
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

A PRACTICAL DESCENT METHOD FOR SINGULAR VALUE
DECOMPOSITION

Anonymous authors
Paper under double-blind review

ABSTRACT

Singular Value Decomposition (SVD) is a long-established technique, with most existing
methods relying on matrix-based formulations. However, matrix operations are relatively
less friendly to parallelization and distributed computation compared to descent-based
methods, motivating the need for alternative approaches. Descent-based methods offer a
promising direction, yet existing ones such as Riemannian gradient descent suffer from
inefficiency due to the need for repeated projections onto nonlinear manifolds. In this work,
we introduce a novel descent method for SVD grounded in a primal–dual reformulation.
Specifically, we construct a least-squares primal problem whose dual corresponds to the
SVD. We show that (i) the non-zero KKT solutions of the primal problem yield the
singular vectors of the matrix, and (ii) inexact singular value estimation still ensures
bounded reconstruction error. Building on these results, we propose an iterative descent-
based algorithm, Des-SVD, along with scalable variants leveraging random sampling and
parallelization. Extensive experiments demonstrate that Des-SVD achieves significantly
higher computational efficiency compared to prior descent methods, while remaining
competitive with matrix-based algorithms. Our implementation is publicly available at:
https://anonymous.4open.science/r/Descent-SVD-method.

1 INTRODUCTION

Singular Value Decomposition (SVD) is a fundamental and important technique in linear algebra, extensively
applied to diverse fields. Along with the explosive application of computer vision (Rajwade et al., 2013; Guo
et al., 2016; Kumar & Vaish, 2017; Yang & Lu, 1995) and natural language processing (Meng et al., 2024),
the size of the matrices involved in SVD problems is steadily increasing, which emphasizes the urgent need
for more efficient SVD methods.

However, these matrix-based methods face challenges in parallelization and still require centralized compu-
tation on the server (Chai et al., 2024). Descent methods offer an alternative (Qian, 1999; Jain et al., 2018;
Chen et al., 2020), being well suited for parallel computing (Richtárik & Takáč, 2016; Liu et al., 2022; Bai
et al., 2024) and stochastic sampling (Martino et al., 2018; Luengo et al., 2020; Akyildiz & Míguez, 2021).
Yet a practical descent method for SVD is still lacking. The existing Riemannian gradient method (Sato &
Iwai, 2013), for example, is hampered by costly manifold projections.

A pioneering work by Suykens (2016) introduces a least squares problem and demonstrates that SVD satisfies
its Karush-Kuhn-Tucker (KKT) conditions, thereby opening the door for the development of descent methods
for SVD. However, the primal-dual relationship faces a key obstacle since the least squares problem is
non-convex. Thus, while singular values and vectors can form a local optimum, a local optimum does not
directly yield the exact SVD.

Building on (Suykens, 2016), we establish a practical path from a local optimum of the least squares problem
to the SVD in this paper. Our method (Des-SVD) is available for parallelization and random sampling, and

1

https://anonymous.4open.science/r/Descent-SVD-method

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

we believe that additional speed-up methods could be developed in the future. Experimental results show that
our method is far more efficient than the Riemannian gradient method (Sato & Iwai, 2013; Sato, 2021) and
achieves comparable performance to the matrix-based methods (Menon & Elkan, 2011; Feng et al., 2018;
Gao et al., 2025) in experiments involving images and large matrices.

2 SVD AND ITS LEAST SQUARES FORMULATION

Let us first review Singular Value Decomposition (SVD). For a matrix A ∈ Rn×m, the SVD factorizes A
into the product of three matrices:

A = UΣV ⊤, (1)

where U is an n × n orthogonal matrix, V is an m ×m orthogonal matrix, and Σ is an n ×m diagonal
matrix containing the non-negative singular values of A on its diagonal.

Because both U and V are orthogonal matrices, i.e., U⊤U = In and V ⊤V = Im, we can rewrite the SVD
equation as follows:

AV = UΣ,

A⊤U = V Σ.
(2)

This Lanczos Decomposition Theorem forms the basis of the Lanczos algorithm (Lanczos, 1958).

A topic closely related to SVD is eigen-decomposition, for which there is also a desire to develop descent
methods to speed up the process. Here, we list some interesting papers for reference (Tisseur, 2001; Knyazev,
2001; Marek et al., 2014; Ogita & Aishima, 2018). However, these methods all rely on symmetry or even
positive semi-definiteness, which are not applicable to SVD, as it is a decomposition for non-square matrices.

The foundation of our work is given by Suykens (2016), which treats SVD as a dual of a least squares problem,
specifically, a variant LS-SVM (Suykens & Vandewalle, 1999). The central idea of the work lies in defining
two feature mappings of the matrix A as follows:{

φ(xi) = D⊤xi,

ψ(yj) = yj ,
(3)

where xi and yj are the ith row vector and the jth column vector of A respectively, and D is a compatible
matrix satisfying ADA = A.

This group of feature mappings establishes a primal-dual relationship between a least squares problem
(primal) and the SVD (dual). By setting γ = 1/s, where s is a singular value of A, we obtain the following
primal formulation for the corresponding pair of singular vectors:

min
w,v,e,r

J(w,v,e, r) = −w⊤v +
1

2
γ

N∑
i=1

e2i +
1

2
γ

M∑
j=1

r2j

s.t. ei = w⊤φ(xi), i = 1, . . . , n,

rj = v⊤ψ(yj), j = 1, . . . ,m,

(4)

where w,v ∈ Rn and ei, rj ∈ R. Let [α] and [β] represent the complete dual solutions corresponding to a
series of primal problems, where the singular values of A are considered respectively. The key idea is that if
[α] and [β] are the SVD solutions of A, they must satisfy the KKT conditions of (4), which are shown below:

A[β] = [α]Σ,

A⊤[α] = [β]Σ.
(5)

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

Another key property is that the target value in the primal problem converges to zero when the dual variables
align with the singular vectors, providing a clear convergence criterion for gradient descent. The detailed
proof is shown in Appendix A.

3 SVD FROM PRIMAL SPACE

The above pioneering work demonstrates a new avenue for developing descent methods for SVD. However,
eq. (4) is a non-convex problem, meaning that different local optima can lead to different dual solutions, with
SVD being just one of them. In other words, the existing discussion indicates that SVD can satisfy the KKT
condition for eq. (4), but it cannot guarantee that solving eq. (4) will necessarily yield an SVD. This section
will address this fundamental obstacle step by step: (1) we will prove that when a singular value is given
and the regularization coefficient is set accordingly, the descent method can lead to the singular vector by
normalizing the non-zero solutions of the KKT condition; (2) we will explain the reason why the descent
method will lead to zero solutions for the KKT condition when the regularization coefficient is incorrect; (3)
we will prove that when a small error is tolerated, an inexact estimation of the singular value is sufficient to
obtain the singular vectors, which yields lower cost than the exact computation.

3.1 FROM KKT TO SINGULAR VECTOR

As mentioned earlier, while an SVD solution satisfies the KKT condition eq. (5), the reverse is not necessarily
true. In this section, we will demonstrate that, when γ is chosen as the reciprocal of the singular value s, any
non-zero point that satisfies the KKT condition can be normalized to yield the corresponding singular vector.

Let us start from the Lagrangian of eq. (4):

L(w,v, e, r;α,β) = J(w,v, e, r)−
∑
i

αi

(
ei −w⊤φ(xi)

)
−

∑
j

βj
(
rj − v⊤ψ(yj)

)
. (6)

The Karush–Kuhn–Tucker conditions imply that

∂L
∂w = 0 =⇒ v =

∑
i αiφ(xi),

∂L
∂v = 0 =⇒ w =

∑
j βjψ(yj),

∂L
∂ei

= 0 =⇒ γei = αi, ∀i,
∂L
∂rj

= 0 =⇒ γrj = βj , ∀j,
∂L
∂αi

= 0 =⇒ ei = w⊤φ(xi), ∀i,
∂L
∂βj

= 0 =⇒ rj = v⊤ψ(yj), ∀j.

(7)

As noted in Section 2, we define the dual variables as [α] = [α1, . . . ,αn]
⊤ and [β] = [β1, . . . ,βm]⊤, where

each dual pair (αk,βk) is associated with a singular value sk and its corresponding target problem eq. (4).
Therefore, the stacked vectors must satisfy the orthogonality conditions [α]⊤[α] = In and [β]⊤[β] = Im,
which are not explicitly enforced by the KKT condition eq. (7). Building on this trivial observation, we will
demonstrate that any non-zero solution to the KKT condition eq. (7) can be transformed into the corresponding
singular vector through data normalization.

We first prove the natural orthogonality of [α] and [β]. If we only consider the column vector of the dual
variables αk and βk, we can rewrite eq. (2) as

Aαk = λkβk, (8)

A⊤βk = λkαk. (9)

Left-multiplying both sides of the equation in eq. (9) by matrix A, we obtain:

AA⊤βk = λkAαk. (10)

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

Substituting the expression from eq. (8) into the above equation, we get:
AA⊤βk = λ2kβk. (11)

We can conclude that βk is one of the singular vectors of the normal matrix AA⊤. According to the property
of normal matrices, the singular vectors corresponding to different singular values of the normal matrix
are orthogonal (Golub & Van Loan, 2013). Therefore, we can easily prove that the columns of [β] satisfy
orthogonality, and the proof for [α] can be done in the same way.

In addition to orthogonality, the normalization property is also satisfied. For each vector αi in the matrix
[α] = [α1, . . . ,αn]

⊤, the constraints of the KKT equation eq. (7) hold, revealing a constant-ratio relationship
between αk and the corresponding element ek. Similarly, an analogous relationship exists between each
vector βr in the matrix [β] = [β1, . . . ,βm]⊤ and the corresponding element vr.

As a result, the normalization property of the matrices [α] and [β] can be obtained by normalizing the
columns of the matrices E = [e1, . . . ,en]

⊤ and V = [v1, . . . ,vm]⊤ respectively. Since normalization
ensures orthogonality without affecting the KKT conditions eq. (7), we implement normalization only after
all iterations are completed.
Remark 1. For the non-zero KKT solutions of eq. (4), orthogonality is naturally satisfied due to the implicit
constraints in the KKT conditions, which stem from the properties of normal matrices.

3.2 FEASIBLE DESCENT DIRECTION TO NON-ZERO SOLUTION

The key to finding the singular vectors by solving the target problem eq. (4) is identifying a vector that
satisfies the KKT condition in eq. (5). It is crucial to set γ as the reciprocal of a singular value s for this
condition to hold. If this requirement is not met, equation eq. (5) cannot be satisfied by any non-zero vectors.
To illustrate this, we will examine the practical algorithm and demonstrate that a feasible descent direction
leads to a zero solution for eq. (5).

We stack the primal variables as x := [w,v, e, r] for notational convenience. We first show that ∆x = −x
is a feasible direction at the initial step. Next, we prove that when γ ̸= 1/s, the KKT matrix is full-rank.
Together, these two points imply that ∆x = −x is the only feasible descent direction for any x. Therefore,
the update x1 = x0 − t∆x converges to zero.

To start with, let us consider the constraint matrix C and the Hessian matrix H of eq. (4):

C =

[
Φ 0
0 Ψ

−Ie,r

]
∈ R(m+n)×(3n+m), (12)

H =

 0 −Iw
−Iv 0

0

0 γIe,r

 ∈ R(3n+m)×(3n+m), (13)

where Φ = [φ(x1);φ(x2); · · · ;φ(xn)] ∈ Rn×n and Ψ = [ψ(y1);ψ(y2); · · · ;ψ(ym)] ∈ Rm×n.

We know that the constraint matrix C satisfies the following equations:

Cx = 0 ⇔
[
Φ 0
0 Ψ

−Ie,r

]wve
r

 = 0 ⇔
{
ei = w⊤φ(xi), ∀i,
rj = v⊤ψ(yj), ∀j.

(14)

Now we consider the KKT matrix:

K =

[
H C⊤

C 0

]
∈ R(4n+2m)×(4n+2m), (15)

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

and the KKT function: [
H C⊤

C 0

] [
∆x
∆v

]
= −

[
g +C⊤v

Cx

]
, (16)

where v is the Lagrange operator initialized as 0, and g is the gradient of the target function. If we focus
solely on the descent direction ∆x and set ∆v = 0 at the first step, we can convert the original KKT matrix
into two functions: {

H∆x = −g,

C∆x = −Cx.
(17)

On the other hand, the value of Hx can be calculated:

Hx = [−v,−w, γe, γr], (18)

which is simply the gradient of the target problem, so we have Hx = g, i.e., H(−x) = −g. Consequently,
it follows that ∆x = −x is a feasible solution to eq. (17). Furthermore, we will demonstrate the properties of
the KKT matrix K in Theorem 3.1, and its proof is shown in Appendix B.1.

Theorem 3.1. ∀s ∈ R, if s is not a correct singular value of the matrix A, the KKT matrix K remains full
rank, which implies that ∆x = −x is the unique solution to the KKT function eq. (16). Conversely, if s is a
correct singular value, there exists at least one non-zero solution to eq. (16).

From Theorem 3.1, we know that if γ is chosen incorrectly, K will become full rank, causing x1 to become
zero after the first update step. This proves the necessity of setting the correct singular value s theoretically.

3.3 FAST ESTIMATION OF INEXACT SINGULAR VALUES

The above fact seemingly suggests that only when an accurate singular value is provided can a descent method
be used to solve SVD accurately. However, in practice, exact singular values cannot be obtained due to
numerical errors. For the same reason, one cannot expect to exact SVD; equivalently, it is not necessary to
precisely fit the KKT matrix. Suppose we tolerate errors within ε1 for row reconstruction and ε2 for column
reconstruction, respectively. The following theorem discusses the corresponding requirements on the accuracy
of singular value estimation. Its proof is given in Appendix B.2.

Theorem 3.2. Let s be the true singular value and γ ∈
[
1
s −∆γ, 1s +∆γ

]
. Suppose that ∆γ satisfies the

following condition:

∥∆γ∥ < Terr ≜ min

{
ε1

(
∑

i ∥D⊤xi∥2)
1
2

,
ε2

(
∑

j ∥yj∥2)
1
2

}
. (19)

Then, there exists a feasible descent direction to non-zero solutions for the KKT conditions, within the
approximation tolerances ε1 and ε2. Specifically, the following conditions hold:{

∥v −
∑

i γeiφ(xi)∥ < ε1,

∥w −
∑

j γrjψ(yj)∥ < ε2.
(20)

As a result, fast algorithms for singular value estimation with an error less than Terr become applicable. We
apply the Rayleigh quotient iteration (Rajendran, 2002; Simoncini & Eldén, 2002) because of its accuracy
and efficiency by finishing the estimation without calculating the full SVD. The detailed method is provided
in Appendix D for reference.

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

4 DESCENT ALGORITHM FOR SVD

4.1 DESCENT METHOD FOR A GIVEN SINGULAR VALUE

The theoretical framework presented enables us to propose a descent method for SVD in the primal space.
The proposed algorithm is divided into two primary steps: estimating the singular values and applying the
descent method to compute the singular vectors.

As an inexact singular value s could be efficiently estimated, we suppose it has been obtained and focus on
the descent method for solving equation eq. (4) to compute the corresponding singular vector. The connection
between the primal least squares problem and the SVD is established through the KKT condition, which
imposes strict feasibility requirements on equation eq. (4). Meanwhile, by applying random sampling, the
matrix size is not large, which allows us to choose Newton’s method (Chen et al., 2020). A failure-detection
and auto-restart mechanism is also implemented. It reports failure and initiates a restart once the variable nears
zero concurrently or the objective value turning negative. The algorithm details are provided in Algorithm 1.

Algorithm 1 Descent method for calculating the singular vectors from a given singular value.

Input: A ∈ Rn×m : the target matrix ; C ∈ R(m+n)×(3n+m) : the coefficient matrix of equality constraints s.t.
Cx = 0 ; γ: the reciprocal of the given singular value s; nmax: the max iterations for the newton method; ε: the
threshold for the convergence;

Output: α,β: the corresponding singular vectors of s.
1: Initialize the primal variable x ∈ R3n+m .
2: Do the variable mapping w = x[: n],v = x[n : 2n], e = x[2n : 3n], r = x[3n :].
3: Construct the loss function in eq. (4).
4: for i = 1 to nmax and J > ε do
5: if ∥x∥ < 1× 10−10 or J < −1. then
6: Report failure and start the auto-restart mechanism
7: end if
8: Calculate L’s Hessian matrix H in eq. (13).

9: Get ∆x by solving
[
H C⊤

C 0

] [
∆x
∆v

]
= −

[
g +C⊤v

Cx

]
.

10: Use line search to update x.
11: end for
12: Get the normalized dual variables α = e

∥e∥ ∈ Rn and β = v
∥v∥ ∈ Rm.

13: return α,β

4.2 THE REFINED DESCENT SVD ALGORITHM

Since each singular value is computed independently, Des-SVD naturally supports parallelization, with
minimal communication required as only the singular vectors are gathered in the final stage. It can also be
accelerated through random sampling; in particular, randomized SVD (Halko et al., 2011) constructs a matrix
Q with k = k(ε) orthonormal columns approximating the subspace of A, satisfying ∥A−QQ∗A∥ ≤ εc,
where εc denotes the computational tolerance.

After parallelization and randomized sampling, the KKT system for an m× n matrix with k singular values
reduces directly from 4n+ 2m to 6k. Therefore, the overall complexity of Des-SVD is O((6k)3), which is
of the same magnitude as the classical Lanczos method with complexity O(k3).

The overall Des-SVD algorithm is summarized in Appendix C, supporting both parallelization and random
sampling. Experiments are conducted with parallel = True and randomized = True.

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

To evaluate the accuracy and efficiency of our Des-SVD, we conduct experiments on images and random
matrices. The baseline methods include the Riemannian gradient method (Sato & Iwai, 2013) (referred to as
Rie-SVD), the standard randomized SVD algorithm (Halko et al., 2011), which applies Jacobi SVD after
dimensionality reduction (referred to as Jac-SVD), and the Lanczos method with dimensionality reduction
(referred to as Lan-SVD). The comparison between Des-SVD and Rie-SVD will show significant improvement
in computational efficiency over other descent-based methods. The comparison to Jac-SVD and Lan-SVD
will verify that Des-SVD is comparable to Lan-SVD and faster than Jac-SVD.

To ensure fairness, all methods are manually implemented without relying on pre-existing library functions
and tested on the same CPU resources. Each experiment is repeated 10 times for statistical validity. The
hyperparameter settings of all four methods and the ablations of Des-SVD are shown in Appendix E.
We evaluate both time and accuracy across varying singular values. The SVD accuracy is defined as
Racc = 1− ||USV ⊤−A||F

||A||F , where A is the target matrix, and U ,S,V ⊤ are the SVD components of A.

5.1 SVD ON LOW-RANK MATRICES

We compare the four methods on low-rank matrices and report their performance in Table 1, showing mean
values as variances are negligible. Rie-SVD is the slowest due to repeated projections and convergence
difficulty on larger sizes. In contrast, Des-SVD formulates SVD as a parallelizable least squares problem
via the primal dual relationship, achieving computational efficiency comparable to classical matrix-based
methods for the first time.

Table 1: Performance Comparison of Jac-SVD, Lan-SVD, Rie-SVD, and Des-SVD on low-rank matrices.

m, n, k Jac-SVD Lan-SVD Rie-SVD Des-SVD (Ours)
Racc ↑ Time ↓ Racc ↑ Time ↓ Racc ↑ Time ↓ Racc ↑ Time ↓

30, 10, 2 20.01% 0.01s 20.38% 0.04s 20.37% 1.05s (Iter 145) 20.38% 0.01s
30, 10, 5 54.03% 0.02s 54.04% 0.05s 54.04% 42.20s (Iter 7370) 54.04% 0.02s
300, 10, 5 64.65% 0.06s 64.66% 0.05s 64.65% 32.88s (Iter 5295) 64.66% 0.02s
300, 20, 10 71.05% 0.05s 71.05% 0.05s 64.76% 56.49s (Iter 7630) 71.05% 0.04s

5.2 SVD ON GRAYSCALE IMAGES

Next, we evaluate Des-SVD on image data, a key application area of SVD. As noted above, Rie-SVD is less
efficient; hence, the following experiments focus on Des-SVD and two representative matrix-based methods.
We randomly sample 25 grayscale images of size 1024× 1024 from the FFHQ dataset1. The reconstruction
performance of the selected images (PeppersRGB 2 , Cat and Church3) using Des-SVD and Jac-SVD is
shown in Figures 1 - 3. In general, these methods yield similar accuracy but differ in computational time.
Therefore, we omit the accuracy and report only the computational time in Table 2.

5.3 SVD ON RANDOM MATRICES

Beyond image processing, SVD is also relevant in many more general applications. To test this, we generate
synthetic matrices of larger size 10000× 10000. Since all methods achieve similar accuracy, we focus on
time consumption, reported in Table 3.

1https://github.com/synctrust/ffhq-dataset.git
2https://www.eecs.qmul.ac.uk/~phao/IP/Images/
3https://www.pexels.com

7

https://github.com/synctrust/ffhq-dataset.git
https://www.eecs.qmul.ac.uk/~phao/IP/Images/
https://www.pexels.com

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

Table 2: Performance Comparison of Different SVD Methods on FFHQ Dataset.

k Lan-SVD Jac-SVD Des-SVD(Ours)

10 0.076 ± 0.001s 0.021 ± 0.003s 0.059 ± 0.000s
20 0.082 ± 0.004s 0.073 ± 0.014s 0.065 ± 0.000s
50 0.224 ± 0.003s 0.625 ± 0.093s 0.144 ± 0.000s

100 0.244 ± 0.033s 2.999 ± 0.199s 0.322 ± 0.000s

(a) Original
3 × 512 × 512

RGB image

(b) k = 10
Racc,1 = 0.8334
Racc,2 = 0.8335

(c) k = 20
Racc,1 = 0.8869
Racc,2 = 0.8870

(d) k = 50
Racc,1 = 0.9370
Racc,2 = 0.9370

(e) k = 100
Racc,1 = 0.9602
Racc,2 = 0.9604

(f) k = 150
Racc,1 = 0.9704
Racc,2 = 0.9713

Figure 1: The SVD reconstruction of Des-SVD on PeppersRGB with different k (Racc,1 is the SVD accuracy of Des-SVD
and Racc,2 is that of the standard Jac-SVD).

(a) Original
3547 × 2365

Grayscale image

(b) k = 10
Racc,1 = 0.8994
Racc,2 = 0.8994

(c) k = 20
Racc,1 = 0.9317
Racc,2 = 0.9317

(d) k = 50
Racc,1 = 0.9591
Racc,2 = 0.9590

(e) k = 100
Racc,1 = 0.9705
Racc,2 = 0.9705

(f) k = 150
Racc,1 = 0.9758
Racc,2 = 0.9758

Figure 2: The SVD reconstruction of Des-SVD on Cat with different k (Racc,1 is the SVD accuracy of Des-SVD and
Racc,2 is that of the standard Jac-SVD).

(a) Original
4000 × 6000

Grayscale image

(b) k = 10
Racc,1 = 0.6733
Racc,2 = 0.6733

(c) k = 20
Racc,1 = 0.7138
Racc,2 = 0.7138

(d) k = 50
Racc,1 = 0.7717
Racc,2 = 0.7717

(e) k = 100
Racc,1 = 0.8194
Racc,2 = 0.8195

(f) k = 150
Racc,1 = 0.8482
Racc,2 = 0.8483

Figure 3: The SVD reconstruction of Des-SVD on Church with different k (Racc,1 is the SVD accuracy of Des-SVD and
Racc,2 is that of the standard Jac-SVD).

In the above, we evaluate Des-SVD on both image data and random matrices. As discussed in Appendix F,
Des-SVD remains stable and delivers accurate SVD results even in challenging scenarios, such as when the
gap between two singular values is very small or when the condition number is exceptionally large.

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

Table 3: Performance Comparison of Different SVD Methods on Random Matrices.

m, n k Lan-SVD Jac-SVD Des-SVD(Ours)

500, 250 20 0.09 ± 0.00s 0.18 ± 0.02s 0.06 ± 0.01s
750, 500 20 0.10 ± 0.00s 0.18 ± 0.01s 0.07 ± 0.00s

1000,1000 50 0.14 ± 0.02s 1.32 ± 0.03s 0.17 ± 0.00s
1500,2000 50 0.14 ± 0.01s 1.37 ± 0.04s 0.44 ± 0.00s
3000,3000 100 0.32 ± 0.02s 8.21 ± 0.32s 2.25 ± 0.02s

10000,10000 50 1.81 ± 0.01s 13.59 ± 0.01s 1.97 ± 0.01s
10000,10000 100 2.84 ± 0.01s 14.60 ± 0.03s 3.11 ± 0.01s

5.4 THE PARALLELIZATION PERFORMANCE OF DES-SVD

To further evaluate Des-SVD’s parallelization performance,we present a time breakdown of Des-SVD,
demonstrating that the process of estimating singular values and constructing the compatible matrix D
accounts for only a small fraction of the overall runtime, thereby highlighting the feasibility of parallelization.
As shown in Table 4, we evaluate the performance using the image Goldhill4 (512× 512, k = 150) and a
matrix with power decay parameter α = 0.5 (100× 100, k = 100).

Table 4: Time Cost Breakdown of Des-SVD
(The slowest stage is bolded, and the second slowest stage is italicized.)

Time Stage Hill.png Matrix with power decay

Randomized subspace iteration 0.1370s 0.0087s
Rayleigh quotient iterations 0.0096s 0.0029s
Construction of compatible matrix 0.0069s 0.0024s
Initialization of shared memory 0.3663s 0.0651s
Newton method 0.2207s 0.0516s
Communication in parallel execution 0.2384s 0.1234s
Total 0.9789s 0.2541s

Moreover, we compare the sequential and parallel implementations on Baboon4 (256× 256) to demonstrate
the speedup from our parallelization. As shown in Table 5, the speedup is modest for small k but becomes
considerable as k increases. This is due to the fixed overhead from operations like shared memory preparation,
making parallelization more beneficial for larger-scale computations.

Table 5: Parallel Performance of Des-SVD on Baboon.png

k Sequential (s) Parallel (s) Speedup
10 0.221 0.141 1.6
50 21.247 0.505 42.1
100 135.072 1.209 111.7

In addition to parallelization performance, we systematically evaluated the robustness and convergence of
Des-SVD, as detailed in Appendix G. Results show that Des-SVD outperforms Jac-SVD in runtime while
matching Lan-SVD, making it the first practical descent-based SVD algorithm.

4https://www.eecs.qmul.ac.uk/~phao/IP/Images/

9

https://www.eecs.qmul.ac.uk/~phao/IP/Images/

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

6 CONCLUSIONS

By leveraging the primal–dual relationship between SVD and a least squares problem, we addressed a
key challenge: among multiple minima arising from non-convexity, only one corresponds to the true SVD.
Analyzing this, we found that the descent method could converge to the target solution by normalizing
KKT solutions. Based on this, we developed Des-SVD, an efficient descent-based algorithm for SVD.
Our experiments confirm that Des-SVD achieves performance comparable to matrix-based methods, with
supplementary results in Appendix F - G.

While matrix-based methods remain mainstream, their limitations—especially in parallelization and dis-
tributed learning—highlight the need for alternatives. Descent methods show promise, but existing ones are
too slow for practical use. Our Des-SVD is significantly more efficient than the Riemannian gradient method,
offering a practical alternative. We hope this work paves the way for scalable descent-based methods for
large-scale SVD in modern machine learning.

Furthermore, as stated in Theorem 3.2, a key condition for Des-SVD to obtain the true singular vectors is
that the singular value estimation satisfies the threshold Terr. When this condition is met, the convergence
follows the standard behavior of the Newton method. Otherwise, the objective value may become negative,
indicating a failure of the decomposition. An interesting direction for future research is to investigate how
to adapt or modify the singular value estimation—potentially improving the robustness of Des-SVD and
enabling stability even when the estimation error exceeds the current threshold.

7 RELATED WORK

Matrix-based SVD methods. Currently, the dominant algorithms for solving SVD are matrix-based, mainly
Jacobi’s algorithm (Jacobi, 1846; Demmel & Veselic, 1992; Gao et al., 2025) and the Lanczos algorithm
(Cullum et al., 1983; Cullum & Willoughby, 2006; Golub et al., 1981; Feng et al., 2018), along with several
others (Nakatsukasa & Higham, 2013; Wang et al., 2021; Pialot et al., 2023). Efforts to accelerate these
methods have largely focused on matrix approximation or low-level code optimization.

Descent Methods for SVD. Iterative descent techniques, including gradient descent (Jain et al., 2018),
Newton’s method (Chen et al., 2020; Polyak, 2007), and momentum methods (Liu et al., 2020; Qian, 1999),
have become standard for large-scale problems. Riemannian gradient descent on the Stiefel manifold was
introduced for SVD in 2013 (Sato & Iwai, 2013) and refined in recent works (Sato, 2014; Huang et al., 2025).
However, it is slower than matrix-based methods due to the need for projection onto the manifold.

Distributed SVD. For distributed data, considerable efforts have been made to extend matrix-based methods
(Hartebrodt et al., 2021; Chai et al., 2022; Blatt et al., 2020; Li et al., 2021). Nevertheless, most of these
approaches still rely on collecting data at a central server for computation, which poses potential security
risks, as highlighted by (Chai et al., 2024). Although Chai et al. (2024) further proposes a decentralized
SVD method to improve security, the approach continues to incur high communication costs and cannot fully
eliminate the need for data gathering and synchronization.

10

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on developing and analyzing a novel descent-based method for singular value decompo-
sition (Des-SVD). Our study is purely theoretical and experimental on synthetic and standard benchmark
datasets, and does not involve human subjects, sensitive personal data, or applications with direct societal
risks. We follow best practices to ensure reproducibility, and all code and experimental settings are made
publicly available. We do not foresee any ethical concerns regarding the methodology or its applications
within the scope of this work.

REPRODUCTIVITY STATEMENT

To ensure reproducibility, we release the source code using the URL in the abstract. The README provides
instructions for reproducing our results and implementing Des-SVD on arbitrary matrices. Theoretical
foundations are discussed in Sections 2 and 3, with supplementary proofs in Appendices A and B.

LLM USAGE

Large Language Models (LLMs) were used solely as writing assistants for improving the grammar, style, and
clarity of the manuscript. They were not involved in the research ideation, design, theoretical development,
implementation, or analysis. The authors take full responsibility for the content of this paper.

REFERENCES

Ömer Deniz Akyildiz and Joaquín Míguez. Convergence rates for optimised adaptive importance samplers.
Stat. Comput., 31(2):12, 2021.

Nan Bai, Zhisheng Duan, and Qishao Wang. Distributed optimal consensus of multi-agent systems: A
randomized parallel approach. Automatica, 159:111339, 2024.

Marcelo Blatt, Alexander Gusev, Yuriy Polyakov, and Shafi Goldwasser. Secure large-scale genome-wide
association studies using homomorphic encryption. Proceedings of the National Academy of Sciences, 117
(21):11608–11613, 2020.

Di Chai, Leye Wang, Junxue Zhang, Liu Yang, Shuowei Cai, Kai Chen, and Qiang Yang. Practical lossless
federated SVD over billion-scale data. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 46–55. ACM, 2022.

Di Chai, Junxue Zhang, Liu Yang, Yilun Jin, Leye Wang, Kai Chen, and Qiang Yang. Efficient decentralized
federated SVD. In Proceedings of the 2024 USENIX Annual Technical Conference, pp. 63–82. USENIX,
2024.

Huiming Chen, Ho-Chun Wu, Shing-Chow Chan, and Wong-Hing Lam. A stochastic quasi-Newton method
for large-scale nonconvex optimization with applications. IEEE Trans. Neural Netw. Learn. Syst., 31(11):
4776–4790, 2020.

Jane Cullum and Ralph A Willoughby. Computing eigenvectors of large symmetric matrices using Lanczos
tridiagonalization. In Numerical Analysis: Proceedings of the 8th Biennial Conference, Dundee, pp. 46–63.
Springer, 2006.

Jane Cullum, Ralph A Willoughby, and Mark Lake. Lanczos algorithm for computing singular values and
vectors of large matrices. SIAM J. Sci. Stat. Comput., 4(2):197–215, 1983.

11

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

James Demmel and Kresimir Veselic. Jacobi’s method is more accurate than QR. SIAM J. Matrix Anal. Appl.,
13(4):1204–1245, 1992.

Jun Feng, Laurence T Yang, Guohui Dai, Wei Wang, and Deqing Zou. A secure high-order Lanczos-based
orthogonal tensor SVD for big data reduction in cloud environment. IEEE Trans. Big Data, 5(3):355–367,
2018.

Weiguo Gao, Yuxin Ma, and Meiyue Shao. A mixed precision Jacobi SVD algorithm. ACM Trans. Math.
Softw., 51(1):1–33, 2025.

Gene H Golub and Charles F Van Loan. Matrix Computations. Johns Hopkins University Press, 2013.

Gene H Golub, Franklin T Luk, and Michael L Overton. Block Lanczos method for computing singular
values and vectors of a matrix. ACM Trans. Math. Softw., 7(2):149–169, 1981.

Qiang Guo, Caiming Zhang, Yunfeng Zhang, and Hui Liu. An efficient SVD-based method for image
denoising. IEEE Trans. Circuits Syst. Video Technol., 26(5):868–880, 2016.

Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM Rev., 53(2):217–288, 2011.

Anne Hartebrodt, Reza Nasirigerdeh, David B. Blumenthal, and Richard Röttger. Federated principal
component analysis for genome-wide association studies. In 2021 IEEE International Conference on Data
Mining (ICDM), pp. 1090–1095, 2021.

Baohua Huang, Zhigang Jia, and Wen Li. A novel riemannian conjugate gradient method on quaternion
stiefel manifold for computing truncated quaternion SVD. Numer. Linear Algebra Appl., 32(1):e70006,
2025.

Carl Gustav Jacob Jacobi. Über ein leichtes verfahren die in der theorie der säcularstörungen vorkommenden
gleichungen numerisch aufzulösen. 1846.

Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Accelerating
stochastic gradient descent for least squares regression. In Conference on Learning Theory (COLT),
volume 75 of Proceedings of Machine Learning Research, pp. 545–604, 2018.

Andrew V. Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned
conjugate gradient method. SIAM J. Sci. Comput., 23(2):517–541, 2001.

Manoj Kumar and Ankita Vaish. An efficient encryption-then-compression technique for encrypted images
using SVD. Digital Signal Processing, 60:81–89, 2017.

Cornelius Lanczos. Linear systems in self-adjoint form. The American Mathematical Monthly, 65(9):665–679,
1958.

Xiang Li, Shusen Wang, Kun Chen, and Zhihua Zhang. Communication-efficient distributed SVD via local
power iterations. In Proceedings of the 38th International Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, pp. 6504–6514, 2021.

Ji Liu, Jizhou Huang, Yang Zhou, Xuhong Li, Shilei Ji, Haoyi Xiong, and Dejing Dou. From distributed
machine learning to federated learning: A survey. Knowl. Inf. Syst., 64(4):885–917, 2022.

Wei Liu, Li Chen, Yunfei Chen, and Wenyi Zhang. Accelerating federated learning via momentum gradient
descent. IEEE Trans. Parallel Distrib. Syst., 31(8):1754–1766, 2020.

12

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

David Luengo, Luca Martino, Mónica Bugallo, Víctor Elvira, and Simo Särkkä. A survey of monte carlo
methods for parameter estimation. EURASIP J. Adv. Signal Process., 2020(1):25, 2020.

Andreas Marek, Volker Blum, Rainer Johanni, Ville Havu, Bruno Lang, Thomas Auckenthaler, Alexander
Heinecke, Hans-Joachim Bungartz, and Hermann Lederer. The ELPA library: Scalable parallel eigenvalue
solutions for electronic structure theory and computational science. J. Phys. Condens. Matter, 26(21):
213201, 2014.

Luca Martino, David Luengo, and Joaquín Míguez. Independent Random Sampling Methods, volume 340.
Springer, 2018.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular vectors
adaptation of large language models. Advances in Neural Information Processing Systems, 37:121038–
121072, 2024.

Aditya Krishna Menon and Charles Elkan. Fast algorithms for approximating the SVD. ACM Trans. Knowl.
Discov. Data, 5(2):1–36, 2011.

Yuji Nakatsukasa and Nicholas J Higham. Stable and efficient spectral divide-and-conquer algorithms for the
symmetric eigenvalue decomposition and the SVD. SIAM J. Sci. Comput., 35(3):A1325–A1349, 2013.

Takeshi Ogita and Kensuke Aishima. Iterative refinement for symmetric eigenvalue decomposition. Japan J.
Ind. Appl. Math., 35:1007–1035, 2018.

Baptiste Pialot, Lionel Augeul, Lorena Petrusca, and François Varray. A simplified and accelerated imple-
mentation of SVD for filtering ultrafast power doppler images. Ultrasonics, 134:107099, 2023.

Boris T Polyak. Newton’s method and its use in optimization. European J. Oper. Res., 181(3):1086–1096,
2007.

Ning Qian. On the momentum term in gradient descent learning algorithms. Neural Netw., 12(1):145–151,
1999.

S Rajendran. Computing the lowest eigenvalue with rayleigh quotient iteration. J. Sound Vib., 254(3):
599–612, 2002.

Ajit Rajwade, Anand Rangarajan, and Arunava Banerjee. Image denoising using the higher order SVD. IEEE
Trans. Pattern Anal. Mach. Intell., 35(4):849–862, 2013.

Peter Richtárik and Martin Takáč. Parallel coordinate descent methods for big data optimization. Math.
Program., 156(1):433–484, 2016.

Hiroyuki Sato. Riemannian conjugate gradient method for complex SVD problem. In Proceedings of the
53rd IEEE Conference on Decision and Control, pp. 5849–5854, 2014.

Hiroyuki Sato. Riemannian Optimization and Its Applications, volume 670. Springer, 2021.

Hiroyuki Sato and Toshihiro Iwai. A riemannian optimization approach to the matrix SVD. SIAM J. Optim.,
23(1):188–212, 2013.

Valeria Simoncini and Lars Eldén. Inexact rayleigh quotient-type methods for eigenvalue computations. BIT
Numer. Math., 42(1):159–182, 2002.

Johan AK Suykens. SVD revisited: A new variational principle, compatible feature maps and nonlinear
extensions. Applied and Computational Harmonic Analysis, 40(3):600–609, 2016.

13

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

Johan AK Suykens and Joos Vandewalle. Least squares support vector machine classifiers. Neural Process.
Lett., 9(3):293–300, 1999.

Françoise Tisseur. Newton’s method in floating point arithmetic and iterative refinement of generalized
eigenvalue problems. SIAM J. Matrix Anal. Appl., 22(4):1038–1057, 2001.

Wei Wang, Zheng Dang, Yinlin Hu, Pascal Fua, and Mathieu Salzmann. Robust differentiable SVD. IEEE
Trans. Pattern Anal. Mach. Intell., 44(9):5472–5487, 2021.

Jar-Ferr Yang and Chiou-Liang Lu. Combined techniques of Singular Value Decomposition and vector
quantization for image coding. IEEE Trans. Image Process., 4(8):1141–1146, 1995.

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A THE PROOF OF ZERO-VALUE OF THE TARGET FUNCTION

From the KKT condition eq. (7), we can indicate by rearranging the terms that:
λαi =

∑
j

βjψ(yj)
⊤φ(xi), ∀i = 1, . . . , n,

λβj =
∑
i

αiφ(xi)
⊤ψ(yj), ∀j = 1, . . . ,m,

(21)

where λ is the correct singular value and we have γ = 1/λ.

Substitute eq. (21) and eq. (7) into the objective function J , then we have:

J = −w⊤v +
1

2
γ

n∑
i=1

e2i +
1

2
γ

m∑
j=1

r2j

= −
∑
j

βjψ(yj)
⊤
∑
i

αiφ(xi) +
1

2
γ

n∑
i=1

(
αi

γ
)2 +

1

2
γ

m∑
j=1

(
βj
γ
)2

=
∑
i

αi(−
∑
j

βjψ(yj)
⊤φ(xi)) +

1

2
λ

n∑
i=1

α2
i +

1

2

m∑
j=1

λβ2
j

=

n∑
i=1

−λα2
i +

1

2
λ

n∑
i=1

α2
i +

1

2

m∑
j=1

λβ2
j

= −1

2
λα⊤α+

1

2
λβ⊤β

(22)

If α ∈ Rn and β ∈ Rm are the singlar vectors of the singular value λ , we can obtain from the properties that
α⊤α = β⊤β = 1, so the target function J will always be zero.

B THE PROOF THE THEOREMS IN SECTION 3

In this section, we will prove all the theorems mentioned in Section 3 respectively.

B.1 THE PROOF OF THEOREM 3.1

The rank property of the KKT matrix K given different s is proved as follows:

We first define two matrices:

Kup =
[
H C⊤] =

 0 −Iw
−Iv 0

0 0
0 0

0 γIe,r

Φ⊤ 0
0 Ψ⊤

−Ie,r

 ∈ R(3n+m)×(4n+2m), (23)

Kdown = [C 0] ∈ R(m+n)×(4n+2m), (24)
Next, we eliminate Φ⊤ and Ψ by applying a row transformation with −Ie,r, yielding the following:

K ′
up =

 0 −Iw
−Iv 0

γΦ⊤ 0
0 γΨ⊤

0 γIe,r

0 0
0 0
−Ie,r

 . (25)

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

Define the matrix B as

B =

[
0 −Iw γΦ⊤ 0

−Iv 0 0 γΨ⊤

]
∈ R(m+n)×(3n+m).

Then, the following equation constraints are obtained:

Bx = 0 ⇔
[

0 −Iw γΦ⊤ 0
−Iv 0 0 γΨ⊤

]wve
r

 = 0 ⇔


v =

∑
i

γeiφ(xi), ∀i,

w =
∑
j

γrjψ(yj), ∀j,
(26)

which is a different but equivalent form of the KKT condition. We define K′ as

K′ =

[
K′

up

Kdown

]
∈ R(m+n)×(4n+2m). (27)

Since elementary row transformations do not affect the rank of a matrix, we have rank(Kup) = rank(K′
up),

i.e., rank(K) = rank(K′). Furthermore, if γ is the correct value, eq. (14) leads to eq. (26) due to the KKT
condition eq. (7). Therefore, we conclude that there exists at least one non-zero solution to the transformed
KKT function by setting v = 0 and x = x∗, where x∗ is one of the non-zero KKT solutions:

K′
[
x∗

0

]
= 0. (28)

In this case, K′ is not of full rank, and neither is K. Conversely, if γ is incorrect, K becomes full rank
because there is no non-zero solution that satisfies both K′

up and Kdown. This constraint restricts ∆x = −x
to be the only solution to eq. (16).

B.2 THE PROOF OF THEOREM 3.2

The complete proof of the error threshold Terr is shown as follows:

We will prove Theorem 3.2 using proof by contradiction. For the true singular value s, it can be learnt from
eq. (26) that : 

v =
∑
i

1

s
eiφ(xi), ∀i,

w =
∑
j

1

s
rjψ(yj), ∀j.

(29)

Then, suppose there exists an estimate γ′ = 1
s + ∆γ′ that satisfies eq. (19) but violates eq. (20). In other

words, it must satisfy:

∥∆γ′∥ < min

{
ε1

(
∑

i ∥D⊤xi∥2)
1
2

,
ε2

(
∑

j ∥yj∥2)
1
2

}
, (30)

and it should deviate from eq. (20): {
∥v −

∑
i γ

′eiφ(xi)∥ ≥ ε1
∥w −

∑
j γ

′rjψ(yj)∥ ≥ ε2.
(31)

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

Since Φ and Ψ are simply the feature mappings of the row and column vectors eq. (3) of the target matrix A,
we can rewrite eq. (31) as: {

∥v −
∑

i γ
′eiD

⊤xi∥ ≥ ε1
∥w −

∑
j γ

′rjyj∥ ≥ ε2.
(32)

Then simplify eq. (32) with the numerical eliminations of 1/s:{
∥∆γ′

∑
i ei(D

⊤xi)∥ ≥ ε1
∥∆γ′

∑
j vjyj∥ ≥ ε2.

(33)

Because of the normalization on e = [e1, ..., en] and v = [v1, ..., vm] (see Section 3.1), the following
equations hold: {∑

i e
2
i = 1∑

j v
2
j = 1.

(34)

Combined with the Cauchy-Schwarz inequality, we have:∥∥∥∑
i
eiD

⊤xi

∥∥∥ ≤
(∑

i
e2i

) 1
2
(∑

i

∥∥D⊤xi

∥∥2) 1
2

=
(∑

i

∥∥D⊤xi

∥∥2) 1
2

. (35)

By applying a similar derivation to v, we can now conclude that:

∥
∑
i

eiD
⊤xi∥ ≤ (

∑
i

∥D⊤xi∥2)
1
2 or ∥

∑
j

vjyj∥ ≤ (
∑
j

∥yj∥2)
1
2 . (36)

If we define the former equation in eq. (36) as (a) and the later one as (b), we can conclude that ∥∆γ′∥ should
be larger than ε1

(
∑

i |D⊤xi|2)
1
2

if (a) satisfies or larger than ε2

(
∑

j |yj |2)
1
2

if (b) satisfies.

Therefore, we derive the lower bound of ∥∆γ′∥:

∥∆γ′∥ ≥ min

{
ε1

(
∑

i ∥D⊤xi∥2)
1
2

,
ε2

(
∑

j ∥yj∥2)
1
2

}
, (37)

which is contradictory to eq. (30). Thus, we have established the validity of the proposition on Terr.

C THE REFINED VERSION OF THE SVD ALGORITHM (DES-SVD)

In this section, we present the refined Descent SVD method (Des-SVD). The algorithm integrates paralleliza-
tion and randomized sampling, allowing each singular value to be computed independently and efficiently. It
first estimates the leading singular values, then solves the associated KKT systems for the singular vectors,
and finally assembles the complete SVD solution. The detailed procedure is summarized in Algorithm 2.

D THE METHODS FOR FAST SINGULAR VALUE APPROXIMATION

We adopt the Rayleigh Quotient Iteration method in the paper to fast estimate singular values, and its concrete
realization is demonstrated in Algorithm 3.

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

Algorithm 2 The refined Descent SVD Method (Des-SVD).

Input: A ∈ Rn×m : The target matrix ; k: the number of singular values to be calculated; nmax: the max iterations for
Newton’s method; ε: the threshold for convergence ; parallel : whether to adapt parallelization ; randomized:
whether to use random sampling .

Output: [α], S, [β]: the SVD solution of A
1: if randomized then
2: Calculate the orthonormal matrix Q = Randomized-Subspace-Iteration(A) .
3: Get the low-rank approximated matrix A′ = Q∗A.
4: else
5: Set A′ = A.
6: end if
7: Initialize the dual variables [α] ∈ Rk×n and [β] ∈ Rk×m.
8: Estimate the first k singular values and store them in S = Rayleigh-Quotient(A′, k).
9: Construct the coefficient matrix C ∈ R(m+n)×(3n+m) such that Cx = 0.

10: if parallel then
11: Create k processes for each singular value s ∈ S.
12: for each singular value si in its independent process pi do
13: Execute Algorithm 1 with Input: {A′,C, 1/si, nmax, ε} and Output: {α′

i,β
′
i}.

14: end for
15: Gather all the results together in order, i.e., [α′] = [α′

1, ...,α
′
k]

⊤ and [β′] = [β′
1, ...,β

′
k]

⊤.
16: else
17: for each singular value si ∈ S do
18: Execute Algorithm 1 with Input: {A′,C, 1/si, nmax, ε} and Output: {α′

i,β
′
i}.

19: Update [α′].iloc(i, :) = α′
i and [β′].iloc(i, :) = β′

i.
20: end for
21: end if
22: if randomized then
23: Update [α] = Q[α′] and remain [β] = [β′].
24: else
25: Remain [α] = [α′] and [β] = [β′].
26: end if
27: Return [α], S, [β]

Algorithm 3 Estimate the top-k singular values using Rayleigh quotient iteration

Input: A ∈ Rn×m, number of singular values k, max iteration number niter, convergence threshold εrayleigh.
Output: Top-k singular values of A

1: Initialize random matrix V ∈ Rm×k such that V is orthogonal.
2: for i = 1 to niter do
3: Z = ATAV
4: Vnew, _ = QR-Factorization(Z)
5: if ∥Vnew − V ∥ < εrayleigh then
6: break
7: end if

V = Vnew
8: end for
9: Compute singular values by taking the L2 norm of each column of the matrix product C = AV .

10: Sort singular values in descending order
11: Return sorted singular values

E HYPERPARAMETER SELECTION AND ABLATIONS

E.1 HYPERPARAMETER SETTINGS FOR COMPARATIVE METHODS

For the three comparison methods(Rie-SVD, Lan-SVD, and Jac-SVD), we employ standard hyperparameter
settings. For Rie-SVD, we adopt the standard configuration from (Sato & Iwai, 2013) with αmin = 1× 10−6,18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

αmax = 1.0, max-iter = 50000, βm = 0.5, ϵ = 0.5, and ϵf = 1× 10−10. For Jac-SVD, we use the default
hyperparameters ε = 1× 10−6, nmax = 100, and randomized = True, while Lan-SVD is configured with
ε = 1× 10−6, nmax = 100, and randomized = True.

E.2 THE ABLATION STUDY OF THE NEWTON METHOD IN DES-SVD

For the ablation study of the parameters in Des-SVD, particularly in the Newton method, we conduct the fol-
lowing experiment. We select a 100×100 matrix with exponential decay β = 0.5. Several groups of common
parameters are chosen, i.e., nmax ∈ {1, 3, 5, 10} and (α, β) ∈ {(0.1, 0.8), (0.01, 0.99), (0.2, 0.7), (0.5, 0.5)}.
The ablation experiment results are shown in Table 6.

Table 6: Ablation Study of Newton Method Parameters

nmax α β Racc Time (sec)

1 0.1 0.8 0.9952 0.1137
3 0.1 0.8 0.9952 0.1507
5 0.1 0.8 0.9952 0.1782

10 0.1 0.8 0.9952 0.2579

1 0.01 0.99 0.9952 0.4233
3 0.01 0.99 0.9952 1.0242
5 0.01 0.99 0.9952 1.6732

10 0.01 0.99 0.9952 3.2992

1 0.2 0.7 0.9952 0.0871
3 0.2 0.7 0.9952 0.1256
5 0.2 0.7 0.9952 0.2340

10 0.2 0.7 0.9952 0.2878

1 0.5 0.5 0.9952 0.1182
3 0.5 0.5 0.9952 0.1608
5 0.5 0.5 0.9952 0.1769

10 0.5 0.5 0.9952 0.2543

Overall, the performance is not highly sensitive to the backtracking parameters, although there are some
small differences. We recommend using α = 0.2 and β = 0.7, which are the values we use in all of our
experiments. Additionally, we set nmax = 3. While we cannot theoretically claim that 3 iterations guarantee
convergence, the accuracy achieved with this setting is sufficient to provide an accurate SVD.

E.3 HYPERPARAMETER SELECTION IN DES-SVD

We specify the hyperparameters configured for each computational stage of Des-SVD.

• Randomized subspace iteration: Following Algorithm 4.4 in Halko et al. (2011), we compute the
orthonormal matrix Q with the number of power iterations set to q = 5.

• Rayleigh quotient iteration: We configure niter = 3 and the tolerance εrayleigh = 1 × 10−6 (see
Appendix G for detailed analysis).

• Newton method: Based on the ablation study in Appendix E.2, we employ nmax = 3, α = 0.7, and
β = 0.2 in practice. Given the satisfactory convergence behavior, we set ε = 1× 10−6.

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

F SVD ON MORE SPECIAL CASES

To assess the performance of Des-SVD in a more general scenario, we perform experiments using two
different singular value decay models: power-law decay (σk ∼ k−α) and exponential decay (σk ∼ Ce−βk),
with an initial singular value of σ1 = 104 and matrix dimensions of m = n = 100. Since the accuracy across
all methods is nearly identical, we focus primarily on the computational efficiency, presenting only the time
performance results in Tables 7 and 8. As observed in Table 8, even when the condition number is large, our
method demonstrates performance on par with Lan-SVD and outperforms Jac-SVD, highlighting its stability
and resilience under difficult conditions.

Table 7: Performance Comparison of Different SVD Methods on Matrices Following Power-law Decay .

α Lan-SVD Jac-SVD Des-SVD(Ours) Condition Number

0.5 0.16 ± 0.00s 3.51 ± 0.08s 0.17 ± 0.00s 10.0
1.0 0.14 ± 0.02s 2.56 ± 0.04s 0.19 ± 0.00s 100.0
1.2 0.24 ± 0.03s 2.30 ± 0.13s 0.16 ± 0.01s 252.1
1.5 0.16 ± 0.03s 2.29 ± 0.01s 0.21 ± 0.00s 1000.0

Table 8: Performance Comparison of Different SVD Methods on Matrices Following Exponential Decay.

β Lan-SVD Jac-SVD Des-SVD(Ours) Condition Number

0.2 0.14 ± 0.00s 2.39 ± 0.13s 0.21 ± 0.00s 5 × 109

0.5 0.14 ± 0.00s 5.41 ± 0.07s 0.20 ± 0.00s 8 × 109

0.8 0.13 ± 0.00s 6.89 ± 0.47s 0.16 ± 0.00s 8.8 × 109

1.0 0.15 ± 0.01s 6.78 ± 0.24s 0.16 ± 0.00s 2.3 × 1010

Furthermore, to test the orthogonality of the singular vector matrices corresponding to nearly identical singular
values, we design additional experiments. For a fixed matrix size of (m,n) = (100, 100), we select the top-k
singular values and set them as follows:

S[: k] = Descending_Sorted(smax · (1 + ϵ · t)), (38)

where smax is the largest singular value, ϵ controls the level of similarity, and t ∼ N(0, 1) is drawn from a
normal distribution. To further test the orthogonality, we calculate the mean deviation from orthogonality for
both U and V , representing the left and right singular vector matrices, respectively. Let X ∈ Rm×d, and the
mean deviation from orthogonality is defined as follows:

MDO(X) =
1

d

(
∥XTX − I∥F

)
, (39)

where d is the number of columns in X , m is the number of rows, and I is the identity matrix of size d× d.
This metric measures the degree to which X deviates from being orthogonal.

Table 9: Comparison of U and V Orthogonality Errors and Accuracy for Different ϵ and k Values.

ϵ
k = 5 k = 10 k = 20

Racc ↑ MDO(U) ↓ MDO(V) ↓ Racc ↑ MDO(U) ↓ MDO(V) ↓ Racc ↑ MDO(U) ↓ MDO(V) ↓

0.1 99.42% 4.093E-04 4.097E-04 97.29% 5.732E-04 5.734E-04 98.76% 3.079E-04 3.081E-04

0.01 99.01% 3.838E-04 3.844E-04 99.00% 4.170E-04 4.172E-04 98.22% 5.324E-04 5.324E-04

0.001 86.98% 6.311E-04 6.312E-04 80.14% 9.988E-04 9.984E-04 68.12% 1.946E-03 1.947E-03

The experimental results for different k and ϵ are shown in Table 9. As ϵ decreases (indicating higher
similarity between singular values) and k increases (introducing more similar singular values), reconstruction

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

accuracy decreases. However, the orthogonality of U and V remains well-preserved, demonstrating the
method’s stability and robustness in maintaining the orthogonality of the singular vectors. This underscores
the effectiveness of our approach in preserving the decomposition structure. For ϵ < 1e− 3, singular values
are considered effectively identical, as their differences become negligible.

G ROBUSTNESS ANALYSIS AND CONVERGENCE GUARANTEES

Regarding convergence, when Des-SVD correctly solves the SVD, the convergence follows the standard
Newton method. If it does not converge, the objective value rapidly becomes negative, which provides a clear
signal to terminate the algorithm, as shown in Algorithm 1.

For robustness, several factors may be considered. We have evaluated the behavior of the method under
different singular value decay rates and varying ranks, and we have also examined the case where two singular
values are close to each other (as detailed in Appendix F).

In addition, a specific robustness issue in Des-SVD is the singular value estimation. Here, we first evaluate
the performance of the Rayleigh method using different numbers of iterations.

In practice, rather than focusing on one singular value as theoretically analyzed in Section 3.3, we use
Erravg(Ses) to describe the average estimation error. Let S denote the true singular value matrix and Ses the
estimated one. We define the average estimation error as:

Erravg(Ses) =
1

k
∥Ses − S∥F ,

where k is the number of singular values. Experiments in Table 10 and Table 11 show that the Rayleigh
iteration method converges effectively, and we choose niter = 3 for all reported experiments. We also report
the maximum and minimum values of estimation error across all singular values to demonstrate that the
estimation error is well-balanced and has minimal impact on different singular values.

Table 10: Rayleigh Iteration Performance on Hill.png

niter Erravg(Srayleigh) Errmax(Srayleigh) Errmin(Srayleigh) Time (sec)

1 3.5864× 10−7 1.6000× 10−5 < 1.0000× 10−7 3.7× 10−3

3 2.1186× 10−7 1.1000× 10−5 < 1.0000× 10−7 5.6× 10−3

10 1.8267× 10−7 1.0000× 10−5 < 1.0000× 10−7 1.2× 10−2

Table 11: Rayleigh Iteration Performance on Matrix with Exponential Decay

niter Erravg(Srayleigh) Errmax(Srayleigh) Errmin(Srayleigh) Time (sec)

1 6.8593× 10−5 3.6620× 10−3 < 1.0000× 10−7 4.2× 10−3

3 6.6933× 10−5 3.1740× 10−3 < 1.0000× 10−7 5.5× 10−3

5 5.8387× 10−5 3.1740× 10−3 < 1.0000× 10−7 7.3× 10−3

We can observe that the average estimation error is approximately within 1× 10−4. Next, we evaluate the
SVD performance based on Racc for different estimation accuracies at this error level. Here, the estimation
error is artificially introduced by adding Gaussian noise to the estimated singular value. This is based on our
observation that such noise has a uniform effect on singular values, regardless of their magnitude. Specifically,
we define the singular value matrix with Gaussian noise as Snoise(b) = S + bE, where each component

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2026

Eij ∼ N(0, 1) represents Gaussian noise. The results in Table 12 show that our method exhibits robust
performance against estimation error.

Table 12: The Performance of Singular Value Estimation under Different Noise Levels

Data m,n k b = 0 b = 1× 10−5 b = 1× 10−4 b = 1× 10−3

Baboon 256,256 100 0.9072 0.9072 0.90710 0.9003
Goldhill 512,512 100 0.9612 0.9611 0.9578 0.9511
Power decay α = 0.5 100,100 100 0.9979 0.9978 0.9978 0.9965
Exp. decay β = 0.5 1000,1000 250 0.9999 0.9999 0.9999 0.9998

22

	Introduction
	SVD and its Least Squares Formulation
	SVD from Primal Space
	From KKT to singular vector
	Feasible descent direction to non-zero solution
	Fast estimation of inexact singular values

	Descent Algorithm for SVD
	Descent Method for a given singular value
	The Refined Descent SVD Algorithm

	Experiments
	SVD on low-rank matrices
	SVD on grayscale images
	SVD on random matrices
	The parallelization performance of Des-SVD

	Conclusions
	Related work
	The proof of zero-value of the target function
	The proof the theorems in Section 3
	The proof of Theorem 3.1
	The proof of Theorem 3.2

	The refined version of the SVD algorithm (Des-SVD)
	The Methods for Fast Singular Value Approximation
	blue Hyperparameter Selection and Ablations
	Hyperparameter Settings for Comparative Methods
	The ablation study of the Newton method in Des-SVD
	Hyperparameter Selection in Des-SVD

	SVD on more special cases
	Robustness analysis and convergence guarantees

