CoRR,
abs/1905.02450.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob
Uszkoreit. 2019. Insertion transformer: Flexible se-
quence generation via insertion operations. In Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long

10

Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pages 5976-5985.
PMLR.

Zhan Tong, Yibing Song, Jue Wang, and Limin
Wang. 2022. Videomae: Masked autoencoders are
data-efficient learners for self-supervised video pre-
training. CoRR, abs/2203.12602.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7k In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watching
movies and reading books. CoRR, abs/1506.06724.

https://doi.org/10.18653/v1/k16-1028
https://doi.org/10.18653/v1/k16-1028
https://doi.org/10.18653/v1/k16-1028
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d18-1206
http://arxiv.org/abs/1904.01038
http://arxiv.org/abs/1904.01038
http://arxiv.org/abs/1904.01038
http://proceedings.mlr.press/v139/qi21a.html
http://proceedings.mlr.press/v139/qi21a.html
http://proceedings.mlr.press/v139/qi21a.html
http://proceedings.mlr.press/v139/qi21a.html
http://proceedings.mlr.press/v139/qi21a.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1806.03822
http://arxiv.org/abs/1806.03822
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
http://arxiv.org/abs/1905.02450
http://arxiv.org/abs/1905.02450
http://arxiv.org/abs/1905.02450
http://proceedings.mlr.press/v97/stern19a.html
http://proceedings.mlr.press/v97/stern19a.html
http://proceedings.mlr.press/v97/stern19a.html
https://doi.org/10.48550/arXiv.2203.12602
https://doi.org/10.48550/arXiv.2203.12602
https://doi.org/10.48550/arXiv.2203.12602
https://doi.org/10.48550/arXiv.2203.12602
https://doi.org/10.48550/arXiv.2203.12602
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
http://arxiv.org/abs/1506.06724
http://arxiv.org/abs/1506.06724
http://arxiv.org/abs/1506.06724
http://arxiv.org/abs/1506.06724
http://arxiv.org/abs/1506.06724

A Hyper-parameters

Hyperparameters Value
Hidden size 768
FFN inner hidden size 3,072
Attention heads 12
Peak Learning rate Se-4
Learning rate schedule Polynomial decay
Warm-up updates 10,000
Warm-up init learning rate le-7
Sequence length 512
Batch size 2,048
Mask ratio 15%
Adam (0.9, 0.98)
Training updates 125K
Gradient clipping 2.0
Dropout 0.1
Weight decay X

Table 7: Hyperparameters for MLAE and the baselines

pre-training.

Hyperparameters

Value

Peak Learning rate
Learning rate schedule

{1e-5, 2e-5, 3e-5, 4e-5}
polynomial decay

Adam (0.9, 0.98)
Warm-up {10%, 20%}
Batch size 32
Training epochs 3

Seed {1, 2,3}
Gradient clipping X
Dropout 0.1
Weight decay 0.01

Table 8: Hyperparameters for MLAE and the baselines
fine-tuning on the large tasks of GLUE benchmark.

11

Hyperparameters Value

Peak Learning rate {2e-5, 3e-5, 4e-5}

Learning rate schedule | polynomial decay

Adam (0.9, 0.999)

Warm-up 10%

Batch size 32

Training epochs 3

Seed {1, 2,3}

Gradient clipping X

Dropout 0.1

Weight decay 0.01

Table 9: Hyperparameters for MLAE fine-tuning on the
SQuAD?2 dataset.

Hyperparameters AR NAR
Peak Learning rate {7e-5, le-4}
Learning rate schedule | inverse sqrt
Warm-up 500 10,000
Maximum tokens 8 x 4096
Training updates 30K 300K
Adam (0.9, 0.999)
Gradient clipping 1.0
Dropout 0.1
Weight decay 0.01

Table 10: Hyperparameters for MLAE fine-tuning for
AR and NAR generation on the XSum dataset.

Hyperparameters Value
Peak Learning rate {7e-5, le-4}
Learning rate schedule | inverse sqrt
Warm-up 500
Maximum tokens 16 x 4096
Training updates 30K
Adam (0.9, 0.999)
Gradient clipping 1.0
Dropout 0.1
Weight decay 0.01

Table 11: Hyperparameters for MLAE fine-tuning on

the CNN/DM dataset.

	Introduction
	Background
	MLAE
	Pre-training
	Fine-tuning for Understanding Tasks
	Fine-tuning for Generation Tasks
	Scheduled Masking

	Experiments
	Setup
	Results of Understanding Tasks
	Results of AR Generation
	Results of NAR Generation
	Comparison with BANG

	Ablation Study
	Fine-tuning Strategies
	Ablation on the Architecture
	Effect of Scheduled Masking

	Related Work
	Conclusion
	Limitations
	Hyper-parameters

