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ABSTRACT
A fully disentangled variational auto-encoder (VAE) aims to identify disentangled
latent components from observations. However, enforcing full independence be-
tween all latent components may be too strict for certain datasets. In some cases,
multiple factors may be entangled together in a non-separable manner, or a sin-
gle independent semantic meaning could be represented by multiple latent com-
ponents within a higher-dimensional manifold. To address such scenarios with
greater flexibility, we propose the Partially Disentangled VAE (PDisVAE), which
generalizes the total correlation (TC) term in fully disentangled VAEs to a partial
correlation (PC) term. This framework can handle group-wise independence and
can naturally reduce to either the standard VAE or the fully disentangled VAE.
Validation through three synthetic experiments demonstrates the correctness and
practicality of PDisVAE. When applied to real-world datasets, PDisVAE discov-
ers valuable information that is difficult to find using fully disentangled VAEs,
implying its versatility and effectiveness.

1 INTRODUCTION

Disentangling independent latent components from observations is a desirable goal in representa-
tional learning (Bengio et al., 2013; Alemi et al., 2016; Schmidhuber, 1992; Achille & Soatto, 2017),
with numerous applications in fields such as computer vision and image processing (Lake et al.,
2017), signal analysis (Hyvärinen & Oja, 2000; Hyvarinen & Morioka, 2017), and neuroscience
(Zhou & Wei, 2020; Yang et al., 2021; Wang et al., 2024; Calhoun et al., 2009). To disentangle
latent components in an unsupervised manner, most models employ techniques that combine opti-
mizing a variational auto-encoder (VAE) (Kingma, 2013) with an additional penalty term known as
total correlation (mutual information) (Kraskov et al., 2004), classified as fully disentangled VAEs
(Higgins et al., 2017; Kim & Mnih, 2018; Chen et al., 2018).

Variants of fully disentangled VAEs include modifying the extra penalty term of the VAE loss func-
tion (Meo et al., 2024; Hsu et al., 2024), using auxiliary information to supervise the latent (Ahuja
et al., 2022), or designing particular decoder structure (Bhowal et al.). These related works are sum-
marized in Tab. 3 in Appendix. A.5. Regardless of the techniques employed in these works, they all
result in the latent components being fully independent of each other.

However, enforcing full independence among all latent components can be an overly strong assump-
tion for certain datasets. For instance, consider the location coordinates (x, y) of a set of points in a
2D plane. If the points are uniformly distributed within a square [−1, 1]× [−1, 1], the location distri-
bution can be expressed as p(x, y) = p(x)p(y), indicating that x and y are independent components.
However, if the points are distributed in an irregular shape, such as a butterfly, the (x, y) coordinates
become entangled, resulting in p(x, y) ̸= p(x)p(y). In this case, the location information cannot be
decomposed into two independent components but must be jointly represented by (x, y) together. If
the points also have attributes independent of their location, such as RGB color represented by a 3D
vector, we then encounter the group-wise independence, where a rank-2 entangled group (location)
is independent of a rank-3 entangled group (color).

To deal with such group-wise independence, we propose the partially disentangled VAE (PDisVAE).
• First, it generalizes the total correlation (TC) penalty term in the loss function of fully disentangled
VAEs to partial correlation (PC). PC explicitly penalizes group-wise independence while permitting
within-group entanglement. This unified formulation of PC encompasses both the standard VAE
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and fully disentangled VAEs.
• Second, we revisit the batch approximation method used for computing PC and TC. The existing
batch approximation method proposed by Chen et al. (2018) for computing TC in fully disentangled
VAEs exhibits a high variance in the estimator. Since accurate batch approximation is critical for
the success of the method, we derive the optimal importance sampling (IS) batch approximation
formula and provide a theoretical proof of its optimality.

2 BACKGROUNDS: FULLY DISENTANGLED VAES

2.1 BY TOTAL CORRELATION (TC)

Given a dataset of observations
{
x(n)

}N
n=1

consisting of N samples, fully disentangled VAEs aim
to identify K statistically independent (disentangled) latent components, z1 ⊥ · · · ⊥ zK , within
the latent variable z ∈ RK that generate the observation x. To achieve full disentanglement, fully
disentangled VAEs optimize the following objective function (Blei et al., 2017):

L =
1

N

N∑
n=1

[(
Eq(z|x)

[
ln p

(
x(n)

∣∣∣z)])︸ ︷︷ ︸
reconstruction log-likelihood

−KL
(
q
(
z
∣∣∣x(n)

)∥∥∥p(z))︸ ︷︷ ︸
KL divergence

]
− β ·KL

(
q(z)

∥∥∥∥∥
K∏

k=1

q(zk)

)
︸ ︷︷ ︸

total correlation (TC)

. (1)

In the function, p(x|z; θ) = N
(
x;µ,σ2

)
, µ,σ2 = decoder(z; θ), where decoder : RK → RD

is parameterized by θ. q(z|x;ϕ) = N (z;µ =,σ2), µ,σ2 = encoder(x; θ) is the variational
distribution, in which the encoder : RD → RK is parameterized by ϕ. In Eq. (1) and the following,
we omit θ in p and ϕ in q for simplification without loss of clarity. The prior p(z) is often chosen
to be a standard normal prior. Standard VAE consists of the first two terms. The last term is the
total correlation (TC), where q(z) = 1

N

∑N
n=1 q(z, n) =

∑N
n=1 q

(
z
∣∣x(n)

)
q(n) is the aggregated

posterior, followed by Makhzani et al. (2015). q(z) can be viewed as a Gaussian kernel density es-
timation from {zn}Nn=1 in latent space. The goal of this TC term is to achieve q(z) =

∏K
k=1 q(zk),

which is the rigorous definition of independence among z1, ..., zk. That is why Eq. (1) can achieve
full disentanglement compared with standard VAE.

Before the development of the disentangled VAE in Eq. (1), Higgins et al. (2017) and Burgess et al.
(2018) initially discovered that penalizing the entire KL divergence term in the standard VAE can
increase the latent disentanglement. So, In their β-VAE, there is no TC term, but rather a penalty
coefficient on the KL divergence term. It was found later by Kim & Mnih (2018) and Chen et al.
(2018) and summarized by Dubois et al. (2019) that the effective term for enhancing the latent
disentanglement is indeed the TC. Consequently, they developed Eq. (1) with β > 0, resulting in
FactorVAE and β-TCVAE.

2.2 BY A NON-GAUSSIAN PRIOR (ICA)
Another approach to achieving full disentanglement is to view the problem as an independent
component analysis (ICA). The core idea inspired by ICA is that “non-Gaussian is independent”
(Hyvärinen & Oja, 2000; Hyvärinen et al., 2009). In short, we need to assume p(z) to be non-
Gaussian. The logcosh distribution is one of the most commonly used:

p(z) = p(z1, . . . , zK) =

K∏
k=1

p(zk) =

K∏
k=1

π

(
sech πzk

2
√
3

)2
4
√
3

, (2)

where sech = 1
cosh is the hyperbolic secant function.

In traditional linear ICA, x = f(z) where f : RK → RD is a full-rank (D = K) linear deter-
ministic mapping, and p(x|z;f) = δ(x − f(z)) (δ is the Dirac delta function), then we can use
maximum likelihood estimate (MLE) to learn f via the “change of variable” formula,

p(x) =

∫
p(x|z;f)p(z) dz =

∣∣∣∣det df−1

dz

∣∣∣∣ · p(f−1(x)), (3)

and recover z = f−1(x). However, there are two main drawbacks to this traditional linear ICA.
First, it cannot be extended to non-invertible non-linear f(z) since the

∣∣∣det df−1

dz

∣∣∣ in the “change of
variable” formula becomes intractable (Khemakhem et al., 2020; Sorrenson et al., 2020). Second,
observation x ∈ RD is usually in higher dimensional space than z (D > K) with noises, which are
not explicitly modeled by traditional linear ICA.
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To address these issues, we use a VAE with a logcosh prior p(z) defined in Eq. (2). It is worth men-
tioning that, to the best of our knowledge, we are the first to recognize the logcosh-priored VAE as
the nonlinear ICA problem. However, certain limitations remain. For instance, if the true number of
disentangled latent components is two but we instruct the logcosh-priored VAE to find three, it will
yield three components with poor disentanglement instead of finding two disentangled components
and one non-informative component. We will discuss this limitation in detail in the experiment sec-
tion. Additionally, the logcosh-priored VAE cannot be extended to a partially disentangled version,
since the logcosh prior does not support partial independence.

3 PARTIALLY DISENTANGLED VAE (PDISVAE)
3.1 PROBLEM DEFINITION

Although several approaches have been introduced in Sec. 2, a common issue among them is they are
all trying to find “fully disentangled (independent)” latent space. However, if the true latent variables
are partially disentangled by groups, applying a fully disentangled method is hard to successfully
recover the underlying latent structure accurately.

We first formally define partial disentanglement (independence). Still, assume latent z ∈ RK , but
now the latent dimensions are disentangled by G groups, while each group has its internal within-
group rank H , satisfying K = G × H . For simplicity, we also denote the g-th group as zg =
(z(g−1)H+1, . . . , zgH), so that z = (z1, . . . ,zG). For simplicity and without loss of generality,
we assume all groups have the same group rank H , but this requirement can be easily relaxed to
arbitrary group ranks in different groups. Then, the partially disentangled latent can be formulated
as

(z1, . . . , zH) ⊥ (zH+1, . . . , z2H) ⊥ · · · ⊥ (zK−H+1, . . . , zK) ⇐⇒ p(z) =

G∏
g=1

p(zg). (4)

This equation expresses that within each group, latent components may exhibit dependencies and
may not be further disentangled. However, the groups themselves remain independent of each
other. We refer to this as group-wise independence. For example, when K = 6 and there
are G = 3 groups, the three groups are independent of each other as (z1, z2) ⊥ (z3, z4) ⊥
(z5, z6) ⇐⇒ p(z1, . . . , z6) = p(z1, z2)p(z3, z4)p(z5, z6), while dimensions within each group can
be highly dependent and cannot be further decomposed, i.e., p(z1, z2) ̸= p(z1)p(z2), p(z3, z4) ̸=
p(z3)p(z4), p(z5, z6) ̸= p(z5)p(z6).

3.2 PARTIAL CORRELATION

To identify partially independent component groups as defined above, one might consider a straight-
forward approach: using existing methods to impose marginal independence on between-group com-
ponents. For instance, if we have (z1, z2) ⊥ z3, one might attempt to apply existing algorithms to
require z1 ⊥ z3 and z2 ⊥ z3. However, this is generally NOT correct. Specifically, the former
is a sufficient but not necessary condition ( =⇒ ) for the latter. A simple counterexample is the
distribution p(z1, z2, z3), where p(0, 0, 1) = p(0, 1, 0) = p(1, 0, 0) = p(1, 1, 1) = 0.25. It can be
verified that (z1, z2) ̸⊥ z3, while z1 ⊥ z3 and z2 ⊥ z3. For more detailed explanations regarding
marginal independence and group-wise independence, please refer to Appendix A.1. Therefore, we
must explicitly enforce (z1, z2) ⊥ z3.

To explicitly require group-wise independence, we introduce the partially disentangled VAE
(PDisVAE), which replaces the TC in Eq. (1) with a partial correlation (PC) term. Specifically,
given a dataset of N equally treated samples, the probability of taking the n-th sample is q(n) = 1

N ,
so that 1

N

∑N
n=1[·] = Eq(n)[·]. Also let q(z|n) := q

(
z
∣∣x(n)

)
. Then, the target function to be

maximized when observing the whole dataset
{
x(n)

}N
n=1

is

L =
1

N

N∑
n=1

[(
Eq(z|x)

[
ln p

(
x(n)

∣∣∣z)])︸ ︷︷ ︸
reconstruction log-likelihood

−KL
(
q
(
z
∣∣∣x(n)

)∥∥∥p(z))︸ ︷︷ ︸
KL divergence

]
− β ·KL

(
q(z)

∥∥∥∥∥
G∏

g=1

q(zg)

)
︸ ︷︷ ︸

partial correlation (PC)

. (5)

The partial correlation (PC) term is responsible for disentangling independent groups. When
q(z) =

∏G
g=1 q(zg), KL

(
q(z)

∥∥∥∏G
g=1 q(zg)

)
= 0. Otherwise, this PC term is greater than 0

and is penalized by β, as the hyperparameter β > 0.

It is worth noting that when G = 1, PC ≡ 0 and Eq. (5) becomes the standard VAE objective func-
tion; when G = K, PC is just the total correlation (TC) and Eq. (5) becomes the FactorVAE (Kim
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& Mnih, 2018) and/or β-TCVAE objective function (Chen et al., 2018). Appendix. A.2 contains a
detailed derivation of the ELBO decomposition of Eq. (5).

3.3 THE BEHAVIOR OF PDISVAE
In the previous subsection, we introduced PDisVAE to identify group-wise independence but did
not discuss what to expect within the groups discovered by PDisVAE. Here, we will outline three
potential relationships that the latent components within a group could exhibit. To illustrate, let us
consider a discovered latent pair (ẑi, ẑj); the three cases of interest are illustrated in Fig. 1.
• Case 1: Non-separable dependent. Consider we have the true latent (zi, zj) from the equations
shown in the right plot of case 1, where both the mean and variance of the Gaussian zj are dependent
on zi. This makes zi and zj highly entangled with each other in one group and it is impossible to
further separate them independently by any linear transformation. Then, PDisVAE should identify
a group (ẑi, ẑj) that cannot be further separated independently through any linear transformation.
Furthermore, we should be able to align the estimated (ẑi, ẑj) with the true (zi, zj) via a linear trans-
formation. In this case, the within-group TC cannot become zero under any linear transformation.
• Case 2: Rank-deficient. Consider that PDisVAE has identified an estimated group (ẑi, ẑj) in
the left plot of case 2. Although they are dependent, they exhibit a clear linear relationship, which
means they can be reduced to a single effective component, zi, while zj serves as a dummy latent
component. For example, if we have three latent components such that (z1, z2) ⊥ z3, and we apply
PDisVAE with K = 4 = G × H = 2 × 2, we would expect to find a dummy component z4 ≈ 0
in the second group, resulting in (z1, z2) ⊥ (z3, z4 ≈ 0). To verify the presence of a dummy latent,
one could apply principal component analysis (PCA) to the group and identify a significantly small
principal component, or conduct a normality test to detect Gaussian noise.
• Case 3: Independent. In this example, ẑi and ẑj are irreducibly dependent on each other. How-
ever, it is possible to further separate them into independent components via a linear transformation,
resulting in the right plot that zi and zj become uniform distributions independent of each other.
Consequently, ẑi and ẑj identified by PDisVAE should be allocated to two different groups rather
than the same group. In this case, the within-group TC can be reduced to zero after a particular lin-
ear transformation. This indicates that as long as PDisVAE accurately identifies enough independent
groups, the latent components within each group should not be independent of one another.

Figure 1: Visual illustrations for the desired behavior of the PDisVAE. In each case, the left plot is
the estimated latent (ẑi, ẑj) and the right plot is the true latent (zi, zj).

3.4 BATCH APPROXIMATION

During training, strictly computing the aggregated joint/group posterior of the form q(z) =∑N
n=1 q(z|n)q(n) = 1

N

∑N
n=1 q(z|n) might be unfeasible, since we only have a batch of size M ,

denoted as BM := {n1, n2, . . . , nM} without replacement. Although Chen et al. (2018) proposed
two approximation methods (the top two methods in Tab. 1), we argue that our importance sam-
pling (IS) derived in the following paragraph and compared in Tab. 1 is a better approach.

Intuitively, when we only have a batch BM ⫋ {1, . . . , N} and a sampled z ∼ q(z|n∗), where n∗
is a specific example point in BM , q(z|n∗) is more likely to be greater than q(z|n ̸= n∗) since z is
sampled from q(z|n∗). Therefore, we want the remaining M − 1 points in BM\ {n∗} to represents
the entire dataset excluding n∗, i.e., {1, 2, . . . , N} \ {n∗}. Hence, an approximation of q(z) at
z ∼ q(z|n∗) could be

q̂(z) =
1

N
q(z|n∗) +

∑
nm∈(BM\{n∗})

N − 1

M − 1

1

N
q(z|nm). (6)

Since each q(z) is approximated using data points within a batch, it might be beneficial to shuffle the
dataset every epoch to change the batch samples. Appendix. A.3 includes the complete derivation of
this approximation, explaining why it is called IS approximation and proving its optimality, and an
empirical evaluation of the three estimators. Notably, IS is more stable than MSS, as indicated by
the relationship Var[IS] < Var[MSS]. Appendix. A.3 also proves the properties outlined in Tab. 1.
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Table 1: Comparison of three batch approximation approaches. See Appendix. A.3 for more details.
mean variance

minibatch weighted sampling (MWS) biased
minibatch stratified sampling (MSS) unbiased Var[MSS] in Eq. 20
importance sampling (IS) unbiased Var[IS] = Var[MSS]− M−2

M(M−1) in Eq. 21

4 EXPERIMENTS
Alternative methods for comparison. For evaluating the proposed PDisVAE, we compare it with
the following three baselines:
• Standard VAE (Kingma, 2013): Theoretically, standard VAE does not have disentaglement ability.
• ICA: This is the logcosh-priored VAE for doing non-linear generative ICA inspired by Hyvärinen
& Oja (2000).
• β-TCVAE (Chen et al., 2018): This method penalizes an extra total correlation (TC) term to
achieve full disentanglement. It is theoretically equivalent to FactorVAE (Kim & Mnih, 2018).
• PDisVAE: Our proposed method penalizes the partial correlation (PC) term to achieve partial
disentanglement. This is the only general method that can deal with group-wise independent la-
tent. It reduces to the standard VAE when the number of groups G = 1; and reduces to the fully
disentangled VAE when G = K, i.e., the number of groups equals the latent dimensionality.

We will begin by using two synthetic datasets to understand and rigorously validate the PDisVAE.
Then, we will apply these methods to pdsprites, face images (CelebA), and neural data.

4.1 SYNTHETIC VALIDATION CASE 1: GROUP-WISE INDEPENDENT

Dataset. To validate that only PDisVAE is capable of dealing with group-wise independent
datasets, we create a dataset consisting of N = 2000 points in K = 6 latent space z(n) ∈ R6,
where three groups are independent of each other (z1, z2) ⊥ (z3, z4) ⊥ (z5, z6), but components
within each group are highly entangled. The three groups and their corresponding latent distribu-
tions are illustrated in Fig. 2(a). The observations x are linearly mapped from the latents z to a
D = 20 dimensional space x(n) ∈ R20, and then Gaussian noise ϵ

(n)
d

i.i.d.∼ N
(
0, 0.52

)
is added.

Experimental setup. For each method, we use Adam (Kingma, 2014) to train a linear encoder and
a linear decoder (since the true generative process is linear) for 5,000 epochs. The learning rate is
5×10−4 and the batch size is 128. For β-TCVAE and PDisVAE, the TC/PC penalty is set as β = 4.
This is supported by Dubois et al. (2019), the β selection in β-TCVAE (Chen et al., 2018), and our
cross-validation result (Fig. 4) in the ablation study. Each method is run 10 times with different
random seeds to evaluate and report its performance.

Results. The PC box plot in Fig. 2(b) shows that PDisVAE achieves the lowest partial correlation,
implying that PDisVAE achieves the goal of disentangling latent in groups the best. Since this is
the synthetic dataset and a model match experiment, we can align and match the estimated latent
groups to their corresponding true latent groups to further validate the correctness of the latent
estimation. The reconstruction R2 of all four methods is approximately 0.97, indicating that all
methods can reconstruct the observation perfectly. However, their learned latent representations are
different. The latent R2 in Fig. 2(b) shows that PDisVAE recovers the latent more accurately than
others. Among the alternative, β-TCVAE is better than ICA and better than VAE. Since there is no
independence assumption in standard VAE, it cannot recover the latent accurately. Fig. 3 visually
shows that after aligning and matching with the true latent, PDisVAE recovers the latent the best,
which is consistent with the latent R2 plot in Fig. 2(b).

An immediate question that arises is, how to check within-group latent estimated by PDisVAE is
truly highly entangled and cannot be further decomposed, especially when there is no true latent.
Essentially we hope to find case 1 within a group, rather than case 2 or case 3 illustrated in Fig. 1.
The minimum within-group TC shown in Fig. 2(c) are all greater than 0, which means we indeed
find highly entangled groups that cannot be further decomposed. Compared to the minimum within-
group TC, the close-to-zero pair TC between groups also indicates that components between groups
are independent.

Ablation. To analyze the choice of the penalty coefficient β of PC term in Eq. (5), we vary β
in PDisVAE from 0.1 to 100 and plot the cross validation results in Fig. 4. The PC and latent R2
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Figure 2: (a): The true latent z ∈ R6 where three groups are (z1, z2) ⊥ (z3, z4) ⊥ (z5, z6), but
within-groups are highly entangled. (b): The PC of the estimated latent and the latent R2 after
alignment to the true latent in (a). The t-test between PDisVAE and others shows that PDisVAE is
significantly better than others (***: p ⩽ 0.001, ****: p ⩽ 0.0001). (c): The estimated latent of
PDisVAE before aligning to the true latent in (a). In each group, PCA shows the explained variance
ratio in the group. Within-group TC shows the minimum TC under all possible linear transforma-
tions. The normal test shows the p-values of the null hypothesis that a marginal distribution is a
normal distribution. If p > 0.05 for example, we may accept the null hypothesis that there exists a
Gaussian noise dummy latent component. The pair TC is directly measured from the components in
different groups.
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Figure 3: Latent alignment results for various methods, with each group aligned to the true latent
from Fig.2(a). Some between-group pairs are also plotted to visually understand the marginally
independent distributions between groups. VAE and ICA results are in Fig. 12 in Appendix. A.4.

plots indicate that β > 1 is necessary for an accurate recovery and effective minimization of the PC.
However, excessively large β might negatively impact reconstruction, as shown in the reconstruction
R2 plot. Hence, we recommend β ∈ (2, 10), which supports our choice of β = 4 in our experiments.
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Figure 4: The cross-validation reconstruction R2, PC, and latent R2 w.r.t. the PC coefficient β.

4.2 SYNTHETIC VALIDATION CASE 2: FULLY INDEPENDENT

Dataset and experimental setup. To validate that PDisVAE can get the same results as from
a fully disentangled VAE when the latent is fully independent, we create a dataset consisting of
N = 2000 points in K = 3 latent space z(n) ∈ R3, where the three latent components are inde-
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pendent with each other z1 ⊥ z2 ⊥ z3. Their distributions are shown in Fig. 5(a) and Fig. 6. The
observation x is linearly mapped from the latent z to a D = 20 dimensional space x(n) ∈ R20,
and then Gaussian noise ϵ

(n)
d

i.i.d.∼ N
(
0, 0.52

)
are added. Although we only have K = 3 true latent

components, we still learn K = 6 components to compare their flexibility when the true number of
latent components is unknown. The experimental setup is the same as the previous one.

Figure 5: (a): The true latent z ∈ R3 coded by RGB = z1z2z3, where three components are z1 ⊥
z2 ⊥ z3. (b): The PC of the estimated latent and the latent R2 after alignment to the true latent
in (a). The t-test between PDisVAE and others shows that PDisVAE is similar to β-TCVAE (ns:
p > 0.5, *: p ⩽ 0.05, ****: p ⩽ 0.0001). (c): The estimated latent of PDisVAE before aligning to
the true latent shown in (a). The arrow in each plot shows the embedded true latent direction.
Results. The PC box plot and latent R2 plot in Fig. 5(b) show that both β-TCVAE and PDisVAE
achieve the lowest partial correlation and the highest latent R2 on this fully disentangled dataset,
which implies that PDisVAE automatically reduces to fully independent result if the group rank
is deficient, as illustrated in case 2 in Fig. 1. In general, the actual group rank can be detected
by PDisVAE and if the true group rank is less than the specified group dimensionality, dummy
estimated latents will complemented in the corresponding group. Due to the strong requirement
in ICA that tries to find logcosh-independent components but only three exist, ICA is not able to
correctly identify three and find three dummy dimensions. This means logcosh might be too strong
to allow the existence of dummy variables, which could be harmful when we do not know the true
number of latent components. Fig. 6 also visually shows that β-TCVAE and PDisVAE accurately
estimate the three latent distributions the best, which is consistent with the latent R2 plot in Fig. 5(b).

To identify the three dummy latent dimensions complementing the three groups respectively through
an unsupervised approach, we plot the PDisVAE result before alignment in Fig. 5(c). First, within-
group TCs are all very small, indicating that the result is not the case 1 in Fig. 1. Since “independence
is non-Gaussian”, we can find a direction within each group that yields p > 0.05, which accepts the
null hypothesis of the normal test that a Gaussian noise dummy dimension exists, corresponding to
case 2 in Fig. 1. The arrows in Fig. 5(c) also visually indicate the embedded true latent direction.

3 2 1 0 1 2 3
z1

0.0

0.2

0.4

z1 ∼Uniform
[
−
√

3 ,
√

3
]

3 2 1 0 1 2 3
z2

0.0

0.5

1.0

z2 ∼Beta(0.5, 0.5)

3 2 1 0 1 2 3
z3

0.0

0.2

0.4

z3 ∼Beta(2, 2)
true theoretical
true nempirical
VAE
ICA

-TCVAE
PDisVAE

Figure 6: Estimated and true latent distribution after alignment to the true latent shown in Fig. 5(a).

4.3 SYNTHETIC APPLICATION: PARTIAL DSPRITES

Dataset. To understand the application scenario of PDisVAE, we created a synthetic dataset called
partial dsprites (pdsprites), inspired by Matthey et al. (2017). Unlike the original dsprites, which
features six fully independent latent dimensions, we only keep three latent components: x-location
(z1), y-location (z2), and size (z3), where x and y locations are entangled (not independent) with
each other while this group is independent to the size, i.e., (z1, z2) ⊥ z3. The generating process is
depicted in Fig. 7(a), resulting in 805 gray-scaled images of shape 32× 32.

Experimental setup. For each method, we use Adam to train a deep CNN VAE (Burgess et al.,
2018) for 5,000 epochs with a learning rate of 1 × 10−3. For β-TCVAE and PDisVAE, the TC/PC
coefficient is set as β = 4. Given the true latent is (z1, z2) ⊥ z3, learning two rank-2 groups
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Figure 7: (a): Latent and observation generating process. Locations (z1, z2) are entangled, and
uniformly distributed in a restricted region. Color represents the location information, with the
upper and lower gray triangular areas being empty. The size z3 is evenly distributed across five
scales, represented by different markers, and is independent of the location. (b): The reconstructed
images by varying one of the latent groups ((ẑ1, ẑ2) or (ẑ3, ẑ4)) found by β-TCVAE and PDisVAE.

(K = 4 = G×H = 2× 2) should be able to find one group representing the location of the square
and another rank-deficient group (contains a dummy latent component) representing the size of the
square. Note that this setup is a model mismatch case, as we do not know the exact observation
generating function f ; we only understand the semantic relationship between z and x.

Results. Fig. 8 shows the estimated latent from all methods after alignment. PDisVAE has the
highest latent R2 and the lowest PC. Notably, PDisVAE successfully discovers two empty areas in
the upper and lower gray triangular regions in group 1, reflecting the true latent distribution depicted
in Fig. 7(a). Additionally, PDisVAE captures leveled size scales in z3, showing smaller sizes for
smaller z3 and larger sizes for larger z3, making it the closest representation of the true z3 compared
to other methods. Fig. 13 in Appendix. A.4 also plots the latent pair between groups.

Figure 8: The latent plot after alignment for the group 1 (z1, z2) and group 2 (z3, z4 ≈ 0) from
different methods, and their corresponding PC and latent R2. The color representation for location
is the same as the color representation in Fig. 7(a), and the marker of the point in the latent plots
represents the size of the square in the observation images.

Fig. 7(b) shows the reconstructed images by varying each of the two groups found by β-BTCVAE
and PDisVAE, respectively. Group 1 from PDisVAE represents the location, with an empty center
due to fewer observation samples in that area (see the region around (z1, z2) = (0, 0) in Fig. 7(a)).
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Besides, the square is expected to not appear in the top middle or bottom middle of the image, since
there is no observation in the dataset that appears in those regions. The size is embedded in group
2, roughly along the ẑ4 direction. In contrast, β-TCVAE mixes size and location in both groups
because it enforces independence across all four components, which is incompatible with the fact
that two location components are entangled together and independent of the third size component.

4.4 REAL-WORLD APPLICATIONS

To evaluate the performance and flexibility of PDisVAE in real-world applications, we train it on
two real-world datasets, described in the following paragraphs. Since the true latent structure is
unknown in these cases, we experiment with different group configurations for PDisVAE. Note that
when G = 1, PC ≡ 0 and PDisVAE reduces to the standard VAE, and when G = K, PDisVAE
reduces to the fully disentangled VAE, e.g., β-TCVAE or FactorVAE.

CelebaA. The dataset contains 202,599 face images (Liu et al., 2015), cropped and rescaled to
(3, 64, 64). The encoder and decoder are deep CNN-based image-nets (Burgess et al., 2018). We fix
the latent dimensionality K = 12 and vary the number of groups G ∈ {1, 2, 3, 4, 6, 12}. Training
settings are similar to the previous experiments (see code for details).

Figure 9: (a): Reconstructed images are shown by varying one of the K = 12 latent dimensions
from PDisVAE applied to the CelebA dataset, with different numbers of groups G ∈ {4, 6, 12}.
Each row corresponds to varying one latent component (dimension) while fixing all others to 0s. (b)
The spanned color space by the red-annotated color group in the {4, 6, 12}-group PDisVAE.

Fig. 9(a) shows the reconstructed images by varying each of the K = 12 components while fixing
others as zero, for G ∈ {4, 6, 12}. The group meanings are annotated on the left. Particularly, with
4 or 6 groups, some attributes are represented by a group of higher rank rather than a single latent
component, such as background color. Certain attributes are dependent on each other represented
by a group, like the face color & hair color in the G = 4 setting. These important interpretations
are harder to find by the fully disentangled G = 12 setting. Besides, fully disentangled VAE may
fail to ensure perfect independence if the component setting and the true latent factor are largely
mismatched (which is also hard to determine), like gender 1 and gender 2 in the G = 12 setting.

To understand how one semantic attribute is represented by multiple components within a group,
we use background color as an example. The G = 12 groups setting in Fig. 9(a) shows that the
background color is represented by a single component, which restricts the expression to a 1D color
manifold as shown in G = 12 HSV cylinder in Fig. 9(b), which is not reasonable. With multiple
latent components in a group representing background color, the background color can be expressed
in 2D or 3D color manifolds as shown in G = 6 and G = 4 HSV cylinders, offering a more
expressive and realistic representation. Results from all group settings are displayed in Fig. 14 in
Appendix. A.4.

Mouse dorsal cortex voltage imaging. The dataset used in this study is a trial-averaged voltage
imaging (method by Lu et al. (2023)) sequence from a mouse collected by us. It comprises 150
frames of 50 × 50 dorsal cortex voltage images, recorded while the mouse was subjected to a left-
side air puff stimulus lasting 0.75 seconds. Each pixel is treated as a sample, and a linear model
x ∼ N (Az,σ2I) is learned. We investigate different numbers of groups G ∈ {1, 2, 3, 4, 6, 12}
while keeping the number of components constant at K = 12. Additionally, we explore fully

9
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disentangled models by varying K ∈ {1, 2, 3, 4, 6, 12} with G = K. The training procedures are
similar to the previous experiments (see code for details).

0
0.3

-0.3

0
0.3

-0.3

M2-m
S1-bf

M1

(a) (b)

(c) (d)

Figure 10: Brain maps
{
zn
g

}50×50

n=1
and the corresponding time series A:,g from the learned groups

by different PDisVAE configurations (K,G), i.e., K components, G groups, and the group rank is
H = K/G. Some groups contain dummy dimensions, so the effective group rank is lower than the
specified group rank, and hence we only show those effective components.

Figure 10 shows the brain maps and corresponding time series learned from various PDisVAE con-
figurations (K,G). Learning K = 12 components with different G groups (Fig. 10(a,b,c)) yields
similar reconstruction RMSEs (≈ 0.47), but results in different latent representations. Assuming
G = 12 as a fully disentangled model (Fig. 10(c)) is overly restrictive, as both group 3 and group
12 contain oscillations in the right primary somatosensory cortex-barrel field (S1-bf) and secondary
motor cortex-medial (M2-m), demonstrating a lack of independence between these components.
This configuration implies that there are not 12 independent components within this neural data.
Conversely, assuming G = 4 groups (Fig. 10(a)) is insufficient, as group 2 mixes not only the os-
cillatory signals right S1-bf and M2-m but also signals from other regions like the right primary
motor cortex (M1). This implies a failure to capture the complete scope of independence in the
data. A G = 6 grouping (Fig. 10(b)) presents a more balanced approach. This model consists of
six independent groups, each expressed by two latent components. Specifically, group 3’s S1-bf and
M2-m remain active, indicating these areas are stimulated during the air puff; group 6 is primarily
responsible for the oscillations in S1-bf and M2-m, with minimal interference from the M1 signal.
Moreover, the brain maps in group 2 from the 4-group configuration are effectively delineated into
groups 5 and 6 in the 6-group configuration, further affirming the relative independence of M1 from
S1-bf and M2-m during stimulus exposure.

The fully independent model with (K,G) = (6, 6) (Fig. 10(d)) indicates that two components per
group are necessary for accurate reconstruction. Specifically, having only one component per group
is insufficient to reconstruct the raw video, as the RMSE for (6, 6) is 0.059, which is significantly
higher than the 0.049 RMSE for (12, 6). The group reconstruction videos in the supplementary
materials offer a more intuitive illustration of the full contribution of each group.

5 DISCUSSION

In this work, we propose the partially disentangled variational auto-encoder (PDisVAE) which is
a more flexible method that can deal with group independence (partial disentanglement) in data,
which is often a more realistic assumption than full independence (fully disentanglement) in a lot
of applications. PDisVAE is a generalized method, which naturally reduces to standard VAE and
fully disentangled VAE, by setting the number of groups to 1 or equal to the latent dimensionality.
PDisVAE allows the existence of dummy latent components in groups if the number of learned latent
components is less than the specified group rank. A potential limitation of PDisVAE is its need for
an adequate number of groups and components to accurately express the disentangled latent space if
the data requires, but we may not have guidance on this information. To address this, we might either
try different configurations or develop techniques for group rank auto-reduction during training to
enhance the performance, which could be a further direction.
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A APPENDIX

A.1 MARGINAL INDEPENDENCE

This part explains the sufficient but not necessary relationship between “group-wise independence”
and “marginal independence”. Consider latent variable z ∈ RM contains M components that are
independent between G groups. The formal expression is

G

⊥
g=1

(
z(g−1)H+1, . . . , zgH

)
=⇒

∧
i∈g1,j∈g2,g1 ̸=g2

zi ⊥ zj (7)

but not vice versa. We start from the simple counterexample mentioned in Sec. 3.1 to explain why
group-wise independence is a sufficient but not necessary condition of marginal independence.

Consider three random variables z1, z2, z3 that follow the joint distribution shown in Tab. 2. Notice
that z3 is actually the exclusive or of the two others, i.e., z3 = XOR(z1, z2). It is obvious that
z3 ̸⊥ (z1, z2) since when z1 and z2 are different, p(z3|z1, z2) is a discrete Dirac delta function at
z3 = 0; but when z1 and z2 are the same, p(z3|z1, z2) is a discrete Dirac delta function at z3 = 1.
Marginally, however, z1 ⊥ z3 and z2 ⊥ z3, since p(z3|z1) is always a p = 0.5 Bernoulli distribution
regardless of the value of z1. The same arguments are also applicable to z2 ⊥ z3. Therefore,
this counterexample shows that z1 ⊥ z3, z2 ⊥ z3 ≠⇒ (z1, z2) ⊥ z3. In other words, marginal
independence does not imply group-wise independence.

Another way of checking this example is by the following theorem.
Theorem 1. (x1, . . . , xI) ⊥ (y1, . . . , yJ) ⇐⇒

(
f(x1, . . . , xI) ⊥ g(y1, . . . , yJ) ∀ functions f and

g
)
.

Proof. The =⇒ is obvious. To prove ⇐= , simply taking f and g to be identity function, i.e.,
f(x1, . . . , xI) = (x1, . . . , xI), g(y1, . . . , yJ) = (y1, . . . , yJ).

To check the example, consider the distribution of (z1 + z2). p(z3|(z1 + z2) = 0) is a discrete
Dirac delta function at z3 = 1, which is different from p(z3|(z1 + z2) = 1) is a discrete Dirac delta
function at z3 = 0. Therefore, (z1, z2) ̸⊥ z3.

To rigorously diagnose where ⇐= breaks, we can write
p(z1, z2, z3) = p(z1|z2, z3)p(z2, z3) = p(z1|z2, z3)p(z2)p(z3). (8)

Note that in the last term, p(z1|z2, z3) ̸= p(z1|z2). Specifically, z3 cannot be removed just because
of z1 ⊥ z3.

Table 2: The distribution table of p(z1, z2, z3).
z1 z2 z3 p(z1, z2, z3)

0 0 1 0.25
0 1 0 0.25
1 0 0 0.25
1 1 1 0.25

A.2 DERIVATION OF PDISVAE

Given a dataset of N equally treated samples, the probability of taking sample n is q(n) = 1
N , so

that 1
N

∑N
n=1[·] = Eq(n)[·]. Also let q(z|n) := q

(
z
∣∣x(n)

)
. When observing the whole dataset{

x(n)
}N
n=1

, the original target function to be maximized in VAE is

ELBO
({

x(n)
}N
n=1

; θ, ϕ
)
=

1

N

N∑
n=1

(Eq(z|x)

[
ln p

(
x(n)

∣∣∣z)])︸ ︷︷ ︸
reconstruction log-likelihood

−KL
(
q
(
z
∣∣∣x(n)

)∥∥∥p(z))︸ ︷︷ ︸
reverse KL divergence

 .

(9)
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p(z) is a predefined prior distribution satisfying p(z) =
∏K

k=1 p(zi),E[zk] = 0,Var[zk] = 1, ∀m ∈
{1, . . . ,M}, for example a standard normal (Gaussian) distribution. For simplicity, we also denote
zg = (z(g−1)H+1, . . . , zgH), so that z = (z1, . . . ,zG).

To derive the decomposed ELBO in PDisVAE (Eq. (5), we focus on the aggregated reverse KL
divergence:

1

N

N∑
n=1

KL(q(z|n)∥p(z)) = Eq(n) [KL(q(z|n)∥p(z))]

=Eq(n)Eq(z|n) [ln q(z|n)− ln p(z)]

code =Eq(z,n)

[
ln q(z|n)− ln q(z) + ln q(z)− ln

G∏
g=1

q(zg) + ln

G∏
g=1

q(zg)− ln

G∏
g=1

p(zg)

]

=Eq(z,n)

[
ln

q(z|n)p(n)
q(z)p(n)

]
+ Eq(z)

[
ln

q(z)∏G
g=1 q(zg)

]
+

J∑
j=1

Eq(zg)

[
ln

q(zg)

p(zg)

]

math =KL(q(z, n)∥q(z)p(n))︸ ︷︷ ︸
index-code mutual information

+KL

(
q(z)

∥∥∥∥∥
G∏

g=1

q(zg)

)
︸ ︷︷ ︸

partial correlation

+

J∑
j=1

KL(q(zg)∥p(zg))︸ ︷︷ ︸
group-wise KL

,

(10)

where q(z) =
∑N

n=1 q(z, n) =
∑N

n=1 q
(
z
∣∣x(n)

)
q(n) is the aggregated posterior, followed by

Makhzani et al. (2015). In the derivation, we also used the theorem
Eq(z,n)f(z) =Eq(n|z)q(z)f(z)

=

∫ N∑
n=1

q(n|z)q(z)f(z) dz

=

∫
q(z)f(z)

N∑
n=1

q(n|z) dz

=

∫
q(z)f(z) dz

=Eq(z)f(z),

(11)

and similarly,
Eq(z)f(zg) = Eq(z\g|zg)q(zg)f(zg) = Eq(zg)f(zg). (12)

Note that it is clearer to use line 3 in Eq. (10) to implement the code.

A.3 BATCH APPROXIMATION

A.3.1 IMPORTANCE SAMPLING

Although Eq. (6) in the main text intuitively gives the batch approximation, we still need a rigor-
ous derivation to prove this is exactly the importance sampling (IS) we want. First, we have the
aggregated posterior that can be expressed in different ways:

q(z) =

N∑
n=1

q(z, n) =

N∑
n=1

q(z|n)q(n) = 1

N

N∑
n=1

q(z|n) = Eq(n)[q(z|n)]. (13)

However, to not confuse readers, we will keep the form q(z) =
∑N

n=1 q(z, n) until the last step.

When we have a batch of size M : BM := {n1, n2, . . . , nM} (without replacement) and a particular
sampled z ∼ q(z|n∗), where n∗ ∈ BM , we want the importance sampling approximation of q(z).
According to Monte Carlo estimation,

q̂(z) =
1

M

M∑
m=1

q(z, nm)

r(nm)
, (14)
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where r is the proposal distribution. Note that r(nm) ̸= 1
N , ∀nm ∈ B, since we must have n∗ ∈

BM . Therefore, we need to understand the distribution of r(nm).

First, since we must have n∗ ∈ BM , and the Monte Carlo estimation is the average on BM ,

r(n∗) = 1︸︷︷︸
n∗ must be in BM

× 1

|BM |︸ ︷︷ ︸
n∗ is a Monte Carlo sample fromBM

=
1

M
. (15)

Second, for other nm /∈ BM ,

r(nm) =

(
N−2
M−2

)(
N−1
M−1

)︸ ︷︷ ︸
nmis selected in batch BM

× 1

|BM |︸ ︷︷ ︸
nm is a Monte Carlo sample fromBM

=
M − 1

N − 1

1

M
. (16)

(
N−1
M−1

)
= (N−1)!

(M−1)!((N−1)−(M−1))! is the number of all possible combinations of BM that already

contains n∗ (so we choose M − 1 from the remaining N − 1).
(
N−2
M−2

)
= (N−2)!

(M−2)!((N−2)−(M−2))! is
the number of all possible combinations of BM that already contains n∗ and also contains nm (so
we choose M − 2 from the remaining N − 2). Finally, we have

q̂(z) =
1

M

M∑
m=1

q(z, nm)

r(nm)

=
1

M

q(z|n∗)q(n∗)

r(n∗)
+

∑
nm∈(BM\{n∗})

1

M

q(z|nm)q(nm)

r(nm)

=
1

M

q(z|n∗)
1
N

1
M

+
∑

nm∈(BM\{n∗})

1

M

q(z|nm) 1
N

M−1
N−1

1
M

=
1

N
q(z|n∗) +

∑
nm∈(BM\{n∗})

N − 1

M − 1

1

N
q(z|nm).

(17)

A.3.2 VARIANCE

From Chen et al. (2018), without loss of generality, assume n∗ = n1 and

MSS =
1

N
q(z|n∗) +

M−1∑
m=2

1

M − 1
q(z|nm) +

N −M + 1

N(M − 1)
q(z|nM )

=
1

N
q(z|n∗) +

M−1∑
m=2

N

M − 1

1

N
q(z|nm) +

N −M + 1

(M − 1)

1

N
q(z|nM ).

(18)

A sketch to compute the variances of the two methods is to think of them as sampled datasets
of size M . Specifically, for IS, the inverse importance weights are a dataset of IS0 :=1,

N − 1

M − 1
, . . . ,

N − 1

M − 1︸ ︷︷ ︸
M−1

. For, MSS, the inverse importance weights are a dataset of MSS0 :=

1,
N

M − 1
, . . . ,

N

M − 1︸ ︷︷ ︸
M−2

, N−M+1
M−1

.

There means are all N
M , sinceMSS0 = 1

M

(
1 + (M − 2) N

M−1 + N−M+1
M−1

)
= N

M

IS0 = 1
M

(
1 + (M − 1)N−1

M−1

)
= N

M

(19)
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Now we compute their variances.

Var[MSS] ∝Var[MSS0]

=
1

M

[(
1− N

M

)2

+ (M − 2)

(
N

M − 1
− N

M

)2

+

(
N −M + 1

M − 1
− N

M

)2
]

=
2M2 − (2N + 2)M +N2

M2(M − 1)
.

(20)

Var[IS] ∝Var[IS0]

=
1

M

[(
1− N

M

)2

+ (M − 1)

(
N − 1

M − 1
− N

M

)2
]

=
(N −M)2

M2(M − 1)
.

(21)

Since
Var[IS0]−Var[MSS0] =

2−M

M(M − 1)
⩽ 0, ∀M ⩾ 2, (22)

the effectiveness of IS is higher, and hence IS is a more stable approximation than MSS.

A.3.3 EMPIRICAL EVALUATION

To validate the aforementioned superiority of our proposed IS batch estimation method, we simulate
a dataset consisting of 10 data points shown in Fig. 11(left). Each time, we run the three batch
approximation methods on a batch of three randomly sampled points. We repeat this 1000 times and
show their empirical evaluations in Fig. 11(right). Compared with the unbiased MWS estimator,
MMS and IS are unbiased. Compared with MMS, the IS estimator has low empirical variance
across 1000 repeats, which implies a more stable estimation.

3 2 1 0 1 2 3
z1

4

3

2

1

0

1

2

3

4

z 2

latent kernel density estimation
predicted z mean

MWS MMS IS
method

1

0

1

2

3

TC
/P

C

var: 0.072

var: 0.204 var: 0.175

1000 repeats of batch approximation
true

Figure 11: Left: Predicted mean of the latent z = (z1, z2) and its kernel density estimation. Right:
1000 repeats of batch approximations by the three methods, their empirical variance across the 1000
repeats.
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A.4 SUPPLEMENTARY RESULTS
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Figure 12: Latent alignment results of different methods. Each group is aligned and matched to the
true latent shown in Fig. 2(a). Some between-group pairs are also plotted to visually understand the
marginally independent distributions between groups.
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Figure 13: The latent plot after alignment in latent space (z1, z3) and (z2, z3) for different methods.
The color representation for location is the same as the color representation in Fig. 7(a), and the
marker of the point in the latent plots represents the size of the square in the observation images.
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1 groups 2 groups 3 groups

4 groups 6 groups 12 groups

Figure 14: The reconstructed images by varying one of the K = 12 disentangled latent from ap-
plying PDisVAE to the CelebA dataset with the different number of groups G ∈ {1, 2, 3, 4, 6, 12}.
When G = 1, PDisVAE becomes the standard VAE; when G = K = 12, PDisVAE becomes the
fully entangled VAE (e.g., β-TCVAE or FactorVAE). In each plot, each row is by varying one latent
component (latent dimension) while fixing all others to 0s.
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A.5 RELATED WORKS

Realizing there are a lot of methods related to latent disentanglement, we provide Tab. 3 with a list
to summarize their contributions and differences.

Table 3: Related works
full disentanglement partial disentanglement

By prior (not flexible) [1] [4]
By extra penalty to loss (flexible) [2][3] Our PDisVAE
By auxiliary information (supervised) [7]
Others [5][6][8][9][10]

• [1] ICA (Hyvärinen & Oja, 2000): Traditional ICA uses a non-Gaussian prior to achieving full
disentanglement since independence is non-Gaussian from the statistical perspective. However, the
choice of the non-Gaussian prior is critical and might be too rigid, hurting the flexibility of the
method.
• [2] FactorVAE (Kim & Mnih, 2018) [3] β-TCVAE (Chen et al., 2018): These two papers start
from the statistical definition of full independence to add an extra total correlation to achieve full
independence rigorously. The only difference between these two papers is their implementations of
minimizing TC.
• [4] ISA-VAE (Stühmer et al., 2020): ISA-VAE realized the commonly existing group-wise inde-
pendence (partial disentanglement) in the real-world data. It utilizes a group-wise independent prior
called Lp-nested distribution to achieve the partial disentanglement. However, they did not validate
their approach on partially disentangled synthetic datasets, but merely evaluated their approach us-
ing fully disentangled assumptions for dsprites and CelebA datasets.
• [5] β-VAE (Burgess et al., 2018): Directly penalize the KL divergence of the VAE ELBO loss,
in which TC (in Eq. (10)) is implicitly penalized. This approach has been proven to be worse than
β-VAE and FactorVAE.
• [6] (Locatello et al., 2019): This research presented common challenges in finding disentangled
latent through an unsupervised approach, implying supervision with semantic latent labels might be
necessary under the assumption of full latent disentanglement. This also gives us a hint that full
disentanglement might be a strong and inappropriate assumption and could result in poor latent in-
terpretation.
• [7] (Ahuja et al., 2022): This paper uses weak supervision from observations generated by sparse
perturbations of the latent variables, which requires auxiliary information to the latent variables.
• [8] (Meo et al., 2024): This paper replace the traditional TC term with a novel TC lower bound to
achieve not only disentanglement but generalized observation diversity.
• [9] (Bhowal et al.): This paper claims that VAE with orthogonal structure could also achieve latent
full disentanglement.
• [10] (Hsu et al., 2024): The full disentanglement is achieved by a technique called latent quantiza-
tion. The approach is quantizing the latent space into discrete code vectors with a separate learnable
scalar codebook per dimension. Besides, weight decay is also applied to the model regularization
for better full disentanglement.
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A.6 MORE RESULTS ON THE PDSPRITES DATASET

Tab. 4 presents the partial correlation (PC), latent R2, MSE, and mutual information gap (MIG)
evaluated for the partial disentanglement (group-wise independence) in the estimated latent.

Since only ISA (Stühmer et al., 2020) and our PDisVAE explicitly require group-wise independence
rather than strong full independence, only ISA and our PDisVAE obtain the lowest PC. Compared
with ISA, PDisVAE is more flexible since we achieve partial disentanglement by adding a PC penalty
term to the loss function. Via the PC penalty, the latent distribution is estimated through the aggre-
gated posterior q(z) from the learned decoder, rather than a fixed Lp-nested prior in ISA. Therefore,
PDisVAE obtains more accurate and partially disentangled latent when evaluated with the true latent
(labels).

Table 4: Different metrics evaluated on the pdsprites dataset.
PC ↓ R2 ↑ MSE ↓ MIG ↑

VAE 1.01 (0.02) 0.22 (0.04) 0.29 (0.02) 0.15 (0.10)
ICA 1.76 (0.07) 0.22 (0.06) 0.28 (0.03) 0.14 (0.09)
ISA 0.70 (0.01) 0.23 (0.02) 0.33 (0.01) 0.24 (0.08)
β-TCVAE 0.91 (0.10) 0.33 (0.06) 0.24 (0.04) 0.36 (0.13)
α-TCVAE 1.84 (0.03) 0.31 (0.02) 0.27 (0.01) 0.29 (0.09)
PDisVAE 0.68 (0.04) 0.54 (0.08) 0.23 (0.04) 0.49 (0.07)
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