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ABSTRACT

Singular Value Decomposition (SVD) is a long-established technique, with most existing
methods relying on matrix-based formulations. However, matrix operations are relatively
less friendly to parallelization and distributed computation compared to descent-based
methods, motivating the need for alternative approaches. Descent-based methods offer a
promising direction, yet existing ones such as Riemannian gradient descent suffer from
inefficiency due to the need for repeated projections onto nonlinear manifolds. In this work,
we introduce a novel descent method for SVD grounded in a primal—dual reformulation.
Specifically, we construct a least-squares primal problem whose dual corresponds to the
SVD. We show that (i) the non-zero KKT solutions of the primal problem yield the
singular vectors of the matrix, and (ii) inexact singular value estimation still ensures
bounded reconstruction error. Building on these results, we propose an iterative descent-
based algorithm, Des-SVD, along with scalable variants leveraging random sampling and
parallelization. Extensive experiments demonstrate that Des-SVD achieves significantly
higher computational efficiency compared to prior descent methods, while remaining
competitive with matrix-based algorithms. Our implementation is publicly available at:
https://anonymous.4open.science/r/Descent—-SVD-method.

1 INTRODUCTION

Singular Value Decomposition (SVD) is a fundamental and important technique in linear algebra, extensively
applied to diverse fields. Along with the explosive application of computer vision (Rajwade et al.| [2013}; |Guo
et al.| 2016} [Kumar & Vaishl 2017 |Yang & Lul |1995) and natural language processing (Meng et al., 2024),
the size of the matrices involved in SVD problems is steadily increasing, which emphasizes the urgent need
for more efficient SVD methods.

However, these matrix-based methods face challenges in parallelization and still require centralized compu-
tation on the server (Chai et al., 2024)). Descent methods offer an alternative (Qian, |1999; Jain et al., 2018}
Chen et al., [2020)), being well suited for parallel computing (Richtarik & Takacl 2016} |Liu et al.,[2022; Bai
et al.,[2024) and stochastic sampling (Martino et al.,|2018; Luengo et al., [2020; |Akyildiz & Miguez, |2021]).
Yet a practical descent method for SVD is still lacking. The existing Riemannian gradient method (Sato &
Iwail, 2013)), for example, is hampered by costly manifold projections.

A pioneering work by Suykens| (2016) introduces a least squares problem and demonstrates that SVD satisfies
its Karush-Kuhn-Tucker (KKT) conditions, thereby opening the door for the development of descent methods
for SVD. However, the primal-dual relationship faces a key obstacle since the least squares problem is
non-convex. Thus, while singular values and vectors can form a local optimum, a local optimum does not
directly yield the exact SVD.

Building on (Suykens, 2016)), we establish a practical path from a local optimum of the least squares problem
to the SVD in this paper. Our method (Des-SVD) is available for parallelization and random sampling, and
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we believe that additional speed-up methods could be developed in the future. Experimental results show that
our method is far more efficient than the Riemannian gradient method (Sato & Iwai, 2013} |Sato}, [2021}) and
achieves comparable performance to the matrix-based methods (Menon & Elkan, 2011} |Feng et al., 2018}
Gao et al.,[2025) in experiments involving images and large matrices.

2 SVD AND ITS LEAST SQUARES FORMULATION

Let us first review Singular Value Decomposition (SVD). For a matrix A € R"*™, the SVD factorizes A
into the product of three matrices:

A=UXV'T, (1)

where U is an n X n orthogonal matrix, V' is an m x m orthogonal matrix, and ¥ is an n x m diagonal
matrix containing the non-negative singular values of A on its diagonal.

Because both U and V' are orthogonal matrices, i.e., U'U=1,and V'V = I,,, we can rewrite the SVD
equation as follows:
AV =UX,

ATU=Vx.

This Lanczos Decomposition Theorem forms the basis of the Lanczos algorithm (Lanczos, [1958).

(@)

A topic closely related to SVD is eigen-decomposition, for which there is also a desire to develop descent
methods to speed up the process. Here, we list some interesting papers for reference (Tisseur] |2001; |[Knyazev,
2001; Marek et al., 2014; |Ogita & Aishima, |[2018). However, these methods all rely on symmetry or even
positive semi-definiteness, which are not applicable to SVD, as it is a decomposition for non-square matrices.

The foundation of our work is given by |Suykens|(2016)), which treats SVD as a dual of a least squares problem,
specifically, a variant LS-SVM (Suykens & Vandewalle, |[1999). The central idea of the work lies in defining
two feature mappings of the matrix A as follows:

o(x;) = D' x;, 3
{wwwwﬁ ©)

where x; and y; are the i row vector and the j column vector of A respectively, and D is a compatible
matrix satisfying ADA = A.

This group of feature mappings establishes a primal-dual relationship between a least squares problem
(primal) and the SVD (dual). By setting v = 1/s, where s is a singular value of A, we obtain the following
primal formulation for the corresponding pair of singular vectors:

| | XM
. _ T - 2 - 2
w{%}IE{TJ(ww,e,r) =—w' v+ 57 E e; + 57 E T;
=1 =1 “4)

st eg=w @(x;), i=1,...,n,
Ty = va(yj)v ] = 1;"'am7

where w, v € R"” and e;, ; € R. Let [o] and [3] represent the complete dual solutions corresponding to a
series of primal problems, where the singular values of A are considered respectively. The key idea is that if
[a] and [3] are the SVD solutions of A, they must satisfy the KKT conditions of (4), which are shown below:

A[f] = [o]%,

AT[o] = [3]5. ®
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Another key property is that the target value in the primal problem converges to zero when the dual variables
align with the singular vectors, providing a clear convergence criterion for gradient descent. The detailed
proof is shown in Appendix [A]

3 SVD FROM PRIMAL SPACE

The above pioneering work demonstrates a new avenue for developing descent methods for SVD. However,
eq. (@) is a non-convex problem, meaning that different local optima can lead to different dual solutions, with
SVD being just one of them. In other words, the existing discussion indicates that SVD can satisfy the KKT
condition for eq. (4), but it cannot guarantee that solving eq. () will necessarily yield an SVD. This section
will address this fundamental obstacle step by step: (1) we will prove that when a singular value is given
and the regularization coefficient is set accordingly, the descent method can lead to the singular vector by
normalizing the non-zero solutions of the KKT condition; (2) we will explain the reason why the descent
method will lead to zero solutions for the KKT condition when the regularization coefficient is incorrect; (3)
we will prove that when a small error is tolerated, an inexact estimation of the singular value is sufficient to
obtain the singular vectors, which yields lower cost than the exact computation.

3.1 FroM KKT TO SINGULAR VECTOR

As mentioned earlier, while an SVD solution satisfies the KKT condition eq. (3), the reverse is not necessarily
true. In this section, we will demonstrate that, when -y is chosen as the reciprocal of the singular value s, any
non-zero point that satisfies the KKT condition can be normalized to yield the corresponding singular vector.

Let us start from the Lagrangian of eq. {@):
£(W,U,€77’;a7ﬁ): 'LU v,€, ’I" Zaz i_w SOwZ Zﬁ] (yj)) (6)

The Karush—Kuhn-Tucker conditions imply that

% =0 = v =23, aip(zi),
0w =0 = w= Zj Bi(y;),
gL =0 = V€ = Qy, Vl,
Y ; (N
WZO - ’)/T]:/gj7 VJ,
e =0 = ci=wlp(@), Vi
5 =0 = r;=v"¥(y;) i
As noted in Section we define the dual variables as [a] = [a1, ..., a,) " and [B] = [B1, ..., Bm] ", where

each dual pair (o, B ) is associated with a singular value sy and its corresponding target problem eq.
Therefore, the stacked vectors must satisfy the orthogonality conditions [a] T[] = I,, and [B] T [3] =
which are not explicitly enforced by the KKT condition eq. (7). Building on this trivial observation, we will
demonstrate that any non-zero solution to the KKT condition eq. (7)) can be transformed into the corresponding
singular vector through data normalization.

We first prove the natural orthogonality of [a] and [3]. If we only consider the column vector of the dual
variables o, and 3y, we can rewrite eq. as

Aoy, = MGk, (3
ATBi = Aveur. ©)

Left-multiplying both sides of the equation in eq. (9) by matrix A, we obtain:
AAT B, = M\ Aoy (10)
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Substituting the expression from eq. (8) into the above equation, we get:
T 2
AA By = MGk (11)
We can conclude that 3}, is one of the singular vectors of the normal matrix AA . According to the property
of normal matrices, the singular vectors corresponding to different singular values of the normal matrix

are orthogonal (Golub & Van Loan| 2013). Therefore, we can easily prove that the columns of [3] satisfy
orthogonality, and the proof for [«] can be done in the same way.

In addition to orthogonality, the normalization property is also satisfied. For each vector o; in the matrix
[@] = [au1,- .., )T, the constraints of the KKT equation eq. (7) hold, revealing a constant-ratio relationship
between a, and the corresponding element ey. Similarly, an analogous relationship exists between each
vector 3, in the matrix [3] = [B1,...,Bm] " and the corresponding element v,..

As a result, the normalization property of the matrices [a] and [3] can be obtained by normalizing the
columns of the matrices E = [ey,...,e,]" and V = [vy,...,v,,]T respectively. Since normalization
ensures orthogonality without affecting the KKT conditions eq. (7), we implement normalization only after
all iterations are completed.

Remark 1. For the non-zero KKT solutions of eq. @), orthogonality is naturally satisfied due to the implicit
constraints in the KKT conditions, which stem from the properties of normal matrices.

3.2 FEASIBLE DESCENT DIRECTION TO NON-ZERO SOLUTION

The key to finding the singular vectors by solving the target problem eq. (4) is identifying a vector that
satisfies the KKT condition in eq. (§). It is crucial to set vy as the reciprocal of a singular value s for this
condition to hold. If this requirement is not met, equation eq. (3] cannot be satisfied by any non-zero vectors.
To illustrate this, we will examine the practical algorithm and demonstrate that a feasible descent direction
leads to a zero solution for eq. (3).

We stack the primal variables as @ := [w, v, e, 7] for notational convenience. We first show that Ax = —x
is a feasible direction at the initial step. Next, we prove that when v # 1/s, the KKT matrix is full-rank.
Together, these two points imply that Az = —a is the only feasible descent direction for any «. Therefore,
the update ! = 2% — tAx converges to zero.

To start with, let us consider the constraint matrix C' and the Hessian matrix H of eq. @):

C= [((I; \(1)/ —Ie,r] € RUmAm)x(3ntm) (12)
0o -I,
H=|-1, 0 0 c R(3n+m)x(3n+m)’ (13)
0 e,r

where ® = [p(x1); p(x2); - 5 0(2,)] € R™™ and ¥ = [Y(y1); 9 (y2); - 59 (Ym)] € R™*™.

We know that the constraint matrix C satisfies the following equations:

w

® 0 v e; =w' p(x;), Vi
Cx=0% Ie,r] =0<:>{ ! RO (14)

[0 v e ry = v Y(y;), Vi.

T
Now we consider the KKT matrix:
_ H CT (4n+2m) X (4n+2m)

K = [C 0 } €R : (15)

4
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and the KKT function:

H CT||Az| _ [g+CTw (16)
C 0| |Av| Cz ’

where v is the Lagrange operator initialized as 0, and g is the gradient of the target function. If we focus

solely on the descent direction Az and set Av = 0 at the first step, we can convert the original KKT matrix

into two functions:

HAzx = —g, 17
CAx = —Cux. an

On the other hand, the value of Hx can be calculated:
Hz = [-v,—w,ve,r], (18)

which is simply the gradient of the target problem, so we have Hx = g, i.e., H(—x) = —g. Consequently,
it follows that Aw = —x is a feasible solution to eq. (I7). Furthermore, we will demonstrate the properties of
the KKT matrix K in Theorem[3.1] and its proof is shown in Appendix [B.1}

Theorem 3.1. Vs € R, if s is not a correct singular value of the matrix A, the KKT matrix K remains full
rank, which implies that Ax = —x is the unique solution to the KKT function eq. (I6). Conversely, if s is a
correct singular value, there exists at least one non-zero solution to eq. (16).

From Theorem we know that if ~y is chosen incorrectly, K will become full rank, causing x! to become
zero after the first update step. This proves the necessity of setting the correct singular value s theoretically.

3.3 FAST ESTIMATION OF INEXACT SINGULAR VALUES

The above fact seemingly suggests that only when an accurate singular value is provided can a descent method
be used to solve SVD accurately. However, in practice, exact singular values cannot be obtained due to
numerical errors. For the same reason, one cannot expect to exact SVD; equivalently, it is not necessary to
precisely fit the KKT matrix. Suppose we tolerate errors within €; for row reconstruction and 5 for column
reconstruction, respectively. The following theorem discusses the corresponding requirements on the accuracy
of singular value estimation. Its proof is given in Appendix[B.2}

Theorem 3.2. Let s be the true singular value and v € [% — A, % + A*y]. Suppose that A+ satisfies the
following condition:

[AY]] < Terr 2 min{ 6‘1r 2\1” - 2\1 } : 19)
i 1D il?)z (325 [ly;11%)2

Then, there exists a feasible descent direction to non-zero solutions for the KKT conditions, within the
approximation tolerances €1 and €s. Specifically, the following conditions hold:

[v = veip(x)|  <en,
Z 20
{ lw =32, ()l < e (20)

As a result, fast algorithms for singular value estimation with an error less than 7, become applicable. We
apply the Rayleigh quotient iteration (Rajendran} 2002; |Simoncini & Eldén, |2002) because of its accuracy
and efficiency by finishing the estimation without calculating the full SVD. The detailed method is provided
in Appendix [D] for reference.
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4 DESCENT ALGORITHM FOR SVD

4.1 DESCENT METHOD FOR A GIVEN SINGULAR VALUE

The theoretical framework presented enables us to propose a descent method for SVD in the primal space.
The proposed algorithm is divided into two primary steps: estimating the singular values and applying the
descent method to compute the singular vectors.

As an inexact singular value s could be efficiently estimated, we suppose it has been obtained and focus on
the descent method for solving equation eq. (@) to compute the corresponding singular vector. The connection
between the primal least squares problem and the SVD is established through the KKT condition, which
imposes strict feasibility requirements on equation eq. (4). Meanwhile, by applying random sampling, the
matrix size is not large, which allows us to choose Newton’s method (Chen et al.,|2020). A failure-detection
and auto-restart mechanism is also implemented. It reports failure and initiates a restart once the variable nears
zero concurrently or the objective value turning negative. The algorithm details are provided in Algorithm [T

Algorithm 1 Descent method for calculating the singular vectors from a given singular value.

Input: A € R™™ : the target matrix ; C € R(™+™)*Gn+m) . the coefficient matrix of equality constraints s.t.
Cx = 0 ; ~: the reciprocal of the given singular value s; mmax: the max iterations for the newton method; ¢: the
threshold for the convergence;

Output: «, 3: the corresponding smgular vectors of s.

1: Initialize the primal variable & € R3"+™ |

2: Do the variable mapping w = z[: n],v = x[n: 2n],e = x[2n : 3n],r = x[3n :].
3: Construct the loss function in eq. ().

4: for i = 1t0 nmax and J > ¢ do

50 iffjz|| <1x 1072 or J < —1. then

6: Report failure and start the auto-restart mechanism

7: end if

8: Calculate £’s Hessian matrix H in eq. (I3).

) . [H cTl[Aaz] _ [g+CTv

9: Get Az by solving {C 0 } {Av} =— { Cx } .
10: Use line search to update x.

11: end for
12: Get the normalized dual variables o = “ T € R"™and 3 = c R™.

13: return o, 3

4.2 THE REFINED DESCENT SVD ALGORITHM

Since each singular value is computed independently, Des-SVD naturally supports parallelization, with
minimal communication required as only the singular vectors are gathered in the final stage. It can also be
accelerated through random sampling; in particular, randomized SVD (Halko et al.l 2011) constructs a matrix
Q with k = k() orthonormal columns approximating the subspace of A, satisfying ||[A — QQ* A|| < e,
where . denotes the computational tolerance.

After parallelization and randomized sampling, the KKT system for an m X n matrix with k singular values
reduces directly from 4n + 2m to 6k. Therefore, the overall complexity of Des-SVD is O((6k)?), which is
of the same magnitude as the classical Lanczos method with complexity O(k?3).

The overall Des-SVD algorithm is summarized in Appendix [C| supporting both parallelization and random
sampling. Experiments are conducted with parallel = True and randomized = True.
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5 EXPERIMENTS

To evaluate the accuracy and efficiency of our Des-SVD, we conduct experiments on images and random
matrices. The baseline methods include the Riemannian gradient method (Sato & Iwai} |2013)) (referred to as
Rie-SVD), the standard randomized SVD algorithm (Halko et al.,2011), which applies Jacobi SVD after
dimensionality reduction (referred to as Jac-SVD), and the Lanczos method with dimensionality reduction
(referred to as Lan-SVD). The comparison between Des-SVD and Rie-SVD will show significant improvement
in computational efficiency over other descent-based methods. The comparison to Jac-SVD and Lan-SVD
will verify that Des-SVD is comparable to Lan-SVD and faster than Jac-SVD.

To ensure fairness, all methods are manually implemented without relying on pre-existing library functions
and tested on the same CPU resources. Each experiment is repeated 10 times for statistical validity. The
hyperparameter settings of all four methods and the ablations of Des-SVD are shown in Appendix [E]
We evaluate both time and accuracy across varying singular values. The SVD accuracy is defined as

.
Race =1-— W, where A is the target matrix, and U, S, V' T are the SVD components of A.

5.1 SVD ON LOW-RANK MATRICES

We compare the four methods on low-rank matrices and report their performance in Table[I] showing mean
values as variances are negligible. Rie-SVD is the slowest due to repeated projections and convergence
difficulty on larger sizes. In contrast, Des-SVD formulates SVD as a parallelizable least squares problem
via the primal dual relationship, achieving computational efficiency comparable to classical matrix-based
methods for the first time.

Table 1: Performance Comparison of Jac-SVD, Lan-SVD, Rie-SVD, and Des-SVD on low-rank matrices.

ok | JaeSVD | LansvD | Rie-SVD | Des-SVD (Ours)
"7 | Rt [ Timel | Riet | Timel | Rt | Timey | Ruct | Time|

30, 10,2 20.01% 0.01s 20.38% 0.04s 20.37% 1.05s (Iter 145) 20.38% 0.01s
30, 10,5 54.03% 0.02s 54.04% 0.05s 54.04% | 42.20s (Iter 7370) | 54.04% 0.02s
300, 10, 5 64.65% 0.06s 64.66% 0.05s 64.65% 32.88s (Iter 5295) | 64.66% 0.02s
300,20, 10 | 71.05% 0.05s 71.05% 0.05s 64.76% | 56.49s (Iter 7630) | 71.05% 0.04s

5.2 SVD ON GRAYSCALE IMAGES

Next, we evaluate Des-SVD on image data, a key application area of SVD. As noted above, Rie-SVD is less
efficient; hence, the following experiments focus on Des-SVD and two representative matrix-based methods.
We randomly sample 25 grayscale images of size 1024 x 1024 from the FFHQ datase The reconstruction
performance of the selected images (PeppersRGB E], Cat and Churclﬂ) using Des-SVD and Jac-SVD is
shown in Figures|l|-|3| In general, these methods yield similar accuracy but differ in computational time.
Therefore, we omit the accuracy and report only the computational time in Table[2]

5.3 SVD ON RANDOM MATRICES

Beyond image processing, SVD is also relevant in many more general applications. To test this, we generate
synthetic matrices of larger size 10000 x 10000. Since all methods achieve similar accuracy, we focus on
time consumption, reported in Table

"https://github.com/synctrust/ffhgq-dataset.git
https://www.eecs.qmul.ac.uk/~phao/IP/Images/
Shttps://www.pexels.com
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Table 2: Performance Comparison of Different SVD Methods on FFHQ Dataset.

k | Lan-SVD | Jac-SVD | Des-SVD(Ours)

10 0.076 % 0.001s 0.021 =+ 0.003s 0.059 =+ 0.000s
20 0.082 % 0.004s 0.073 = 0.014s 0.065 =+ 0.000s
50 0.224 + 0.003s 0.625 =+ 0.093s 0.144 =+ 0.000s
100 0.244 £ 0.033s | 2.999 £ 0.199s 0.322 £ 0.000s

(¢) k=20 (;l) k =50 (e) k =100 ) k=150

(a) Original
3 x 512 x 512 Race,1 = 0.8334  Race,n = 0.8869  Race,1 = 0.9370  Race,1 = 0.9602  Race,1 = 0.9704
RGB image Racc,2 = 0.8335  Race,2 = 0.8870  Race,2 = 0.9370  Race,2 = 0.9604  Race,2 = 0.9713

Figure 1: The SVD reconstruction of Des-SVD on PeppersRGB with different k (Racc,1 is the SVD accuracy of Des-SVD
and Racc,2 is that of the standard Jac-SVD).

(a) Original (¢) k=20 (d) k=50 (e) k = 100 ) k=150
3547 x 2365 Race,1 = 0.8994  Race1 = 0.9317  Race,1 = 0.9591  Race,1 = 0.9705  Race,1 = 0.9758
Grayscale image ~ Racc,2 = 0.8994  Racc2 = 0.9317  Race,2 = 0.9590  Race,2 = 0.9705  Race,2 = 0.9758

Figure 2: The SVD reconstruction of Des-SVD on Cat with different k (Racc,1 is the SVD accuracy of Des-SVD and
Race,2 is that of the standard Jac-SVD).

(a) Original (b) k=10 () k=20 (d) k=50 (e) k=100 ) k=150
4000 x 6000 Race,1 = 06733 Race,1 = 0.7138  Race,1 = 0.7717  Race,1 = 0.8194  Race,1 = 0.8482
Grayscale image Race,2 = 0.6733  Race,2 = 0.7138  Race,2 = 0.7717  Racc,2 = 0.8195  Race,2 = 0.8483

Figure 3: The SVD reconstruction of Des-SVD on Church with different k& (Racc,1 is the SVD accuracy of Des-SVD and
Racc,2 is that of the standard Jac-SVD).

In the above, we evaluate Des-SVD on both image data and random matrices. As discussed in Appendix [F
Des-SVD remains stable and delivers accurate SVD results even in challenging scenarios, such as when the
gap between two singular values is very small or when the condition number is exceptionally large.
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Table 3: Performance Comparison of Different SVD Methods on Random Matrices.

m, n | k | Lan-SVD | Jac-SVD | Des-SVD(Ours)
500, 250 20 0.09 + 0.00s 0.18 &+ 0.02s 0.06 + 0.01s
750, 500 20 0.10 &£ 0.00s 0.18 & 0.01s 0.07 & 0.00s

1000,1000 50 0.14 £ 0.02s 1.32 £ 0.03s 0.17 £ 0.00s
1500,2000 50 0.14 £+ 0.01s 1.37 £ 0.04s 0.44 £ 0.00s
3000,3000 100 | 0.32 £ 0.02s 8.21 £ 0.32s 2.25 +0.02s
10000,10000 50 1.81 £ 0.01s 13.59 £+ 0.01s 1.97 £ 0.01s
10000,10000 100 | 2.84 + 0.01s 14.60 £ 0.03s 3.11 £ 0.01s

5.4 THE PARALLELIZATION PERFORMANCE OF DES-SVD

To further evaluate Des-SVD’s parallelization performance,we present a time breakdown of Des-SVD,
demonstrating that the process of estimating singular values and constructing the compatible matrix D
accounts for only a small fraction of the overall runtime, thereby highlighting the feasibility of parallelization.
As shown in TableEl we evaluate the performance using the image Goldhilﬂ (512 x 512, k = 150) and a
matrix with power decay parameter v = 0.5 (100 x 100, k£ = 100).

Table 4: Time Cost Breakdown of Des-SVD
(The slowest stage is bolded, and the second slowest stage is italicized.)

Time Stage Hill.png Matrix with power decay
Randomized subspace iteration 0.1370s 0.0087s
Rayleigh quotient iterations 0.0096s 0.0029s
Construction of compatible matrix 0.0069s 0.0024s
Initialization of shared memory 0.3663s 0.0651s
Newton method 0.2207s 0.0516s
Communication in parallel execution  0.2384s 0.1234s
Total 0.9789s 0.2541s

Moreover, we compare the sequential and parallel implementations on Baboon* (256 x 256) to demonstrate
the speedup from our parallelization. As shown in Table[5} the speedup is modest for small k but becomes
considerable as k increases. This is due to the fixed overhead from operations like shared memory preparation,
making parallelization more beneficial for larger-scale computations.

Table 5: Parallel Performance of Des-SVD on Baboon.png

k Sequential (s) Parallel (s) Speedup

10 0.221 0.141 1.6
50 21.247 0.505 42.1
100 135.072 1.209 111.7

In addition to parallelization performance, we systematically evaluated the robustness and convergence of
Des-SVD, as detailed in Appendix[G] Results show that Des-SVD outperforms Jac-SVD in runtime while
matching Lan-SVD, making it the first practical descent-based SVD algorithm.

‘https://www.eecs.qgmul.ac.uk/~phao/IP/Images/
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6 CONCLUSIONS

By leveraging the primal—dual relationship between SVD and a least squares problem, we addressed a
key challenge: among multiple minima arising from non-convexity, only one corresponds to the true SVD.
Analyzing this, we found that the descent method could converge to the target solution by normalizing
KKT solutions. Based on this, we developed Des-SVD, an efficient descent-based algorithm for SVD.
Our experiments confirm that Des-SVD achieves performance comparable to matrix-based methods, with
supplementary results in Appendix [H-

While matrix-based methods remain mainstream, their limitations—especially in parallelization and dis-
tributed learning—highlight the need for alternatives. Descent methods show promise, but existing ones are
too slow for practical use. Our Des-SVD is significantly more efficient than the Riemannian gradient method,
offering a practical alternative. We hope this work paves the way for scalable descent-based methods for
large-scale SVD in modern machine learning.

Furthermore, as stated in Theorem [3.2] a key condition for Des-SVD to obtain the true singular vectors is
that the singular value estimation satisfies the threshold 7,,.. When this condition is met, the convergence
follows the standard behavior of the Newton method. Otherwise, the objective value may become negative,
indicating a failure of the decomposition. An interesting direction for future research is to investigate how
to adapt or modify the singular value estimation—potentially improving the robustness of Des-SVD and
enabling stability even when the estimation error exceeds the current threshold.

7 RELATED WORK

Matrix-based SVD methods. Currently, the dominant algorithms for solving SVD are matrix-based, mainly
Jacobi’s algorithm (Jacobi, [1846; Demmel & Veselic, |1992; |Gao et al., 2025) and the Lanczos algorithm
(Cullum et al.} {1983} |Cullum & Willoughby, |2006; |Golub et al.l 1981} [Feng et al., 2018)), along with several
others (Nakatsukasa & Highaml 2013} Wang et al., [2021} [Pialot et al., 2023). Efforts to accelerate these
methods have largely focused on matrix approximation or low-level code optimization.

Descent Methods for SVD. Iterative descent techniques, including gradient descent (Jain et al., 2018)),
Newton’s method (Chen et al., 2020} [Polyak] 2007), and momentum methods (Liu et al.l 2020} |Qian, |1999),
have become standard for large-scale problems. Riemannian gradient descent on the Stiefel manifold was
introduced for SVD in 2013 (Sato & Iwail 2013) and refined in recent works (Sato| [2014; Huang et al., [2025).
However, it is slower than matrix-based methods due to the need for projection onto the manifold.

Distributed SVD. For distributed data, considerable efforts have been made to extend matrix-based methods
(Hartebrodt et al., 2021} |Chai et al., 2022 [Blatt et al., [2020; [L1 et al., 2021). Nevertheless, most of these
approaches still rely on collecting data at a central server for computation, which poses potential security
risks, as highlighted by (Chai et al., 2024). Although (Chai et al.| (2024} further proposes a decentralized
SVD method to improve security, the approach continues to incur high communication costs and cannot fully
eliminate the need for data gathering and synchronization.

10
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TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

A THE PROOF OF ZERO-VALUE OF THE TARGET FUNCTION

From the KKT condition eq. (7), we can indicate by rearranging the terms that:

A =Y Bi(y;) Tp(@), Vi=1,....n,
i

2D
ABj = Zaiap(:ci)—rz/}(yj)ﬁj =1,...,m,
where A\ is the correct singular value and we have v = 1/\.
Substitute eq. and eq. (7) into the objective function 7, then we have:
1 n 1 m
. 2 2
J=—w v+ ifyzei + ifyzrj
=1 Jj=1
1 &~ 1 =, B,
=3 Bl T Y el + 50 S(E 4+ 5y DD
j i i1 7 =7
1 n 1 m
=D (=Y B(yy) e(@) + 52 Y ai + 5D A 22
i j i=1 j=1

n 1 n 1 m
— 2 2 2
=D Aaf+3AY al 5D M
=1 1=1 j=1
1 1
= —5/\aTa + §AﬂTﬁ

If « € R™ and 3 € R™ are the singlar vectors of the singular value )\ , we can obtain from the properties that
a'a= ,BT B = 1, so the target function 7 will always be zero.

B THE PROOF THE THEOREMS IN SECTION

In this section, we will prove all the theorems mentioned in Section [3|respectively.
B.1 THE PROOF OF THEOREM 3.1]

The rank property of the KKT matrix K given different s is proved as follows:

We first define two matrices:
0o -I, 0 0 " O

Kp=[H C']=|-I, 0 0 0 0 ®&T|cROmxtnt2m) (23)
0 'YIe,r _IEJ‘
Kdown — [C 0] c R(m+n)x(4’n+2m)7 (24)

Next, we eliminate @ ' and ¥ by applying a row transformation with — I ., yielding the following:
o -I, v 0 o0 0
K,=|-I, 0 0 ~¥" 0 Of. (25)
0 ’71—8,7' _Ie,"‘
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Define the matrix B as

o -1, T o0 (m+n)x (3nt+m)
B_{_Iv 0 0 7‘I,T}GIR .

Then, the following equation constraints are obtained:

. w v= nyeigo(aci),w,
o -I, o 0 v i

Bx=0& { v =0& (26)

-I, 0 0 ’y\IIT} e — (). Vi

e w =200

which is a different but equivalent form of the KKT condition. We define K’ as
K = |: Kl{lp :| c R(m+n)><(4n+2m). (27)
down

Since elementary row transformations do not affect the rank of a matrix, we have rank(Kyp) = rank(K,,,),

i.e., rank(K) = rank(K"). Furthermore, if ~y is the correct value, eq. leads to eq. due to the KKT
condition eq. (7). Therefore, we conclude that there exists at least one non-zero solution to the transformed
KKT function by setting v = 0 and x = x*, where ™ is one of the non-zero KKT solutions:

K’ {"ﬂ -0 (28)

In this case, K’ is not of full rank, and neither is K. Conversely, if 7 is incorrect, K becomes full rank
because there is no non-zero solution that satisfies both K {lp and K 4own. This constraint restricts Ax = —x
to be the only solution to eq. (I6).

B.2 THE PROOF OF THEOREM

The complete proof of the error threshold 7%, is shown as follows:

We will prove Theorem [3.2using proof by contradiction. For the true singular value s, it can be learnt from

eq. (26) that :
1
v = Z —e;ip(x;), Vi,

— S
A

1
w = Z ;rmyj),w.

J

(29)

Then, suppose there exists an estimate v/ = % + A~/ that satisfies eq. but violates eq. l) In other

words, it must satisfy:
. €1 E9
[1AY]] < mm{ T T } , (30)
Qi IDTi2)2 - (325 [lysl1%)2

and it should deviate from eq. (20):

o =Y eip(zs)ll > e 31
lw =327yl = e
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Since ® and ¥ are simply the feature mappings of the row and column vectors eq. (3)) of the target matrix A,
we can rewrite eq. (31) as:

Y YeDTx;| >
[ v Zﬂf il >el 32)
lw =277yl > e
Then simplify eq. with the numerical eliminations of 1/s:
[AY' Y ei(D ;)| > e (33)
A 32, vyl > e
Because of the normalization on e = [eq,...,e,] and v = [v1, ..., 0] (see Section 3.1)), the following
equations hold:
e =1
{ Zz 622 _ (34)
v =1

Combined with the Cauchy-Schwarz inequality, we have:

1 1 .
T 2\ 2 T 2\ 2 _ T, 2\ 2
|3 e < (3,)" (S I1p7=d")" = (S 1p7=0) " @)
By applying a similar derivation to v, we can now conclude that:

1 1
1Y eiDTaill < (Q_IIDTaill*)z or Y vyl < (Y llysl*)=. (36)
i i j j

If we define the former equation in eq. as (a) and the later one as (b), we can conclude that ||A~’|| should

be larger than £1 if (a) satisfies or larger than —=2—— if (b) satisfies.
g >, IDTa,[?)2 g (<, ly;1?)?

Therefore, we derive the lower bound of ||Av'|:

IIM’IIZmin{ S } 37)
(S, 1Dz )2 (3, llys 1)

which is contradictory to eq. (30). Thus, we have established the validity of the proposition on T,,.

C THE REFINED VERSION OF THE SVD ALGORITHM (DES-SVD)
In this section, we present the refined Descent SVD method (Des-SVD). The algorithm integrates paralleliza-
tion and randomized sampling, allowing each singular value to be computed independently and efficiently. It

first estimates the leading singular values, then solves the associated KKT systems for the singular vectors,
and finally assembles the complete SVD solution. The detailed procedure is summarized in Algorithm 2]

D THE METHODS FOR FAST SINGULAR VALUE APPROXIMATION

We adopt the Rayleigh Quotient Iteration method in the paper to fast estimate singular values, and its concrete
realization is demonstrated in Algorithm 3]
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Algorithm 2 The refined Descent SVD Method (Des-SVD).

Input: A € R™*™ : The target matrix ; k: the number of singular values to be calculated; nmax: the max iterations for
Newton’s method; e: the threshold for convergence ; parallel : whether to adapt parallelization ; randomized:
whether to use random sampling .

Output: [a], S, [3]: the SVD solution of A

Initialize the dual variables [o] € R¥*™ and [8] € R¥*™.

Estimate the first k singular values and store them in § = Rayleigh-Quotient (A’ k).
9: Construct the coefficient matrix C' € R+t *Gn+m) guch that Ca = 0.

10: if parallel then

1: if randomized then

2: Calculate the orthonormal matrix Q = Randomized-Subspace-Iteration(A).
3: Get the low-rank approximated matrix A" = Q* A.

4: else

S Set A’ = A.

6: end if

7

8:

11: Create k processes for each singular value s € S.

12: for each singular value s; in its independent process p; do

13: Execute Algorithm 1] with Input: {A’, C,1/si, nmax, €} and Output: {ca}, 3;}.
14: end for

15: Gather all the results together in order, i.e., [@] = [a], ..., a}] " and [B'] = [B1, ..., Bk] |-
16: else

17: for each singular value s; € S do

18: Execute Algorltthlth Input {A’,C,1/5i, Nmax, s} and Output: {a}, 3;}.
19: Update [a’].iloc(i,:) = o and [3']. 1loc( ) = B

20: end for

21: end if

22: if randomized then

23: Update [a] = Q] and remain [3] = [B'].
24: else

25:  Remain [a] = [@'] and [3] = [B'].

26: end if

27: Return [a], S, [8]

Algorithm 3 Estimate the top-k singular values using Rayleigh quotient iteration

Input: A € R™*™, number of singular values k, max iteration number 7., convergence threshold €payicigh.
Output: Top-k singular values of A

1: Initialize random matrix V' € R™** such that V' is orthogonal.

2: for i = 1 to nj,, do

3: Z=ATAV

4: View,_ = QR-Factorization(Z)

5: if H‘/new — VH < Erayleigh then

6 break

7 end if

V = View

8: end for

9: Compute singular values by taking the Ly norm of each column of the matrix product C = AV.
10: Sort singular values in descending order
11: Return sorted singular values

E HYPERPARAMETER SELECTION AND ABLATIONS

E.1 HYPERPARAMETER SETTINGS FOR COMPARATIVE METHODS

For the three comparison methods(Rie-SVD, Lan-SVD, and Jac-SVD), we employ standard hyperparameter
settings. For Rie-SVD, we adopt the standard configuration from (Sato & Iwai, |2013)) with aip = 1 X 106,
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Qmax = 1.0, max-iter = 50000, 3,,, = 0.5, ¢ = 0.5, and €; = 1 x 107'%. For Jac-SVD, we use the default
hyperparameters € = 1 x 107°, ny. = 100, and randomi zed = True, while Lan-SVD is configured with
e=1x107% nyax = 100, and randomi zed = True.

E.2 THE ABLATION STUDY OF THE NEWTON METHOD IN DES-SVD

For the ablation study of the parameters in Des-SVD, particularly in the Newton method, we conduct the fol-
lowing experiment. We select a 100 x 100 matrix with exponential decay 5 = 0.5. Several groups of common
parameters are chosen, i.e., nmax € {1, 3,5,10} and (o, 8) € {(0.1,0.8),(0.01,0.99), (0.2,0.7), (0.5,0.5)}.
The ablation experiment results are shown in Table

Table 6: Ablation Study of Newton Method Parameters

Mmax @ Ié] R,  Time (sec)

1 0.1 0.8 0.9952 0.1137
3 0.1 0.8 0.9952 0.1507
5 0.1 0.8 0.9952 0.1782
10 0.1 0.8 0.9952 0.2579

1 0.01 0.99 0.9952 0.4233
3 0.01 099 0.9952 1.0242
5 0.01 099 0.9952 1.6732
10 0.01 0.99 0.9952 3.2992

1 02 07 09952 0.0871
3 02 0.7 09952 0.1256
5 02 0.7 0.9952 0.2340
10 02 0.7 09952 0.2878

1 05 05 09952 0.1182
3 05 05 09952 0.1608
5 05 05 09952 0.1769
10 05 05 09952 0.2543

Overall, the performance is not highly sensitive to the backtracking parameters, although there are some
small differences. We recommend using & = 0.2 and § = 0.7, which are the values we use in all of our
experiments. Additionally, we set np,x = 3. While we cannot theoretically claim that 3 iterations guarantee
convergence, the accuracy achieved with this setting is sufficient to provide an accurate SVD.

E.3 HYPERPARAMETER SELECTION IN DES-SVD

We specify the hyperparameters configured for each computational stage of Des-SVD.

* Randomized subspace iteration: Following Algorithm 4.4 in|Halko et al.|(2011), we compute the
orthonormal matrix ¢ with the number of power iterations set to ¢ = 5.

* Rayleigh quotient iteration: We configure nj, = 3 and the tolerance €yieigh = 1 ¥ 1076 (see
Appendix [G]for detailed analysis).

* Newton method: Based on the ablation study in Appendix [E-2] we employ nmax = 3, & = 0.7, and
B = 0.2 in practice. Given the satisfactory convergence behavior, we set £ = 1 x 1076,
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F SVD ON MORE SPECIAL CASES

To assess the performance of Des-SVD in a more general scenario, we perform experiments using two
different singular value decay models: power-law decay (o ~ k~) and exponential decay (o, ~ Ce™?F),
with an initial singular value of oy = 10* and matrix dimensions of m = n = 100. Since the accuracy across
all methods is nearly identical, we focus primarily on the computational efficiency, presenting only the time
performance results in Tables[7]and[8] As observed in Table[8] even when the condition number is large, our
method demonstrates performance on par with Lan-SVD and outperforms Jac-SVD, highlighting its stability
and resilience under difficult conditions.

Table 7: Performance Comparison of Different SVD Methods on Matrices Following Power-law Decay .

a | Lan-SVD | Jac-SVD | Des-SVD(Ours) | Condition Number
0.5 0.16 £ 0.00s 3.51 + 0.08s 0.17 £ 0.00s 10.0

1.0 0.14 £ 0.02s 2.56 + 0.04s 0.19 £ 0.00s 100.0

1.2 0.24 + 0.03s 2.30 &+ 0.13s 0.16 + 0.01s 252.1

1.5 0.16 £ 0.03s 2.29 + 0.01s 0.21 &£ 0.00s 1000.0

Table 8: Performance Comparison of Different SVD Methods on Matrices Following Exponential Decay.

B | Lan-SVD | Jac-SVD | Des-SVD(Ours) | Condition Number
0.2 0.14 £ 0.00s 2.39 + 0.13s 0.21 &£ 0.00s 5 x 10°

0.5 0.14 £ 0.00s 5.41 4+ 0.07s 0.20 = 0.00s 8 x 10°

0.8 0.13 + 0.00s 6.89 + 0.47s 0.16 &£ 0.00s 8.8 x 10°

1.0 0.15 + 0.01s 6.78 + 0.24s 0.16 £ 0.00s 2.3 x 10'°

Furthermore, to test the orthogonality of the singular vector matrices corresponding to nearly identical singular
values, we design additional experiments. For a fixed matrix size of (m,n) = (100, 100), we select the top-k
singular values and set them as follows:

S[: k] = Descending_Sorted(Spax - (1 + € - 1)), (38)

where spay is the largest singular value, € controls the level of similarity, and ¢ ~ N(0, 1) is drawn from a
normal distribution. To further test the orthogonality, we calculate the mean deviation from orthogonality for
both U and V/, representing the left and right singular vector matrices, respectively. Let X € R™*9, and the
mean deviation from orthogonality is defined as follows:

1
MDO(X) = (|X" X —I|lr), (39)

where d is the number of columns in X, m is the number of rows, and I is the identity matrix of size d X d.
This metric measures the degree to which X deviates from being orthogonal.

Table 9: Comparison of U and V Orthogonality Errors and Accuracy for Different € and k Values.

k=5 k=10 k=20
Ryc T | MDOWU) L | MDO(V) | | Rue? | MDOWU)| | MDO(V)] | Rie? | MDO(U)| | MDO(V) |
0.1 99.42% 4.093E-04 4.097E-04 97.29% 5.732E-04 5.734E-04 98.76% 3.079E-04 3.081E-04
0.01 99.01% 3.838E-04 3.844E-04 99.00% 4.170E-04 4.172E-04 98.22% 5.324E-04 5.324E-04
0.001 86.98% 6.311E-04 6.312E-04 80.14% 9.988E-04 9.984E-04 68.12% 1.946E-03 1.947E-03

€

The experimental results for different & and e are shown in Table [0] As e decreases (indicating higher
similarity between singular values) and k increases (introducing more similar singular values), reconstruction
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accuracy decreases. However, the orthogonality of U and V remains well-preserved, demonstrating the
method’s stability and robustness in maintaining the orthogonality of the singular vectors. This underscores
the effectiveness of our approach in preserving the decomposition structure. For € < le — 3, singular values
are considered effectively identical, as their differences become negligible.

G ROBUSTNESS ANALYSIS AND CONVERGENCE GUARANTEES

Regarding convergence, when Des-SVD correctly solves the SVD, the convergence follows the standard
Newton method. If it does not converge, the objective value rapidly becomes negative, which provides a clear
signal to terminate the algorithm, as shown in Algorithm [T]

For robustness, several factors may be considered. We have evaluated the behavior of the method under
different singular value decay rates and varying ranks, and we have also examined the case where two singular
values are close to each other (as detailed in Appendix [F).

In addition, a specific robustness issue in Des-SVD is the singular value estimation. Here, we first evaluate
the performance of the Rayleigh method using different numbers of iterations.

In practice, rather than focusing on one singular value as theoretically analyzed in Section 3.3] we use
Erraye(Ses) to describe the average estimation error. Let .S denote the true singular value matrix and S, the
estimated one. We define the average estimation error as:

1

ETTavg(Ses) = EHSeS - SHF’

where £ is the number of singular values. Experiments in Table[T0]and Table [T1] show that the Rayleigh
iteration method converges effectively, and we choose nje; = 3 for all reported experiments. We also report
the maximum and minimum values of estimation error across all singular values to demonstrate that the
estimation error is well-balanced and has minimal impact on different singular values.

Table 10: Rayleigh Iteration Performance on Hill.png

Titer Erravg (Srayleigh) Errmpax (Srayleigh) Errupin (Srayleigh) Time (sec)

1 3.5864 x 1077 1.6000 x 1075 < 1.0000 x 10~7 3.7 x 1073
3 2.1186 x 1077 1.1000 x 1075 < 1.0000 x 10~ 5.6 x 1073
10 1.8267 x 10~ 1.0000 x 1075 < 1.0000 x 10~7 1.2 x 1072

Table 11: Rayleigh Iteration Performance on Matrix with Exponential Decay

Titer Erravg (Srayleigh) Errmax (Srayleigh) Errmin (Srayleigh) Time (sec)

1 6.8593 x 107°  3.6620 x 1073 < 1.0000 x 10~7 4.2 x 1073
3 6.6933 x 107°  3.1740 x 1072 < 1.0000 x 10~ 5.5 x 1073
5 5.8387 x 107  3.1740 x 107% < 1.0000 x 107 7.3 x 1073

We can observe that the average estimation error is approximately within 1 x 10~%. Next, we evaluate the
SVD performance based on R, for different estimation accuracies at this error level. Here, the estimation
error is artificially introduced by adding Gaussian noise to the estimated singular value. This is based on our
observation that such noise has a uniform effect on singular values, regardless of their magnitude. Specifically,
we define the singular value matrix with Gaussian noise as Syise (b)) = S + DE, where each component
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E;; ~ N(0,1) represents Gaussian noise. The results in Table 12| show that our method exhibits robust
performance against estimation error.

Table 12: The Performance of Singular Value Estimation under Different Noise Levels

Data m,n k b=0 b=1x10"° b=1x10"* b=1x10"3
Baboon 256,256 100 0.9072 0.9072 0.90710 0.9003
Goldhill 512,512 100 0.9612 0.9611 0.9578 0.9511
Power decay o = 0.5 100,100 100 0.9979 0.9978 0.9978 0.9965
Exp. decay 5 = 0.5 1000,1000 250  0.9999 0.9999 0.9999 0.9998
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