

000 001 002 003 004 005 006 007 008 009 010 A PRACTICAL DESCENT METHOD FOR SINGULAR VALUE DECOMPOSITION

005 **Anonymous authors**

006 Paper under double-blind review

009 010 ABSTRACT

011 Singular Value Decomposition (SVD) is a long-established technique, with most existing
012 methods relying on matrix-based formulations. However, **matrix operations are relatively**
013 **less friendly to parallelization and distributed computation compared to descent-based**
014 **methods**, motivating the need for alternative approaches. Descent-based methods offer a
015 promising direction, yet existing ones such as Riemannian gradient descent suffer from
016 inefficiency due to the need for repeated projections onto nonlinear manifolds. In this work,
017 we introduce a novel descent method for SVD grounded in a primal–dual reformulation.
018 Specifically, we construct a least-squares primal problem whose dual corresponds to the
019 SVD. We show that (i) the non-zero KKT solutions of the primal problem yield the
020 singular vectors of the matrix, and (ii) inexact singular value estimation still ensures
021 bounded reconstruction error. Building on these results, we propose an iterative descent-
022 based algorithm, Des-SVD, along with scalable variants leveraging random sampling and
023 parallelization. Extensive experiments demonstrate that Des-SVD achieves significantly
024 higher computational efficiency compared to prior descent methods, while remaining
025 competitive with matrix-based algorithms. Our implementation is publicly available at:
026 <https://anonymous.4open.science/r/Descent-SVD-method>.

027 028 1 INTRODUCTION

029 Singular Value Decomposition (SVD) is a fundamental and important technique in linear algebra, extensively
030 applied to diverse fields. Along with the explosive application of computer vision (Rajwade et al., 2013; Guo
031 et al., 2016; Kumar & Vaish, 2017; Yang & Lu, 1995) and natural language processing (Meng et al., 2024),
032 the size of the matrices involved in SVD problems is steadily increasing, which emphasizes the urgent need
033 for more efficient SVD methods.

034 However, these matrix-based methods face challenges in parallelization and still require centralized computa-
035 tion on the server (Chai et al., 2024). Descent methods offer an alternative (Qian, 1999; Jain et al., 2018;
036 Chen et al., 2020), being well suited for parallel computing (Richtárik & Takáč, 2016; Liu et al., 2022; Bai
037 et al., 2024) and stochastic sampling (Martino et al., 2018; Luengo et al., 2020; Akyildiz & Míguez, 2021).
038 Yet a practical descent method for SVD is still lacking. The existing Riemannian gradient method (Sato &
039 Iwai, 2013), for example, is hampered by costly manifold projections.

040 A pioneering work by Suykens (2016) introduces a least squares problem and demonstrates that SVD satisfies
041 its Karush-Kuhn-Tucker (KKT) conditions, thereby opening the door for the development of descent methods
042 for SVD. However, the primal-dual relationship faces a key obstacle since the least squares problem is
043 non-convex. Thus, while singular values and vectors can form a local optimum, a local optimum does not
044 directly yield the exact SVD.

045 Building on (Suykens, 2016), we establish a practical path from a local optimum of the least squares problem
046 to the SVD in this paper. Our method (Des-SVD) is available for parallelization and random sampling, and

047 we believe that additional speed-up methods could be developed in the future. Experimental results show that
 048 our method is far more efficient than the Riemannian gradient method (Sato & Iwai, 2013; Sato, 2021) and
 049 achieves comparable performance to the matrix-based methods (Menon & Elkan, 2011; Feng et al., 2018;
 050 Gao et al., 2025) in experiments involving images and large matrices.
 051

052 2 SVD AND ITS LEAST SQUARES FORMULATION

054 Let us first review Singular Value Decomposition (SVD). For a matrix $\mathbf{A} \in \mathbb{R}^{n \times m}$, the SVD factorizes \mathbf{A}
 055 into the product of three matrices:

$$056 \quad \mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^\top, \quad (1)$$

058 where \mathbf{U} is an $n \times n$ orthogonal matrix, \mathbf{V} is an $m \times m$ orthogonal matrix, and Σ is an $n \times m$ diagonal
 059 matrix containing the non-negative singular values of \mathbf{A} on its diagonal.

060 Because both \mathbf{U} and \mathbf{V} are orthogonal matrices, i.e., $\mathbf{U}^\top \mathbf{U} = \mathbf{I}_n$ and $\mathbf{V}^\top \mathbf{V} = \mathbf{I}_m$, we can rewrite the SVD
 061 equation as follows:

$$062 \quad \mathbf{A} \mathbf{V} = \mathbf{U} \Sigma, \\ 063 \quad \mathbf{A}^\top \mathbf{U} = \mathbf{V} \Sigma. \quad (2)$$

064 This Lanczos Decomposition Theorem forms the basis of the Lanczos algorithm (Lanczos, 1958).
 065

066 A topic closely related to SVD is eigen-decomposition, for which there is also a desire to develop descent
 067 methods to speed up the process. Here, we list some interesting papers for reference (Tisseur, 2001; Knyazev,
 068 2001; Marek et al., 2014; Ogita & Aishima, 2018). However, these methods all rely on symmetry or even
 069 positive semi-definiteness, which are not applicable to SVD, as it is a decomposition for non-square matrices.

070 The foundation of our work is given by Suykens (2016), which treats SVD as a dual of a least squares problem,
 071 specifically, a variant LS-SVM (Suykens & Vandewalle, 1999). The central idea of the work lies in defining
 072 two feature mappings of the matrix \mathbf{A} as follows:

$$074 \quad \begin{cases} \varphi(\mathbf{x}_i) = \mathbf{D}^\top \mathbf{x}_i, \\ \psi(\mathbf{y}_j) = \mathbf{y}_j, \end{cases} \quad (3)$$

076 where \mathbf{x}_i and \mathbf{y}_j are the i^{th} row vector and the j^{th} column vector of \mathbf{A} respectively, and \mathbf{D} is a compatible
 077 matrix satisfying $\mathbf{A} \mathbf{D} \mathbf{A} = \mathbf{A}$.
 078

079 This group of feature mappings establishes a primal-dual relationship between a least squares problem
 080 (primal) and the SVD (dual). By setting $\gamma = 1/s$, where s is a singular value of \mathbf{A} , we obtain the following
 081 **primal** formulation for the corresponding pair of singular vectors:

$$082 \quad \min_{\mathbf{w}, \mathbf{v}, \mathbf{e}, \mathbf{r}} J(\mathbf{w}, \mathbf{v}, \mathbf{e}, \mathbf{r}) = -\mathbf{w}^\top \mathbf{v} + \frac{1}{2} \gamma \sum_{i=1}^N e_i^2 + \frac{1}{2} \gamma \sum_{j=1}^M r_j^2 \\ 083 \quad \text{s.t.} \quad e_i = \mathbf{w}^\top \varphi(\mathbf{x}_i), \quad i = 1, \dots, n, \\ 084 \quad \quad \quad r_j = \mathbf{v}^\top \psi(\mathbf{y}_j), \quad j = 1, \dots, m, \\ 085 \quad \quad \quad (4)$$

088 where $\mathbf{w}, \mathbf{v} \in \mathbb{R}^n$ and $e_i, r_j \in \mathbb{R}$. Let $[\alpha]$ and $[\beta]$ represent the complete dual solutions corresponding to a
 089 series of primal problems, where the singular values of \mathbf{A} are considered respectively. The key idea is that if
 090 $[\alpha]$ and $[\beta]$ are the SVD solutions of \mathbf{A} , they must satisfy the KKT conditions of (4), which are shown below:
 091

$$092 \quad \mathbf{A}[\beta] = [\alpha]\Sigma, \\ 093 \quad \mathbf{A}^\top[\alpha] = [\beta]\Sigma. \quad (5)$$

094 Another key property is that the target value in the primal problem converges to zero when the dual variables
 095 align with the singular vectors, providing a clear convergence criterion for gradient descent. The detailed
 096 proof is shown in Appendix A.
 097

098 3 SVD FROM PRIMAL SPACE

100 The above pioneering work demonstrates a new avenue for developing descent methods for SVD. However,
 101 eq. (4) is a non-convex problem, meaning that different local optima can lead to different dual solutions, with
 102 SVD being just one of them. In other words, the existing discussion indicates that SVD can satisfy the KKT
 103 condition for eq. (4), but it cannot guarantee that solving eq. (4) will necessarily yield an SVD. This section
 104 will address this fundamental obstacle step by step: (1) we will prove that when a singular value is given
 105 and the regularization coefficient is set accordingly, the descent method can lead to the singular vector by
 106 normalizing the non-zero solutions of the KKT condition; (2) we will explain the reason why the descent
 107 method will lead to zero solutions for the KKT condition when the regularization coefficient is incorrect; (3)
 108 we will prove that when a small error is tolerated, an inexact estimation of the singular value is sufficient to
 109 obtain the singular vectors, which yields lower cost than the exact computation.

110 3.1 FROM KKT TO SINGULAR VECTOR

111 As mentioned earlier, while an SVD solution satisfies the KKT condition eq. (5), the reverse is not necessarily
 112 true. In this section, we will demonstrate that, when γ is chosen as the reciprocal of the singular value s , any
 113 **non-zero** point that satisfies the KKT condition can be normalized to yield the corresponding singular vector.

114 Let us start from the Lagrangian of eq. (4):

$$116 \quad \mathcal{L}(\mathbf{w}, \mathbf{v}, \mathbf{e}, \mathbf{r}; \boldsymbol{\alpha}, \boldsymbol{\beta}) = J(\mathbf{w}, \mathbf{v}, \mathbf{e}, \mathbf{r}) - \sum_i \alpha_i (e_i - \mathbf{w}^\top \varphi(\mathbf{x}_i)) - \sum_j \beta_j (r_j - \mathbf{v}^\top \psi(\mathbf{y}_j)). \quad (6)$$

119 The Karush–Kuhn–Tucker conditions imply that

$$120 \quad \begin{cases} \frac{\partial \mathcal{L}}{\partial \mathbf{w}} = 0 \implies \mathbf{v} = \sum_i \alpha_i \varphi(\mathbf{x}_i), \\ \frac{\partial \mathcal{L}}{\partial \mathbf{v}} = 0 \implies \mathbf{w} = \sum_j \beta_j \psi(\mathbf{y}_j), \\ \frac{\partial \mathcal{L}}{\partial e_i} = 0 \implies \gamma e_i = \alpha_i, \forall i, \\ \frac{\partial \mathcal{L}}{\partial r_j} = 0 \implies \gamma r_j = \beta_j, \forall j, \\ \frac{\partial \mathcal{L}}{\partial \alpha_i} = 0 \implies e_i = \mathbf{w}^\top \varphi(\mathbf{x}_i), \forall i, \\ \frac{\partial \mathcal{L}}{\partial \beta_j} = 0 \implies r_j = \mathbf{v}^\top \psi(\mathbf{y}_j), \forall j. \end{cases} \quad (7)$$

128 As noted in Section 2, we define the dual variables as $[\boldsymbol{\alpha}] = [\alpha_1, \dots, \alpha_n]^\top$ and $[\boldsymbol{\beta}] = [\beta_1, \dots, \beta_m]^\top$, where
 129 each dual pair (α_k, β_k) is associated with a singular value s_k and its corresponding target problem eq. (4).
 130 Therefore, the stacked vectors must satisfy the orthogonality conditions $[\boldsymbol{\alpha}]^\top [\boldsymbol{\alpha}] = \mathbf{I}_n$ and $[\boldsymbol{\beta}]^\top [\boldsymbol{\beta}] = \mathbf{I}_m$,
 131 which are not explicitly enforced by the KKT condition eq. (7). Building on this trivial observation, we will
 132 demonstrate that any non-zero solution to the KKT condition eq. (7) can be transformed into the corresponding
 133 singular vector through data normalization.

134 We first prove the natural orthogonality of $[\boldsymbol{\alpha}]$ and $[\boldsymbol{\beta}]$. If we only consider the column vector of the dual
 135 variables α_k and β_k , we can rewrite eq. (2) as

$$136 \quad \mathbf{A}\boldsymbol{\alpha}_k = \lambda_k \boldsymbol{\beta}_k, \quad (8)$$

$$137 \quad \mathbf{A}^\top \boldsymbol{\beta}_k = \lambda_k \boldsymbol{\alpha}_k. \quad (9)$$

138 Left-multiplying both sides of the equation in eq. (9) by matrix \mathbf{A} , we obtain:

$$140 \quad \mathbf{A}\mathbf{A}^\top \boldsymbol{\beta}_k = \lambda_k \mathbf{A}\boldsymbol{\alpha}_k. \quad (10)$$

141 Substituting the expression from eq. (8) into the above equation, we get:

$$142 \quad \mathbf{A}\mathbf{A}^\top \boldsymbol{\beta}_k = \lambda_k^2 \boldsymbol{\beta}_k. \quad (11)$$

144 We can conclude that $\boldsymbol{\beta}_k$ is one of the singular vectors of the normal matrix $\mathbf{A}\mathbf{A}^\top$. According to the property
 145 of normal matrices, the singular vectors corresponding to different singular values of the normal matrix
 146 are orthogonal (Golub & Van Loan, 2013). Therefore, we can easily prove that the columns of $[\boldsymbol{\beta}]$ satisfy
 147 orthogonality, and the proof for $[\boldsymbol{\alpha}]$ can be done in the same way.

148 In addition to orthogonality, the normalization property is also satisfied. For each vector $\boldsymbol{\alpha}_i$ in the matrix
 149 $[\boldsymbol{\alpha}] = [\boldsymbol{\alpha}_1, \dots, \boldsymbol{\alpha}_n]^\top$, the constraints of the KKT equation eq. (7) hold, revealing a constant-ratio relationship
 150 between $\boldsymbol{\alpha}_k$ and the corresponding element e_k . Similarly, an analogous relationship exists between each
 151 vector $\boldsymbol{\beta}_r$ in the matrix $[\boldsymbol{\beta}] = [\boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_m]^\top$ and the corresponding element v_r .

152 As a result, the normalization property of the matrices $[\boldsymbol{\alpha}]$ and $[\boldsymbol{\beta}]$ can be obtained by normalizing the
 153 columns of the matrices $\mathbf{E} = [e_1, \dots, e_n]^\top$ and $\mathbf{V} = [v_1, \dots, v_m]^\top$ respectively. **Since normalization
 154 ensures orthogonality without affecting the KKT conditions eq. (7), we implement normalization only after
 155 all iterations are completed.**

156 **Remark 1.** *For the non-zero KKT solutions of eq. (4), orthogonality is naturally satisfied due to the implicit
 157 constraints in the KKT conditions, which stem from the properties of normal matrices.*

158 3.2 FEASIBLE DESCENT DIRECTION TO NON-ZERO SOLUTION

160 The key to finding the singular vectors by solving the target problem eq. (4) is identifying a vector that
 161 satisfies the KKT condition in eq. (5). It is crucial to set γ as the reciprocal of a singular value s for this
 162 condition to hold. If this requirement is not met, equation eq. (5) cannot be satisfied by any non-zero vectors.
 163 To illustrate this, we will examine the practical algorithm and demonstrate that a feasible descent direction
 164 leads to a zero solution for eq. (5).

165 We stack the primal variables as $\mathbf{x} := [\mathbf{w}, \mathbf{v}, \mathbf{e}, \mathbf{r}]$ for notational convenience. We first show that $\Delta\mathbf{x} = -\mathbf{x}$
 166 is a feasible direction at the initial step. Next, we prove that when $\gamma \neq 1/s$, the KKT matrix is full-rank.
 167 Together, these two points imply that $\Delta\mathbf{x} = -\mathbf{x}$ is the only feasible descent direction for any \mathbf{x} . Therefore,
 168 the update $\mathbf{x}^1 = \mathbf{x}^0 - t\Delta\mathbf{x}$ converges to zero.

169 To start with, let us consider the constraint matrix \mathbf{C} and the Hessian matrix \mathbf{H} of eq. (4):

$$171 \quad \mathbf{C} = \begin{bmatrix} \Phi & \mathbf{0} & -\mathbf{I}_{e,r} \\ \mathbf{0} & \Psi & \end{bmatrix} \in \mathbb{R}^{(m+n) \times (3n+m)}, \quad (12)$$

$$174 \quad \mathbf{H} = \begin{bmatrix} \mathbf{0} & -\mathbf{I}_w & \mathbf{0} \\ -\mathbf{I}_v & \mathbf{0} & \gamma\mathbf{I}_{e,r} \end{bmatrix} \in \mathbb{R}^{(3n+m) \times (3n+m)}, \quad (13)$$

178 where $\Phi = [\varphi(\mathbf{x}_1); \varphi(\mathbf{x}_2); \dots; \varphi(\mathbf{x}_n)] \in \mathbb{R}^{n \times n}$ and $\Psi = [\psi(\mathbf{y}_1); \psi(\mathbf{y}_2); \dots; \psi(\mathbf{y}_m)] \in \mathbb{R}^{m \times n}$.

179 We know that the constraint matrix \mathbf{C} satisfies the following equations:

$$181 \quad \mathbf{C}\mathbf{x} = \mathbf{0} \Leftrightarrow \begin{bmatrix} \Phi & \mathbf{0} & -\mathbf{I}_{e,r} \\ \mathbf{0} & \Psi & \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ \mathbf{v} \\ \mathbf{e} \\ \mathbf{r} \end{bmatrix} = \mathbf{0} \Leftrightarrow \begin{cases} e_i = \mathbf{w}^\top \varphi(\mathbf{x}_i), \forall i, \\ r_j = \mathbf{v}^\top \psi(\mathbf{y}_j), \forall j. \end{cases} \quad (14)$$

185 Now we consider the KKT matrix:

$$186 \quad \mathbf{K} = \begin{bmatrix} \mathbf{H} & \mathbf{C}^\top \\ \mathbf{C} & \mathbf{0} \end{bmatrix} \in \mathbb{R}^{(4n+2m) \times (4n+2m)}, \quad (15)$$

188 and the KKT function:

$$\begin{bmatrix} \mathbf{H} & \mathbf{C}^\top \\ \mathbf{C} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x} \\ \Delta \mathbf{v} \end{bmatrix} = - \begin{bmatrix} \mathbf{g} + \mathbf{C}^\top \mathbf{v} \\ \mathbf{C} \mathbf{x} \end{bmatrix}, \quad (16)$$

192 where \mathbf{v} is the Lagrange operator initialized as $\mathbf{0}$, and \mathbf{g} is the gradient of the target function. If we focus
193 solely on the descent direction $\Delta \mathbf{x}$ and set $\Delta \mathbf{v} = \mathbf{0}$ at the first step, we can convert the original KKT matrix
194 into two functions:

$$\begin{cases} \mathbf{H} \Delta \mathbf{x} = -\mathbf{g}, \\ \mathbf{C} \Delta \mathbf{x} = -\mathbf{C} \mathbf{x}. \end{cases} \quad (17)$$

198 On the other hand, the value of $\mathbf{H} \mathbf{x}$ can be calculated:

$$\mathbf{H} \mathbf{x} = [-\mathbf{v}, -\mathbf{w}, \gamma \mathbf{e}, \gamma \mathbf{r}], \quad (18)$$

202 which is simply the gradient of the target problem, so we have $\mathbf{H} \mathbf{x} = \mathbf{g}$, i.e., $\mathbf{H}(-\mathbf{x}) = -\mathbf{g}$. Consequently,
203 it follows that $\Delta \mathbf{x} = -\mathbf{x}$ is a feasible solution to eq. (17). Furthermore, we will demonstrate the properties of
204 the KKT matrix \mathbf{K} in Theorem 3.1, and its proof is shown in Appendix B.1.

205 **Theorem 3.1.** *∀s ∈ ℝ, if s is not a correct singular value of the matrix A, the KKT matrix K remains full
206 rank, which implies that Δx = -x is the unique solution to the KKT function eq. (16). Conversely, if s is a
207 correct singular value, there exists at least one non-zero solution to eq. (16).*

209 From Theorem 3.1, we know that if γ is chosen incorrectly, \mathbf{K} will become full rank, causing \mathbf{x}^1 to become
210 zero after the first update step. This proves the necessity of setting the correct singular value s theoretically.

211 3.3 FAST ESTIMATION OF INEXACT SINGULAR VALUES

213 The above fact seemingly suggests that only when an accurate singular value is provided can a descent method
214 be used to solve SVD accurately. However, in practice, exact singular values cannot be obtained due to
215 numerical errors. For the same reason, one cannot expect to exact SVD; equivalently, it is not necessary to
216 precisely fit the KKT matrix. Suppose we tolerate errors within ε_1 for row reconstruction and ε_2 for column
217 reconstruction, respectively. The following theorem discusses the corresponding requirements on the accuracy
218 of singular value estimation. Its proof is given in Appendix B.2.

219 **Theorem 3.2.** *Let s be the true singular value and $\gamma \in [\frac{1}{s} - \Delta\gamma, \frac{1}{s} + \Delta\gamma]$. Suppose that $\Delta\gamma$ satisfies the
220 following condition:*

$$\|\Delta\gamma\| < T_{\text{err}} \triangleq \min \left\{ \frac{\varepsilon_1}{(\sum_i \|\mathbf{D}^\top \mathbf{x}_i\|^2)^{\frac{1}{2}}}, \frac{\varepsilon_2}{(\sum_j \|\mathbf{y}_j\|^2)^{\frac{1}{2}}} \right\}. \quad (19)$$

225 Then, there exists a feasible descent direction to non-zero solutions for the KKT conditions, within the
226 approximation tolerances ε_1 and ε_2 . Specifically, the following conditions hold:

$$\begin{cases} \|\mathbf{v} - \sum_i \gamma e_i \varphi(\mathbf{x}_i)\| & < \varepsilon_1, \\ \|\mathbf{w} - \sum_j \gamma r_j \psi(\mathbf{y}_j)\| & < \varepsilon_2. \end{cases} \quad (20)$$

231 As a result, fast algorithms for singular value estimation with an error less than T_{err} become applicable. We
232 apply the Rayleigh quotient iteration (Rajendran, 2002; Simoncini & Eldén, 2002) because of its accuracy
233 and efficiency by finishing the estimation without calculating the full SVD. The detailed method is provided
234 in Appendix D for reference.

235 **4 DESCENT ALGORITHM FOR SVD**236 **4.1 DESCENT METHOD FOR A GIVEN SINGULAR VALUE**

237 The theoretical framework presented enables us to propose a descent method for SVD in the primal space.
 238 The proposed algorithm is divided into two primary steps: estimating the singular values and applying the
 239 descent method to compute the singular vectors.

240 As an inexact singular value s could be efficiently estimated, we suppose it has been obtained and focus on
 241 the descent method for solving equation eq. (4) to compute the corresponding singular vector. The connection
 242 between the primal least squares problem and the SVD is established through the KKT condition, which
 243 imposes strict feasibility requirements on equation eq. (4). Meanwhile, by applying random sampling, the
 244 matrix size is not large, which allows us to choose Newton's method (Chen et al., 2020). **A failure-detection**
 245 **and auto-restart mechanism is also implemented. It reports failure and initiates a restart once the variable nears**
 246 **zero concurrently or the objective value turning negative.** The algorithm details are provided in Algorithm 1.

247 **Algorithm 1** Descent method for calculating the singular vectors from a given singular value.

248 **Input:** $A \in \mathbb{R}^{n \times m}$: the target matrix ; $C \in \mathbb{R}^{(m+n) \times (3n+m)}$: the coefficient matrix of equality constraints s.t.
 249 $Cx = 0$; γ : the reciprocal of the given singular value s ; n_{\max} : the max iterations for the newton method; ε : the
 250 threshold for the convergence;
Output: α, β : the corresponding singular vectors of s .
 251 1: Initialize the primal variable $x \in \mathbb{R}^{3n+m}$.
 252 2: Do the variable mapping $w = x[:n], v = x[n:2n], e = x[2n:3n], r = x[3n:]$.
 253 3: Construct the loss function in eq. (4).
 254 4: **for** $i = 1$ to n_{\max} and $J > \varepsilon$ **do**
 255 5: **if** $\|x\| < 1 \times 10^{-10}$ or $J < -1$, **then**
 256 6: Report failure and start the auto-restart mechanism
 257 7: **end if**
 258 8: Calculate \mathcal{L} 's Hessian matrix H in eq. (13).
 259 9: Get Δx by solving $\begin{bmatrix} H & C^\top \\ C & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta v \end{bmatrix} = - \begin{bmatrix} g + C^\top v \\ Cx \end{bmatrix}$.
 260 10: Use line search to update x .
 261 11: **end for**
 262 12: Get the normalized dual variables $\alpha = \frac{e}{\|e\|} \in \mathbb{R}^n$ and $\beta = \frac{v}{\|v\|} \in \mathbb{R}^m$.
 263 13: **return** α, β

264 **4.2 THE REFINED DESCENT SVD ALGORITHM**

265 Since each singular value is computed independently, Des-SVD naturally supports parallelization, with
 266 minimal communication required as only the singular vectors are gathered in the final stage. It can also be
 267 accelerated through random sampling; in particular, randomized SVD (Halko et al., 2011) constructs a matrix
 268 Q with $k = k(\varepsilon)$ orthonormal columns approximating the subspace of A , satisfying $\|A - QQ^*A\| \leq \varepsilon_c$,
 269 where ε_c denotes the computational tolerance.

270 After parallelization and randomized sampling, the KKT system for an $m \times n$ matrix with k singular values
 271 reduces directly from $4n + 2m$ to $6k$. Therefore, the overall complexity of Des-SVD is $O((6k)^3)$, which is
 272 of the same magnitude as the classical Lanczos method with complexity $O(k^3)$.

273 The overall Des-SVD algorithm is summarized in Appendix C, supporting both parallelization and random
 274 sampling. Experiments are conducted with `parallel = True` and `randomized = True`.

282

5 EXPERIMENTS

283
 284 To evaluate the accuracy and efficiency of our Des-SVD, we conduct experiments on images and random
 285 matrices. The baseline methods include the Riemannian gradient method (Sato & Iwai, 2013) (referred to as
 286 Rie-SVD), the standard randomized SVD algorithm (Halko et al., 2011), which applies Jacobi SVD after
 287 dimensionality reduction (referred to as Jac-SVD), and the Lanczos method with dimensionality reduction
 288 (referred to as Lan-SVD). The comparison between Des-SVD and Rie-SVD will show significant improvement
 289 in computational efficiency over other descent-based methods. The comparison to Jac-SVD and Lan-SVD
 290 will verify that Des-SVD is comparable to Lan-SVD and faster than Jac-SVD.

291 To ensure fairness, all methods are manually implemented without relying on pre-existing library functions
 292 and tested on the same CPU resources. Each experiment is repeated 10 times for statistical validity. **The**
 293 **hyperparameter settings of all four methods and the ablations of Des-SVD are shown in Appendix E.**
 294 We evaluate both time and accuracy across varying singular values. The SVD accuracy is defined as
 295 $R_{\text{acc}} = 1 - \frac{\|\mathbf{U}\mathbf{S}\mathbf{V}^T - \mathbf{A}\|_F}{\|\mathbf{A}\|_F}$, where \mathbf{A} is the target matrix, and $\mathbf{U}, \mathbf{S}, \mathbf{V}^T$ are the SVD components of \mathbf{A} .
 296

297

5.1 SVD ON LOW-RANK MATRICES

298 We compare the four methods on low-rank matrices and report their performance in Table 1, showing mean
 299 values as variances are negligible. Rie-SVD is the slowest due to repeated projections and convergence
 300 difficulty on larger sizes. In contrast, Des-SVD formulates SVD as a parallelizable least squares problem
 301 via the primal dual relationship, achieving computational efficiency comparable to classical matrix-based
 302 methods for the first time.

304 **Table 1:** Performance Comparison of Jac-SVD, Lan-SVD, Rie-SVD, and Des-SVD on low-rank matrices.

m, n, k	Jac-SVD		Lan-SVD		Rie-SVD		Des-SVD (Ours)	
	$R_{\text{acc}} \uparrow$	Time \downarrow	$R_{\text{acc}} \uparrow$	Time \downarrow	$R_{\text{acc}} \uparrow$	Time \downarrow	$R_{\text{acc}} \uparrow$	Time \downarrow
30, 10, 2	20.01%	0.01s	20.38%	0.04s	20.37%	1.05s (Iter 145)	20.38%	0.01s
30, 10, 5	54.03%	0.02s	54.04%	0.05s	54.04%	42.20s (Iter 7370)	54.04%	0.02s
300, 10, 5	64.65%	0.06s	64.66%	0.05s	64.65%	32.88s (Iter 5295)	64.66%	0.02s
300, 20, 10	71.05%	0.05s	71.05%	0.05s	64.76%	56.49s (Iter 7630)	71.05%	0.04s

312

5.2 SVD ON GRayscale IMAGES

313 Next, we evaluate Des-SVD on image data, a key application area of SVD. As noted above, Rie-SVD is less
 314 efficient; hence, the following experiments focus on Des-SVD and two representative matrix-based methods.
 315 We randomly sample 25 grayscale images of size 1024×1024 from the FFHQ dataset¹. The reconstruction
 316 performance of the selected images (*PeppersRGB*², *Cat* and *Church*³) using Des-SVD and Jac-SVD is
 317 shown in Figures 1 - 3. In general, these methods yield similar accuracy but differ in computational time.
 318 Therefore, we omit the accuracy and report only the computational time in Table 2.

320

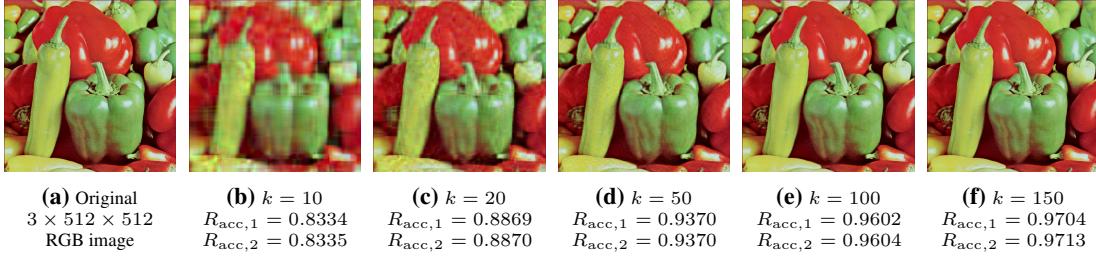
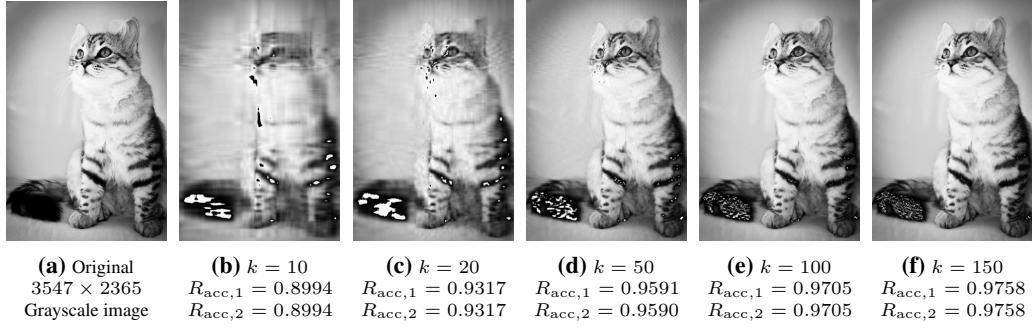
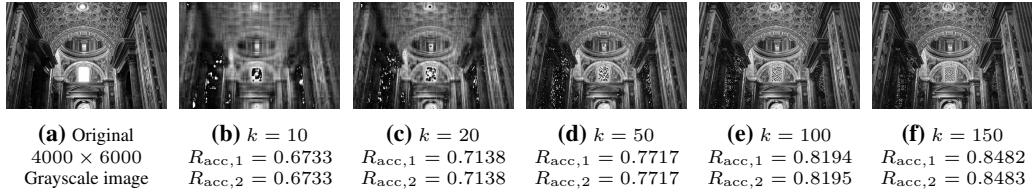
5.3 SVD ON RANDOM MATRICES

322 Beyond image processing, SVD is also relevant in many more general applications. To test this, we generate
 323 synthetic matrices of larger size 10000×10000 . Since all methods achieve similar accuracy, we focus on
 324 time consumption, reported in Table 3.

326 ¹<https://github.com/synctrust/ffhq-dataset.git>327 ²<https://www.eecs.qmul.ac.uk/~phao/IP/Images/>328 ³<https://www.pexels.com>

Table 2: Performance Comparison of Different SVD Methods on FFHQ Dataset.

k	Lan-SVD	Jac-SVD	Des-SVD(Ours)
10	0.076 \pm 0.001s	0.021 \pm 0.003s	0.059 \pm 0.000s
20	0.082 \pm 0.004s	0.073 \pm 0.014s	0.065 \pm 0.000s
50	0.224 \pm 0.003s	0.625 \pm 0.093s	0.144 \pm 0.000s
100	0.244 \pm 0.033s	2.999 \pm 0.199s	0.322 \pm 0.000s

**Figure 1:** The SVD reconstruction of Des-SVD on *PeppersRGB* with different k ($R_{acc,1}$ is the SVD accuracy of Des-SVD and $R_{acc,2}$ is that of the standard Jac-SVD).**Figure 2:** The SVD reconstruction of Des-SVD on *Cat* with different k ($R_{acc,1}$ is the SVD accuracy of Des-SVD and $R_{acc,2}$ is that of the standard Jac-SVD).**Figure 3:** The SVD reconstruction of Des-SVD on *Church* with different k ($R_{acc,1}$ is the SVD accuracy of Des-SVD and $R_{acc,2}$ is that of the standard Jac-SVD).

In the above, we evaluate Des-SVD on both image data and random matrices. As discussed in Appendix F, Des-SVD remains stable and delivers accurate SVD results even in challenging scenarios, such as when the gap between two singular values is very small or when the condition number is exceptionally large.

Table 3: Performance Comparison of Different SVD Methods on Random Matrices.

m, n	k	Lan-SVD	Jac-SVD	Des-SVD(Ours)
500, 250	20	0.09 \pm 0.00s	0.18 \pm 0.02s	0.06 \pm 0.01s
750, 500	20	0.10 \pm 0.00s	0.18 \pm 0.01s	0.07 \pm 0.00s
1000,1000	50	0.14 \pm 0.02s	1.32 \pm 0.03s	0.17 \pm 0.00s
1500,2000	50	0.14 \pm 0.01s	1.37 \pm 0.04s	0.44 \pm 0.00s
3000,3000	100	0.32 \pm 0.02s	8.21 \pm 0.32s	2.25 \pm 0.02s
10000,10000	50	1.81 \pm 0.01s	13.59 \pm 0.01s	1.97 \pm 0.01s
10000,10000	100	2.84 \pm 0.01s	14.60 \pm 0.03s	3.11 \pm 0.01s

5.4 THE PARALLELIZATION PERFORMANCE OF DES-SVD

To further evaluate Des-SVD's parallelization performance, we present a time breakdown of Des-SVD, demonstrating that the process of estimating singular values and constructing the compatible matrix D accounts for only a small fraction of the overall runtime, thereby highlighting the feasibility of parallelization. As shown in Table 4, we evaluate the performance using the image *Goldhill*⁴ (512×512 , $k = 150$) and a matrix with power decay parameter $\alpha = 0.5$ (100×100 , $k = 100$).

Table 4: Time Cost Breakdown of Des-SVD
(The slowest stage is **bolded**, and the second slowest stage is *italicized*.)

Time Stage	Hill.png	Matrix with power decay
Randomized subspace iteration	0.1370s	0.0087s
Rayleigh quotient iterations	0.0096s	0.0029s
Construction of compatible matrix	0.0069s	0.0024s
Initialization of shared memory	0.3663s	<i>0.0651s</i>
Newton method	0.2207s	0.0516s
Communication in parallel execution	0.2384s	0.1234s
Total	0.9789s	0.2541s

Moreover, we compare the sequential and parallel implementations on *Baboon*⁴ (256×256) to demonstrate the speedup from our parallelization. As shown in Table 5, the speedup is modest for small k but becomes considerable as k increases. This is due to the fixed overhead from operations like shared memory preparation, making parallelization more beneficial for larger-scale computations.

Table 5: Parallel Performance of Des-SVD on Baboon.png

<i>k</i>	Sequential (s)	Parallel (s)	Speedup
10	0.221	0.141	1.6
50	21.247	0.505	42.1
100	135.072	1.209	111.7

In addition to parallelization performance, we systematically evaluated the robustness and convergence of Des-SVD, as detailed in Appendix G. Results show that Des-SVD outperforms Jac-SVD in runtime while matching Lan-SVD, making it the first practical descent-based SVD algorithm.

⁴<https://www.eecs.qmul.ac.uk/~phao/IP/Images/>

423
424

6 CONCLUSIONS

425
426
427
428
429
430

By leveraging the primal–dual relationship between SVD and a least squares problem, we addressed a key challenge: among multiple minima arising from non-convexity, only one corresponds to the true SVD. Analyzing this, we found that the descent method could converge to the target solution by normalizing KKT solutions. Based on this, we developed Des-SVD, an efficient descent-based algorithm for SVD. Our experiments confirm that Des-SVD achieves performance comparable to matrix-based methods, with supplementary results in [Appendix F - G](#).

431
432
433
434
435

While matrix-based methods remain mainstream, their limitations—especially in parallelization and distributed learning—highlight the need for alternatives. Descent methods show promise, but existing ones are too slow for practical use. Our Des-SVD is significantly more efficient than the Riemannian gradient method, offering a practical alternative. We hope this work paves the way for scalable descent-based methods for large-scale SVD in modern machine learning.

436
437
438
439
440
441

Furthermore, as stated in [Theorem 3.2](#), a key condition for Des-SVD to obtain the true singular vectors is that the singular value estimation satisfies the threshold T_{err} . When this condition is met, the convergence follows the standard behavior of the Newton method. Otherwise, the objective value may become negative, indicating a failure of the decomposition. An interesting direction for future research is to investigate how to adapt or modify the singular value estimation—potentially improving the robustness of Des-SVD and enabling stability even when the estimation error exceeds the current threshold.

442
443
444

7 RELATED WORK

445
446
447
448
449

Matrix-based SVD methods. Currently, the dominant algorithms for solving SVD are matrix-based, mainly Jacobi’s algorithm (Jacobi, 1846; Demmel & Veselic, 1992; Gao et al., 2025) and the Lanczos algorithm (Cullum et al., 1983; Cullum & Willoughby, 2006; Golub et al., 1981; Feng et al., 2018), along with several others (Nakatsukasa & Higham, 2013; Wang et al., 2021; Pialot et al., 2023). Efforts to accelerate these methods have largely focused on matrix approximation or low-level code optimization.

450
451
452
453
454

Descent Methods for SVD. Iterative descent techniques, including gradient descent (Jain et al., 2018), Newton’s method (Chen et al., 2020; Polyak, 2007), and momentum methods (Liu et al., 2020; Qian, 1999), have become standard for large-scale problems. Riemannian gradient descent on the Stiefel manifold was introduced for SVD in 2013 (Sato & Iwai, 2013) and refined in recent works (Sato, 2014; Huang et al., 2025). However, it is slower than matrix-based methods due to the need for projection onto the manifold.

455
456
457
458
459
460

Distributed SVD. For distributed data, considerable efforts have been made to extend matrix-based methods (Hartebrodt et al., 2021; Chai et al., 2022; Blatt et al., 2020; Li et al., 2021). Nevertheless, most of these approaches still rely on collecting data at a central server for computation, which poses potential security risks, as highlighted by (Chai et al., 2024). Although Chai et al. (2024) further proposes a decentralized SVD method to improve security, the approach continues to incur high communication costs and cannot fully eliminate the need for data gathering and synchronization.

461
462
463
464
465
466
467
468
469

470 ETHICS STATEMENT
471472 This work focuses on developing and analyzing a novel descent-based method for singular value decom-
473 position (Des-SVD). Our study is purely theoretical and experimental on synthetic and standard benchmark
474 datasets, and does not involve human subjects, sensitive personal data, or applications with direct societal
475 risks. We follow best practices to ensure reproducibility, and all code and experimental settings are made
476 publicly available. We do not foresee any ethical concerns regarding the methodology or its applications
477 within the scope of this work.478 REPRODUCTIVITY STATEMENT
479480 To ensure reproducibility, we release the source code using the URL in the abstract. The README provides
481 instructions for reproducing our results and implementing Des-SVD on arbitrary matrices. Theoretical
482 foundations are discussed in Sections 2 and 3, with supplementary proofs in Appendices A and B.
483484 LLM USAGE
485486 Large Language Models (LLMs) were used solely as writing assistants for improving the grammar, style, and
487 clarity of the manuscript. They were not involved in the research ideation, design, theoretical development,
488 implementation, or analysis. The authors take full responsibility for the content of this paper.
489490 REFERENCES
491492 Ömer Deniz Akyildiz and Joaquín Míguez. Convergence rates for optimised adaptive importance samplers.
493 *Stat. Comput.*, 31(2):12, 2021.
494
495 Nan Bai, Zhisheng Duan, and Qishao Wang. Distributed optimal consensus of multi-agent systems: A
496 randomized parallel approach. *Automatica*, 159:111339, 2024.
497
498 Marcelo Blatt, Alexander Gusev, Yuriy Polyakov, and Shafi Goldwasser. Secure large-scale genome-wide
499 association studies using homomorphic encryption. *Proceedings of the National Academy of Sciences*, 117
500 (21):11608–11613, 2020.
501
502 Di Chai, Leye Wang, Junxue Zhang, Liu Yang, Shuowei Cai, Kai Chen, and Qiang Yang. Practical lossless
503 federated SVD over billion-scale data. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining*, pp. 46–55. ACM, 2022.
504
505 Di Chai, Junxue Zhang, Liu Yang, Yilun Jin, Leye Wang, Kai Chen, and Qiang Yang. Efficient decentralized
506 federated SVD. In *Proceedings of the 2024 USENIX Annual Technical Conference*, pp. 63–82. USENIX,
507 2024.
508
509 Huiming Chen, Ho-Chun Wu, Shing-Chow Chan, and Wong-Hing Lam. A stochastic quasi-Newton method
510 for large-scale nonconvex optimization with applications. *IEEE Trans. Neural Netw. Learn. Syst.*, 31(11):
511 4776–4790, 2020.
512
513 Jane Cullum and Ralph A Willoughby. Computing eigenvectors of large symmetric matrices using Lanczos
514 tridiagonalization. In *Numerical Analysis: Proceedings of the 8th Biennial Conference, Dundee*, pp. 46–63.
515 Springer, 2006.
516
517 Jane Cullum, Ralph A Willoughby, and Mark Lake. Lanczos algorithm for computing singular values and
518 vectors of large matrices. *SIAM J. Sci. Stat. Comput.*, 4(2):197–215, 1983.

517 James Demmel and Kresimir Veselic. Jacobi's method is more accurate than QR. *SIAM J. Matrix Anal. Appl.*,
 518 13(4):1204–1245, 1992.

519

520 Jun Feng, Laurence T Yang, Guohui Dai, Wei Wang, and Deqing Zou. A secure high-order Lanczos-based
 521 orthogonal tensor SVD for big data reduction in cloud environment. *IEEE Trans. Big Data*, 5(3):355–367,
 522 2018.

523 Weiguo Gao, Yuxin Ma, and Meiyue Shao. A mixed precision Jacobi SVD algorithm. *ACM Trans. Math.*
 524 *Softw.*, 51(1):1–33, 2025.

525

526 Gene H Golub and Charles F Van Loan. *Matrix Computations*. Johns Hopkins University Press, 2013.

527

528 Gene H Golub, Franklin T Luk, and Michael L Overton. Block Lanczos method for computing singular
 529 values and vectors of a matrix. *ACM Trans. Math. Softw.*, 7(2):149–169, 1981.

530

531 Qiang Guo, Caiming Zhang, Yunfeng Zhang, and Hui Liu. An efficient SVD-based method for image
 532 denoising. *IEEE Trans. Circuits Syst. Video Technol.*, 26(5):868–880, 2016.

533

534 Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure with randomness: Probabilistic
 535 algorithms for constructing approximate matrix decompositions. *SIAM Rev.*, 53(2):217–288, 2011.

536

537 Anne Hartebradt, Reza Nasirigerdeh, David B. Blumenthal, and Richard Röttger. Federated principal
 538 component analysis for genome-wide association studies. In *2021 IEEE International Conference on Data
 539 Mining (ICDM)*, pp. 1090–1095, 2021.

540

541 Baohua Huang, Zhigang Jia, and Wen Li. A novel riemannian conjugate gradient method on quaternion
 542 stiefel manifold for computing truncated quaternion SVD. *Numer. Linear Algebra Appl.*, 32(1):e70006,
 543 2025.

544

545 Carl Gustav Jacob Jacobi. Über ein leichtes verfahren die in der theorie der säcularstörungen vorkommenden
 546 gleichungen numerisch aufzulösen. 1846.

547

548 Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Accelerating
 549 stochastic gradient descent for least squares regression. In *Conference on Learning Theory (COLT)*,
 550 volume 75 of *Proceedings of Machine Learning Research*, pp. 545–604, 2018.

551

552 Andrew V. Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned
 553 conjugate gradient method. *SIAM J. Sci. Comput.*, 23(2):517–541, 2001.

554

555 Manoj Kumar and Ankita Vaish. An efficient encryption-then-compression technique for encrypted images
 556 using SVD. *Digital Signal Processing*, 60:81–89, 2017.

557

558 Cornelius Lanczos. Linear systems in self-adjoint form. *The American Mathematical Monthly*, 65(9):665–679,
 1958.

559

560 Xiang Li, Shusen Wang, Kun Chen, and Zhihua Zhang. Communication-efficient distributed SVD via local
 561 power iterations. In *Proceedings of the 38th International Conference on Machine Learning*, volume 139
 562 of *Proceedings of Machine Learning Research*, pp. 6504–6514, 2021.

563

Ji Liu, Jizhou Huang, Yang Zhou, Xuhong Li, Shilei Ji, Haoyi Xiong, and Dejing Dou. From distributed
 machine learning to federated learning: A survey. *Knowl. Inf. Syst.*, 64(4):885–917, 2022.

Wei Liu, Li Chen, Yunfei Chen, and Wenyi Zhang. Accelerating federated learning via momentum gradient
 descent. *IEEE Trans. Parallel Distrib. Syst.*, 31(8):1754–1766, 2020.

564 David Luengo, Luca Martino, Mónica Bugallo, Víctor Elvira, and Simo Särkkä. A survey of monte carlo
 565 methods for parameter estimation. *EURASIP J. Adv. Signal Process.*, 2020(1):25, 2020.

566

567 Andreas Marek, Volker Blum, Rainer Johann, Ville Havu, Bruno Lang, Thomas Auckenthaler, Alexander
 568 Heinecke, Hans-Joachim Bungartz, and Hermann Lederer. The ELPA library: Scalable parallel eigenvalue
 569 solutions for electronic structure theory and computational science. *J. Phys. Condens. Matter*, 26(21):
 570 213201, 2014.

571 Luca Martino, David Luengo, and Joaquín Míguez. *Independent Random Sampling Methods*, volume 340.
 572 Springer, 2018.

573

574 Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular vectors
 575 adaptation of large language models. *Advances in Neural Information Processing Systems*, 37:121038–
 576 121072, 2024.

577 Aditya Krishna Menon and Charles Elkan. Fast algorithms for approximating the SVD. *ACM Trans. Knowl.
 578 Discov. Data*, 5(2):1–36, 2011.

579

580 Yuji Nakatsukasa and Nicholas J Higham. Stable and efficient spectral divide-and-conquer algorithms for the
 581 symmetric eigenvalue decomposition and the SVD. *SIAM J. Sci. Comput.*, 35(3):A1325–A1349, 2013.

582 Takeshi Ogita and Kensuke Aishima. Iterative refinement for symmetric eigenvalue decomposition. *Japan J.
 583 Ind. Appl. Math.*, 35:1007–1035, 2018.

584

585 Baptiste Pialot, Lionel Augeul, Lorena Petrusca, and François Varay. A simplified and accelerated imple-
 586 mentation of SVD for filtering ultrafast power doppler images. *Ultrasonics*, 134:107099, 2023.

587 Boris T Polyak. Newton’s method and its use in optimization. *European J. Oper. Res.*, 181(3):1086–1096,
 588 2007.

589

590 Ning Qian. On the momentum term in gradient descent learning algorithms. *Neural Netw.*, 12(1):145–151,
 591 1999.

592 S Rajendran. Computing the lowest eigenvalue with rayleigh quotient iteration. *J. Sound Vib.*, 254(3):
 593 599–612, 2002.

594

595 Ajit Rajwade, Anand Rangarajan, and Arunava Banerjee. Image denoising using the higher order SVD. *IEEE
 596 Trans. Pattern Anal. Mach. Intell.*, 35(4):849–862, 2013.

597 Peter Richtárik and Martin Takáč. Parallel coordinate descent methods for big data optimization. *Math.
 598 Program.*, 156(1):433–484, 2016.

599

600 Hiroyuki Sato. Riemannian conjugate gradient method for complex SVD problem. In *Proceedings of the
 601 53rd IEEE Conference on Decision and Control*, pp. 5849–5854, 2014.

602

603 Hiroyuki Sato. *Riemannian Optimization and Its Applications*, volume 670. Springer, 2021.

604

605 Hiroyuki Sato and Toshihiro Iwai. A riemannian optimization approach to the matrix SVD. *SIAM J. Optim.*,
 606 23(1):188–212, 2013.

607

608 Valeria Simoncini and Lars Eldén. Inexact rayleigh quotient-type methods for eigenvalue computations. *BIT
 Numer. Math.*, 42(1):159–182, 2002.

609

610 Johan AK Suykens. SVD revisited: A new variational principle, compatible feature maps and nonlinear
 extensions. *Applied and Computational Harmonic Analysis*, 40(3):600–609, 2016.

611 Johan AK Suykens and Joos Vandewalle. Least squares support vector machine classifiers. *Neural Process.*
612 *Lett.*, 9(3):293–300, 1999.
613
614 Françoise Tisseur. Newton’s method in floating point arithmetic and iterative refinement of generalized
615 eigenvalue problems. *SIAM J. Matrix Anal. Appl.*, 22(4):1038–1057, 2001.
616
617 Wei Wang, Zheng Dang, Yinlin Hu, Pascal Fua, and Mathieu Salzmann. Robust differentiable SVD. *IEEE*
618 *Trans. Pattern Anal. Mach. Intell.*, 44(9):5472–5487, 2021.
619
620 Jar-Ferr Yang and Chiou-Liang Lu. Combined techniques of Singular Value Decomposition and vector
621 quantization for image coding. *IEEE Trans. Image Process.*, 4(8):1141–1146, 1995.
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

658 TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL
659660 A THE PROOF OF ZERO-VALUE OF THE TARGET FUNCTION
661662 From the KKT condition eq. (7), we can indicate by rearranging the terms that:
663

664
$$\begin{cases} \lambda\alpha_i = \sum_j \beta_j \psi(\mathbf{y}_j)^\top \varphi(\mathbf{x}_i), \forall i = 1, \dots, n, \\ \lambda\beta_j = \sum_i \alpha_i \varphi(\mathbf{x}_i)^\top \psi(\mathbf{y}_j), \forall j = 1, \dots, m, \end{cases} \quad (21)$$

665

666 where λ is the correct singular value and we have $\gamma = 1/\lambda$.
667668 Substitute eq. (21) and eq. (7) into the objective function \mathcal{J} , then we have:
669

670
$$\begin{aligned} \mathcal{J} &= -\mathbf{w}^\top \mathbf{v} + \frac{1}{2}\gamma \sum_{i=1}^n e_i^2 + \frac{1}{2}\gamma \sum_{j=1}^m r_j^2 \\ 671 &= -\sum_j \beta_j \psi(\mathbf{y}_j)^\top \sum_i \alpha_i \varphi(\mathbf{x}_i) + \frac{1}{2}\gamma \sum_{i=1}^n \left(\frac{\alpha_i}{\gamma}\right)^2 + \frac{1}{2}\gamma \sum_{j=1}^m \left(\frac{\beta_j}{\gamma}\right)^2 \\ 672 &= \sum_i \alpha_i \left(-\sum_j \beta_j \psi(\mathbf{y}_j)^\top \varphi(\mathbf{x}_i)\right) + \frac{1}{2}\lambda \sum_{i=1}^n \alpha_i^2 + \frac{1}{2}\sum_{j=1}^m \lambda \beta_j^2 \\ 673 &= \sum_{i=1}^n -\lambda \alpha_i^2 + \frac{1}{2}\lambda \sum_{i=1}^n \alpha_i^2 + \frac{1}{2}\sum_{j=1}^m \lambda \beta_j^2 \\ 674 &= -\frac{1}{2}\lambda \alpha^\top \alpha + \frac{1}{2}\lambda \beta^\top \beta \end{aligned} \quad (22)$$

675

676 If $\alpha \in \mathbb{R}^n$ and $\beta \in \mathbb{R}^m$ are the singular vectors of the singular value λ , we can obtain from the properties that
677 $\alpha^\top \alpha = \beta^\top \beta = 1$, so the target function \mathcal{J} will always be zero.
678680 B THE PROOF THE THEOREMS IN SECTION 3
681682 In this section, we will prove all the theorems mentioned in Section 3 respectively.
683684 B.1 THE PROOF OF THEOREM 3.1
685686 The rank property of the KKT matrix K given different s is proved as follows:
687688 We first define two matrices:
689

690
$$K_{\text{up}} = [\mathbf{H} \quad \mathbf{C}^\top] = \begin{bmatrix} \mathbf{0} & -\mathbf{I}_w & \mathbf{0} & \mathbf{0} & \Phi^\top & \mathbf{0} \\ -\mathbf{I}_v & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \Psi^\top \\ \mathbf{0} & \gamma \mathbf{I}_{e,r} & -\mathbf{I}_{e,r} \end{bmatrix} \in \mathbb{R}^{(3n+m) \times (4n+2m)}, \quad (23)$$

691

692
$$K_{\text{down}} = [\mathbf{C} \quad \mathbf{0}] \in \mathbb{R}^{(m+n) \times (4n+2m)}, \quad (24)$$

693

694 Next, we eliminate Φ^\top and Ψ by applying a row transformation with $-\mathbf{I}_{e,r}$, yielding the following:
695

696
$$K'_{\text{up}} = \begin{bmatrix} \mathbf{0} & -\mathbf{I}_w & \gamma \Phi^\top & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ -\mathbf{I}_v & \mathbf{0} & \mathbf{0} & \gamma \Psi^\top & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \gamma \mathbf{I}_{e,r} & -\mathbf{I}_{e,r} \end{bmatrix}. \quad (25)$$

697

705 Define the matrix \mathbf{B} as

$$707 \quad \mathbf{B} = \begin{bmatrix} \mathbf{0} & -\mathbf{I}_w & \gamma\Phi^\top & \mathbf{0} \\ -\mathbf{I}_v & \mathbf{0} & \mathbf{0} & \gamma\Psi^\top \end{bmatrix} \in \mathbb{R}^{(m+n) \times (3n+m)}.$$

709 Then, the following equation constraints are obtained:

$$712 \quad \mathbf{B}\mathbf{x} = \mathbf{0} \Leftrightarrow \begin{bmatrix} \mathbf{0} & -\mathbf{I}_w & \gamma\Phi^\top & \mathbf{0} \\ -\mathbf{I}_v & \mathbf{0} & \mathbf{0} & \gamma\Psi^\top \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ \mathbf{v} \\ \mathbf{e} \\ \mathbf{r} \end{bmatrix} = \mathbf{0} \Leftrightarrow \begin{cases} \mathbf{v} = \sum_i \gamma e_i \varphi(\mathbf{x}_i), \forall i, \\ \mathbf{w} = \sum_j \gamma r_j \psi(\mathbf{y}_j), \forall j, \end{cases} \quad (26)$$

717 which is a different but equivalent form of the KKT condition. We define \mathbf{K}' as

$$718 \quad \mathbf{K}' = \begin{bmatrix} \mathbf{K}'_{\text{up}} \\ \mathbf{K}'_{\text{down}} \end{bmatrix} \in \mathbb{R}^{(m+n) \times (4n+2m)}. \quad (27)$$

721 Since elementary row transformations do not affect the rank of a matrix, we have $\text{rank}(\mathbf{K}_{\text{up}}) = \text{rank}(\mathbf{K}'_{\text{up}})$,
 722 i.e., $\text{rank}(\mathbf{K}) = \text{rank}(\mathbf{K}')$. Furthermore, if γ is the correct value, eq. (14) leads to eq. (26) due to the KKT
 723 condition eq. (7). Therefore, we conclude that there exists at least one non-zero solution to the transformed
 724 KKT function by setting $\mathbf{v} = \mathbf{0}$ and $\mathbf{x} = \mathbf{x}^*$, where \mathbf{x}^* is one of the non-zero KKT solutions:

$$725 \quad \mathbf{K}' \begin{bmatrix} \mathbf{x}^* \\ \mathbf{0} \end{bmatrix} = \mathbf{0}. \quad (28)$$

728 In this case, \mathbf{K}' is not of full rank, and neither is \mathbf{K} . Conversely, if γ is incorrect, \mathbf{K} becomes full rank
 729 because there is no non-zero solution that satisfies both \mathbf{K}'_{up} and $\mathbf{K}'_{\text{down}}$. This constraint restricts $\Delta\mathbf{x} = -\mathbf{x}$
 730 to be the only solution to eq. (16).

731 B.2 THE PROOF OF THEOREM 3.2

733 The complete proof of the error threshold T_{err} is shown as follows:

735 We will prove Theorem 3.2 using proof by contradiction. For the true singular value s , it can be learnt from
 736 eq. (26) that :

$$737 \quad \begin{cases} \mathbf{v} = \sum_i \frac{1}{s} e_i \varphi(\mathbf{x}_i), \forall i, \\ \mathbf{w} = \sum_j \frac{1}{s} r_j \psi(\mathbf{y}_j), \forall j. \end{cases} \quad (29)$$

742 Then, suppose there exists an estimate $\gamma' = \frac{1}{s} + \Delta\gamma'$ that satisfies eq. (19) but violates eq. (20). In other
 743 words, it must satisfy:

$$745 \quad \|\Delta\gamma'\| < \min \left\{ \frac{\varepsilon_1}{(\sum_i \|\mathbf{D}^\top \mathbf{x}_i\|^2)^{\frac{1}{2}}}, \frac{\varepsilon_2}{(\sum_j \|\mathbf{y}_j\|^2)^{\frac{1}{2}}} \right\}, \quad (30)$$

748 and it should deviate from eq. (20):

$$749 \quad \begin{cases} \|\mathbf{v} - \sum_i \gamma' e_i \varphi(\mathbf{x}_i)\| & \geq \varepsilon_1 \\ \|\mathbf{w} - \sum_j \gamma' r_j \psi(\mathbf{y}_j)\| & \geq \varepsilon_2. \end{cases} \quad (31)$$

752 Since Φ and Ψ are simply the feature mappings of the row and column vectors eq. (3) of the target matrix A ,
 753 we can rewrite eq. (31) as:

$$755 \begin{cases} \|v - \sum_i \gamma' e_i D^\top x_i\| \geq \varepsilon_1 \\ 756 \|w - \sum_j \gamma' r_j y_j\| \geq \varepsilon_2. \end{cases} \quad (32)$$

758 Then simplify eq. (32) with the numerical eliminations of $1/s$:

$$760 \begin{cases} \|\Delta \gamma' \sum_i e_i (D^\top x_i)\| \geq \varepsilon_1 \\ 761 \|\Delta \gamma' \sum_j v_j y_j\| \geq \varepsilon_2. \end{cases} \quad (33)$$

763 Because of the normalization on $e = [e_1, \dots, e_n]$ and $v = [v_1, \dots, v_m]$ (see Section 3.1), the following
 764 equations hold:

$$766 \begin{cases} \sum_i e_i^2 = 1 \\ 767 \sum_j v_j^2 = 1. \end{cases} \quad (34)$$

769 Combined with the Cauchy-Schwarz inequality, we have:

$$770 \left\| \sum_i e_i D^\top x_i \right\| \leq \left(\sum_i e_i^2 \right)^{\frac{1}{2}} \left(\sum_i \|D^\top x_i\|^2 \right)^{\frac{1}{2}} = \left(\sum_i \|D^\top x_i\|^2 \right)^{\frac{1}{2}}. \quad (35)$$

773 By applying a similar derivation to v , we can now conclude that:

$$775 \left\| \sum_i e_i D^\top x_i \right\| \leq \left(\sum_i \|D^\top x_i\|^2 \right)^{\frac{1}{2}} \quad \text{or} \quad \left\| \sum_j v_j y_j \right\| \leq \left(\sum_j \|y_j\|^2 \right)^{\frac{1}{2}}. \quad (36)$$

778 If we define the former equation in eq. (36) as (a) and the later one as (b), we can conclude that $\|\Delta \gamma'\|$ should
 779 be larger than $\frac{\varepsilon_1}{(\sum_i \|D^\top x_i\|^2)^{\frac{1}{2}}}$ if (a) satisfies or larger than $\frac{\varepsilon_2}{(\sum_j \|y_j\|^2)^{\frac{1}{2}}}$ if (b) satisfies.

781 Therefore, we derive the lower bound of $\|\Delta \gamma'\|$:

$$783 \|\Delta \gamma'\| \geq \min \left\{ \frac{\varepsilon_1}{(\sum_i \|D^\top x_i\|^2)^{\frac{1}{2}}}, \frac{\varepsilon_2}{(\sum_j \|y_j\|^2)^{\frac{1}{2}}} \right\}, \quad (37)$$

786 which is contradictory to eq. (30). Thus, we have established the validity of the proposition on T_{err} .

788 C THE REFINED VERSION OF THE SVD ALGORITHM (DES-SVD)

790 In this section, we present the refined Descent SVD method (Des-SVD). The algorithm integrates parallelization
 791 and randomized sampling, allowing each singular value to be computed independently and efficiently. It
 792 first estimates the leading singular values, then solves the associated KKT systems for the singular vectors,
 793 and finally assembles the complete SVD solution. The detailed procedure is summarized in Algorithm 2.

795 D THE METHODS FOR FAST SINGULAR VALUE APPROXIMATION

796 We adopt the Rayleigh Quotient Iteration method in the paper to fast estimate singular values, and its concrete
 798 realization is demonstrated in Algorithm 3.

799 **Algorithm 2** The refined Descent SVD Method (Des-SVD).

800 **Input:** $\mathbf{A} \in \mathbb{R}^{n \times m}$: The target matrix ; k : the number of singular values to be calculated; n_{\max} : the max iterations for
801 Newton's method; ε : the threshold for convergence ; **parallel** : whether to adapt parallelization ; **randomized**:
802 whether to use random sampling .

803 **Output:** $[\alpha], S, [\beta]$: the SVD solution of \mathbf{A}

804 1: **if** randomized **then**

805 2: Calculate the orthonormal matrix $\mathbf{Q} = \text{Randomized-Subspace-Iteration}(\mathbf{A})$.

806 3: Get the low-rank approximated matrix $\mathbf{A}' = \mathbf{Q}^* \mathbf{A}$.

807 4: **else**

808 5: Set $\mathbf{A}' = \mathbf{A}$.

809 6: **end if**

810 7: Initialize the dual variables $[\alpha] \in \mathbb{R}^{k \times n}$ and $[\beta] \in \mathbb{R}^{k \times m}$.

811 8: Estimate the first k singular values and store them in $S = \text{Rayleigh-Quotient}(\mathbf{A}', k)$.

812 9: Construct the coefficient matrix $\mathbf{C} \in \mathbb{R}^{(m+n) \times (3n+m)}$ such that $\mathbf{C}\mathbf{x} = \mathbf{0}$.

813 10: **if** parallel **then**

814 11: Create k processes for each singular value $s \in S$.

815 12: **for** each singular value s_i in its **independent** process p_i **do**

816 13: Execute Algorithm 1 with **Input**: $\{\mathbf{A}', \mathbf{C}, 1/s_i, n_{\max}, \varepsilon\}$ and **Output**: $\{\alpha'_i, \beta'_i\}$.

817 14: **end for**

818 15: Gather all the results together in order, i.e., $[\alpha'] = [\alpha'_1, \dots, \alpha'_k]^\top$ and $[\beta'] = [\beta'_1, \dots, \beta'_k]^\top$.

819 16: **else**

820 17: **for** each singular value $s_i \in S$ **do**

821 18: Execute Algorithm 1 with **Input**: $\{\mathbf{A}', \mathbf{C}, 1/s_i, n_{\max}, \varepsilon\}$ and **Output**: $\{\alpha'_i, \beta'_i\}$.

822 19: Update $[\alpha']_{\text{iloc}(i,:)} = \alpha'_i$ and $[\beta']_{\text{iloc}(i,:)} = \beta'_i$.

823 20: **end for**

824 21: **end if**

825 22: **if** randomized **then**

826 23: Update $[\alpha] = \mathbf{Q}[\alpha']$ and remain $[\beta] = [\beta']$.

827 24: **else**

828 25: Remain $[\alpha] = [\alpha']$ and $[\beta] = [\beta']$.

829 26: **end if**

830 27: **Return** $[\alpha], S, [\beta]$

828 **Algorithm 3** Estimate the top-k singular values using Rayleigh quotient iteration

829 **Input:** $\mathbf{A} \in \mathbb{R}^{n \times m}$, number of singular values k , max iteration number n_{iter} , convergence threshold $\varepsilon_{\text{rayleigh}}$.

830 **Output:** Top-k singular values of \mathbf{A}

831 1: Initialize random matrix $\mathbf{V} \in \mathbb{R}^{m \times k}$ such that \mathbf{V} is orthogonal.

832 2: **for** $i = 1$ to n_{iter} **do**

833 3: $\mathbf{Z} = \mathbf{A}^T \mathbf{A} \mathbf{V}$

834 4: $\mathbf{V}_{\text{new}}, _ = \text{QR-Factorization}(\mathbf{Z})$

835 5: **if** $\|\mathbf{V}_{\text{new}} - \mathbf{V}\| < \varepsilon_{\text{rayleigh}}$ **then**

836 6: **break**

837 7: **end if**

838 8: $\mathbf{V} = \mathbf{V}_{\text{new}}$

839 9: **end for**

840 10: Compute singular values by taking the L_2 norm of each column of the matrix product $\mathbf{C} = \mathbf{A} \mathbf{V}$.

841 11: Sort singular values in descending order

842 11: **Return** sorted singular values

E HYPERPARAMETER SELECTION AND ABLATIONS

E.1 HYPERPARAMETER SETTINGS FOR COMPARATIVE METHODS

For the three comparison methods(Rie-SVD, Lan-SVD, and Jac-SVD), we employ standard hyperparameter settings. For Rie-SVD, we adopt the standard configuration from (Sato & Iwai, 2013) with $\alpha_{\min} = 1 \times 10^{-6}$,

$\alpha_{\max} = 1.0$, $\text{max-iter} = 50000$, $\beta_m = 0.5$, $\epsilon = 0.5$, and $\epsilon_f = 1 \times 10^{-10}$. For Jac-SVD, we use the default hyperparameters $\epsilon = 1 \times 10^{-6}$, $n_{\max} = 100$, and $\text{randomized} = \text{True}$, while Lan-SVD is configured with $\epsilon = 1 \times 10^{-6}$, $n_{\max} = 100$, and $\text{randomized} = \text{True}$.

E.2 THE ABLATION STUDY OF THE NEWTON METHOD IN DES-SVD

For the ablation study of the parameters in Des-SVD, particularly in the Newton method, we conduct the following experiment. We select a 100×100 matrix with exponential decay $\beta = 0.5$. Several groups of common parameters are chosen, i.e., $n_{\max} \in \{1, 3, 5, 10\}$ and $(\alpha, \beta) \in \{(0.1, 0.8), (0.01, 0.99), (0.2, 0.7), (0.5, 0.5)\}$. The ablation experiment results are shown in Table 6.

Table 6: Ablation Study of Newton Method Parameters

n_{\max}	α	β	R_{acc}	Time (sec)
1	0.1	0.8	0.9952	0.1137
3	0.1	0.8	0.9952	0.1507
5	0.1	0.8	0.9952	0.1782
10	0.1	0.8	0.9952	0.2579
1	0.01	0.99	0.9952	0.4233
3	0.01	0.99	0.9952	1.0242
5	0.01	0.99	0.9952	1.6732
10	0.01	0.99	0.9952	3.2992
1	0.2	0.7	0.9952	0.0871
3	0.2	0.7	0.9952	0.1256
5	0.2	0.7	0.9952	0.2340
10	0.2	0.7	0.9952	0.2878
1	0.5	0.5	0.9952	0.1182
3	0.5	0.5	0.9952	0.1608
5	0.5	0.5	0.9952	0.1769
10	0.5	0.5	0.9952	0.2543

Overall, the performance is not highly sensitive to the backtracking parameters, although there are some small differences. We recommend using $\alpha = 0.2$ and $\beta = 0.7$, which are the values we use in all of our experiments. Additionally, we set $n_{\max} = 3$. While we cannot theoretically claim that 3 iterations guarantee convergence, the accuracy achieved with this setting is sufficient to provide an accurate SVD.

E.3 HYPERPARAMETER SELECTION IN DES-SVD

We specify the hyperparameters configured for each computational stage of Des-SVD.

- **Randomized subspace iteration:** Following Algorithm 4.4 in Halko et al. (2011), we compute the orthonormal matrix Q with the number of power iterations set to $q = 5$.
- **Rayleigh quotient iteration:** We configure $n_{\text{iter}} = 3$ and the tolerance $\epsilon_{\text{rayleigh}} = 1 \times 10^{-6}$ (see Appendix G for detailed analysis).
- **Newton method:** Based on the ablation study in Appendix E.2, we employ $n_{\max} = 3$, $\alpha = 0.7$, and $\beta = 0.2$ in practice. Given the satisfactory convergence behavior, we set $\epsilon = 1 \times 10^{-6}$.

893 F SVD ON MORE SPECIAL CASES
894

895 To assess the performance of Des-SVD in a more general scenario, we perform experiments using two
896 different singular value decay models: power-law decay ($\sigma_k \sim k^{-\alpha}$) and exponential decay ($\sigma_k \sim Ce^{-\beta k}$),
897 with an initial singular value of $\sigma_1 = 10^4$ and matrix dimensions of $m = n = 100$. Since the accuracy across
898 all methods is nearly identical, we focus primarily on the computational efficiency, presenting only the time
899 performance results in Tables 7 and 8. As observed in Table 8, even when the condition number is large, our
900 method demonstrates performance on par with Lan-SVD and outperforms Jac-SVD, highlighting its stability
901 and resilience under difficult conditions.

902 **Table 7:** Performance Comparison of Different SVD Methods on Matrices Following Power-law Decay .
903

α	Lan-SVD	Jac-SVD	Des-SVD(Ours)	Condition Number
0.5	0.16 ± 0.00s	3.51 ± 0.08s	0.17 ± 0.00s	10.0
1.0	0.14 ± 0.02s	2.56 ± 0.04s	0.19 ± 0.00s	100.0
1.2	0.24 ± 0.03s	2.30 ± 0.13s	0.16 ± 0.01s	252.1
1.5	0.16 ± 0.03s	2.29 ± 0.01s	0.21 ± 0.00s	1000.0

904 **Table 8:** Performance Comparison of Different SVD Methods on Matrices Following Exponential Decay.
905

β	Lan-SVD	Jac-SVD	Des-SVD(Ours)	Condition Number
0.2	0.14 ± 0.00s	2.39 ± 0.13s	0.21 ± 0.00s	5×10^9
0.5	0.14 ± 0.00s	5.41 ± 0.07s	0.20 ± 0.00s	8×10^9
0.8	0.13 ± 0.00s	6.89 ± 0.47s	0.16 ± 0.00s	8.8×10^9
1.0	0.15 ± 0.01s	6.78 ± 0.24s	0.16 ± 0.00s	2.3×10^{10}

906 Furthermore, to test the orthogonality of the singular vector matrices corresponding to nearly identical singular
907 values, we design additional experiments. For a fixed matrix size of $(m, n) = (100, 100)$, we select the top- k
908 singular values and set them as follows:

$$S[:k] = \text{Descending_Sorted}(s_{\max} \cdot (1 + \epsilon \cdot t)), \quad (38)$$

909 where s_{\max} is the largest singular value, ϵ controls the level of similarity, and $t \sim N(0, 1)$ is drawn from a
910 normal distribution. To further test the orthogonality, we calculate the mean deviation from orthogonality for
911 both U and V , representing the left and right singular vector matrices, respectively. Let $X \in \mathbb{R}^{m \times d}$, and the
912 mean deviation from orthogonality is defined as follows:

$$\text{MDO}(X) = \frac{1}{d} (\|X^T X - I\|_F), \quad (39)$$

913 where d is the number of columns in X , m is the number of rows, and I is the identity matrix of size $d \times d$.
914 This metric measures the degree to which X deviates from being orthogonal.

915 **Table 9:** Comparison of U and V Orthogonality Errors and Accuracy for Different ϵ and k Values.
916

ϵ	$k = 5$			$k = 10$			$k = 20$		
	$R_{\text{acc}} \uparrow$	$\text{MDO}(U) \downarrow$	$\text{MDO}(V) \downarrow$	$R_{\text{acc}} \uparrow$	$\text{MDO}(U) \downarrow$	$\text{MDO}(V) \downarrow$	$R_{\text{acc}} \uparrow$	$\text{MDO}(U) \downarrow$	$\text{MDO}(V) \downarrow$
0.1	99.42%	4.093E-04	4.097E-04	97.29%	5.732E-04	5.734E-04	98.76%	3.079E-04	3.081E-04
0.01	99.01%	3.838E-04	3.844E-04	99.00%	4.170E-04	4.172E-04	98.22%	5.324E-04	5.324E-04
0.001	86.98%	6.311E-04	6.312E-04	80.14%	9.988E-04	9.984E-04	68.12%	1.946E-03	1.947E-03

917 The experimental results for different k and ϵ are shown in Table 9. As ϵ decreases (indicating higher
918 similarity between singular values) and k increases (introducing more similar singular values), reconstruction

accuracy decreases. However, the orthogonality of \mathbf{U} and \mathbf{V} remains well-preserved, demonstrating the method's stability and robustness in maintaining the orthogonality of the singular vectors. This underscores the effectiveness of our approach in preserving the decomposition structure. For $\epsilon < 1e - 3$, singular values are considered effectively identical, as their differences become negligible.

G ROBUSTNESS ANALYSIS AND CONVERGENCE GUARANTEES

Regarding convergence, when Des-SVD correctly solves the SVD, the convergence follows the standard Newton method. If it does not converge, the objective value rapidly becomes negative, which provides a clear signal to terminate the algorithm, as shown in Algorithm 1.

For robustness, several factors may be considered. We have evaluated the behavior of the method under different singular value decay rates and varying ranks, and we have also examined the case where two singular values are close to each other (as detailed in Appendix F).

In addition, a specific robustness issue in Des-SVD is the singular value estimation. Here, we first evaluate the performance of the Rayleigh method using different numbers of iterations.

In practice, rather than focusing on one singular value as theoretically analyzed in Section 3.3, we use $Err_{\text{avg}}(S_{\text{es}})$ to describe the average estimation error. Let S denote the true singular value matrix and S_{es} the estimated one. We define the average estimation error as:

$$Err_{\text{avg}}(S_{\text{es}}) = \frac{1}{k} \|S_{\text{es}} - S\|_F,$$

where k is the number of singular values. Experiments in Table 10 and Table 11 show that the Rayleigh iteration method converges effectively, and we choose $n_{\text{iter}} = 3$ for all reported experiments. We also report the maximum and minimum values of estimation error across all singular values to demonstrate that the estimation error is well-balanced and has minimal impact on different singular values.

Table 10: Rayleigh Iteration Performance on Hill.png

n_{iter}	$Err_{\text{avg}}(S_{\text{rayleigh}})$	$Err_{\text{max}}(S_{\text{rayleigh}})$	$Err_{\text{min}}(S_{\text{rayleigh}})$	Time (sec)
1	3.5864×10^{-7}	1.6000×10^{-5}	$< 1.0000 \times 10^{-7}$	3.7×10^{-3}
3	2.1186×10^{-7}	1.1000×10^{-5}	$< 1.0000 \times 10^{-7}$	5.6×10^{-3}
10	1.8267×10^{-7}	1.0000×10^{-5}	$< 1.0000 \times 10^{-7}$	1.2×10^{-2}

Table 11: Rayleigh Iteration Performance on Matrix with Exponential Decay

n_{iter}	$Err_{\text{avg}}(S_{\text{rayleigh}})$	$Err_{\text{max}}(S_{\text{rayleigh}})$	$Err_{\text{min}}(S_{\text{rayleigh}})$	Time (sec)
1	6.8593×10^{-5}	3.6620×10^{-3}	$< 1.0000 \times 10^{-7}$	4.2×10^{-3}
3	6.6933×10^{-5}	3.1740×10^{-3}	$< 1.0000 \times 10^{-7}$	5.5×10^{-3}
5	5.8387×10^{-5}	3.1740×10^{-3}	$< 1.0000 \times 10^{-7}$	7.3×10^{-3}

We can observe that the average estimation error is approximately within 1×10^{-4} . Next, we evaluate the SVD performance based on R_{acc} for different estimation accuracies at this error level. Here, the estimation error is artificially introduced by adding Gaussian noise to the estimated singular value. This is based on our observation that such noise has a uniform effect on singular values, regardless of their magnitude. Specifically, we define the singular value matrix with Gaussian noise as $S_{\text{noise}}(b) = S + bE$, where each component

987 $E_{ij} \sim N(0, 1)$ represents Gaussian noise. The results in Table 12 show that our method exhibits robust
 988 performance against estimation error.
 989

990 **Table 12: The Performance of Singular Value Estimation under Different Noise Levels**

992 Data	993 m,n	994 k	995 $b = 0$	996 $b = 1 \times 10^{-5}$	997 $b = 1 \times 10^{-4}$	998 $b = 1 \times 10^{-3}$
999 Baboon	1000 256,256	1001 100	1002 0.9072	1003 0.9072	1004 0.90710	1005 0.9003
1006 Goldhill	1007 512,512	1008 100	1009 0.9612	1010 0.9611	1011 0.9578	1012 0.9511
1013 Power decay $\alpha = 0.5$	1014 100,100	1015 100	1016 0.9979	1017 0.9978	1018 0.9978	1019 0.9965
1020 Exp. decay $\beta = 0.5$	1021 1000,1000	1022 250	1023 0.9999	1024 0.9999	1025 0.9999	1026 0.9998