
Under review as a conference paper at ICLR 2022

THE IMPORTANCE OF THE CURRENT INPUT IN
SEQUENCE MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

The last advances in sequence modeling are mainly based on deep learning ap-
proaches. The current state of the art involves the use of variations of the standard
LSTM architecture, combined with several tricks that improve the final prediction
rates of the trained neural networks. However, in some cases, these adaptations
might be too much tuned to the particular problems being addressed. In this ar-
ticle, we show that a very simple idea, to add a direct connection between the
input and the output, skipping the recurrent module, leads to an increase of the
prediction accuracy in sequence modeling problems related to natural language
processing. Experiments carried out on different problems show that the addi-
tion of this kind of connection to a recurrent network always improves the results,
regardless of the architecture and training-specific details. When this idea is in-
troduced into the models that lead the field, the resulting networks achieve a new
state-of-the-art perplexity in language modeling problems.

1 INTRODUCTION

Deep learning models constitute the current state of the art in most artificial intelligence applica-
tions, from computer vision to robotics or medicine. When dealing with sequential data, Recurrent
Neural Networks (RNNs), specially those architectures with gating mechanisms such as the LSTM
(Hochreiter & Schmidhuber, 1997), the GRU (Cho et al., 2014) and other variants, are usually the
default choice. One of the most interesting applications of RNNs is related to the field of Natural
Language Processing, where most tasks, such as machine translation, document summarization or
language modeling, involve the manipulation of sequences of textual data. Of these, language mod-
eling has been extensively used to test different innovations in recurrent architectures, mainly due to
the ease of obtaining very large datasets that can be used to train neural networks with millions of
parameters.

Sequence modeling consists of predicting the next element in a sequence given the past history. In
language modeling, the sequence is a text, and hence the task is to predict the next word or the
next character. In this context, some of the best performing architectures include the Mogrifier
LSTM (Melis et al., 2020) and different variations of the AWD-LSTM (Merity et al., 2018), usually
combined with dynamic evaluation and mixture of sofmaxes (MoS) (Wang et al., 2019; Gong et al.,
2018). These models obtain the best state-of-the-art performance with moderate size datasets, such
as the Penn Treebank (Mikolov et al., 2010) or the Wikitext-2 (Merity et al., 2017) corpora, when no
additional data are used during training. When larger datasets are considered, or when external data
are used to pre-train the networks, attention-based architectures usually outperform other models
(Radford et al., 2019; Brown et al., 2020).

In this work we use moderate-scale language modeling datasets to explore the effect of a mechanism
recently proposed by Oliva & Lago-Fernández (2021), when combined with different LSTM-based
models in the language modeling context. The idea consists of modifying a recurrent architecture
by introducing a direct connection between the input and the output of the recurrent module. This
has been shown to improve both the model’s generalization results and its readability in simple tasks
related to the recognition of regular languages.

In a standard RNN, the output depends only on the network’s hidden state, ht, which in turn depends
on both the input, xt, and the recent past, ht−1. But there is no explicit dependence of the network’s

1



Under review as a conference paper at ICLR 2022

output on its input. In some cases this could be a shortcoming, since the transformation of xt needed
to compute the network’s internal state is not necessarily the most appropriate to compute the output.
However, an explicit dependence of the output on xt can be forced by adding a dual connection that
skips the recurrent layers. We claim that this strategy may be of general application in RNN models.

To test our hypothesis we perform a thorough comparison of several state-of-the-art RNN architec-
tures, with and without the dual connection, on the Penn Treebank and the Wikitext-2 datasets. Our
results show that, under all experimental conditions, the dual architectures outperform their non-
dual counterparts. In addition, the Mogrifier-LSTM enhanced with a dual connection establishes a
new state-of-the-art word-level perplexity for the Penn Treebank dataset when no additional data are
used to train the models.

The remainder of the article is organized as follows. First, in section 2, we present the different
models we have used and the two possible architectures, the standard recurrent architecture and the
dual architecture. In section 3, we describe the datasets and the experimental setup. In section 4, we
present our results. And finally, in section 5, we extract some conclusions and discuss further lines
of research.

2 MODELS

We start by presenting the standard recurrent architecture which is common to all the models. In
absence of a dual connection, the basic architecture involves an embedding layer, a recurrent layer
and a fully-connected layer with softmax activation:

et = W exxt (1)
ht = REC(et,St−1) (2)

yt = softmax(W yhht + by), (3)

where W ∗∗ and b∗ are weight matrices and biases, respectively, and xt is the input vector at time t.
TheREC module represents an arbitrary recurrent layer, with St−1 being a set of vectors describing
its internal state at the previous time step. In the most general case, this module will simply be an
LSTM cell, but we consider other possibilities as well, as described below.

The dual architecture introduces an additional layer, with ReLU activation, which is fed with both
the output of the embedding layer and the output of the recurrent module:

et = W exxt (4)
ht = REC(et,St−1) (5)

dt = ReLU(W deet +W dhht + bd) (6)

yt = softmax(W yddt + by). (7)

This way the network’s input can reach the softmax layer following two different paths, through the
recurrent layer and through the dual connection. In the following we consider different forms for
the recurrent module in equations 2 and 5.

2.1 THE LSTM MODULE

In the simplest approach the recurrent module consists of an LSTM cell, where the internal state
includes both the output and the memory, St = {ht; ct}, which are computed as follows:

2



Under review as a conference paper at ICLR 2022

f t = σ(W feet +W fhht−1 + bf ) (8)

it = σ(W ieet +W ihht−1 + bi) (9)

ot = σ(W oeet +W ohht−1 + bo) (10)

zt = tanh(W zeet +W zhht−1 + bz) (11)
ct = f t � ct−1 + it � zt (12)
ht = ot � tanh(ct), (13)

where, as before, W ∗∗ are weight matrices and b∗ are bias vectors. The � operator denotes an
element-wise product, and σ is the logistic sigmoid function. For convenience, we summarize the
joint effect of equations 8-13 as:

ht = LSTM(et, {ht−1; ct−1}). (14)

In the literature it is quite common to stack several LSTM layers. Here we consider a double-layer
LSTM, where the output ht of the recurrent module is obtained by the concatenated application of
two LSTM layers:

h′t = LSTM1(et, {h′t−1; c′t−1}) (15)

ht = LSTM2(h
′
t, {ht−1; ct−1}). (16)

We refer to this double LSTM module as dLSTM :

ht = dLSTM(et, {ht−1; ct−1;h
′
t−1; c

′
t−1}) (17)

= LSTM2(LSTM1(et, {h′t−1; c′t−1}), {ht−1; ct−1}). (18)

2.2 THE MOGRIFIER-LSTM MODULE

The Mogrifier-LSTM (Melis et al., 2020) is one of the state-of-the-art variations of the standard
LSTM architecture achieving the lowest perplexity scores in language modeling tasks. It basically
consists of a standard LSTM block, but the input et and the hidden state ht−1 are transformed
before entering equations 8-13. The mogrifier transformation involves several steps where et and
ht−1 modulate each other:

eit = 2σ(Qihi−1
t−1)� ei−2t , for odd i ∈ {1, 2, ..., r} (19)

hi
t−1 = 2σ(Riei−1t )� hi−2

t−1, for even i ∈ {1, 2, ..., r}, (20)

where Qi and Ri are weight matrices and we have e−1t = et and h0
t−1 = ht−1. The linear transfor-

mations Qihi−1
t−1 and Riei−1t can also include the addition of a bias vector, which has been omitted

for the sake of clarity. The constant r is a hyperparameter whose value defines the number of rounds
of the transformation. We refer to this recurrent module, including the mogrifier transformation and
the subsequent application of the LSTM layer, as:

ht = mLSTM(et, {ht−1; ct−1}) = LSTM(e∗t , {h
∗
t−1; ct−1}), (21)

where e∗t and h∗t−1 are the highest indexed eit and hi
t−1 in equations 19 and 20. Note that the choice

r = 0 recovers the standard LSTM model.

Melis et al. (2020) also used a double-layer LSTM enhanced with the mogrifier transformation. This
strategy can be summarized as follows:

3



Under review as a conference paper at ICLR 2022

ht = mdLSTM(et, {ht−1; ct−1;h
′
t−1; c

′
t−1}) (22)

= mLSTM2(mLSTM1(et, {h′t−1; c′t−1}), {ht−1; ct−1}). (23)

3 EXPERIMENTS

3.1 DATASETS

We perform experiments on two datasets: the Penn Treebank corpus (Marcus et al., 1993), as pre-
processed by Mikolov et al. (2010), and the WikiText-2 dataset (Merity et al., 2017). In both cases,
the data are used without any additional preprocessing.

The Penn Treebank (PTB) dataset has been widely used in the literature to experiment with language
modeling. The standard data preprocessing is due to Mikolov et al. (2010), and includes transforma-
tion of all letters to lower case, elimination of punctuation symbols, and replacement of all numbers
with a special token. The vocabulary is limited to the 10,000 most frequent words. The data is split
into a training set which contains almost 930,000 tokens, and validation and test sets with around
80,000 words each.

The WikiText-2 (WT2) dataset, introduced by Merity et al. (2017), is a more realistic benchmark
for language modeling tasks. It consists of more than 2 million words extracted from Wikipedia
articles. The training, validation and test sets contain around 2,125,000, 220,000, and 250,000
words, respectively. The vocabulary includes over 30,000 words, and the data retain capitalization,
punctuation, and numbers.

3.2 EXPERIMENTAL SETUP

All the considered models follow one of the two architectures discussed in section 2, either the
Embedding-Recurrent-Softmax (ERS) architecture (equations 1-3) or the dual architecture (equa-
tions 4-7). In either case, the recurrent module can be any of LSTM , dLSTM , or mdLSTM .
Weight tying (Inan et al., 2017; Press & Wolf, 2017) is used to couple the weight matrices of the
embedding and the output layers. This reduces the number of parameters and prevents the model
from learning a one-to-one correspondence between the input and the output (Merity et al., 2018).

We run two different sets of experiments. First, we analyze the effect of the dual connection by
comparing the performances of the two architectures (ERS vs Dual), using each of the recurrent
modules, on both the PTB and the WT2 datasets. In this setting the hyperparameters are tuned for
the ERS architecture, and then transferred to the dual case. Second, we search for the best hyper-
parameters for the dual architecture using the mdLSTM recurrence, and compare the perplexity
score with current state-of-the-art values. All the experiments have been performed using the Keras
library (Chollet et al., 2015), and the implementation is available in a public Github repository1.

The networks are trained using the Nadam optimizer (Dozat, 2016), a variation of Adam (Kingma
& Ba, 2015) where Nesterov momentum is applied. The number of training epochs is different for
each experimental condition. On one hand, when the objective is to perform a pairwise comparison
between dual and non-dual architectures, we train the models for 100 epochs. On the other hand,
when the goal is to compare the dual network with state of the art approaches, we let the models run
for 300 epochs. We use batch sizes of 32 and 128 for the PTB and the WT2 problems, respectively,
and set the sequence length to 25 in all cases. The remaining hyperparameters are searched in the
ranges described in table 1.

Finally, all the models are run twice, both with and without dynamic evaluation (Krause et al., 2018).
Dynamic evaluation is a standard method commonly used to adapt the model parameters, learned
during training, using also the validation data. This allows the networks to get adapted to the new
evaluation conditions, which in general improves their performance. In order to keep the models as
simple as possible, no additional modifications have been considered.

1The repository is not yet available to preserve author anonymity. It will be released after the review process.

4



Under review as a conference paper at ICLR 2022

Table 1: List of all the hyperparameters and the search range associated with each of them. Those
marked with an asterisk (∗) refer to the dual architectures only.

Name Description Values

Num epochs Number of training epochs. {100, 300}
Learning rate Learning rate. [10−6, 10−3]
Batch size Batch size. {32, 128}
Seq len Sequence length. {10, 25, 50}

Embedding units Size of the embedding layer. {400, 850}
Recurrent units Size of the recurrent layers. {400, 850, 1150}
LSTM layers Number of recurrent layers. {1, 2, 3}
Dual units∗ Size of the dual layer. {400, 850}

Embedding L2reg L2 regularization applied to the Embedding and {0, 10−6, 10−5}
output layers.

Rec. input L2reg L2 regularization applied to the input weights of {0, 10−6, 10−5}
the recurrent layer.

Rec. L2reg L2 regularization applied to the recurrent weights {0, 10−6, 10−5}
of the recurrent layer.

Activation L2reg L2 regularization applied to the recurrent layers {0, 10−6, 10−5}
output.

Dual L2reg∗ L2 regularization applied to dual layer. {0, 10−6, 10−5}

Rec. input Dropout Dropout before the first recurrent layer. [0.0, 0.5]
Rec. Dropout Dropout for the linear transformation of the [0.0, 0.5]

recurrent state.
Rec. internal Dropout Dropout between the recurrent layers. [0.0, 0.5]
Rec. output Dropout Dropout after the last recurrent layer. [0.0, 0.5]
Dual input Dropout∗ Dropout before the dual layer. [0.0, 0.5]
Dual output Dropout∗ Dropout after the dual layer. [0.0, 0.5]

Mogrifier deep Mogrifier rounds. {0, 2, 3, 4, 5, 6}
Mogrifier L2reg L2 regularization applied to Mogrifier weights. {0, 10−6, 10−5}
Mogrifier rank Weight factorization. Qi ∈ Rm×n = Qi

lQ
i
r {0, 50, 100, 200}

with Qi
l ∈ Rm×k,Qi

r ∈ Rk×n.
Mogrifier Dropout Dropout between the Mogrifier weights. [0.0, 0.2]

Learning rate eval Learning rate when Dynamic evaluation. [10−6, 10−3]
Seq len eval Sequence length when Dynamic evaluation. [5, 50]
Clipnorm eval Gradients clipping to a maximum norm. [0.0, 1.0]

4 RESULTS

We first show the results of the comparative analysis ERS vs Dual, then we focus on the search of
the optimal hyperparameters for the dual architecture with the mdLSTM recurrence.

4.1 DUAL VS NON-DUAL ARCHITECTURES

Table 2 displays the validation and test perplexity scores obtained for each of the experimental
configurations on the PTB and the WT2 problems, both with and without dynamic evaluation. To
facilitate the comparison, each pair of rows contain the results for one of the recurrent modules
(LSTM , dLSTM or mdLSTM ) using the two architectures ERS and Dual, with the best values
shown in bold. In each case, the hyperparameters are tuned for the standard ERS architecture and
then used within the dual networks without any additional adaptation. The exceptions are hyper-

5



Under review as a conference paper at ICLR 2022

Table 2: Validation and test word-level perplexity obtained for each of the experimental configura-
tions on the PTB (top) and the WT2 (bottom) datasets.

Penn Treebank Dataset
No Dyneval Dyneval

MODEL No. PARAMS Val. Test Val. Test

LSTM 8.88 M 67.37 64.91 62.31 61.17
Dual LSTM 9.60 M 61.22 59.39 55.26 54.69

dLSTM 13.62 M 63.44 61.03 57.18 56.01
Dual dLSTM 13.94 M 60.99 59.56 56.11 54.87

mdLSTM 21.43 M 57.42 55.48 51.16 50.27
Dual mdLSTM 22.88 M 56.08 54.12 48.82 48.00

mdLSTM+ 22.16 M 57.77 56.29 50.42 49.83

WikiText-2 Dataset
No Dyneval Dyneval

MODEL No. PARAMS Val. Test Val. Test

LSTM 20.23 M 92.84 88.28 74.98 69.42
Dual LSTM 20.95 M 85.88 82.48 61.94 57.61

dLSTM 29.60 M 78.65 75.60 63.26 59.42
Dual dLSTM 30.32 M 77.01 73.90 61.10 57.10

mdLSTM 37.51 M 72.05 69.06 57.42 53.93
Dual mdLSTM 38.95 M 71.78 70.83 53.48 50.71

parameters, such as the dual dropout, which do not exist in the ERS configuration (those marked
with an asterisk in table 1). To give a measure of the model complexity, table 2 contains also the
approximate number of trainable parameters for each configuration.

As expected, dynamic evaluation improves the results regardless of the model or the dataset. The
main observation, however, is that networks enhanced with the dual connection display lower per-
plexity scores for almost all the training conditions on both the PTB and the WT2 datasets. The
advantage of the Dual vs the ERS architecture is larger for less complex models, and narrows as the
model complexity increases. Nevertheless, even for networks with mdLSTM recurrence, the dual
architectures outperform their non-dual counterparts in more than 2 perplexity points on the test set,
when dynamic evaluation is used.

In order to test that this improvement is due to the dual connection and not to the presence of an
extra processing layer, we performed an additional experiment with a Dual mdLSTM model, but
removing the term W deet from equation 6. The results for the PTB dataset are shown in table 2 as
mdLSTM+. Note that, in spite of slightly improving the baseline, this enhanced mogrifier model is
still well below the result obtained with the full dual architecture.

Finally, it is worth noting that all the results presented correspond to our own implementation of
the models, and that in most cases we are not including some of the several training or validation
adaptations frequently used in the literature (such as AWD or MoS, for example). This can explain
the difference with respect to the results reported by Melis et al. (2020) for the Mogrifier-LSTM
model. We would expect a further improvement of the results were these additional mechanisms
implemented.

6



Under review as a conference paper at ICLR 2022

Table 3: Best validation and test word-level perplexity scores reported in the literature for the Penn
Treebank dataset, with and without dynamic evaluation. Missing values in the last two columns
correspond to works where the dynamic evaluation approach was not considered. The last row in
the table displays the results obtained with our Dual mdLSTM network.

No Dyneval Dyneval
MODEL Val. Test Val. Test

AWD-LSTM (Merity et al., 2018) 24 M 60.00 57.30 - -
AWD-LSTM-DOC (Takase et al., 2018) 23 M 54.12 52.38 - -
AWD-LSTM (Krause et al., 2018) 24 M 59.80 57.70 51.60 51.10
AWD-LSTM +PDR (Brahma, 2019) 24 M 57.90 55.60 50.10 49.30
AWD-LSTM +MoS (Yang et al., 2018) 22 M 56.54 54.44 48.33 47.69
AWD-LSTM +MoS +PDR (Brahma, 2019) 22 M 56.20 53.80 48.00 47.30
AWD-LSTM-DOC x5 (Takase et al., 2018) 185 M 48.63 47.17 - -
AWD-LSTM +MoS +FRAGE (Gong et al., 2018) 24 M 55.52 53.51 47.38 46.54
AWD-LSTM +MoS +Adv (Wang et al., 2019) 22 M 54.98 52.87 47.15 46.52
AWD-LSTM +MoS +Adv +PS (Wang et al., 2019) 22 M 54.10 52.20 46.63 46.01
Mogrifier-LSTM (Melis et al., 2020) 24 M 51.40 50.10 44.90 44.80
Dual mdLSTM - ours 23 M 52.87 51.19 45.13 44.61

4.2 DUAL MOGRIFIER FINE TUNING

The second part of the experiments consists of searching for the best hyperparameters in the con-
figuration that provided the smallest perplexity in the previous setup, that is the Dual mdLSTM
architecture. We carry out this experiment with the PTB problem. After an extensive search (see
table 1), the best performance is obtained with a model with 850 units in the embedding layer, 850
units in each of the mogrifier LSTM layers, and 850 units also in the dual layer. The input, recurrent,
internal, and output dropout rates are all set to 0.5, the dual input and output dropout rates are set to
0.5 and 0.4, respectively, and the mogrifier dropout rate is set to 0.15. Both the embedding and the
dual L2 regularization parameters are set to 10−5. The mogrifier number of rounds is set to 4, and
the rank to 100. All the remaining hyperparameters are set to 0.

After the training phase, we continue with a fine tuning of some additional hyperparameters, using
the validation data. First, we look for the best sequence length in the range [5, 70], and then we fine-
tune the softmax temperature in the range [0.9, 1.3]. When using dynamic evaluation, we also look
for the best gradient clipping value (in the range [0.0, 1.0]) and, following Melis et al. (2020), we
repeat the whole procedure with the β1 parameter of the Nadam optimizer set to 0, which resembles
the RMSProp optimizer without momentum. The results are shown in table 3, together with the top
perplexity scores reported in the literature for the same problem.

The state-of-the-art is dominated by several variations of the AWD-LSTM network (Merity et al.,
2018), the most common being the inclusion of a Mixture of Softmaxes (MoS) (Yang et al., 2018).
Other add-ons include Direct Output Connection (DOC) (Takase et al., 2018), which is a general-
ization of MoS, Frequency Agnostic word Embedding (FRAGE) (Gong et al., 2018), Past Decode
Regularization (PDR) (Brahma, 2019), or Partial Shuffling (PS) with Adversarial Training (Adv)
(Wang et al., 2019). The mogrifier-LSTM described in section 2.2 combines many of these ideas
with a mutual gating between the input and the hidden state vectors to obtain the best results reported
in the literature for the PTB problem, among those obtained by networks that do not use additional
data during the training phase. Compared with all these models, our current approach leads the
ranking with a perplexity score of 44.61, even though most of the aforementioned tricks have not
been considered.

5 DISCUSSION

In this work, we have presented a new network design for the Language Modeling task based on the
dual network proposed by Oliva & Lago-Fernández (2021). This network adds a direct connection
between the input and the output, skipping the recurrent module, and can be adapted to any of the

7



Under review as a conference paper at ICLR 2022

traditional Embedding-Recurrent-Softmax (ERS) models, opening the way to new approaches for
this task. We have based our work on the Penn Treebank (Mikolov et al., 2010) and the WikiText-2
(Merity et al., 2017) datasets, comparing the ERS approach and its dual alternative. Regardless of
the configuration, the dual version performs always better, even though it faces a slight disadvantage,
since most of the hyperparameters are tuned using the ERS model. We can expect a much better
performance if the complete set of hyperparameters is properly tuned for the dual network.

This is in fact the case for the second experiment, where a Dual mdLSTM, which includes a simpli-
fied version of the mogrifier LSTM (Melis et al., 2020) within a dual architecture, is fine tuned for
the Penn Treebank dataset. After a thorough search of the hyperparameters space, we have found
a network configuration that establishes a new state-of-the-art score for this problem. Interestingly,
this new record has been obtained in spite of leaving aside many of the standard features used in
most state-of-the-art approaches, such as the Averaged SGD Weight-Drop (AWD) (Merity et al.,
2018) or the Mixture of Softmaxes (MoS) (Yang et al., 2018). The incorporation of these features
into the dual architecture can be expected to further increase the model performance.

The dual architecture was firstly proposed as an alternative that reduces the computational load on
the recurrent layer, letting it concentrate on modeling the temporal dependencies only. From a more
abstract point of view, it has been argued that the dual architecture can be understood as a sort of
Mealy machine, where the output explicitly depends on both the hidden state and the input (Oliva &
Lago-Fernández, 2021). Our results show that this explicit dependence on the input can indeed lead
to better performance on language modeling tasks. This emphasizes the importance of the current
input in RNN models.

Finally, although the new approach has not been tested with large-scale language corpora, we expect
that our results scale well to larger datasets. Work in progress contemplates this extension. The
dual architecture also needs further research concerning the deepness of the specific variations of
Language Modeling and other families of problems not necessarily related to Natural Language
Processing. This work opens a new line of research to be considered when processing any sequence
or time series. The utility of this approach in more general problems will be addressed in future
work.

ACKNOWLEDGMENTS

Omitted to preserve anonymity.

REFERENCES

Siddhartha Brahma. Improved language modeling by decoding the past. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pp. 1468–1476, Florence, Italy,
July 2019. Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc., 2020.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder
for statistical machine translation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans
(eds.), Proceedings of the 2014 Conference on Empirical Methods in Natural Language Process-
ing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest
Group of the ACL, pp. 1724–1734. ACL, 2014.

François Chollet et al. Keras. https://keras.io, 2015.

Timothy Dozat. Incorporating nesterov momentum into adam. In Proceedings of 4th International
Conference on Learning Representations, Workshop Track, 2016.

8

https://keras.io


Under review as a conference paper at ICLR 2022

Chengyue Gong, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tie-Yan Liu. Frage: Frequency-agnostic
word representation. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, November 1997. ISSN 0899-7667.

Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word vectors and word classifiers: A
loss framework for language modeling. In Proceedings of the 5th International Conference on
Learning Representations, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Ben Krause, Emmanuel Kahembwe, Iain Murray, and Steve Renals. Dynamic evaluation of neural
sequence models. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.
2766–2775. PMLR, 10–15 Jul 2018.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of english: The penn treebank. Comput. Linguist., 19(2):313–330, June 1993. ISSN
0891-2017.

Gábor Melis, Tomáš Kočiský, and Phil Blunsom. Mogrifier LSTM. In International Conference on
Learning Representations, 2020.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing LSTM
language models. In International Conference on Learning Representations, 2018.

Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and Sanjeev Khudanpur. Recur-
rent neural network based language model. In Takao Kobayashi, Keikichi Hirose, and Satoshi
Nakamura (eds.), INTERSPEECH, pp. 1045–1048. ISCA, 2010.

Christian Oliva and Luis F. Lago-Fernández. Separation of memory and processing in dual recurrent
neural networks. In Igor Farkaš, Paolo Masulli, Sebastian Otte, and Stefan Wermter (eds.), Artifi-
cial Neural Networks and Machine Learning – ICANN 2021, pp. 360–371, Cham, 2021. Springer
International Publishing. ISBN 978-3-030-86380-7.

Ofir Press and Lior Wolf. Using the output embedding to improve language models. In Proceedings
of the 15th Conference of the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers, pp. 157–163, Valencia, Spain, April 2017. Association for Computational
Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Sho Takase, Jun Suzuki, and Masaaki Nagata. Direct output connection for a high-rank language
model. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 4599–4609, Brussels, Belgium, October-November 2018. Association for Computa-
tional Linguistics.

Dilin Wang, Chengyue Gong, and Qiang Liu. Improving neural language modeling via adversar-
ial training. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 6555–6565. PMLR, 09–15 Jun 2019.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W. Cohen. Breaking the softmax
bottleneck: A high-rank RNN language model. In International Conference on Learning Repre-
sentations, 2018.

9


	Introduction
	Models
	The LSTM module
	The Mogrifier-LSTM module

	Experiments
	Datasets
	Experimental setup

	Results
	Dual vs non-dual architectures
	Dual Mogrifier fine tuning

	Discussion

