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Abstract

Encoder-decoder pre-training has proven suc-001
cessful in natural language processing. Most002
of the existing works on encoder-decoder pre-003
training are based on the autoregressive archi-004
tecture. In this paper, we introduce MLAE, a005
new pre-training framework based on a non-006
autoregressive encoder-decoder architecture. It007
behaves like a masked autoencoder and re-008
constructs the masked language tokens in a009
non-autoregressive manner. Our model com-010
bines the best of two worlds: the advantages of011
the encoder-only models on the understanding012
tasks and the capabilities of the autoregressive013
encoder-decoder on the generation tasks. Ex-014
tensive experiments show that MLAE outper-015
forms strong baselines on various benchmarks,016
including language understanding, autoregres-017
sive generation, as well as non-autoregressive018
generation.1019

1 Introduction020

Recent years have witnessed a trend towards large-021

scale pre-trained language models (Devlin et al.,022

2019; Liu et al., 2019; Joshi et al., 2020; Song023

et al., 2019; Raffel et al., 2020; Lewis et al., 2020;024

Qi et al., 2021). The pre-trained models signifi-025

cantly improve the performance on downstream026

tasks. From the perspective of the model archi-027

tecture, we can classify current language models028

into three categories: non-autoregressive (NAR)029

encoder (Devlin et al., 2019; Liu et al., 2019), au-030

toregressive (AR) decoder (Radford et al., 2018),031

and encoder-decoder (Raffel et al., 2020; Lewis032

et al., 2020). AR decoders (e.g., GPT) show im-033

pressive performance of in-context learning, while034

the others are better at fine-tuning on the down-035

stream tasks.036

The NAR encoders, or the encoder-only models037

(e.g., BERT, RoBERTa, etc) are superior on natu-038

ral language understanding (NLU) tasks, such as039

1We will release the code for reproducibility.
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Figure 1: Top: the architectures of the mainstream pre-
trained language models. Bottom: the average score on
the NLU tasks(GLUE benchmark) and ROUGE-2 on
the NLG tasks(XSum dataset) for MLAE, RoBERTa
and T5.

text classification and question answering. How- 040

ever, due to the lack of pre-trained decoder, they 041

can not naturally be fine-tuned on natural language 042

generation (NLG) tasks. Therefore, current works 043

usually adopt the vanilla encoder-decoder archi- 044

tecture (e.g., T5, BART, etc). Although the vanilla 045

encoder-decoder pre-training provides a pre-trained 046

decoder, its AR decoder undermines the ability of 047

the encoder, which hurts the quality of generation. 048

In this paper, we introduce a simple yet effective 049

pre-training framework based on NAR encoder- 050
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Figure 2: Overview for the pre-training of MLAE. The encoder only processes the unmasked tokens. After the en-
coder, the masked tokens are concatenated with latent representations. A light-weight decoder non-autoregressively
reconstructs the masked tokens from a full set of tokens.

decoder architecture, named as Masked Language051

AutoEncoder (MLAE). The proposed MLAE not052

only provides a pre-trained decoder for generation053

tasks but also significantly improves the encoder’s054

ability. As shown in Figure 1, the encoder part of055

MLAE is more powerful than the counterpart of056

the vanilla encoder-decoder, even the encoder-only057

model. Besides, we introduce scheduled masking058

to bridge the gap between pre-training and genera-059

tion for MLAE. Above all, our model has shown060

superior performance on both NLU and NLG tasks.061

Especially for NAR generation, MLAE outper-062

forms strong baselines by an improvement of 3.03063

ROUGE-2 on XSum dataset.064

2 Background065

We begin with the observation: while pre-trained066

encoder-decoder models are good at language gen-067

eration, they trade off the encoders’ ability. Dur-068

ing pertaining, the encoder maps the unmasked069

tokens into latent representations, while the de-070

coder autoregressively reconstructs the masked to-071

kens. However, this architecture makes the model072

more rely on the AR decoder to generate target073

tokens rather than the encoder. Therefore, the en-074

coders pre-trained through AR encoder-decoder075

models are generally weaker than the encoder-only 076

model (Liu et al., 2019). 077

To verify the above observation, we pre-train a 078

12L RoBERTa and a 12L-4L T5 with the combi- 079

nation of English-Wikipedia and the BookCorpus. 080

The performance on NLU tasks is a good metric for 081

the ability of encoder. We thus evaluate RoBERTa 082

and T5 encoder on the large tasks of GLUE bench- 083

mark (Wang et al., 2019) and SQuAD2 dataset (Ra- 084

jpurkar et al., 2018). We use the same fine-tuning 085

method and hyper-parameters for a fair comparison. 086

Table 1 demonstrates that RoBERTa outperforms 087

T5 encoder on both two datasets. It shows that 088

although the AR encoder-decoder pre-training pro- 089

vides a pre-trained decoder to benefit generation 090

tasks, the ability of its encoder is undermined by 091

AR decoder. 092

In this work, inspired by the recent success of 093

Masked Autoencoder (MAE), we explore a way to 094

combine the best of two worlds: the architecture of 095

encoder-decoder models and the NAR objective of 096

encoder-only models. 097

3 MLAE 098

In this section, we first introduce the model ar- 099

chitecture of MLAE. Then we demonstrate the 100
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fine-tuning methods for NLU and NLG tasks, in-101

cluding two generation paradigms: AR and NAR102

generation, respectively.103

3.1 Pre-training104

MLAE is based on asymmetric NAR Transformer105

encoder-decoder. Figure 2 shows the overview for106

pre-training of our model. Similar to the MAE (He107

et al., 2021), it uses a decoder to reconstruct the108

masked tokens at the corresponding positions dur-109

ing pre-training. Given blocks of sentences, we110

randomly mask a portion of input tokens. The un-111

masked tokens are first processed by a series of112

Transformer blocks, including a self attention layer113

followed by a feed forward layer. After the encoder,114

the masked tokens are concatenated with latent rep-115

resentations, then feed into a light-weight decoder.116

The decoder is designed to reconstruct the masked117

tokens bidirectionally from a full set of tokens.118

Compared with vanilla encoder-decoder mod-119

els (Raffel et al., 2020; Lewis et al., 2020), the120

decoder of MLAE utilizes bidirectional informa-121

tion to reconstruct the masked tokens. Besides, we122

adopt an asymmetric encoder-decoder architecture:123

the decoder has less layers than the encoder. Both124

of them prevent the model more rely on the de-125

coder, thus provide a more challenging task for the126

encoder.127

3.2 Fine-tuning for Understanding Tasks128

For NLU tasks, we directly use the encoder part of129

MLAE as feature extractor. After the encoder, we130

add a linear layer followed by softmax classifier131

as the task layer. The encoder generates latent132

representations from source sentences. Then the133

task layer projects the representation corresponding134

to [EOS] into the label space.135

3.3 Fine-tuning for Generation Tasks136

For NLG tasks, we introduce two fine-tuning meth-137

ods for MLAE, which are UniLM-style (Dong138

et al., 2019) fine-tuning and Seq2seq-style fine-139

tuning.140

For UniLM-style fine-tuning, we modify the141

attention mask as Seq2Seq mask in each self-142

attention layer of the decoder. With Seq2Seq mask,143

a token in the source segment can attend to all the144

tokens within segment, while a token in the target145

segment can only attend to the leftward tokens. The146

encoder first generates latent representations from147

source sentences. After the encoder, we concate-148

nate the latent representations with target tokens,149

Algorithm 1 Scheduled Masking
Input: source sentence [x1, x2, ..., xn] and target sentence

[y1, y2, ..., yn], initial mask ratio m0 and maximum train-
ing updates T .
for t = 0 to T do

// feed source sentence into the encoder
[hi]i∈[1,n] ← Encoder([xi]i∈[1,n])
// Masking scheduler
mt ← m0 − m0

T
t

[y1, ...,M, ..., yn]←Mask([yi]i∈[1,n],mt)
// feed masked target sentence into the decoder
[y∗

i ]i∈[1,n] ← Decoder([y1, ...,M, ..., yn], [hi]i∈[1,n])

Loss =
∑

i
f(y∗

i , yi)
end for

then feed them into the decoder. The decoder au- 150

toregressively predicts target tokens conditioned on 151

the leftward tokens. 152

For Seq2seq-style fine-tuning, we insert cross- 153

attention layers into each layer of MLAE decoder, 154

then fine-tune it as the vanilla encoder-decoder. 155

The decoder autoregressively generates target to- 156

kens conditioned on the encoder output through 157

cross-attention layers. To make full use of pre- 158

trained modules, we initialize each cross-attention 159

layer by the weights of self-attention layer. 160

The experiments in Section 5.1 demonstrate that 161

Seq2seq-style fine-tuning is better for MLAE on 162

generation task. We achieve greater gains with 163

more pre-trained modules of MLAE. 164

3.4 Scheduled Masking 165

There are two major gaps between the MLM task 166

and the AR generation. During the pre-training, 167

MLAE decoder is designed to bidirectionally re- 168

construct the masked tokens from latent represen- 169

tations generated by the encoder. However, in the 170

fine-tuning for AR generation, the decoder aims 171

to predict the target tokens given the leftward to- 172

kens within target segment and source tokens. Be- 173

sides, the input of decoder is blocks of target tokens 174

without the masked tokens introduced during the 175

pre-training. 176

To bridge the MLM task and AR generation, 177

we design a simple yet effective strategy for the 178

decoder input, named as masking scheduler. We 179

deploy the linear masking decay for the scheduler 180

to train the model from easier data to harder one. 181

We summarize the training process with mask- 182

ing scheduler in Algorithm 1. At the beginning 183

of fine-tuning, we randomly mask a portion of in- 184

put tokens for the decoder. Since the decoder has 185

already learned to bidirectionally reconstruct the 186
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Models Arch. Obj. SQuAD2 MNLI-(m/mm) QNLI QQP SST Avg.
T5

Enc-dec AR
- / - 85.56/85.20 89.30 84.76 93.54 87.67

T5 Encoder 77.87/80.83 85.54/85.40 92.32 87.99 93.27 88.90
RoBERTa Enc-only NAR 79.14/81.86 85.88/86.10 92.39 87.60 93.16 89.03
MLAE Enc-dec NAR 79.93/82.84 86.15/86.05 93.05 88.08 93.62 89.39

Table 1: Results for T5, T5 encoder, RoBERTa and MLAE on the dev set of SQuAD2 and GLUE benchmark. We
report EM/F1 scores for SQuAD2.

masked tokens in the pre-training, masking sched-187

uler creates easier samples for the decoder. As the188

training progresses, the mask ratio is linearly de-189

cayed to zero, which makes the decoder gradually190

adapt from NAR reconstruction to AR generation.191

Similarly in the fine-tuning for NAR generation,192

the decoder non-autoregressively generates target193

tokens from a full set of the unknown tokens. We re-194

place the unknown tokens with the masked tokens195

used in the pre-training. Then we adopt Masked-196

and-predict (Ghazvininejad et al., 2019) strategy197

to narrow the gap between NAR generation and198

the MLM pre-training. The number of the masked199

tokens is sampled from a uniform distribution be-200

tween one and the maximum sequences’ length.201

4 Experiments202

In this section, we first introduce the setup of203

pre-training, then conduct experiments on both204

NLU tasks (i.e., the GLUE benchmark and extrac-205

tive question answering), and NLG tasks (i.e., ab-206

stractive summarization), including AR and NAR207

paradigms.208

4.1 Setup209

Models We pre-train RoBERTa, T5 and MLAE210

with the same corpus. RoBERTa has a 12-layer en-211

coder. T5 is based on the vanilla encoder-decoder,212

which has a 12-layer encoder and 4-layer decoder.213

For a fair comparison, MLAE has the same depth214

for the encoder and the decoder, respectively. We215

adopt the BERT-base setting: the hidden dimension,216

intermediate dimension of feed-forward layers and217

attention heads for all models are 768, 3072 and 12218

respectively.219

Data Following Devlin et al. (2019), we use220

the BookCorpus (Zhu et al., 2015) and English-221

Wikipedia as the pre-training corpus. The Book-222

Corpus is a large collection of free novel books writ-223

ten by unpublished authors, which contains 800M224

words. We remove non-text parts for English-225

Wikipedia, which leads to 2.5B words.226

For all models, we set the mask ratio as 15%. 227

The maximum length is 512 tokens. We randomly 228

mask consecutive spans rather than tokens. The 229

average length of span is 3 tokens. We adopt 230

the masked language modeling as the pre-training 231

task for RoBERTa and MLAE, span corruption 232

for T5. The vocabulary is built from a Sentence- 233

Piece (Kudo and Richardson, 2018) tokenizer with 234

64K tokens. 235

Training We train our model and the baselines 236

with Adam (Kingma and Ba, 2015) optimizer for 237

125K steps. The batch size is set as 2,048. The 238

whole training procedure takes about 2 days on 239

64 NVIDIA Tesla V100 GPUs. The other hyper- 240

parameters used in pre-training are detailed in Ta- 241

ble 7 of Appendix A. 242

4.2 Results of Understanding Tasks 243

We evaluate our model and the baselines on the 244

large tasks of GLUE benchmark and SQuAD2 245

dataset. For T5 encoder and MLAE, we only use 246

their encoder as feature extractor, then add a task 247

layer for them. Besides, we reformat the text clas- 248

sification to text-to-text generation, and directly 249

fine-tune T5 without any modifications. More de- 250

tails are in Table 8 and Table 9 of Appendix A. 251

GLUE benchmark (Wang et al., 2019) is a col- 252

lection of nine language understanding tasks, in- 253

cluding linguistic acceptability, question answer- 254

ing, sentiment analysis and textual entailment. 255

We choose the large tasks of GLUE benchmark, 256

namely MNLI, QNLI, QQP and SST. 257

SQuAD2 (Rajpurkar et al., 2018) is one of the 258

most popular benchmarks for extractive question 259

answering, which combines SQuAD (Rajpurkar 260

et al., 2016) with unanswerable questions. 261

We report the results of our model and the base- 262

lines in Table 1. T5 encoder outperforms T5 by 263

a gain of 1.23 average score on the large tasks of 264

GLUE benchmark. It shows that reformatting text 265

classification to generation leads to the degradation 266

of performance. Besides, RoBERTa outperforms 267
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Models Arch. Obj. RG-1 RG-2 RG-L
RoBERTa (Liu et al., 2019) Enc-only NAR 40.19 17.50 38.83
T5 (Raffel et al., 2020) Enc-dec AR 41.29 18.37 39.55

[1] MLAE (Ours)

Enc-dec NAR

42.58 19.30 40.73
[2] [1] - scheduled masking 41.50 18.62 39.94
[3] [2] - asymmetric architecture 40.50 17.58 38.83
[4] [2] - pretrain w/o cross-attn 41.29 18.40 39.75

Table 2: Results of RoBERTa, T5 and MLAE for AR generation on the test set of XSum dataset.

Models RG-1 RG-2 RG-L
RoBERTa 37.03 15.03 31.41
T5 40.43 17.50 34.21
MLAE 40.74 17.78 34.61

Table 3: Results of RoBERTa, T5 and MLAE for AR
generation on the test set of CNN/DM dataset.

T5 encoder on both two dataset, which verifies268

our analysis that the vanilla encoder-decoder pre-269

training undermines the ability of its encoder.270

Furthermore, our model achieves gains of 0.36271

average score on the large tasks of GLUE bench-272

mark, 1.28 EM and 1.27 F1 on SQuAD2 dataset273

compared with RoBERTa. It demonstrates that274

MLAE creates a more powerful encoder than275

RoBERTa and the encoder part of T5.276

4.3 Results of AR Generation277

For AR generation, we conduct experiments on278

two popular benchmarks, Extreme summarization279

(XSum) and CNN/Daily Mail (CNN/DM) dataset.280

XSum (Narayan et al., 2018) is a collection of281

227K online articles and single sentence summaries282

harvested from the British Broadcasting Corpora-283

tion(BBC). The average input and output lengths284

are 359 and 21 respectively.285

CNN/DM (Hermann et al., 2015; Nallapati et al.,286

2016) contains online news articles accompanying287

with multi-sentence summaries. The average to-288

kens of input and output are 781 and 56 respec-289

tively.290

For RoBERTa, due to lack of pre-trained decoder,291

we add a randomly initialized 4-layer decoder for292

it, and fine-tune the whole model as the vanilla293

encoder-decoder. For MLAE, we adopt Seq2seq-294

style fine-tuning and initialize the cross-attention295

layers by the weight of self-attention layers. The296

masking scheduler is also deployed for the decoder:297

we randomly mask 60% tokens of decoder input at298

beginning and linearly decay the mask ratio to 0 as299

the training progresses. 300

We fine-tune our model and the baselines for 301

30K updates on CNN/DM dataset, 50K updates on 302

XSum dataset; and select the best checkpoint based 303

on their validation loss. For a fair comparison, 304

we use the same hyper-parameters for all models. 305

More details can be found in Table 10 and Table 11 306

of Appendix A. For inference, we truncate the in- 307

puts to be 512 tokens and use beam search strategy 308

to generate target sentences. We set beam size as 6, 309

length penalty as 1.0. We use ROUGE (Lin, 2004) 310

as the evaluation metric for all experiments. 311

Table 2 and Table 3 summarize the results of our 312

model and the baselines on the test set of XSum 313

and CNN/DM dataset, respectively. T5 and MLAE 314

outperform RoBERTa by a large gain on both two 315

datasets. It verifies that the pre-trained decoder 316

can significantly improve the quality of generation. 317

Furthermore, compared with T5, MLAE achieves 318

improvements of 0.93 ROUGE-2 on XSum dataset, 319

and has comparable performance on CNN/DM 320

dataset. It shows the effectiveness of our model 321

on AR generation. 322

4.4 Results of NAR Generation 323

For NAR generation, we choose iNAT (Lee et al., 324

2018), InsT (Stern et al., 2019), LevT (Gu et al., 325

2019) and CMLM (Ghazvininejad et al., 2019) as 326

the baselines trained from the scratch. 327

To explore the impact of pre-training strategy, 328

we pre-train the T5-NAR model on the 16G corpus. 329

The only difference between T5-NAR and T5 lies 330

on the design of the decoder. The input of T5-NAR 331

decoder is a full set of the masked tokens. In the 332

self-attention layer of T5-NAR’s decoder, we re- 333

move the masking for the rightward tokens to allow 334

bidirectional information. Above all, the decoder 335

of T5-NAR is designed to non-autoregressively re- 336

construct the target tokens from the masked tokens. 337

We pre-train MLAE with cross-attention layers 338

on the same 16G corpus, then directly load our 339
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Models RG-1 RG-2 RG-L
iNAT (Lee et al., 2018) 20.71 4.39 22.94
InsT (Stern et al., 2019) 21.44 6.77 24.66
LevT (Gu et al., 2019) 25.02 7.41 27.15
CMLM (Ghazvininejad et al., 2019) 29.24 7.70 28.93
T5-NAR 31.48 9.02 30.80
MLAE (Ours) 39.08 14.81 37.25

Table 4: Results of MLAE and the baselines for NAR generation on the test set of XSum dataset. All models are
trained with a 12-layer encoder and a 4-layer decoder for a fair comparison.

Models Layers # Params AR NAR
RG-1 RG-2 RG-L RG-1 RG-2 RG-L

BANG (Qi et al., 2021) 6L-6L
100M

41.09 18.37 33.22 34.71 11.71 29.16

MLAE (Ours)
6L-6L 41.69 18.63 39.93 38.56 14.41 36.76
9L-4L 42.10 18.76 40.22 39.25 14.74 37.21

Table 5: Results of BANG (Qi et al., 2021) and MLAE on the test set of XSum dataset, including AR and NAR
generation paradigm. AL-BL refers to A-layer encoder and B-layer decoder.

model into the CMLM. For masking scheduler, we340

adopt Masked-and-predict (Ghazvininejad et al.,341

2019) strategy.342

We evaluate our model and the baselines on343

XSum dataset. Despite knowledge distillation can344

improve the quality of NAR generation, the re-345

sults highly depend on the distilled dataset. To346

enable other researchers to reproduce our results347

more easily, we do not perform knowledge distilla-348

tion for our model and the baselines. Since NAR349

models need more updates to converge, we set the350

maximum updates as 300K. The NAR baselines351

trained from the scratch are integrated into Fairseq352

library (Ott et al., 2019). We implement these base-353

lines with default settings2. For a fair comparsion,354

all models have a 12-layer encoder and a 4-layer355

decoder.356

For inference, we truncate the inputs to be 512357

tokens and use iterative decoding strategy. The358

tokens with low confidence will be masked and359

re-generated in the next cycle until the iterations360

reaches a manually set number. Following Qi et al.361

(2021), the maximum iteration is set as 10. We362

merge consecutive repeated tokens to ease the prob-363

lem of repeated tokens.364

Table 4 presents the results of MLAE and the365

baselines. T5-NAR and MLAE achieve a gain of366

over 1 ROUGE-2 compared with the other base-367

lines trained from the scratch. It shows that via368

pre-training the performances for NAR generation369

2Fairseq NAR baselines

are significantly improved. Further, with a more 370

powerful encoder, MLAE outperforms T5-NAR by 371

improvements of 5.79 ROUGE-2 on XSum dataset. 372

It shows the effectiveness of MLAE pre-training 373

on the NAR generation paradigm. 374

4.5 Comparison with BANG 375

We compare our model with BANG (Qi et al., 376

2021) on XSum dataset. BANG is based on vanilla 377

encoder-decoder, which fuses AR and NAR objec- 378

tives through different attention mechanisms. It has 379

a 6-layer encoder, 6-layer decoder and 768 hidden 380

dimension. 381

MLAE is trained with a 9-layer encoder, a 4- 382

layer decoder and the same hidden dimension, re- 383

sulting in up to 100M backbone parameters for 384

a fair comparison. Besides, we train MLAE 385

with symmetric architecture. The pre-training cor- 386

pus is the same as BANG. The fine-tuning hyper- 387

parameters and methods of MLAE on AR and 388

NAR generation are consistent with the experi- 389

ments presented in Section 4.3 and Section 4.4 390

respectively. We adopt the same evaluation scripts 391

following Qi et al. (2021). 392

We report the results of our models and BANG 393

on Table 5. It demonstrates that 6L-6L and 9L-4L 394

MLAE both has consistently better performance 395

than BANG on AR and NAR generation paradigm. 396

Especially, 9L-4L MLAE outperforms BANG by 397

an improvement of 3.03 ROUGE-2 on the NAR 398

generation. 399
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MLAE fine-tuning SM RG-1 RG-2 RG-L
UniLM-style

%

40.46 17.75 39.18
[1] Seq2seq-style 40.22 17.64 38.94
[2] [1] + MLAE decoder 40.92 18.19 39.52
[3] [2] + shared self & cross attn 41.50 18.62 39.94
[4] [3] + Const. scheduler

!
41.46 18.50 39.99

[5] [3] + Linear decay scheduler 42.58 19.30 40.73

Table 6: Comparisons between different fine-tuning strategies and implementations of the masking scheduler for
MLAE. SM indicates whether to use scheduled masking for fine-tuning. For [4] and [5], the initial mask ratio is
set as 60%.

5 Ablation Study400

In this section, we conduct the ablation studies401

on the fine-tuning strategies for NLG tasks in Sec-402

tion 5.1, model architecture and scheduled masking403

in Section 5.2 and Section 5.3, respectively.404

5.1 Fine-tuning Strategies405

We present comparisons between UniLM-style and406

Seq2seq-style fine-tuning for AR generation on407

XSum dataset. For a fair comparison, we do not408

apply masking scheduler for all the experiments.409

For UniLM-style fine-tuning, we use the bidi-410

rectional mask for the encoder and Seq2seq mask411

for the decoder. With the Seq2seq mask, MLAE412

decoder can auto-regressively generate the target413

tokens conditioned on the representations of source414

tokens and leftward tokens within the target seg-415

ment. For Seq2seq-style fine-tuning, we insert416

cross-attention layers into each layer of MLAE de-417

coder, then fine-tune the model as a vanilla encoder-418

decoder.419

To explore the impact of pre-trained decoder, we420

conduct experiments for Seq2seq-style fine-tuning421

with a randomly initialized decoder. As shown in422

Table 6, the model with MLAE decoder outper-423

forms it with random decoder by a gain of 0.55424

ROUGE-2. However, the newly inserted cross-425

attention modules are still randomly initialized,426

which provides the room to use more pre-trained427

modules to improve the performance. Therefore,428

we further use each self-attention layer’s weights429

of MLAE decoder to initialize correspond cross-430

attention layer’s weights. The results show that431

with more pre-trained modules, we achieve greater432

gain for the quality of generation.433

Besides, Table 6 shows that Seq2seq-style fine-434

tuning with a "fully" pre-trained decoder is a better435

way for MLAE on AR generation task: it outper-436

forms UniLM-style fine-tuning by an improvement437

of 0.87 ROUGE-2 on XSum dataset. 438

5.2 Ablation on the Architecture 439

We compare MLAE based on symmetric and 440

asymmetric architecture, with and without cross- 441

attention layers for the decoder during the pre- 442

training. The masking scheduler is not applied 443

for all the experiments for a fair comparison. 444

We first compare MLAE with symmetric and 445

asymmetric architecture for AR generation on 446

XSum dataset. For symmetric architecture, we 447

train MLAE with an 8-layer encoder, an 8-layer 448

decoder and 768 hidden dimension, which leads 449

to the same amount of parameters. We report the 450

results of 8L-8L, 12L-4L MLAE in Table 2. It 451

shows that asymmetric architecture is preferred for 452

AR generation. This results from that the ability of 453

the encoder is more crucial for the quality of AR 454

generation. 455

Further we present comparisons for MLAE with 456

and without cross-attention layers for the decoder 457

during the pre-training. For a fair comparison, 458

we pre-train a Base-size, 12L-4L MLAE with 459

cross-attention layers on the same corpus. As 460

shown in Table 2, MLAE pre-training without 461

cross-attention layers slightly outperforms it with 462

cross-attention layers by an improvement of 0.22 463

ROUGE-2 for AR generation. 464

5.3 Effect of Scheduled Masking 465

We first compare different implementations of the 466

masking scheduler: the mask ratio is set as a con- 467

stant, and linearly decayed to 0 as the training pro- 468

gresses. As shown in Table 6, linear decay is a 469

better scheduler function for AR generation. 470

Further, we explore the impact of different initial 471

mask ratio for the masking scheduler. We vary the 472

initial mask ratio from 0% to 90% with an interval 473

of 15%. Figure 3 shows the ROUGE-2 scores for 474

AR generation on XSum dataset. It demonstrates 475
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Figure 3: ROUGE-2 scores of MLAE for AR genera-
tion on the test set of XSum dataset varying the initial
mask ratio of masking scheduler from 0% to 90%.

that replacing a small portion (15%) of decoder476

input with the masked token can significantly im-477

prove the performance of generation. As shown478

in Figure 3, a relatively high initial mask ratio,479

approximately 45% to 75%, is preferred for AR480

generation.481

6 Related Work482

Language model pre-training. The perfor-483

mance of downstream tasks benefits from the large-484

scale pre-trained models. BERT (Devlin et al.,485

2019) introduces MLM to pre-train the encoder-486

only Transformer, which allows the model to use487

bidirectional information to generate latent repre-488

sentations. A greater gain can be achieved by pre-489

training longer with more training data (Liu et al.,490

2019) and masking consecutive spans rather than491

tokens (Joshi et al., 2020).492

However, although the encoder-only models493

achieve great success on NLU tasks, due to lack of494

pre-trained decoder, they are not effectively fine-495

tuned for NLG tasks. Besides, BERT reconstructs496

the masked tokens bidirectionally rather than auto-497

regressively, which broadens the gap between pre-498

training and fine-tuning for AR generation. To499

address these issues, UniLM (Dong et al., 2019)500

pre-trains BERT with different mask mechanisms501

for attention layers. With their proposed Seq2seq502

mask, UniLM can generate target tokens autore-503

gressively with the encoder-only architecture.504

Another line of research is to adopt vanilla505

encoder-decoder framework for pre-training.506

MASS (Song et al., 2019) randomly masks507

consecutive tokens for the input sentences. The508

encoder takes the corrupted sentences as input,509

including the masked and unmasked tokens; its510

decoder reconstructs the masked tokens. Different511

from MASS, BART (Lewis et al., 2020) feeds 512

the corrupted sentences into the encoder, the 513

uncorrupted sentences into the decoder, which 514

reduces the mismatch between pre-training and 515

fine-tuning. T5 (Raffel et al., 2020) aims to unify 516

all text-based language problems into text-to-text 517

format, which adopts vanilla encoder-decoder 518

framework with span corruption. 519

NAR generation. Gu et al. (2017) first introduce 520

vanilla Transformer encoder-decoder for NAR ma- 521

chine translation. NAR generation removes the 522

assumption that each output word is conditioned 523

on previously generated outputs. Although this 524

parallel generation largely speeds up the inference, 525

it is troubled by the repeated tokens problem. A 526

lot of efforts are proposed to ease this issue (Lee 527

et al., 2018; Gu et al., 2019; Stern et al., 2019; 528

Ghazvininejad et al., 2019). Qi et al. (2021) intro- 529

duces BANG to bridge AR and NAR generation 530

with large-scale pre-training, which fuses AR and 531

NAR objectives by different attention mechanisms. 532

Masked autoencoders. He et al. (2021) first in- 533

troduces masked autoencoder for self-supervised 534

vision pre-training. With a light-weight decoder 535

and high masking ratio, MAE avoids wasting the 536

model capacity on short-range dependencies, cre- 537

ates a more powerful encoder from reconstructing 538

unsemantic pixels of the masked patches. After 539

that, masked autoencoders are adopted for video 540

pre-training (Tong et al., 2022; Feichtenhofer et al., 541

2022) and vision-language pre-training (He et al., 542

2022; Geng et al., 2022). 543

7 Conclusion 544

We propose MLAE, a new pre-training paradigm 545

based on masked autoencoders. With MLAE, we 546

not only have a pre-trained decoder for NLG tasks, 547

but also a more powerful encoder compared with 548

the encoder part of vanilla encoder-decoder, even 549

the encoder-only model. Besides, we design a 550

simple yet effective method, named as masking 551

scheduler, to bridge MLM pre-training and gener- 552

ation. The proposed MLAE combines the best of 553

two worlds: the encoder-only models’ good per- 554

formance on NLU tasks and the vanilla encoder- 555

decoders’ good performance on NLG tasks, includ- 556

ing AR and NAR paradigms. It shows that MLAE 557

is a preferred alternative compared with vanilla 558

encoder-decoder. 559
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8 Limitations560

While this work empirically finds that non-561

autoregressive modeling improves language model562

pre-training, the mechanism behind this inductive563

bias needs more in-depth analysis. In addition,564

we do not explore the multilingual pre-training of565

MLAE in the paper, which will be left as future566

work. Like most of the existing pre-trained models,567

our method may have some potential bias originat-568

ing from the pre-training data.569
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A Hyper-parameters745

Hyperparameters Value
Hidden size 768
FFN inner hidden size 3,072
Attention heads 12
Peak Learning rate 5e-4
Learning rate schedule Polynomial decay
Warm-up updates 10,000
Warm-up init learning rate 1e-7
Sequence length 512
Batch size 2,048
Mask ratio 15%
Adam β (0.9, 0.98)
Training updates 125K
Gradient clipping 2.0
Dropout 0.1
Weight decay %

Table 7: Hyperparameters for MLAE and the baselines
pre-training.

Hyperparameters Value
Peak Learning rate {1e-5, 2e-5, 3e-5, 4e-5}
Learning rate schedule polynomial decay
Adam β (0.9, 0.98)
Warm-up {10%, 20%}
Batch size 32
Training epochs 3
Seed {1, 2, 3}
Gradient clipping %
Dropout 0.1
Weight decay 0.01

Table 8: Hyperparameters for MLAE and the baselines
fine-tuning on the large tasks of GLUE benchmark.

Hyperparameters Value
Peak Learning rate {2e-5, 3e-5, 4e-5}
Learning rate schedule polynomial decay
Adam β (0.9, 0.999)
Warm-up 10%
Batch size 32
Training epochs 3
Seed {1, 2, 3}
Gradient clipping %
Dropout 0.1
Weight decay 0.01

Table 9: Hyperparameters for MLAE fine-tuning on the
SQuAD2 dataset.

Hyperparameters AR NAR
Peak Learning rate {7e-5, 1e-4}
Learning rate schedule inverse sqrt
Warm-up 500 10,000
Maximum tokens 8 × 4096
Training updates 30K 300K
Adam β (0.9, 0.999)
Gradient clipping 1.0
Dropout 0.1
Weight decay 0.01

Table 10: Hyperparameters for MLAE fine-tuning for
AR and NAR generation on the XSum dataset.

Hyperparameters Value
Peak Learning rate {7e-5, 1e-4}
Learning rate schedule inverse sqrt
Warm-up 500
Maximum tokens 16 × 4096
Training updates 30K
Adam β (0.9, 0.999)
Gradient clipping 1.0
Dropout 0.1
Weight decay 0.01

Table 11: Hyperparameters for MLAE fine-tuning on
the CNN/DM dataset.
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