
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

JOINT GRADIENT BALANCING FOR DATA ORDERING
IN FINITE-SUM MULTI-OBJECTIVE OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In finite-sum optimization problems, the sample orders for parameter updates can
significantly influence the convergence rate of optimization algorithms. While
numerous sample ordering techniques have been proposed in the context of
single-objective optimization, the problem of sample ordering in finite-sum multi-
objective optimization has not been thoroughly explored. To address this gap, we
propose a sample ordering method called JoGBa, which finds the sample orders
for multiple objectives by jointly performing online vector balancing on the gra-
dients of all objectives. Our theoretical analysis demonstrates that this approach
outperforms the standard baseline of random ordering and accelerates the conver-
gence rate for the MGDA algorithm. Empirical evaluation across various datasets
with different multi-objective optimization algorithms further demonstrates that
JoGBa can achieve faster convergence and superior final performance than other
data ordering strategies.

1 INTRODUCTION

Many well-known machine learning problems involve jointly optimizing multiple objectives in
model training. Examples include multi-task learning (Sener & Koltun, 2018), meta-learning (Ye
et al., 2021), learning with fairness and safety constraints (Zafar et al., 2017) and multi-agent re-
inforcement learning (Moffaert & Nowé, 2014). Mathematically, these problems share the same
formulation of minimizing a vector-valued loss function L and can be defined as:

min
w∈Rd

L(w) := [L1(w), . . . ,LM (w)]. (1)

Here, each loss function Lm(w),m = 1, . . . ,M corresponds to a training objective and can be
expressed by Lm(w) =

∑N
n=1 ℓm(w, ξn), where each ξn denotes a training sample and ℓm is

the per-sample loss. Solving problem (1) is fundamentally different from common single-objective
optimization problems as different objectives may have conflicts with each other. A straight-forward
baseline is to optimize a weighted average of the multiple objectives, also known as static or unitary
weighting (Kurin et al., 2022; Xin et al., 2022). Its performance then largely depends on how to
choose the weights to balance different objectives, and may involve huge amount of tuning efforts.
A popular alternative is thus to dynamically weight gradients from different objectives to avoid
conflicts between them. Generally, these methods share the same procedure: first compute all the
gradients of each objective, then compute a set of weights for different objectives based on their
gradients. The model is then updated by the weighted sum of all gradients, while the weights can
dynamically change. The pioneering work of this approach is the multi-gradient descent algorithm
(MGDA) (Désidéri, 2012) and its stochastic variants (Liu & Vicente, 2021; Fernando et al., 2023;
Zhou et al., 2022; Chen et al., 2024). Later works further improve upon MGDA by considering
the worst improvement among different objectives (Liu et al., 2021; Ban & Ji, 2024), as well as
constructing a bargaining game between different objectives (Navon et al., 2022).

While many methods can be used to compute weights dynamically based on the loss gradients, an-
other less investigated issue for finite-sum multi-objective optimization is how we order different
samples to compute their gradients and solve the problem in (1). For single-objective optimization
in the finite-sum setting, many different methods have been proposed for obtaining an order for all
samples. Nevertheless, they exclusively focus on a single objective only. When we have multiple ob-
jectives, one simple approach to generalize existing sample ordering methods (Figure 1(a)) is to use

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

the weighted average of all loss gradients as the sample “gradient”, and follow existing data order-
ing methods on the weighted gradient. However, the gradient weights may change drastically during
model update, which makes existing methods unstable and often does not improve the performance
over the simple baseline of random ordering. Another simple extension is to utilize existing sample
ordering algorithms for each objective separately, which leads to different orderings for different
objectives (Figure 1(b)). It overlooks possible conflicts between gradients from different samples,
thus can still yield limited improvement than random ordering.

Motivated by the above limitations, in this paper, we propose a novel sample ordering framework
for multi-objective optimization methods. As illustrated in Figure 1(c), the proposed method jointly
provides the sample ordering for different objectives by solving an online vector balancing problem
with the gradients on each objective. The online vector balancing problem allows us to control the
maximum norm of total model update within one epoch, which can be proved to accelerate con-
vergence from theoretical analysis. Our theoretical results demonstrate that the proposed method
improves over the baseline of random ordering for finite-sum multi-objective optimization, with
smaller sample variance and faster convergence. Empirical results on different data sets with mul-
tiple objectives for learning demonstrate that the proposed method achieves faster convergence and
better final performance than the other data sampling methods.

Our contributions are summarized as follows:

• We propose a novel data ordering method that uses gradient balancing across different objectives
to accelerate convergence.

• We propose a novel theoretical framework to analyze multi-objective optimization with different
data ordering for each objective.

• Empirical results across different data sets for multi-task learning demonstrate the effectiveness
of our method.

(a) Same ordering for all objec-
tives.

(b) Data ordering on each objec-
tive separately.

(c) Proposed method: joint data
ordering on all objectives.

Figure 1: Visualization of different data ordering approaches for multi-objective optimization.

2 RELATED WORKS

2.1 PERMUTATION-BASED SGD FOR FINITE-SUM OPTIMIZATION

Different with the online setting that assumes training samples are independently sampled from an
underlying distribution, permutation-based SGD proposes to first sort all training samples by an
order, and use these samples following this order. An example is random reshuffling (Ying et al.,
2017) and the related shuffle-once method (Bertsekas, 2011; Gürbüzbalaban et al., 2019), which first
generates random permutations for all training samples in each epoch, and then uses the training
samples in each iteration following this permutation. Theoretical analysis of random reshuffling
dates back to Recht & Ré (2012). Rajput et al. (2021) introduces a variant of random reshuffling
that reverses the order in every two epochs, and theoretically demonstrates that this variant achieves
faster convergence for quadratic objectives.

Instead of using a random order, some other works (Lu et al., 2021; Mohtashami et al., 2022; Lu
et al., 2022) try to find sample orders better than randomly generated ones. These works are mostly
based on the herding problem (Welling, 2009), which minimizes the consecutive errors of stochas-
tic gradients. Theoretical analysis (Cha et al., 2023) demonstrates that such ordering based on the
herding problem is asymptotically optimal. There are different methods to solve the herding prob-
lem. Mohtashami et al. (2022) evaluates gradients on all samples first and then solves the herding
problem to obtain the order for all samples before starting an epoch. Lu et al. (2021) uses stale gra-
dients from the previous epoch to estimate the gradient on each sample. Lu et al. (2022) proposes

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

to solve the herding problem via online vector balancing, which removes the additional storage cost
in (Mohtashami et al., 2022; Lu et al., 2021).

Despite numerous works mentioned above, existing works on permutation-based SGD only focus
on single-objective optimization problems. While some simple extensions exist for training with
multiple objectives (e.g., by using the weighted gradient or ordering samples for each objective sep-
arately), these simple extensions do not always yield much improvements, as will be demonstrated
in our empirical results.

2.2 GRADIENT-BASED MULTI-OBJECTIVE OPTIMIZATION

To balance the optimization on different objectives, most existing algorithms use the weighted aver-
age of all objective gradients to update the model. There are different ways to compute the weights
for different objectives. Some works set such weights based on some heuristics. Examples include
prediction uncertainty (Kendall et al., 2017), gradient norms (Chen et al., 2018) or task difficulty
(Guo et al., 2018). Another line of works propose to compute the objective weights from some
sub-problems on the objective gradients. The pioneering work is MGDA (Désidéri, 2012), which
computes the weights by avoiding conflicts across any objective. Stochastic variants of MGDA with
optimization convergence guarantees have been proposed in (Liu & Vicente, 2021; Zhou et al., 2022;
Fernando et al., 2023; Chen et al., 2024). PCGrad (Yu et al., 2020) proposes to project the gradi-
ents of tasks to the normal plane of the other tasks with conflicting gradients. CAGrad (Liu et al.,
2021) searches for an update direction in a neighborhood of the average gradient that maximizes the
worst improvement of any task. Nash-MTL (Navon et al., 2022) proposes to look for a fair gradient
direction based on a bargaining game between different objectives.

Convergence analysis for the deterministic MGDA algorithm dates back to (Fliege et al., 2019).
Later on, stochastic variants of MGDA are introduced (Liu & Vicente, 2021; Zhou et al., 2022;
Fernando et al., 2023; Chen et al., 2024). However, the vanilla stochastic MGDA introduces a
biased estimate of the dynamic weight, which results in the biased estimate of update direction
during optimization. To address this issue, Liu & Vicente (2021) proposes to increase the batch size
during optimization, and proves the convergence of stochastic MGDA with the Lipschitz continuity
assumption for the objective weights λ∗(w) with respect to the loss gradients ∇L(w). Nevertheless,
as first proved in (Zhou et al., 2022, Proposition 2), this assumption does not hold in general. To
address this problem, momentum-based bias reduction algorithms (Zhou et al., 2022; Fernando et al.,
2023) were proposed to eliminate such unrealistic assumptions. The convergence of the MGDA
algorithm without the unrealistic Lipschitzness assumption is first established in (Chen et al., 2024),
which propose to mitigate the bias in update direction via double sampling. Most existing works
focus on the convergence analysis under an online setting instead of the finite-sum setting, and
ignores the impact of sample orders in their theoretical analysis.

3 PROPOSED METHOD

3.1 MULTIPLE SAMPLE ORDERINGS FOR MULTIPLE OBJECTIVES

A simple extension of existing single-objective sample ordering methods to multi-objective opti-
mization is to use the weighted average of all loss gradients as the sample “gradient”, and follow
existing data ordering methods on the weighted gradient. When the objective weights do not change
with different samples, such an extension can be regarded as using the weighted objective as the only
objective in the existing methods. However, since the objective weights are constantly changing, us-
ing the same sample order cannot well tackle the possible conflicts between different objectives.

As such, we propose to use different sample orders for the different objectives. Specifically, for
a data set with K samples, we generate an order πm

t : {1, . . . ,K} → {1, . . . ,K} for the m-th
objective. To generate the order πm

t in each epoch t, some simple examples are listed below:

1. Random: In each epoch t, the data sets are randomly shuffled to generate an ordering πm
t for

each objective.

2. FlipFlop: For each objective, create a new order πm
t+1 by reversing the previous πm

t , i.e.,
πm
t+1(k) = πm

t (K + 1− k).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3. Random FlipFlop, which performs Random on even epochs and FlipFlop on odd epochs.

3.2 SAMPLE ORDERING BY ONLINE VECTOR BALANCING

Despite the simple ordering methods introduced in Section 3.1, some recent works (Lu et al., 2021;
Mohtashami et al., 2022; Lu et al., 2022) propose to adaptively find a good order for all training
samples in each epoch for faster convergence. An example is GraB (Lu et al., 2022), which tries
to find a sample ordering π that minimizes the maximum norm of parameter update in each epoch,
i.e., maxK′ ∥w(K′) − w(1)∥∞. With a single objective ℓ¡ the model parameters are updated by
w(k+1) = w(k) − α∇ℓ(w, ξπ(k)) at each iteration k in an epoch. This problem is then transformed
to the online vector balancing problem defined below:

Definition 3.1 (Online Vector Balancing (Spencer, 1977)). Given K vectors {zk}Kk=1 ∈ Rd, arriv-
ing one at a time, the goal of online vector balancing is to assign a sign ϵk ∈ {−1,+1} to each
vector upon receiving it so as to minimize maxm∈{1,...,K} ∥

∑m
k=1 ϵkzk∥∞.

We then propose to generalize such problem to the setting of multiple objectives by replacing the
gradients on a single objective to those on multiple obejctives and jointly consider their influence to
model updates, as the model is also jointly updated on different objectives. The complete proce-
dure of the proposed method, called JoGBa (Joint Gradient Balancing), is shown in Algorithm 1.
Specifically, in the k-th iteration of epoch t, we compute the gradients {∇ℓm(w

(k)
t , ξπm

t (k))}Mm=1

for all the M objectives on current model parameter w(k)
t . The sample orders πm for each objective

is then determined based on the results from solving the balancing problem on the gradients from
different objectives, implemented by routine Balancing in step 11. While there exists different
ways to solve the online vector balancing problem and compute the gradient sign ϵm,k,t, here we
follow GraB and use a greedy algorithm that works well in practice. As in Algorithm 2, we compare
the vector norms of ∥s+gm,k,t∥∞ and ∥s−gm,k,t∥∞, where s+gm,k,t corresponds to putting this
sample at the beginning and s − gm,k,t corresponds to putting this sample at the end. Then since
the online vector balancing problem in Definition 3.1 tries to minimize the norm of vector sum, we
choose the sample order that can lead to the smallest norm, as is indicated by the value of ϵm,k,t.
The vector s is shared among different objectives to enable joint balancing across their correspond-
ing gradients. After the balancing routine is complete, we compute the objective weights λ by any
multi-task learning algorithm (routine MTL) such as MGDA (Désidéri, 2012) or Nash-MTL (Navon
et al., 2022). Then we update the mean v of all gradients and perform model update on w

(k)
t .

3.3 THEORETICAL ANALYSIS

In this section, we theoretically demonstrate how Algorithm 1 improves upon simple extensions
of sample ordering methods to multi-objective optimization. Since the convergence analysis of
multi-objective optimization is different from optimizing a single objective, we first introduce the
definition of Pareto stationary. Denote the gradients for all M objectives as ∇L(w) ∈ Rd×M , where
L(w) is defined as in (1), and define ∆M as the following set:

∆M :=

{
λ ∈ RM :

∑M

m=1
λm = 1, λm ≥ 0,∀m = 1, . . . ,M

}
.

Analogous to the stationary and optimal solutions for a single objective, we define Pareto stationary
and Pareto optimal solutions for the multi-objective optimization problem minw∈Rd L(w):

Definition 3.2 (Pareto stationary and Pareto optimality). If there exists a convex combination of the
gradient vectors that equals to zero, i.e., there exists λ ∈ ∆M such that ∇L(w)λ = 0, then w ∈ Rd

is Pareto stationary for L. If there is no w ∈ Rd and w ̸= w∗ such that, for all Lm(w) defined in (1)
with m = 1, . . . ,M , Lm(w) ≤ Lm(w∗), and for at least a m′ = 1, . . . ,M , Lm′(w) < Lm′(w∗),
then w∗ is Pareto optimal for L.

By definition, at a Pareto stationary point, there is no common descent direction for all objectives.
A necessary and sufficient condition for w being Pareto stationary for smooth objectives is that
minλ∈∆M ∥∇L(w)λ∥ = 0 (Tanabe et al., 2019), which corresponds to the stationary condition
∥∇Lm(w)∥ = 0 for a specific objective Lm. Then, similar to the gradient norm ∥∇Lm(w)∥ for

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 JoGBa: Joint Gradient Balancing for Multi-Objective Optimization.
1: Input: number of epochs T , initialized order π1, initialized weight w0, stale mean v0 = 0, step size α.
2: for t = 0, . . . , T − 1 do {t is the number of epochs}
3: for m = 1, . . . ,M do {m is the index on different objectives}
4: Initialize left index lm ← 1, right index rm ← K
5: end for
6: Initialize running average s← 0, stale mean vt+1 ← 0.
7: for k = 1, . . . ,K do {k is the number of iterations in each epoch, π1

t (k), . . . , π
M
t (k) indicates the

sample index we select for each objective}
8: Sample data ξπ1

t (k)
, . . . , ξπM

t (k) from data set D
9: for m = 1, . . . ,M do {Compute the gradient on the m-th objective and updates its sample order

πm
t+1 for next epoch t+ 1}

10: Compute gradient∇ℓm(w
(k)
t ; ξπm

t (k)) and centered gradient gm,k,t ← ∇ℓm(w
(k)
t ; ξπm

t (k))−vt

11: Compute sign for the current gradient: ϵm,k,t ← Balancing(s, gm,k,t)
12: if ϵm,k,t = +1 then
13: Update s and left index lm: s← s+ gm,k,t; πm

t+1(lm)← πm
t (k); lm ← lm + 1.

14: else
15: Update s and right index rm: s← s− gm,k,t; πm

t+1(rm)← πm
t (k); rm ← rm − 1.

16: end if
17: end for
18: Compute weights λ from multi-task learning algorithms λ = MTL({∇ℓm(w

(k)
t ; ξπm

t (k))}Mm=1)

19: Update stale mean vt+1 ← vt+1 +
1
K

∑M
m=1∇ℓm(w

(k)
t ; ξπm

t (k))

20: Optimizer Step: w(k+1)
t ← w

(k)
t − α

∑M
m=1 λm∇ℓm(w

(k)
t ; ξπm

t (k))
21: end for
22: Use the model parameter from last iteration as the initialization for next epoch t+ 1:w(1)

t+1 ← w
(K+1)
t .

23: end for

Algorithm 2 Online greedy implementation of Balancing(s, gm,k,t).
1: Input: s, gm,k,t.
2: ϵm,k,t = 1 if ∥s+ gm,k,t∥∞ ≤ ∥s− gm,k,t∥∞ else ϵm,k,t = −1.
3: Return ϵm,k,t.

single-objective optimization, the quantity minλ∈∆M ∥∇L(w)λ∥ can be used as a measure of Pareto
stationarity (Désidéri, 2012; Fliege et al., 2019; Liu & Vicente, 2021; Fernando et al., 2023).

Now we list several assumptions that are necessary to derive the theoretical results. These assump-
tions are all commonly used in previous theoretical analysis (Liu & Vicente, 2021; Fernando et al.,
2023; Zhou et al., 2022; Chen et al., 2024) on the convergence of multi-objective optimization meth-
ods:

Assumption 3.3 (Lipschitzness of ℓm(w)’s and L(w)). For all m ∈ {1, . . .M}, ℓm(w, ξ) is f -
Lipschitz continuous for all training samples ξ. Then L(w) is F -Lipschitz continuous in the Frobe-
nius norm with F =

√
Mf .

Assumption 3.4 (Lipschitz smoothness of ℓm(w)’s and L(w)). The gradient ∇ℓ(w, ξ) is f1-
Lipschitz continuous for all m ∈ {1, . . . ,M} for all ξ. Then ∇Lm(w) is F1-Lipschitz continuous
in the Frobenius norm with F1 =

√
Mf1.

Assumption 3.5 (Bounded gradient variance for each objective). For any w and sample ξ, the m-th
loss function satisfies ∥∇ℓm(w, ξ)−∇Lm(w)∥22 ≤ σ2

m for some given σm.

With the above assumptions, we have the following convergence result if we use the MGDA al-
gorithm (Désidéri, 2012; Sener & Koltun, 2018) to compute the objective weights λ. Proof is in
Appendix C.1.

Theorem 3.6. Suppose Assumptions 3.3, 3.4 and 3.5 hold. Define ∆ = maxλ∈∆M L(w0)λ −
minw∈Rd,λ∈∆M L(w)λ as the maximum difference between objective values at initialization andd
that at Pareto optimality. Consider the model parameters {w(1)

t } generated by MGDA algorithm
with random sample ordering (superscript 1 indicates the model parameters at the beginning of each

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

epoch). Set α =
√

2∆
F1(F 2+σ2)KT where σ2 = maxm σ2

m with σ2
m defined in Assumption 3.5, then,

1

T

T−1∑
t=0

E
[
min

λ∈∆M
∥∇L(w(1)

t)λ∥2
]
≤
√

2F1∆(F 2 + σ2)

KT
+

σ2(1 + log(T))

T
. (2)

Now to analyze the convergence rate of Algorithm 1 that uses online gradient balancing to determine
sample ordering for different objectives, we first need an additional assumption on the Balancing
subroutine, which is also used for gradient balancing with single objective in (Lu et al., 2022).
Assumption 3.7. (Balancing Bound) For the subroutine Balancing in Algorithm 1, denote its
input vectors as z1, . . . ,zn ∈ Rd which satisfy ∥zi∥2 ≤ 1,∀i = 1, . . . n. Suppose the subrou-
tine assigns each vector zi a sign ϵi ∈ {−1,+1}, then there exists a constant A > 0 such that
∥
∑k

i=1 ϵizi∥∞ ≤ A for all k ∈ {1, . . . , n}.

From Definition 3.1, solving the online vector balancing problem corresponds to minimizing A
in Assumption 3.7. We also have the following Proposition that controls the maximum norm of
parameter updates in each epoch. Proof is in Appendix C.3.

Proposition 3.8. Under Assumption 3.3 and 3.7 Algorithm 1 satisfies: ∥w(k)
t −w

(1)
t ∥∞ ≤ AF for

all k ∈ {1, . . . ,K} and t ∈ {0, . . . , T − 1}.

Based on this Proposition, we can then prove the following convergence result.
Theorem 3.9. Set

α = min

{
3

√
∆

32KA2σ2F 2
1 T

,
1

26(K +A)(F + F1)

}
.

where σ2 = maxm σ2
m with σ2

m defined in Assumption 3.5. Under Assumptions 3.3, 3.4 and 3.5,
Algorithm 1 yields

1

T

T−1∑
t=0

E
[
min

λ∈∆M
∥∇L(w(1)

t)λ∥2
]
≤11

3

√
A2F 2

1∆
2(F 2 + σ2)

K2T 2
+

σ2

T
+

65∆(F + F1)

T
+

8∆AF1

KT
.

Proof is in Appendix C.2. Compared to random ordering in Theorem 3.6, note that the convergence
rate of Algorithm 1 has a different term O((KT)−2/3) on the right hand side, which improves
upon the O((KT)−1/2) term in Theorem 3.6. As such, Algorithm 1 can achieve faster convergence
than random ordering as is implemented in existing multi-objective optimization methods. We also
note that a smaller A leads to faster convergence, which demonstrates that solving the online vector
balancing problem (minimizing A) is indeed useful to find better orders on the training samples.
Furthermore, the naive extension of GraB (Lu et al., 2022) that performs online vector balancing
for gradients of each objective separately can also be analyzed under the same framework with the
following Proposition.
Proposition 3.10. Under Assumption 3.3 and 3.7, suppose that the sample order πm

t in Algorithm 1
is separately generated for each objective, then we have ∥w(k)

t − w
(1)
t ∥∞ ≤ MAF for all k ∈

{1, . . . ,K} and t ∈ {0, . . . , T − 1}.

Proof is in Appendix C.3. Compared to the results in Proposition 3.8, the bound here is M times
larger if we apply gradient balancing separately on each objective. Recall that M is the total number
of objectives. Thus, the convergence can be much slower than that in Theorem 3.9.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of the proposed method for multi-objective opti-
mization. We consider the following baselines: (i) Random reshuffling (Random), which is used in
most existing implementations to randomly shuffle the whole data set in each epoch t, (ii) FlipFlop,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

which creates a new order πt+1 by reversing the previous order, i.e., πt+1(k) = πt(K+1−k). (iii)
Random FlipFlop, the combination of random reshuffling and FlipFlop, and (iv) GraB (Lu et al.,
2022), which performs gradient balancing on the weighted gradient of all objectives, and the weight
is computed using the combined dynamic weighting algorithm.

While the proposed method is independent of the dynamic weighting algorithms, we combine it
with the following dynamic weighting algorithms: MGDA (Désidéri, 2012; Liu & Vicente, 2021;
Zhou et al., 2022; Fernando et al., 2023), PCGrad (Yu et al., 2020), CAGrad (Liu et al., 2021), and
Nash-MTL (Navon et al., 2022). We select these methods as they generally have good empirical
performance, and the proposed method can also be easily combined with other dynamic weighting
algorithms.

We consider two data sets that are commonly used for multi-objective optimization in machine learn-
ing: (i) NYUv2 (Silberman et al., 2012), an indoor scene data set that involves three different tasks:
semantic segmentation, depth estimation, and surface normal prediction. (ii) QM9 (Ramakrishnan
et al., 2014), which is a widely used benchmark for graph neural networks predicting 11 properties
of molecules. More details on the setup can be found in Appendix A.

4.1 NYUV2

Figure 2 compares the convergence curves of different ordering methods with the proposed method.
We can see that the influence of sample orders on the convergence rate is generally different for
different objectives. Both depth estimation and surface normal prediction tasks are more influenced
by different sample ordering methods, while such influence becomes less significant for the semantic
segmentation task. FlipFlop and GraB generally achieve worse performance than the other methods,
while the proposed method JoGBa is the only one that can consistently outperform existing baselines
with random ordering.

0 25 50 75 100 125 150 175 200
Epochs

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tr
ai

ni
ng

 S
em

an
tic

 L
os

s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(a) MGDA.

0 25 50 75 100 125 150 175 200
Epochs

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Tr
ai

ni
ng

 S
em

an
tic

 L
os

s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(b) CAGrad.

0 25 50 75 100 125 150 175 200
Epochs

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Tr
ai

ni
ng

 S
em

an
tic

 L
os

s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(c) PCGrad.

0 25 50 75 100 125 150 175 200
Epochs

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Tr
ai

ni
ng

 S
em

an
tic

 L
os

s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(d) Nash-MTL.

0 25 50 75 100 125 150 175 200
Epochs

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Tr
ai

ni
ng

 D
ep

th
 L

os
s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(e) MGDA.

0 25 50 75 100 125 150 175 200
Epochs

0.2

0.4

0.6

0.8

Tr
ai

ni
ng

 D
ep

th
 L

os
s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(f) CAGrad.

0 25 50 75 100 125 150 175 200
Epochs

0.2

0.4

0.6

0.8

Tr
ai

ni
ng

 D
ep

th
 L

os
s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(g) PCGrad.

0 25 50 75 100 125 150 175 200
Epochs

0.2

0.4

0.6

0.8

Tr
ai

ni
ng

 D
ep

th
 L

os
s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(h) Nash-MTL.

0 25 50 75 100 125 150 175 200
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Tr
ai

ni
ng

 N
or

m
al

 L
os

s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(i) MGDA.

0 25 50 75 100 125 150 175 200
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Tr
ai

ni
ng

 N
or

m
al

 L
os

s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(j) CAGrad.

0 25 50 75 100 125 150 175 200
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Tr
ai

ni
ng

 N
or

m
al

 L
os

s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(k) PCGrad.

0 25 50 75 100 125 150 175 200
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Tr
ai

ni
ng

 N
or

m
al

 L
os

s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(l) Nash-MTL.

Figure 2: Different training loss (objectives) for NYUv2 data with different data ordering methods.
Top row: loss on the semantic segmentation task (semantic loss). Middle row: loss on the depth
estimation task (depth loss). Bottom row: loss on the surface normal prediction task (normal loss).
Table 1 compares the testing performance of different data ordering combined with different multi-
objective optimization methods. FlipFlop generally performs worse than the other methods as it
only reverses the sample ordering after each epoch. Random FlipFlop slightly improves upon the
standard random baseline. While GraB does not yield faster convergence rate in Figure 2, its testing

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Test performance for three tasks: semantic segmentation, depth estimation, and surface
normal on NYUv2. Values are averages over 3 random seeds.

Segmentation Depth Surface Normal

mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓ Angle Distance ↓ Within t◦ ↑ ∆m% ↓
Mean Median 11.25 22.5 30

STL 38.30 63.76 0.6754 0.2780 25.01 19.21 30.14 57.20 69.15

MGDA (Random) 30.48 59.77 0.6020 0.2555 24.13 19.22 29.51 57.11 69.58 1.31
MGDA+FlipFlop 29.47 57.90 0.6270 0.2755 24.88 19.45 29.18 55.88 68.36 1.58

MGDA+Random FlipFlop 30.52 59.81 0.6018 0.2556 24.11 19.16 29.52 57.23 69.56 1.28
MGDA+GraB 30.74 59.92 0.6011 0.2524 24.12 19.11 29.54 57.35 69.76 1.25

MGDA+JoGBa 31.02 60.21 0.6008 0.2508 24.08 19.08 29.55 57.47 70.03 1.19

PCGrad (Random) 38.06 64.64 0.5550 0.2325 27.41 22.80 23.86 49.83 63.14 3.97
PCGrad+FlipFlop 37.74 64.63 0.5590 0.2285 26.84 22.19 23.96 49.30 62.94 3.89

PCGrad+Random FlipFlop 38.12 64.64 0.5570 0.2329 26.99 22.67 23.56 49.65 63.18 3.86
PCGrad+GraB 38.31 64.66 0.5552 0.2317 26.79 22.87 23.68 49.76 63.22 3.78

PCGrad+JoGBa 38.59 64.67 0.5545 0.2270 26.53 22.40 23.87 49.95 63.87 3.56

CAGrad (Random) 39.79 65.49 0.5486 0.2250 26.31 21.58 25.61 52.36 65.58 0.20
CAGrad+FlipFlop 39.42 65.55 0.5437 0.2219 25.79 21.75 25.97 52.17 65.34 0.27

CAGrad+Random FlipFlop 39.85 65.73 0.5467 0.2226 26.14 21.46 25.62 52.24 65.62 0.17
CAGrad+GraB 39.91 66.09 0.5428 0.2214 25.79 21.44 25.64 52.26 65.44 0.18

CAGrad+JoGBa 40.42 66.08 0.5410 0.2205 25.52 21.50 26.04 52.43 65.73 0.03

Nash-MTL (Random) 40.13 65.93 0.5261 0.2171 25.26 20.08 28.40 55.47 68.15 −4.04
Nash-MTL+FlipFlop 39.46 65.82 0.5313 0.2190 26.12 20.99 28.05 54.64 67.77 -3.88

Nash-MTL+Random FlipFlop 40.67 66.32 0.5184 0.2009 25.34 19.73 28.54 55.35 68.07 -4.16
Nash-MTL+GraB 40.84 66.51 0.5156 0.2087 25.26 19.45 28.62 55.37 68.11 -4.19

Nash-MTL+JoGBa 41.13 66.71 0.5112 0.2009 25.11 19.19 28.77 55.28 68.18 -4.27

performance is comparable to Random FlipFlop. The proposed method JoGBa achieves the best
overall performance across different performance metrics for all three tasks.

4.2 QM9

Due to the large number of objectives in the QM9 data, here we only plot the average of all training
objectives, and the convergence curves are shown in Figure 3 for different sample ordering methods.
Compared to the NYUv2 data set, the effect of sample ordering becomes less significant for the
QM9 data. Only GraB and JoGBa achieve slight improvements than other ordering methods.

0 50 100 150 200 250 300
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

ni
ng

 L
os

s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(a) MGDA.

0 50 100 150 200 250 300
Epochs

0.00

0.05

0.10

0.15

0.20

Tr
ai

ni
ng

 L
os

s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(b) CAGrad.

0 50 100 150 200 250 300
Epochs

0.00

0.05

0.10

0.15

0.20

Tr
ai

ni
ng

 L
os

s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(c) PCGrad.

0 50 100 150 200 250 300
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Tr
ai

ni
ng

 L
os

s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(d) Nash-MTL.

Figure 3: Training loss for QM9 data with different data ordering methods.
Table 2 compares the testing performance of different data ordering methods. Similar to the results
for NYUv2, FlipFlop generally performs worse as it only reverses the sample ordering after each
epoch. Random FlipFlop achieves comparable performance with the random ordering baseline, and
GraB slightly improves upon it. The proposed method JoGBa achieves the best overall performance.

4.3 COMPARISON ON TIME COSTS

Note that the proposed JoGBa has two key steps in each iteration: (i) sample ordering, where we
determine the order of this sample based on its gradients, and (ii) model updating, where we compute
the objective weights and update the model with the weighted gradients. Table 3 compares the time
costs of these two steps in each iteration for different multi-objective optimization algorithms on
NYUv2 and QM9 data. As can be seen, the time cost of sample ordering is almost negligible
compared to that of model update, and is generally the same for the same data set across different
multi-objective optimization algorithms. This is intuitive as sample ordering is not related to any
specific multi-objective optimization algorithm, and demonstrates that the proposed method does
not introduce much additional time cost.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Test performance on all property prediction tasks in QM9. Values are averaged over 3
random seeds.

µ α ϵHOMO ϵLUMO ⟨R2⟩ ZPVE U0 U H G cv

MAE ↓ ∆m% ↓
STL 0.067 0.181 60.57 53.91 0.502 4.53 58.8 64.2 63.8 66.2 0.072

MGDA (Random) 0.217 0.368 126.8 104.6 3.22 5.69 88.37 89.40 89.32 88.01 0.120 120.5
MGDA+FlipFlop 0.221 0.371 130.9 104.5 3.32 5.62 88.31 89.45 89.71 88.84 0.124 121.4

MGDA+Random FlipFlop 0.216 0.365 126.7 103.2 3.19 5.65 88.34 89.27 88.74 87.34 0.115 118.9
MGDA+GraB 0.206 0.343 120.8 101.4 3.16 5.44 87.68 88.63 88.87 87.26 0.119 118.4

MGDA+JoGBa 0.202 0.332 117.3 99.2 3.12 5.37 87.48 88.37 88.80 87.04 0.116 116.7

PCGrad (Random) 0.106 0.293 75.85 88.33 3.94 9.15 116.36 116.8 117.2 114.5 0.110 125.7
PCGrad+FlipFlop 0.106 0.306 75.15 88.29 3.87 9.17 120.17 117.4 117.8 114.1 0.113 126.3

PCGrad+Random FlipFlop 0.104 0.293 75.05 88.25 3.83 9.07 114.89 116.4 116.9 114.1 0.106 125.2
PCGrad+GraB 0.098 0.281 74.91 86.98 3.75 8.91 115.66 114.4 117.1 113.6 0.102 124.2

PCGrad+JoGBa 0.098 0.271 74.43 84.30 3.56 8.78 113.15 113.2 117.1 113.5 0.096 123.5

CAGrad (Random) 0.118 0.321 83.51 94.81 3.21 6.93 113.99 114.3 114.5 112.3 0.116 112.8
CAGrad+FlipFlop 0.115 0.325 85.13 94.94 3.24 7.09 114.32 115.2 114.9 113.1 0.117 113.1

CAGrad+Random FlipFlop 0.113 0.322 83.19 94.87 3.15 6.92 114.18 113.8 113.8 111.6 0.113 112.8
CAGrad+GraB 0.111 0.312 82.49 94.71 2.96 6.77 113.89 113.7 110.4 111.8 0.108 112.1

CAGrad+JoGBa 0.110 0.304 82.38 94.49 2.92 6.49 113.22 113.5 110.2 111.6 0.104 111.9

Nash-MTL (Random) 0.102 0.248 82.95 81.89 2.42 5.38 74.50 75.02 75.10 74.16 0.093 62.0
Nash-MTL+FlipFlop 0.106 0.255 82.79 82.01 2.45 5.42 74.52 75.07 75.13 74.27 0.096 62.2

Nash-MTL+Random FlipFlop 0.097 0.254 82.53 81.47 2.42 5.29 74.41 75.08 75.07 74.22 0.094 61.6
Nash-MTL+GraB 0.099 0.252 82.64 81.68 2.38 5.31 74.43 74.94 75.05 74.13 0.091 61.7

Nash-MTL+JoGBa 0.094 0.231 82.24 80.73 2.29 5.24 74.37 74.84 75.03 74.05 0.087 59.2

Table 3: Per-iteration CPU time cost (in seconds) of the two key steps in JoGBa combined with
different multi-objective optimization algorithms.

NYUv2 QM9
MGDA PCGrad CAGrad Nash-MTL MGDA PCGrad CAGrad Nash-MTL

Model update 1.04 0.91 0.99 1.06 2.97 1.37 1.17 1.62
Sample ordering 0.02 0.03 0.03 0.03 0.06 0.05 0.04 0.05

Table 4: Test performance for three tasks on NYUv2 with different sample ordering methods for the
proposed multi-ordering framework. Values are averages over 3 random seeds.

Segmentation Depth Surface Normal

mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓ Angle Distance ↓ Within t◦ ↑ ∆m% ↓
Mean Median 11.25 22.5 30

MGDA+Random 30.48 59.77 0.6020 0.2555 24.13 19.22 29.51 57.11 69.58 1.31
MGDA+FlipFlop 29.47 57.90 0.6270 0.2755 24.88 19.45 29.18 55.88 68.36 1.58

MGDA+Random FlipFlop 30.52 59.81 0.6018 0.2556 24.11 19.16 29.52 57.23 69.56 1.28
MGDA+GraB 30.74 59.92 0.6011 0.2524 24.12 19.11 29.54 57.35 69.76 1.25

MGDA+JoGBa 31.02 60.21 0.6008 0.2508 24.08 19.08 29.55 57.47 70.03 1.19

PCGrad+Random 38.06 64.64 0.5550 0.2325 27.41 22.80 23.86 49.83 63.14 3.97
PCGrad+FlipFlop 37.74 64.63 0.5590 0.2285 26.84 22.19 23.96 49.30 62.94 3.89

PCGrad+Random FlipFlop 38.12 64.64 0.5570 0.2329 26.99 22.67 23.56 49.65 63.18 3.86
PCGrad+GraB 38.31 64.66 0.5552 0.2317 26.79 22.87 23.68 49.76 63.22 3.78

PCGrad+JoGBa 38.59 64.67 0.5545 0.2270 26.53 22.40 23.87 49.95 63.87 3.56

CAGrad+Random 39.79 65.49 0.5486 0.2250 26.31 21.58 25.61 52.36 65.58 0.20
CAGrad+FlipFlop 39.42 65.55 0.5437 0.2219 25.79 21.75 25.97 52.17 65.34 0.27

CAGrad+Random FlipFlop 39.85 65.73 0.5467 0.2226 26.14 21.46 25.62 52.24 65.62 0.17
CAGrad+GraB 39.91 66.09 0.5428 0.2214 25.79 21.44 25.64 52.26 65.44 0.18

CAGrad+JoGBa 40.42 66.08 0.5410 0.2205 25.52 21.50 26.04 52.43 65.73 0.03

Nash-MTL+Random 40.13 65.93 0.5261 0.2171 25.26 20.08 28.40 55.47 68.15 −4.04
Nash-MTL+FlipFlop 39.46 65.82 0.5313 0.2190 26.12 20.99 28.05 54.64 67.77 -3.88

Nash-MTL+Random FlipFlop 40.67 66.32 0.5184 0.2009 25.34 19.73 28.54 55.35 68.07 -4.16
Nash-MTL+GraB 40.84 66.51 0.5156 0.2087 25.26 19.45 28.62 55.37 68.11 -4.19

Nash-MTL+JoGBa 41.13 66.71 0.5112 0.2009 25.11 19.19 28.77 55.28 68.18 -4.27

4.4 ABLATION STUDY

Despite using the balancing routine as in Algorithm 1, other data ordering methods may also be used
to obtain sample orders for different objectives instead of a shared order. We use the same NYUv2
data set and training setup as in Section 4.1. Besides the proposed Algorithm 1, we consider the
following sample ordering methods for comparison: (i) Random reshuffling (Random), (ii) FlipFlop,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175 200
Epochs

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tr
ai

ni
ng

 S
em

an
tic

 L
os

s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(a) MGDA.

0 25 50 75 100 125 150 175 200
Epochs

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Tr
ai

ni
ng

 S
em

an
tic

 L
os

s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(b) CAGrad.

0 25 50 75 100 125 150 175 200
Epochs

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Tr
ai

ni
ng

 S
em

an
tic

 L
os

s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(c) PCGrad.

0 25 50 75 100 125 150 175 200
Epochs

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Tr
ai

ni
ng

 S
em

an
tic

 L
os

s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(d) Nash-MTL.

0 25 50 75 100 125 150 175 200
Epochs

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Tr
ai

ni
ng

 D
ep

th
 L

os
s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(e) MGDA.

0 25 50 75 100 125 150 175 200
Epochs

0.2

0.4

0.6

0.8

Tr
ai

ni
ng

 D
ep

th
 L

os
s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(f) CAGrad.

0 25 50 75 100 125 150 175 200
Epochs

0.2

0.4

0.6

0.8

Tr
ai

ni
ng

 D
ep

th
 L

os
s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(g) PCGrad.

0 25 50 75 100 125 150 175 200
Epochs

0.2

0.4

0.6

0.8

Tr
ai

ni
ng

 D
ep

th
 L

os
s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(h) Nash-MTL.

0 25 50 75 100 125 150 175 200
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Tr
ai

ni
ng

 N
or

m
al

 L
os

s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(i) MGDA.

0 25 50 75 100 125 150 175 200
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Tr
ai

ni
ng

 N
or

m
al

 L
os

s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(j) CAGrad.

0 25 50 75 100 125 150 175 200
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Tr
ai

ni
ng

 N
or

m
al

 L
os

s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(k) PCGrad.

0 25 50 75 100 125 150 175 200
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Tr
ai

ni
ng

 N
or

m
al

 L
os

s

Baseline (Random)
FlipFlop
Random+FlipFlop
GraB
JoGBa

(l) Nash-MTL.

Figure 4: Different training loss (objectives) for NYUv2 data with different data ordering methods
for the proposed multi-ordering framework. Top row: loss on the semantic segmentation task (se-
mantic loss). Middle row: loss on the depth estimation task (depth loss). Bottom row: loss on the
surface normal prediction task (normal loss).

which creates the new order πm
t+1 by reversing the previous order for each objective, i.e., πm

t+1(k) =
πm
t (K + 1 − k). (iii) Random FlipFlop (Random FF), the combination of random reshuffling and

FlipFlop, and (iv) GraB (Lu et al., 2022), which applies GraB to all objectives separately.

Figure 4 compares the convergence curves of different sample ordering methods. Similar to Figure 2,
the influence of sample orders on the convergence rate is generally different for different objectives.
The surface normal prediction task is more influenced by different sample ordering methods than
other two tasks. FlipFlop and GraB generally achieves worse performance than other methods, while
JoGBa is the only one that can consistently outperforms existing baseline with random ordering.

Table 4 compares the testing performance of different data ordering combined with different multi-
objective optimization methods. FlipFlop generally performs worse than other methods as it only
reverse the sample ordering after each epoch. Both Random FlipFlop and GraB improve upon the
standard random baseline, but their performance is still worse than the proposed method JoGBa,
which demonstrate the effectiveness of joint sample ordering in multi-objective optimization.

5 CONCLUSION

In this paper, we propose a novel training framework for multi-objective optimization. The pro-
posed framework determines sample orders for each objective by performing online vector balanc-
ing with the gradients on different objectives. It can be seamlessly combined with any existing
multi-objective optimization methods. Our theoretical results demonstrate that the proposed method
improves upon the baseline of random ordering with faster convergence. Empirical results on dif-
ferent multi-objective optimization problems demonstrate that the proposed method achieves faster
convergence and better final performance than other data ordering methods.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Hao Ban and Kaiyi Ji. Fair resource allocation in multi-task learning. In Ruslan Salakhutdinov, Zico
Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp
(eds.), Proceedings of the 41st International Conference on Machine Learning, pp. 2715–2731,
2024.

Dimitri P. Bertsekas. Incremental Gradient, Subgradient, and Proximal Methods for Convex Opti-
mization: A Survey. In Optimization for Machine Learning. The MIT Press, 2011.

Jaeyoung Cha, Jaewook Lee, and Chulhee Yun. Tighter lower bounds for shuffling SGD: Random
permutations and beyond. In International Conference on Machine Learning, 2023.

Lisha Chen, Heshan Fernando, Yiming Ying, and Tianyi Chen. Three-Way Trade-Off in Multi-
Objective Learning: Optimization, Generalization and Conflict-Avoidance. Journal of Machine
Learning Research, 25(193):1–53, 2024.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. July 2018.

Jean-Antoine Désidéri. Multiple-gradient Descent Algorithm (MGDA) for Multi-objective Opti-
mization. Comptes Rendus Mathematique, 350(5-6), 2012.

Heshan Fernando, Han Shen, Miao Liu, Subhajit Chaudhury, Keerthiram Murugesan, and Tianyi
Chen. Mitigating gradient bias in multi-objective learning: A provably convergent stochastic
approach. 2023.

Jörg Fliege, A Ismael F Vaz, and Luı́s Nunes Vicente. Complexity of Gradient Descent for Multi-
objective Optimization. Optimization Methods and Software, 34(5):949–959, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li Fei-Fei. Dynamic task priori-
tization for multitask learning. In Proceedings of the European conference on computer vision,
Munich, Germany, July 2018.

Mert Gürbüzbalaban, Asuman E. Ozdaglar, and Pablo A. Parrilo. Convergence rate of incremental
gradient and incremental Newton methods. SIAM Journal on Optimization, 29(4):2542–2565,
2019.

A Kendall, Y Gal, and R Cipolla. Multi-task learning using uncertainty to weigh losses for scene
geometry and semantics. arXiv preprint:1705.07115, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Vitaly Kurin, Alessandro De Palma, Ilya Kostrikov, Shimon Whiteson, and M. Pawan Kumar. In de-
fense of the unitary scalarization for deep multi-task learning. In Advances in Neural Information
Processing Systems, 2022.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-Averse Gradient Descent
for Multi-task Learning. December 2021.

Shikun Liu, Edward Johns, and Andrew J. Davison. End-to-end multi-task learning with attention. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

Suyun Liu and Luis Nunes Vicente. The Stochastic Multi-gradient Algorithm for Multi-objective
Optimization and its Application to Supervised Machine Learning. Annals of Operations Re-
search, pp. 1–30, 2021.

Yucheng Lu, Si Yi Meng, and Christopher De Sa. A General Analysis of Example-Selection for
Stochastic Gradient Descent. In International Conference on Learning Representations, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yucheng Lu, Wentao Guo, and Christopher M De Sa. Grab: Finding provably better data per-
mutations than random reshuffling. Advances in Neural Information Processing Systems, 35:
8969–8981, 2022.

Kristof Van Moffaert and Ann Nowé. Multi-objective reinforcement learning using sets of pareto
dominating policies. Journal of Machine Learning Research, 15(107):3663–3692, 2014.

Amirkeivan Mohtashami, Sebastian Stich, and Martin Jaggi. Characterizing & finding good data
orderings for fast convergence of sequential gradient methods. arXiv preprint arXiv:2202.01838,
2022.

Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, and
Ethan Fetaya. Multi-Task Learning as a Bargaining Game. In Proceedings of the 39th Interna-
tional Conference on Machine Learning, pp. 16428–16446. PMLR, June 2022.

Shashank Rajput, Kangwook Lee, and Dimitris Papailiopoulos. Permutation-based sgd: Is random
optimal? arXiv preprint arXiv:2102.09718, 2021.

Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, and O. Anatole Von Lilienfeld. Quan-
tum chemistry structures and properties of 134 kilo molecules. Scientific Data, 1:140022, 2014.

Benjamin Recht and Christopher Ré. Toward a noncommutative arithmetic-geometric mean inequal-
ity: Conjectures, case-studies, and consequences. In Conference on Learning Theory, volume 23,
pp. 11.1–11.24, 2012.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. December
2018.

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and sup-
port inference from rgbd images. In European Conference on Computer Vision, 2012.

Joel Spencer. Balancing games. Journal of Combinatorial Theory, Series B, 23(1):68–74, 1977.

Hiroki Tanabe, Ellen H. Fukuda, and Nobuo Yamashita. Proximal gradient methods for multiob-
jective optimization and their applications. Computational Optimization and Applications, 72(2):
339–361, 2019.

Max Welling. Herding dynamical weights to learn. In Proceedings of the 26th Annual International
Conference on Machine Learning, pp. 1121–1128, 2009.

Derrick Xin, Behrooz Ghorbani, Justin Gilmer, Ankush Garg, and Orhan Firat. Do current multi-task
optimization methods in deep learning even help? In Advances in Neural Information Processing
Systems, 2022.

Feiyang Ye, Baijiong Lin, Zhixiong Yue, Pengxin Guo, Qiao Xiao, and Yu Zhang. Multi-objective
meta learning. volume 34, pp. 21338–21351, 2021.

Bicheng Ying, Kun Yuan, Stefan Vlaski, and Ali H. Sayed. On the performance of random reshuf-
fling in stochastic learning. In 2017 Information Theory and Applications Workshop (ITA), pp.
1–5. IEEE, 2017.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. December 2020.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P Gummadi. Fair-
ness constraints: Mechanisms for fair classification. pp. 962–970, 2017.

Shiji Zhou, Wenpeng Zhang, Jiyan Jiang, Wenliang Zhong, Jinjie Gu, and Wenwu Zhu. On the
convergence of stochastic multi-objective gradient manipulation and beyond. volume 35, pp.
38103–38115, December 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A EXPERIMENT DETAILS

All experiments are conducted on a server with an Intel Xeon Gold 6342 CPU and an NVIDIA
RTX A6000 GPU. We use the PyTorch version 1.10.1 with CUDA version 11.7. For experiments
on NYUv2 data set, we train a Multi-Task Attention Network (MTAN) (Liu et al., 2019) following
previous works on multi-task learning (Yu et al., 2020; Navon et al., 2022). We also follow the
training procedure from (Liu et al., 2019; Yu et al., 2020; Navon et al., 2022). Each method is
trained for 200 epochs with the Adam optimizer (Kingma & Ba, 2015). We set the learning rate
α = 1 × 10−4 at the beginning of training, and reduce it to 5 × 10−5 after 100 epochs. The batch
size is set to 2 for all methods.

For experiments on QM9 data set, we use the MPNN model proposed in (Gilmer et al., 2017). Each
method is trained for 300 epochs with the Adam optimizer (Kingma & Ba, 2015) and we set the
learning rate α = 1 × 10−4 through the whole training process. The batch size is set to 120 for all
methods.

B COMPARISON OF DIFFERENT SAMPLE ORDERING APPROACHES

To better demonstrate the differences between the three approaches in Figure 1, here we introduce
the detailed procedures for the other two approaches. Algorithm 3 describes the procedure for the
approach in Figure 1(b) (which orders the training samples for each objective separately). The key
difference is that we solve the online vector balancing problem for each objective separately, which
introduces separate sm and vm,t’s compared to the unified s and vt in JoGBa (Algorithm 1).

Algorithm 3 Multi-objective optimization with separate data ordering on each objective (Fig-
ure 1(b)).
1: Input: number of epochs T , initialized order π1, initialized weight w0, stale mean vm,0 = 0 for all

objective m = 1, . . . ,M , step size α.
2: for t = 0, . . . , T − 1 do
3: for m = 1, . . . ,M do
4: Initialize left index lm ← 1, right index rm ← K
5: end for
6: Initialize running average sm ← 0 for each objective m = 1, . . . ,M , stale mean vm,t+1 ← 0.
7: for k = 1, . . . ,K do
8: Sample data ξπ1

t (k)
, . . . , ξπM

t (k) from data set D
9: for m = 1, . . . ,M do

10: Compute gradient ∇ℓm(w
(k)
t ; ξπm

t (k)) and centered gradient gm,k,t ← ∇ℓm(w
(k)
t ; ξπm

t (k)) −
vm,t

11: Compute sign for the current gradient: ϵm,k,t ← Balancing(sm, gm,k,t)
12: if ϵm,k,t = +1 then
13: Update sm and left index lm: sm ← sm + gm,k,t; πm

t+1(lm)← πm
t (k); lm ← lm + 1.

14: else
15: Update sm and right index rm: sm ← sm − gm,k,t; πm

t+1(rm)← πm
t (k); rm ← rm − 1.

16: end if
17: Update stale mean vm,t+1 ← vm,t+1 +

1
K
∇ℓm(w

(k)
t ; ξπm

t (k))
18: end for
19: Compute weights λ from multi-task learning algorithms λ = MTL({∇ℓm(w

(k)
t ; ξπm

t (k))}Mm=1)

20: Optimizer Step: w(k+1)
t ← w

(k)
t − α

∑M
m=1 λm∇ℓm(w

(k)
t ; ξπm

t (k))
21: end for
22: w

(1)
t+1 ← w

(K+1)
t .

23: end for

Algorithm 4 describes the procedure for the approach in Figure 1(a) (which uses a shared sample
order for all objectives). In other words, we use the weighted average of all loss gradients as the
sample “gradient”, and follow existing data ordering methods on the weighted gradient. When the
objective weights do not change with different samples, such an extension can be regarded as using
the weighted objective as the only objective in the existing methods. However, using the same
sample order cannot well tackle the possible conflicts between different objectives.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Algorithm 4 Multi-objective optimization with a shared data order (Figure 1(a)).
1: Input: number of epochs T , initialized order π1, initialized weight w0, stale mean v0 = 0, step size α.
2: for t = 0, . . . , T − 1 do
3: for m = 1, . . . ,M do
4: Initialize left index lm ← 1, right index rm ← K
5: end for
6: Initialize running average s← 0, stale mean vt+1 ← 0.
7: for k = 1, . . . ,K do
8: Sample data ξπ1

t (k)
, . . . , ξπM

t (k) from data set D
9: for m = 1, . . . ,M do

10: Compute gradient∇ℓm(w
(k)
t ; ξπm

t (k))
11: end for
12: Compute weights λ from multi-task learning algorithms λ = MTL({∇ℓm(w

(k)
t ; ξπm

t (k))}Mm=1)

13: Compute centered aggreagated gradient gk,t ←
∑M

m=1 λm∇ℓm(w
(k)
t ; ξπm

t (k))− vt

14: Compute sign for the current aggregated gradient: ϵk,t ← Balancing(s, gk,t)
15: for m = 1, . . . ,M do
16: if ϵk,t = +1 then
17: Update s and left index lm: s← s+ gk,t; πm

t+1(lm)← πm
t (k); lm ← lm + 1.

18: else
19: Update s and right index rm: s← s− gk,t; πm

t+1(rm)← πm
t (k); rm ← rm − 1.

20: end if
21: end for
22: Update stale mean vt+1 ← vt+1 +

1
K

∑M
m=1 λm∇ℓm(w

(k)
t ; ξπm

t (k))

23: Optimizer Step: w(k+1)
t ← w

(k)
t − α

∑M
m=1 λm∇ℓm(w

(k)
t ; ξπm

t (k))
24: end for
25: w

(1)
t+1 ← w

(K+1)
t .

26: end for

C PROOFS

C.1 PROOF OF THEOREM 3.6

Theorem 3.6. By the F1-smoothness of L(w)λ for all λ ∈ ∆M , we have

L(wt+1)λ− L(wt)λ ≤⟨∇L(w)λ,wt+1 −wt⟩+
F1

2
∥wt+1 −wt∥2 (3)

where wt+1−wt = αt∇L(wt)λ
∗
t , s.t. λ

∗
t ∈ argminλ∈∆M ∥∇L(wt)λ∥2. For notation simplicity,

we define Qt = ∇L(wt), and λ∗
Qt

= argminλ∈∆M ∥∇L(wt)λ∥. Then we have:

L(wt+1)λ− L(wt)λ ≤− αt⟨∇L(wt)λ,Qtλ
∗
Qt

⟩+ F1

2
α2
t ∥Qtλ

∗
Qt

∥2. (4)

The inner product term can be bounded as

−⟨∇L(wt)λ,Qtλ
∗
Qt

⟩ =⟨∇L(wt)λ,∇L(wt)λ
∗
t (wt)−Qtλ

∗
Qt

⟩ − ⟨∇L(wt)λ,∇L(wt)λ
∗
t (wt)⟩

(5)
(a)

≤⟨∇L(wt)λ,∇L(wt)λ
∗
t (wt)−Qtλ

∗
Qt

⟩ − ∥∇L(wt)λ
∗
t (wt)∥2 (6)

≤F∥∇L(wt)λ
∗
t (wt)−Qtλ

∗
Qt

∥ − ∥∇L(wt)λ
∗
t (wt)∥2 (7)

(b)

≤2F
3
2 ∥Qt −∇L(wt)∥

1
2 − ∥∇L(wt)λ

∗
t (wt)∥2 (8)

where (a) follows from (18) in Lemma C.3, (b) follows from Lemma C.4. Plugging (8) into (4),
taking expectations on both sides and rearranging yield

αtEA[∥∇L(wt)λ
∗
t (wt)∥2] ≤EA[L(wt)− L(wt+1)]λ+ 2F

3
2αtEA[∥Qt −∇L(wt)∥

1
2] +

F1

2
(F 2 + σ2)α2

t .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

For all t ∈ [T], plugging in αt = α, and taking the telescope sum on both sides of the last inequality
yield

1

T

T∑
t=1

EA[∥∇L(wt)λ
∗
t (xt)∥2] (9)

≤ 1

αT
EA[L(wt)− L(wt+1)]λ+ 2ℓ

3
2

f

1

T

T∑
t=1

EA[∥Qt −∇L(wt)∥
1
2] +

F1

2
(F 2 + σ2)α (10)

≤ 1

αT
EA[L(wt)− L(wt+1)]λ+ 2ℓ

3
2

f

(1

T

T∑
t=1

EA[∥Qt −∇L(wt)∥2]
) 1

4

+
F1

2
(F 2 + σ2)α. (11)

By increasing the batch size during optimization with a batch size of O(t), it holds that

1

T

T∑
t=1

EA[∥Qt −∇L(wt)∥2] ≤
1

T

T∑
t=1

σ2

t
≤ σ2(1 + log(T))

T
(12)

Plugging (12) back into (11), its optimization error is given by:

EA

[
min

t∈[T],λ∈∆M
∥∇L(wt)λ∥2

]
≤ 1

T

T∑
t=1

EA[∥∇L(wt)λ
∗
t (wt)∥2]

=
σ2(1 + log(T))

T
+

EA[L(wt)− L(wT+1)]λ

αKT
+

F1

2
(F 2 + σ2)α

≤σ2(1 + log(T))

T
+

∆

αKT
+

F1

2
(F 2 + σ2)α (13)

where the last inequality uses the definition of ∆ = maxλ∈∆M L(w0)λ−minw∈Rd,λ∈∆M L(w)λ.

Then setting α =
√

2∆
F1(F 2+σ2)KT , we will have:

EA

[
min

t∈[T],λ∈∆M
∥∇L(wt)λ∥2

]
≤
√

2F1∆(F 2 + σ2)

KT
+

σ2(1 + log(T))

T
,

which concludes our proof.

C.2 PROOF TO THEOREM 3.9

Proof. From Lemma C.1 in Appendix C.3, we have

1

T

T−1∑
t=0

min
λ∈∆M

∥∇L(w(1)
t)λ∥2 ≤ 2∆

αKT
+

2F 2
1

T

T−1∑
t=0

max
k

∥∥∥w(k)
t −w

(1)
t

∥∥∥2
∞

+
α2F1(F

2 + σ2)

2
.

On the other hand, from Lemma C.2, we obtain
T−1∑
t=0

∆2
t ≤ 120α2K2σ2 + 64α2A2σ2T + 48α2K2

T−1∑
t=0

max
k

∥∇L(w(k)
t)λ∥2∞.

Combining them together gives us,

1

T

T−1∑
t=0

min
λ∈∆M

∥∇L(w(1)
t)λ∥2 ≤ 2∆

αKT

+
F 2
1

T

(
120α2K2σ2 + 64α2A2σ2T + 48α2K2

T−1∑
t=0

max
k

∥∇L(w(k)
t)λ∥2∞

)

++
α2F1(F

2 + σ2)

2

≤ 2∆

αKT
+

120α2F 2
1K

2σ2

T
+ 64α2A2F 2

1 σ
2

+
48α2K2F 2

1

T

T−1∑
t=0

max
k

∥∇L(w(k)
t)λ∥2∞ +

α2F1(F
2 + σ2)

2
.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Note that for any x ∈ Rd, ∥x∥∞ ≤ ∥x∥2, so the last term can by bounded by its ℓ2-norm. Moving
it to the left side of the inequality gives us

1− 48α2K2F 2
1

T

T−1∑
t=0

min
λ∈∆M

∥∇L(w(1)
t)λ∥2 ≤ 2∆

αKT
+

120α2F 2
1K

2σ2

T
+ 64α2A2F 2

1 σ
2

+
α2F1(F

2 + σ2)

2
.

Finally, we set the value of α as follows:

α = min

{
3

√
∆

32KA2σ2F 2
1 T

,
1

KF
,

1

26(K +A)F1

}
,

and we finally obtain

1

T

T−1∑
t=0

min
λ∈∆M

∥∇L(w(1)
t)λ∥2 ≤ 11

3

√
A2F 2

1∆
2(F 2 + σ2)

K2T 2
+

σ2

T
+

65∆(F + F1)

T
+

8∆AF1

KT
,

which concludes our proof.

C.3 TECHNICAL LEMMAS

Lemma C.1. In Algorithm 1, if αKF < 1 holds and Assumption 3.3 and 3.4 hold, then

1

T

T−1∑
t=0

min
λ∈∆M

∥∇L(w(1)
t)λ∥2 ≤ 2∆

αKT
+

2F 2
1

T

T−1∑
t=0

max
k

∥∥∥w(k)
t −w

(1)
t

∥∥∥2
∞

+
α2F1(F

2 + σ2)

2
.

Proof. Note that the update can be written as

w
(1)
t+1 = w

(1)
t − α

K∑
k=1

M∑
m=1

λk,m∇ℓm(w
(k)
t ; ξπm

k (t)).

By the Taylor Theorem, for all the t = 0, · · · , T − 1,

L(w(1)
t+1)λ ≤L(w(1)

t)λ+ ⟨∇L(xt)λ,w
(1)
t+1 −w

(1)
t ⟩+ F1

2
∥w(1)

t+1 −w
(1)
t ∥2

≤L(w(1)
t)λ− αKE

〈
∇L(wt)λ,

1

K

K∑
k=1

M∑
m=1

λi,k∇ℓi(w
(k)
t ; ξπm

t (t))

〉

+
α2K2F1

2
E

∥∥∥∥∥ 1

K

K∑
k=1

M∑
m=1

λi,k∇ℓi(w
(k)
t ; ξπi(t))

∥∥∥∥∥
2

=L(w(1)
t)λ− αK

2
∥∇L(w(1)

t)λ∥2 − αK

2
∥ 1

K

K∑
k=1

M∑
m=1

λi,k∇ℓi(w
(k)
t ; ξσk(t))∥

2

+
αK

2
∥∇L(w(1)

t)λ− 1

K

K∑
k=1

M∑
m=1

λi,k∇ℓi(w
(k)
t ; ξσk(t))∥

2 +
α2K2F1

2
E

∥∥∥∥∥ 1

K

K∑
k=1

m∑
i=1

λi,k∇ℓi(w
(t)
k ; ξσk(t))

∥∥∥∥∥
2

≤L(w(1)
t)λ− αK

2
∥∇L(w(1)

t)λ∥2 + αK

2
∥∇L(w(1)

t)λ− 1

K

K∑
k=1

M∑
m=1

λi,k∇ℓi(w
(k)
t ; ξσk(t))∥

2

+
α2F1(F

2 + σ2)

2

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

In the second step, we apply −⟨a, b⟩ = − 1
2∥a∥

2− 1
2∥b∥

2
+ 1

2∥a− b∥2,∀a, b. In the third step, we
use the condition that αnL < 1. Expanding the last term using Assumption 3.4, we get

∥∇L(w(1)
t)λ− 1

K

K∑
k=1

M∑
m=1

λm,k,t∇ℓm(w
(k)
t ; ξσm

t (k))∥2 =

∥∥∥∥∥ 1

K

K∑
k=1

∇L(w(1)
t)λ− 1

K

K∑
k=1

M∑
m=1

λm,k,t∇ℓm(w
(k)
t ; ξσm

t (k))

∥∥∥∥∥
2

≤ 1

K

K∑
k=1

∥∥∥∇L(w(1)
t)λ−∇L(w(k)

t)λ
∥∥∥2

≤ 1

K

K∑
k=1

F 2
1

∥∥∥w(1)
t −w

(k)
t

∥∥∥2
∞

≤F 2
1∆

2
k.

In the second step we apply the Jensen Inequality. Put it back, we obtain

L(w(1)
t+1)λ ≤ L(w(1)

t)λ− αK

2

∥∥∥∇L(w(1)
t)λ

∥∥∥2 + αK

2
F 2
1∆

2
k +

α2F1(F
2 + σ2)

2
.

Finally, summing from t = 0 to T − 1, and considering the definition ∆ = maxλ∈∆M L(w0)λ −
minw∈Rd,λ∈∆M L(w)λ, we will have:

1

T

T−1∑
t=0

min
λ∈∆M

∥∇L(w(1)
t)λ∥2 ≤ 2∆

αKT
+

2F 2
1

T

T−1∑
t=0

max
k

∥∥∥w(k)
t −w

(1)
t

∥∥∥2
∞

+
α2F1(F

2 + σ2)

2
.

That completes our proof.

Lemma C.2. In Algorithm 1, if the learning rate α fulfills

α ≤ min

{
1

32nL∞
,

1

16HL2

}
,

then the following inequalities hold:

∆k ≤ 2αHς + (8αnL∞ + 4αHL2)∆k−1 + 2αn∥∇L(wk)∥∞,∀k ≥ 2

and,

∆2
1 ≤ 8α2n2∥∇L(w1)∥2∞ + 8α2n2ς2,

and finally,

K∑
k=1

∆2
k ≤ 16α2n2ς2 + 48α2H2ς2K + 48α2n2

K∑
k=1

∥∇L(wk)∥2∞.

Proof. Without the loss of generality, for all the m ∈ {2, · · · , n+ 1} and all the k ∈ {2, · · · ,K},

w
(m)
k =wk − α

m−1∑
t=1

∇f
(
w

(t)
k ;xσk(t)

)
=wk − α

m−1∑
t=1

∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk(t)

)

− α

m−1∑
t=1

(
∇f

(
w

(t)
k ;xσk(t)

)
−∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk(t)

))
.

Now add and subtract

α

m−1∑
t=1

1

n

n∑
s=1

∇f
(
w

(s)
k−1;xσk−1(s)

)
=

α(m− 1)

n

n∑
t=1

∇f
(
w

(t)
k−1;xσk−1(t)

)
,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

which gives

w
(m)
k = wk − α

m−1∑
t=1

(
∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk(t)

)
− 1

n

n∑
s=1

∇f
(
w

(s)
k−1;xσk−1(s)

))

− α(m− 1)

n

n∑
t=1

∇f
(
w

(t)
k−1;xσk−1(t)

)
− α

m−1∑
t=1

(
∇f

(
w

(t)
k ;xσk(t)

)
−∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk(t)

))
.

We further add and subtract

α(m− 1)

K

K∑
k=1

∇L(wt;xσt−1(k)) = α(m− 1)∇L(wk)

to arrive at

w
(m)
k = wk − α

m−1∑
t=1

(
∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk(t)

)
− 1

n

n∑
s=1

∇f
(
w

(s)
k−1;xσk−1(s)

))

− α(m− 1)∇L(wk) +
α(m− 1)

n

n∑
t=1

(
∇f

(
wk;xσk−1(t)

)
−∇f

(
w

(t)
k−1;xσk−1(t)

))
− α

m−1∑
t=1

(
∇f

(
w

(t)
k ;xσk(t)

)
−∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk(t)

))
.

We can now re-arrange, take norms on both sides and apply the triangle inequality,∥∥∥w(m)
k −wk

∥∥∥
∞

≤ α

∥∥∥∥∥
m−1∑
t=1

(
∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk(t)

)
− 1

n

n∑
s=1

∇f
(
w

(s)
k−1;xσk−1(s)

))∥∥∥∥∥
∞

+ α(m− 1)∥∇L(wk)∥∞

+
α(m− 1)

n

∥∥∥∥∥
n∑

t=1

(
∇f

(
wk;xσk−1(t)

)
−∇f

(
w

(t)
k−1;xσk−1(t)

))∥∥∥∥∥
∞

+ α

∥∥∥∥∥
m−1∑
t=1

(
∇f

(
w

(t)
k ;xσk(t)

)
−∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk(t)

))∥∥∥∥∥
∞

. (14)

There are four different terms on the right hand side, we will apply the Assumption 3.7 on the first
term, and Assumption 3.4 on the last two terms. First, for the first term,∥∥∥∥∥∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk(t)

)
− 1

n

n∑
s=1

∇f
(
w

(s)
k−1;xσk−1(s)

)∥∥∥∥∥
≤

∥∥∥∥∥∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk(t)

)
− 1

n

n∑
s=1

∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk−1(s)

)∥∥∥∥∥
+

∥∥∥∥∥ 1n
n∑

s=1

∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk−1(s)

)
− 1

n

n∑
s=1

∇f
(
w

(s)
k−1;xσk−1(s)

)∥∥∥∥∥
Assumption 3.4 and 3.5

≤ ς + σi +
L2

n

n∑
s=1

∥∥∥∥w(σ−1
k−1(σk(t)))

k−1 −w
(s)
k−1

∥∥∥∥
∞

≤max
m

σm +
L2

n

n∑
s=1

(∥∥∥∥wk−1 −w
(σ−1

k−1(σk(t)))

k−1

∥∥∥∥
∞

+
∥∥∥wk−1 −w

(s)
k−1

∥∥∥
∞

)
≤max

m
σm + 2L2∆k−1

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

This implies if we denote

ut := ∇ℓ

(
w

σ−1
k−1(σk(t))

k−1 ;xσk(t)

)
− 1

n

n∑
s=1

∇L(w(s)
k−1;xσk−1(s))

We can now use assumption 3.7 to obtain a bound on the prefix sum∥∥∥∥∥
m−1∑
t=1

ut

ς + σi + 2L2∆k−1

∥∥∥∥∥
∞

≤ A,

that is,∥∥∥∥∥
m−1∑
t=1

(
∇f

(
w

(σ−1
k−1(σk(t)))

k−1 ;xσk(t)

)
− 1

n

n∑
s=1

∇f
(
w

(s)
k−1;xσk−1(s)

))∥∥∥∥∥
∞

≤ A(ς + σi + 2L2∆k−1).

Now we have a bound for the first term in Equation (14), we proceed to bound the last two terms
where we apply Assumption 3.4. We can then rewrite Equation (14) into,∥∥∥w(m)

k −wk

∥∥∥
∞

≤αA(ς + σi + 2L2∆k−1) + α(m− 1)∥∇L(wk)∥∞ +
αL∞(m− 1)

n

n∑
t=1

∥∥∥wk −w
(t)
k−1

∥∥∥
∞

+ αL∞

m−1∑
t=1

∥∥∥∥w(t)
k −w

(σ−1
k−1(σk(t)))

k−1

∥∥∥∥
∞
.

Furthermore, applying the triangle inequality to the norms in the last two terms, we obtain∥∥∥w(t)
k−1 −wk

∥∥∥
∞

=
∥∥∥w(t)

k−1 −wk−1 +wk−1 −w
(n+1)
k−1

∥∥∥
∞

≤ 2∆k−1

and similarly,∥∥∥∥w(t)
k −w

(σ−1
k−1(σk(t)))

k−1

∥∥∥∥
∞

=

∥∥∥∥w(t)
k −wk +wk −wk−1 +wk−1 −w

(σ−1
k−1(σk(t)))

k−1

∥∥∥∥
∞

≤ ∆k + 2∆k−1.

This gives us∥∥∥w(m)
k −wk

∥∥∥
∞

≤αA(ς + σi + 2L2∆k−1) + α(m− 1)∥∇L(wk)∥∞ + 2αL∞(m− 1)∆k−1

+ αL∞(m− 1)(2∆k−1 +∆k)

≤αA(ς + σi + 2L2∆k−1) + α(m− 1)∥∇L(wk)∥∞ + αL∞(m− 1)(4∆k−1 +∆k).
(15)

Note that Equation (15) only holds with k ∈ {2, · · · ,K} and m ∈ {2, · · · , n+1}. We now discuss
the boundary cases. Note that the bound of Equation (15) trivially holds with m = 1 for any k since
the left hand side becomes zero. On the other hand, when k = 1, we have,

w
(m)
1 =w1 − α

m−1∑
t=1

∇f
(
w

(t)
1 ;xσ1(t)

)
=w1 − α

m−1∑
t=1

1

n

n∑
s=1

∇f
(
w1;xσ1(s)

)
+ α

m−1∑
t=1

∇f
(
w

(t)
1 ;xσ1(t)

)
− α

m−1∑
t=1

∇f
(
w1;xσ1(t)

)
+ α

m−1∑
t=1

∇f
(
w1;xσ1(t)

)
− α

m−1∑
t=1

1

n

n∑
s=1

∇f
(
w1;xσ1(s)

)
,

take norms and apply the triangle inequality, we obtain∥∥∥w(m)
1 −w1

∥∥∥
∞

≤α

∥∥∥∥∥
m−1∑
t=1

1

n

n∑
s=1

∇f
(
w1;xσ1(s)

)∥∥∥∥∥
∞

+ α

∥∥∥∥∥
m−1∑
t=1

(
∇f

(
w

(t)
1 ;xσ1(t)

)
−∇f

(
w1;xσ1(s)

))∥∥∥∥∥
∞

+ α

∥∥∥∥∥
m−1∑
t=1

(
∇f

(
w1;xσ1(t)

)
− 1

n

n∑
s=1

∇f
(
w1;xσ1(s)

))∥∥∥∥∥
∞

≤α(m− 1)∥∇L(w1)∥∞ + α(m− 1)L∞∆1 + α(m− 1)(ς + σi)

≤αn∥∇L(w1)∥∞ + αnL∞∆1 + αn(ς + σi). (16)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Now that we have the bounds for ∆k, we next will sum them up. Taking a max over m on both side
in Equation (15), this implies for all the k ≥ 2,

∆k ≤ αH(ς + σi + 2L2∆k−1) + αL∞n(4∆k−1 +∆k) + αn∥∇L(wk)∥∞
as m− 1 ≤ n. Considering the fact that αL∞n < 1/2, we get

∆k ≤ 2αHς + σi + (8αnL∞ + 4αHL2)∆k−1 + 2αn∥∇L(wk)∥∞.

This completes the proof of the first inequality in the lemma. Applying this recursively from any
k ≥ 2 to 2, this gives

∆k ≤(8αnL∞ + 4αHL2)
k−1∆1 +

∞∑
i=1

(8αnL∞ + 4αHL2)
i (2αH(ς + σi) + 2αn∥∇L(wk)∥∞) .

Applying the learning rate conditions that 32αnL∞ ≤ 1 and 16αHL2 ≤ 1, we obtain

∆k ≤
(
1

2

)k−1

∆1 + 4αH(ς + σi) + 4αn∥∇L(wk)∥∞.

Square on both sides,

∆2
k ≤3

(
1

4

)k−1

∆2
1 + 48α2H2(ς + σi)

2 + 48α2n2∥∇L(wk)∥2∞.

We can apply the similar trick to Equation (16) and get

∆2
1 ≤ 8α2n2∥∇L(w1)∥2∞ + 8α2n2(ς + σi)

2.

This completes the proof of the second inequality in the lemma. Summing from k = 1 to K, we
will get

K∑
k=1

∆2
k =∆2

1 +

K∑
k=2

∆2
k

=∆2
1 + 3∆2

1

K∑
k=2

(
1

4

)k−1

+ 48α2H2(ς + σi)
2(K − 1) + 48α2n2

K∑
k=2

∥∇L(wk)∥2∞

≤∆2
1 + 3∆2

1

∞∑
k=1

(
1

4

)k

+ 48α2H2(ς + σi)
2(K − 1) + 48α2n2

K∑
k=2

∥∇L(wk)∥2∞

≤16α2n2∥∇L(w1)∥2∞ + 16α2n2(ς + σi)2 + 48α2H2(ς + σi)
2(K − 1) + 48α2n2

K∑
k=2

∥∇L(wk)∥2∞

≤16α2n2(ς + σi)
2 + 48α2H2(ς + σi)

2K + 48α2n2
K∑

k=1

∥∇L(wk)∥2∞.

That completes the third inequality, and we have finished proving all three inequalities.

Lemma C.3 ((Chen et al., 2024)). Given Q ∈ Rd×M , recall λ∗
Q,ρ with ρ ≥ 0 is defined as

λ∗
Q,ρ ∈ argmin

λ∈∆M

∥Qλ∥2 + ρ∥λ∥2. (17)

Then, for any λ ∈ ∆M , it holds that

⟨Qλ∗
Q,ρ, Qλ⟩ ≥ ∥Qλ∗

Q,ρ∥2 − ρ, (18)

and ∥Qλ−Qλ∗
Q,ρ∥2 ≤ ∥Qλ∥2 − ∥Qλ∗

Q,ρ∥2 + 2ρ. (19)

Proof. By the first order optimality condition for equation 17 , for any λ ∈ ∆M , we have

⟨Q⊤Qλ∗
Q,ρ, λ− λ∗

Q,ρ⟩ ≥ −ρ. (20)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

By rearranging the above inequality, we obtain
⟨Qλ∗

Q,ρ, Qλ⟩ ≥ ∥Qλ∗
Q,ρ∥2 − ρ, (21)

which is precisely the first inequality in the claim. Furthermore, we can also have
∥Qλ−Qλ∗

Q,ρ∥2 = ∥Qλ∥2 + ∥Qλ∗
Q,ρ∥2 − 2⟨Qλ∗

Q,ρ, Qλ⟩
≤ ∥Qλ∥2 + ∥Qλ∗

Q,ρ∥2 − 2∥Qλ∗
Q,ρ∥2 + 2ρ

= ∥Qλ∥2 − ∥Qλ∗
Q,ρ∥2 + 2ρ,

which is the desired second inequality in the claim. Hence, the proof is complete.

Lemma C.4 (Hölder continuity of dQ w.r.t. Q (Chen et al., 2024)). For all Q,Q′ ∈ Rd×M , define
λ∗ ∈ argminλ∈∆M ∥Qλ∥2, and λ∗′ ∈ argminλ∈∆M ∥Q′λ∥2, and dQ = Qλ∗, d′Q = Q′λ∗′, then

∥dQ − dQ′∥2 ≤ 4max

{
sup

λ∈∆M

∥Qλ∥, sup
λ∈∆M

∥Q′λ∥

}
· sup
λ∈∆M

∥(Q−Q′)λ∥. (22)

Proof. We can first rewrite ∥dQ − dQ′∥2 = ∥Qλ∗ −Q′λ∗′∥2 as

∥Qλ∗ −Q′λ∗′∥2 =∥Qλ∗∥2 + ∥Q′λ∗′∥2 − 2⟨Qλ∗, Q′λ∗′⟩
=∥Qλ∗∥2 − ∥Q′λ∗′∥2 + 2⟨Q′λ∗′, Q′λ∗′ −Qλ∗⟩
=∥Qλ∗∥2 − ∥Q′λ∗′∥2 + 2⟨Q′λ∗′, Q′λ∗′ −Q′λ∗⟩︸ ︷︷ ︸

≤0

+2⟨Q′λ∗′, Q′λ∗ −Qλ∗⟩

where ⟨Q′λ∗′, Q′λ∗′ −Q′λ∗⟩ ≤ 0 by (18) in Lemma C.3. Then it can be further bounded by

∥Qλ∗ −Q′λ∗′∥2
(a)

≤ min
λ∈∆M

∥Qλ∥2 − min
λ∈∆M

∥Q′λ∥2 + 2∥Q′λ∗′∥∥(Q′ −Q)λ∗∥

=− max
λ∈∆M

−∥Qλ∥2 + max
λ∈∆M

−∥Q′λ∥2 + 2∥Q′λ∗′∥∥(Q′ −Q)λ∗∥

(b)

≤ max
λ∈∆M

(
∥Qλ∥2 − ∥Q′λ∥2

)
+ 2∥Q′λ∗′∥∥(Q′ −Q)λ∗∥

(c)

≤ max
λ∈∆M

∥(Q−Q′)λ∥
(
∥Qλ∥+ ∥Q′λ∥

)
+ 2∥Q′λ∗′∥∥(Q′ −Q)λ∗∥

≤4max
{

sup
λ∈∆M

∥Qλ∥, sup
λ∈∆M

∥Q′λ∥
}
· sup
λ∈∆M

∥(Q−Q′)λ∥

where (a) follows from Cauchy-Schwarz inequality; (b) follows from subadditivity of maximum
operator; (c) follows from triangle inequality. The proof is complete.

C.4 PROOF ON THE CONVERGENCE RATE OF ALGORITHM 1 WITH RANDOM ORDERING

The following theorem studies the convergence rate of Algorithm 1 with random ordering.

Theorem C.5. Set α = min

{√
24∆

KLT
∑K

k=1 σ2
k

, 1√
2KL

, 1
AL2K2T 1/3

}
, with random yields:

1

T

T−1∑
t=0

E∥∇L(wt)∥22 ≤

√√√√24L∆

KT

K∑
k=1

σ2
k +

48L∆B2

T
K

∑K
k=1 σ

2
k

,

To prove theorem C.5, we first need the following lemma:
Lemma C.6. Suppose that Assumption 3.4 holds. Then for iterates wt generated by Algorithm 1
with stepsize α ≤ 1

Ln , we have

L(wt+1) ≤ L(wt)−
αK

2
∥∇L(wt)∥2 +

αL2
2

K
Vi +

α2L

2

K∑
k=1

σ2
k, (23)

where we define Vt =
∑K

k=1

∥∥∥wt −w
(k)
t

∥∥∥2
∞

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Proof. Recall that wt+1 = wt − αgt, where gt =
∑n−1

i=0 ∇fπi
(wi

t). Using L-smoothness of f , we
get

EL(wt+1) ≤EL(wt)− αKE

〈
∇L(wk),

1

K

K∑
k=1

∇ℓ(w
(t)
k ; ξσk(t))

〉
+

α2K2L

2
E

∥∥∥∥∥ 1n
n∑

t=1

∇ℓ(w
(t)
k ; ξσk(t))

∥∥∥∥∥
2

=EL(wk)−
αK

2
∥∇L(wk)∥2 −

αn

2

∥∥∥∥∥ 1

K

K∑
k=1

∇Lk(w
(t)
k)

∥∥∥∥∥
2

+
αK

2

∥∥∥∥∥∇L(wk)−
1

K

K∑
k=1

∇Lk(w
(t)
k)

∥∥∥∥∥
2

+
α2n2L

2
E

∥∥∥∥∥ 1

K

K∑
k=1

∇ℓ(w
(t)
k ; ξσk(t))

∥∥∥∥∥
2

≤EL(wk)−
αK

2
∥∇L(wk)∥2 +

αn

2

∥∥∥∥∥∇L(wk)−
1

K

K∑
k=1

∇Lk(w
(t)
k)

∥∥∥∥∥
2

+
α2L

2

K∑
k=1

σ2
k.

Then we note that:∥∥∥∥∥∇L(wt)−
1

K

K∑
k=1

∇Lk(w
(k)
t)

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

K

K∑
k=1

∇Lk(wt)−
1

K

K∑
k=1

∇Lk(w
(k)
t)

∥∥∥∥∥
2

≤ 1

K

K∑
k=1

∥∥∥∇Lk(wt)−∇Lk(w
(k)
t)
∥∥∥2

≤ 1

K

K∑
k=1

L2
2

∥∥∥wt −w
(k)
t

∥∥∥2
∞

≤L2
2

K
Vi,

which complete our proof.

Lemma C.7. Suppose that Assumption 3.4 holds and that Algorithm 1 is used with a stepsize α ≤
1

2LK . Then
E[Vt] ≤ α2K3∥∇f(wt)∥2 + α2K2ς2, (24)

where Vt is defined as Vt =
∑K

k=1 ∥wt −w
(k)
t ∥2∞.

Proof. Let us fix any k ∈ [1,K − 1] and find an upper bound for Et∥wk
t −wt∥2. First, note that

wk
t = wt − α

k−1∑
i=0

∇ℓ(wi
t, ξ

i
t).

Therefore, by Young’s inequality, Jensen’s inequality and gradient Lipschitzness

Et∥wk
t −wt∥2 = α2Et

∥∥∥∥∥
k−1∑
i=0

∇ℓ(wi
t, ξ

i
t)

∥∥∥∥∥
2

≤ 2α2Et

∥∥∥∥∥
k−1∑
i=0

(
∇ℓ(wi

t, ξ
i
t)−∇ℓ(wt, ξ

i
t)
)∥∥∥∥∥

2

+ 2α2Et

∥∥∥∥∥
k−1∑
i=0

∇ℓ(wt, ξ
i
t)

∥∥∥∥∥
2

≤ 2α2k

k−1∑
i=0

Et∥∇ℓ(wi
t, ξ

i
t)−∇ℓ(wt, ξ

i
t)∥2 + 2α2Et

∥∥∥∥∥
k−1∑
i=0

∇ℓ(wt, ξ
i
t)

∥∥∥∥∥
2

≤ 2α2L2k

k−1∑
i=0

Et∥wi
t −wt∥2 + 2α2Et

∥∥∥∥∥
k−1∑
i=0

∇ℓ(wt, ξ
i
t)

∥∥∥∥∥
2

.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Let us bound the second term. For any i we have Et[∇ℓ(wt, ξ
i
t)] = ∇L(wt), so using (with vectors

∇fπ0
(xt),∇fπ1

(xt), . . . ,∇fπk−1
(xt)) we obtain

Et

∥∥∥∥∥
k−1∑
i=0

∇ℓ(wt, ξ
i
t)

∥∥∥∥∥
2

= k2∥∇L(wt)∥2 + k2Et

∥∥∥∥∥1k
k−1∑
i=0

(∇ℓ(wt, ξ
i
t)−∇L(wt))

∥∥∥∥∥
2

≤ k2∥∇L(wt)∥2 +
k(K − k)

K − 1
(ς +max

k
σk)

2.

Combining the produced bounds yields

Et∥wk
t −wt∥2 ≤ 2α2L2k

k−1∑
i=0

Et∥wi
t −wt∥2 + 2α2k2∥∇f(xt)∥2 + 2α2 k(K − k)

K − 1
(ς +max

k
σk)

2

≤ 2α2L2kE[Vt] + 2α2k2∥∇f(xt)∥2 + 2α2 k(K − k)

K − 1
(ς +max

k
σk)

2,

whence

E[Vt] =

K−1∑
k=0

Et∥wk
t −wt∥2

≤ α2L2K(K − 1)E[Vt] +
1

3
α2(K − 1)K(2K − 1)∥∇f(xt)∥2 +

1

3
α2K(K + 1)(ς +max

k
σk)

2.

Since E[Vt] appears in both sides of the equation, we rearrange and use that α ≤ 1
2LK by assumption,

which leads to

E[Vt] ≤
4

3
(1− α2L2n(n− 1))E[Vt]

≤ 4

9
α2(n− 1)n(2n− 1)∥∇L(wt)∥2 +

4

9
α2n(n+ 1)σ2

t

≤ α2n3∥∇L(wt)∥2 + α2n2(ς +max
k

σk)
2.

Now we are ready to prove theorem C.5:

Proof. Taking expectation in Lemma C.6 and then using C.7, we have that for any t ∈ {0, 1, . . . , T−
1},

Et[L(wt+1)]
(23)

≤ L(wt)−
αK

2
∥∇L(wt)∥2 + αL2Et[Vt] +

α2L

2

K∑
k=1

σ2
k

(24)

≤ L(wt)−
αK

2
∥∇L(wt)∥2 + αL2(α2K3∥∇L(wt)∥2 + α2K2(ς +max

k
σk)

2) +
α2L

2

K∑
k=1

σ2
k

= L(wt)−
αK

2
(1− α2L2K2)∥∇L(wt)∥2 + α3L2K2(ς +max

k
σk)

2 +
α2L

2

K∑
k=1

σ2
k.

Let δt = L(wt)− L∗. Adding −L∗ to both sides will give us:

Et[δt+1] ≤ δt −
αK

2
(1− α2L2K2)∥∇L(wt)∥2 + α3L2K2(ς +max

k
σk)

2 +
α2L

2

K∑
k=1

σ2
k

≤ (1 + α3AL2K2)δt −
αK

2
(1− α2L2K2)∥∇L(wt)∥2 + α3L2K2(ς +max

k
σk)

2 +
α2L

2

K∑
k=1

σ2
k.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Taking unconditional expectations in the last inequality and using that by assumption on α we have
1− α2L2K2 ≥ 1

2 , we get the estimate

E[δt+1] ≤ (1 + α3AL2K2)E(δt)−
αK

4
E[∥∇L(wt)∥2] + α3L2K2(ς +max

k
σk)

2 +
α2L

2

K∑
k=1

σ2
k.

(25)
Then we have:

min
t=0,...,T−1

E[∥∇L(wt)∥2] ≤
4(1 + α3AL2K2)T

αKT
(L(w0)− L∗) + 2α2L2K(ς +max

k
σk)

2 +
αL

2

K∑
k=1

σ2
k.

Using that 1 + x ≤ exp(x) and that the stepsize α satisfies α ≤ (AL2K2T)−1/3, we have

(1 + α3AL2K2)T ≤ exp(α3AL2K2T) ≤ exp(1) ≤ 3.

Using this in the previous bound, we finally obtain

min
t=0,...,T−1

E[∥∇L(wt)∥2] ≤
12(L(w0)− L∗)

αKT
+ 2α2L2K(ς +max

k
σk)

2 +
αL

2

K∑
k=1

σ2
k.

D PLOTS OF GRADIENT NORMS

Figure 5 shows the log-log plot of minλ∈∆M ∥∇L(w(1)
T)λ∥2 with respect to the number of epochs T

for different dynamic weighting methods on NYUv2 data set. Recall that Theorem 3.6 demonstrate
that the convergence rate is O(T−1/2) for random data ordering, and Theorem 3.9 demonstrate
that the convergence rate O(T−2/3) for our method JoGBa. That should correspond to two lines
with slope − 1

2 and − 2
3 respectively on the log-log plot, as we have also plot these two lines in the

figures for better reference. We can see that empirical results on both random ordering and our
method JoGBa matches our theoretical results well, which also demonstrate that JoGBa achieves
faster convergence compared to the random ordering baseline.

0 1 2 3 4 5
log of Epochs

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5

lo
g

of
 W

ei
gh

te
d

gr
ad

ie
nt

 n
or

m

Baseline (Random)
JoGBa
O(T 1/2)
O(T 2/3)

(a) MGDA.

0 1 2 3 4 5
log of Epochs

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

lo
g

of
 W

ei
gh

te
d

gr
ad

ie
nt

 n
or

m

Baseline (Random)
JoGBa
O(T 1/2)
O(T 2/3)

(b) CAGrad.

0 1 2 3 4 5
log of Epochs

3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

lo
g

of
 W

ei
gh

te
d

gr
ad

ie
nt

 n
or

m

Baseline (Random)
JoGBa
O(T 1/2)
O(T 2/3)

(c) PCGrad.

0 1 2 3 4 5
log of Epochs

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

lo
g

of
 W

ei
gh

te
d

gr
ad

ie
nt

 n
or

m

Baseline (Random)
JoGBa
O(T 1/2)
O(T 2/3)

(d) Nash-MTL.

Figure 5: Log of weighted gradient norm minλ∈∆M ∥∇L(w(1)
t)λ∥2 for NYUv2 data with different

data ordering methods.

24

	Introduction
	Related Works
	Permutation-based SGD for Finite-Sum Optimization
	Gradient-based Multi-objective Optimization

	Proposed Method
	Multiple Sample Orderings for Multiple Objectives
	Sample Ordering by Online Vector Balancing
	Theoretical Analysis

	Experiments
	NYUv2
	QM9
	Comparison on Time Costs
	Ablation Study

	Conclusion
	Experiment Details
	Comparison of Different Sample Ordering Approaches
	Proofs
	Proof of Theorem 3.6
	Proof to Theorem 3.9
	Technical Lemmas
	Proof on the convergence rate of Algorithm 1 with random ordering

	Plots of Gradient Norms

