
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WARM DIFFUSION: RECIPE FOR BLUR-NOISE MIX-
TURE DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion probabilistic models have achieved remarkable success in generative
tasks across diverse data types. While recent studies have explored alternative
degradation processes beyond Gaussian noise, this paper bridges two key dif-
fusion paradigms: hot diffusion, which relies entirely on noise, and cold diffu-
sion, which uses only blurring without noise. We argue that hot diffusion fails
to exploit the strong correlation between high-frequency image detail and low-
frequency structures, leading to random behaviors in the early steps of generation.
Conversely, while cold diffusion leverages image correlations for prediction, it
neglects the role of noise (randomness) in shaping the data manifold, resulting
in out-of-manifold issues and partially explaining its performance drop. To inte-
grate both strengths, we propose Warm Diffusion, a unified Blur-Noise Mixture
Diffusion Model (BNMD), to control blurring and noise jointly. Our divide-and-
conquer strategy exploits the spectral dependency in images, simplifying score
model estimation by disentangling the denoising and deblurring processes. We
further analyze the Blur-to-Noise Ratio (BNR) using spectral analysis to inves-
tigate the trade-off between model learning dynamics and changes in the data
manifold. Extensive experiments across benchmarks validate the effectiveness of
our approach for image generation.

1 INTRODUCTION

Diffusion probabilistic models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Nichol & Dhariwal,
2021; Song et al., 2022) have gained significant attention for their ability to learn data distributions
through denoising, leading to impressive generation quality. These generative models typically
employ a stochastic process that gradually transforms complex data distributions into simpler forms
by adding a small amount of Gaussian noise in each forward iteration, eventually arriving at a simple
Gaussian distribution. The reverse process involves using a neural network to model the score
(Hyvärinen & Dayan, 2005) of a noise-level-dependent marginal distribution, iteratively adapting
the denoised samples to recover the input data distribution. However, the process of learning this
score estimator is domain-agnostic, focusing solely on recovering the underlying signal by removing
Gaussian noise without considering the inherent properties of the modeled data. While this universal
approach is effective for various data modalities, we argue that it leaves room for improvement in
modeling images. Specifically, it overlooks the strong correlation between high-frequency image
detail and low-frequency structures—a relationship we term spectral dependency. This correlation
suggests that an efficient image generation process should progress from common low-frequency
components to diverse high-frequency detail.

Recently, a large number of studies (Bansal et al., 2022; Daras et al., 2022; Rissanen et al., 2023;
Hoogeboom & Salimans, 2024; Luo et al., 2023; Delbracio & Milanfar, 2024; Liu et al., 2023;
Yue et al., 2023; Liu et al., 2024) explored various alternatives to the conventional noise-driven
forward/reverse process of diffusion models, with the aim of accelerating the reverse process and
solving specific inverse or image translation problems. Some of these techniques adopt a cold diffu-
sion process, which replaces the stochastic Gaussian degradation process with deterministic image
transformations, e.g. blurring. These advancements underscore the evolving nature of diffusion
probabilistic models in formulating the forward/reverse process. Although these methods work well
in solving specific restoration tasks, most of them struggle with generating diverse and high-quality
samples, as compared to typical noise-driven hot diffusion models.
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Figure 1: Illustration of Warm Diffusion, the proposed two-pronged diffusion process. (a) Graph-
ical models of the proposed blur-noise mixture diffusion processes, offering flexibility in selecting
blur and noise levels, thereby enabling a smooth transition between (1) Hot Diffusion and (4) Cold
Diffusion. (b) The proposed divide-and-conquer strategy employs a joint model for denoising and
deblurring. It recovers the blurry signal obscured by noise and restores missing high-frequency de-
tail while explicitly accounting for the spectral dependency of images. (c) Data manifolds for the
two diffusion processes at varying blur-to-noise ratios (BNR). The red and blue lines represent the
means of Gaussian distributions derived from samples sharing low-frequency content but differing
in high-frequency detail. As BNR increases, the data manifolds shift and merge at earlier stages, as
blurring filters out high-frequency detail, leaving only the shared low-frequency signal. This shift
may lead to out-of-manifold issues, discussed in detail in Sec. 4.3.

As shown in Fig. 1, we revisit the design of diffusion probabilistic models, expanding the pure de-
noising process to a joint denoising and deblurring approach. We discuss the limitations of existing
hot and cold diffusion methods, particularly in terms of network learning and data manifold mod-
eling. By taking into account the spectral dependency of images and the diversity introduced by
Gaussian noise, we propose a method that balances blurring and noise levels. This enhances the
learning process of the decoding neural network, maintains the diversity of the data manifold, and
ultimately improves the quality of generated images. Our approach, targeting image generation, has
the following contributions:

• We propose a warm diffusion process that combines blurring and noise in the forward
process. The scheme allows flexible control over blur and noise levels, enabling joint de-
blurring and denoising to enhance image generation quality.

• We introduce the new concept of Blur-to-Noise Ratio (BNR) control and show that in-
creasing the BNR (leaning toward cold diffusion) simplifies model learning by leveraging
spectral dependency effectively. However, this also increases the risk of samples deviating
from the data manifold during the reverse process.

• We select the BNR by analyzing the spectra of images and Gaussian white noise. The dif-
ference in their power spectral densities guides us to find a suitable BNR that balances two
key factors: preserving the integrity of the data manifold and simplifying neural network
learning.

• Extensive experiments across various datasets show that our approach outperforms state-
of-the-art diffusion methods in terms of image generation quality.

2 RELATED WORKS

2.1 DIFFUSION PROBABILISTIC MODELS FOR IMAGE GENERATION

Diffusion models (Ho et al., 2020) consist of two key processes: a forward process that progressively
transforms the data distribution into a Gaussian distribution by adding noise and a reverse process

2
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that learns to denoise and recover the original data distribution. Various noise scheduling strate-
gies have been explored across different studies. IDDPM (Nichol & Dhariwal, 2021) introduced a
cosine noise schedule that gradually destroys the signal at a slower rate. Score-SDE (Song et al.,
2021) provided a unified framework that represents models like SMLD (Song & Ermon, 2019) and
DDPM (Ho et al., 2020) within a continuous state space, using different discretizations and distinct
Stochastic Differential Equations (SDEs). EDM (Karras et al., 2022) further elucidates the design
space of diffusion models. Extensive discussions within this work provide detailed analyses of train-
ing and sampling strategies, including preconditioning the network’s input and output and adjusting
the loss function. These enhancements, which consider neural network properties by maintaining
unit variance for the model’s input and output and mitigating large gradient variations, have led to
significantly improved results. However, these improvements primarily address challenges posed
by Gaussian noise without leveraging key image properties, such as spectral dependency, and they
overlook the potential of alternative corruption processes.

2.2 DIFFUSION-LIKE MODELS WITH VARIATIONS OF THE CORRUPTION PROCESS

Recently, researchers have explored modifications to the corruption process within diffusion mod-
els. Cold Diffusion (Bansal et al., 2022) replaced traditional noise-based transition functions with
transformations such as blur, masking, and pixelation. This innovation created a diffusion-like gen-
erative model by inverting arbitrary image transforms; however, results indicate that cold diffusion
struggles to maintain high-quality outcomes. Concurrently, IHDM (Rissanen et al., 2023) intro-
duced a progressive blurring process, where the model learns to iteratively restore blurred signals,
essentially acting as the “inverse” of heat dissipation. Blurring Diffusion (Hoogeboom & Salimans,
2024) established a connection between IHDM and Gaussian diffusion (Ho et al., 2020), demonstrat-
ing that IHDM can be interpreted as a form of Gaussian diffusion in the frequency domain, albeit
with different schedules across frequency bands. By integrating the blur and noise schedules from
both IHDM and iDDPM (Nichol & Dhariwal, 2021), Blurring Diffusion achieved better generation
quality compared to IHDM, though at the cost of more training iterations. However, these afore-
mentioned approaches primarily focus on the mean transition function and lack a global perspective
that jointly considers the role of Gaussian noise within the diffusion process, which contributes to a
drop in performance.

3 PRELIMINARY: DENOISING DIFFUSION IMPLICIT MODELS

Considering a class of inference distributions, indexed by vector σ:

qσ(x1:T |x0) := qσ(xT |x0)

T∏
t=2

qσ(xt−1|xt,x0), (1)

where given qσ(xT |x0) = N (
√
αTx0, (1 − αT )I), there exists a family of posterior distributions

for all t > 1:

qσ(xt−1|xt,x0) = N (
√
αt−1x0 +

√
1− αt−1 − σ2

t ·
xt −

√
αtx0√

1− αt
, σ2

t I), (2)

such that qσ(xt|x0) = N (
√
αtx0, (1−αt)I) for all t, which matches the marginals as DDPM (Ho

et al., 2020).

The trainable generative process is defined as Markovian where each pθ(xt−1|xt) aims to utilized
the knowledge of qσ(xt−1|xt,x0). In a sense, given a noisy observation xt, we first predict a
denoised observation D

(t)
θ (xt), and then obtain xt−1 with qσ(xt−1|xt, D

(t)
θ (xt)). The learning

objective can be therefore parameterized as:

L(Dt
θ) = λ(t)∥Dt

θ(xt)− x0∥22. (3)

4 BLUR-NOISE MIXTURE DIFFUSION MODELS (BNMD)

To enhance image generation, we introduce a blur-noise mixture diffusion model (BNMD). BNMD
extends the state space of the diffusion process to two dimensions, controlled by the corruption

3
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Figure 2: Workflow of the proposed diffusion process. The forward process progressively applies
blurring and noise, controlled by the Blur-to-Noise Ratio (BNR), to degrade the sample from high
quality to low quality. During this phase, training pairs are collected to train the prediction model
(e.g., U-Net) for use in the reverse process. For sample generation, the reverse process works as
follows: (a) The prediction model simultaneously performs denoising and deblurring. (b) With the
prediction results, the reverse step transitions the sample from step t to t − 1. Specifically, the
denoiser gradually guides the sample toward a blurry prediction, while the deblurring prediction
helps return the sample to a higher-quality state.

factors α and β, which represent the blur and noise levels, respectively. In the forward process,
the schedules of α and β determine a blend of blurring and noising operations. Consequently, the
reverse process iteratively recovers a high-quality image by deblurring and denoising a sampled
image drawn from a prior distribution (i.e., a standard normal distribution). As shown in Fig. 2,
mixing deblurring and denoising throughout the iterative image generation process distinguishes our
approach from most existing diffusion models, which typically generate images through denoising
alone. Moreover, our forward and generative processes are defined similarly to DDIM (Song et al.,
2022), but with a focus on incorporating blur-noise operations into both stages. For brevity, we
primarily address the key terms from DDIM (Song et al., 2022) that require adaptation for our
model.

4.1 BLUR-NOISE FORWARD DIFFUSION PROCESSES

Our blur-noise forward process has the marginal distributions for t ∈ {1, . . . , T} as:

q(xαt,βt
|x0) = N (V Mαt

V Tx0, β
2
t I), (4)

where V T and V denote the forward and inverse Discrete Cosine Transform (DCT), respectively.
Mαt

, a diagonal matrix, specifies the Gaussian blurring mask in the DCT domain, which varies
according to the Gaussian blur level αt. The parameter βt controls the level of Gaussian noise.
The corruption sequences α1, . . . , αT and β1, . . . , βT are defined as monotonically increasing se-
quences. As with DDIM (Song et al., 2022), Eq. (4) requires the inference transition distributions
(i.e., those used in the reverse process) qσ(.) for all t > 1 (see Appendix A.1) to be:

qσ(xαt−1,βt−1
|xαt,βt

,x0) = N (V Mαt−1
V Tx0 +

√
β2
t−1 − σ2

t ·
xαt,βt

− V Mαt
V Tx0

βt
, σ2

t I).

(5)
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4.2 GENERATIVE PROCESS IN A DIVIDE-AND-CONQUER MANNER

Our generative process is a Markovian process specified by learnable transition distributions
pθ(xαt−1,βt−1

|xαt,βt
) for t > 1. The training of these distributions involves maximizing a vari-

ational lower bound that requires minimizing among others the sum of the KL-divergence terms
KL(qσ(xαt−1,βt−1

|xαt,βt
,x0)||pθ(xαt−1,βt−1

|xαt,βt
) for t > 1.

Notably, parameterizing pθ(xαt−1,βt−1 |xαt,βt) is to leverage the knowledge about
qσ(xαt−1,βt−1 |xαt,βt ,x0) and learn a mean function to predict the mean in Eq. (5) based
on the blurry-noisy observation xαt,βt . At the inference time, we do not have access to the
input x0; as such, one straightforward approach to parameterizing pθ(xαt−1,βt−1

|xαt,βt
) is

to learn a network x̂0 = Fθ(xαt,βt
, t) that makes a prediction of x0 from xαt,βt

, and have
pθ(xαt−1,βt−1

|xαt,βt
) = qσ(xαt−1,βt−1

|xαt,βt
, x̂0).

Instead of predicting x0 from xαt,βt directly with a single network, this work introduces a novel
divide-and-conquer approach to parameterizing pθ(xαt−1,βt−1 |xαt,βt). This is motivated by the
observation that the mean in Eq. (5) can be expressed alternatively as:

xαt,βt + V (Mαt−1 −Mαt)V
Tx0︸ ︷︷ ︸

add missing high-frequency detail

+(βt −
√

β2
t−1 − σ2

t ) ·
V MαtV

Tx0 − xαt,βt

βt︸ ︷︷ ︸
direction pointing to blurry x0

,
(6)

where we have additionally added and subtracted the same term xαt,βt
− V Mαt

V Tx0. This
alternative expression suggests that the task of parameterizing pθ(xαt−1,βt−1

|xαt,βt
) by learning

a mean function to predict that of Eq. (5) can be decomposed into two sub-tasks: deblurring and
denoising. The former aims to reconstruct the high-frequency detail of x0 via the iterative generation
process, while the latter is to recover a blurry version (i.e., V Mαt

V Tx0) of x0 from its noisy
observation (i.e., xαt,βt

) by focusing on the reconstruction of the low-frequency components of
x0. This interpretation allows us to learn two specialized networks for addressing these separate
sub-tasks, leading to the more efficient and accurate generation of output images.

Specifically, we learn a network Dθ that takes the blurry-noisy observation xαt,βt
=

V MαtV
Tx0 + βtϵ, ϵ ∼ N (0, I) as input to predict the noise-free yet blurry representation

V MαtV
Tx0 of x0. When learned successfully, Dθ is able to denoise xαt,βt . For deblurring,

a separate network Rθ, which takes the same xαt,βt
as input, is learned to update V Mαt

V Tx0 as
x0. That is, Rθ aims to recover the missing high-frequency detail in V MαtV

Tx0, in order to re-
construct x0. In symbols, Rθ is meant to predict xrest = x0−V MαtV

Tx0 = V (I−Mαt)V
Tx0.

With our proposed parameterization, and given that Mαt is a diagonal matrix, the mean function of
pθ(xαt−1,βt−1

|xαt,βt
) is:

xαt,βt
+ V (Mαt−1

−Mαt
)(I −Mαt

)
−1

V TRθ(xαt,βt
, αt, βt)

+ (βt −
√
β2
t−1 − σ2

t ) ·
Dθ(xαt,βt

, αt, βt)− xαt,βt

βt
.

(7)

Considering the equation xrest = V (I −Mαt
)V Tx0, the second term V (Mαt−1

−Mαt
)V Tx0

in Eq. (6) can be rewritten as V (Mαt−1 − Mαt)(I −Mαt)
−1

V Txrest to match the form of its
counterpart in Eq. (7). To approximate Eq. (6) using Eq. (7), we then train Dθ and Rθ by minimizing
the following mean square error (MSE) losses

L(Dθ) = ∥Dθ(xαt,βt , αt, βt)− (V MαtV
Tx0)∥22, and (8)

L(Rθ) = ∥Rθ(xαt,βt , αt, βt)− xrest∥22. (9)
Here, given a noisy and blurry observation xαt,βt = V MαtV

Tx0 + βtϵ at time t, along with
the corresponding corruption factors, αt and βt, Dθ (Denoiser) is trained to recover the pure blurry
image by removing the noise component, while Rθ (Deblurrer) extracts the high-frequency detail
xrest . Finally, at time t, the prediction of the clean image is given by x̂0 = Fθ = Dθ +Rθ.

4.3 THE IMPACT OF BLUR-TO-NOISE RATIO ON MODEL BEHAVIOR AND DATA MANIFOLD

We have demonstrated how to combine two degradation factors —blurring and noising— into a uni-
fied diffusion process and introduced training objectives that simultaneously address deblurring and
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Figure 3: Impact of Varying BNRs on Model Behavior. We illustrate the observed signal, denoising
target, and deblurring target, along with their respective signal spectrum analyses, across different
BNR values. From left to right, the noise level remains constant while the BNR value increases. As
the BNR rises, the denoising task (red arrow) becomes progressively easier, shifting more responsi-
bility to the deblurring task (blue arrow) and effectively utilizing the spectral dependency of images.
In contrast, when BNR = 0, the model requires a stronger denoiser to directly generate the image,
without leveraging the spectral dependency assistance from the deblurrer.

denoising for image generation. However, the relationship between the blur and noise levels remains
unclear. To explore this connection, we define a factor called the Blur-to-Noise Ratio (BNR):

BNR =
Blur Level

Noise Level
=

α

β
, (10)

which represents the ratio of the blur level to the noise level. As illustrated in Fig. 1, increasing the
BNR value from 0 to ∞ transitions the diffusion path from hot to cold diffusion. To further inves-
tigate the model behavior with varying BNR values, we examine the learning objectives introduced
in Sec. 4.2, which consist of two distinct branches targeting denoising and deblurring, respectively.
Fig. 3 shows the signal spectra of images and the corresponding training objectives for different
BNR values. With a constant noise level, an increase in BNR would raise the blur level, thereby
simplifying the denoising task. This shift occurs because the denoiser no longer needs to restore
high-frequency detail, transferring that responsibility to the deblurring task. Additionally, by effec-
tively utilizing spectral dependency, the deblurrer can efficiently learn a mapping function from the
low-frequency observation to its high-frequency counterpart.

In addition to affecting model behavior, varying BNR values also lead to shifts in data manifolds
during forward iterations. To explore this in greater detail, we compare the data manifolds under low
and high BNR scenarios with the same blur level in Fig. 4. At each forward or reverse step, low BNR
cases exhibit a larger noise-covering space due to higher randomness compared to high BNR cases.
Consequently, a high BNR results in reduced data diversity, making generated samples more likely
to fall out of the data manifold, particularly during the early forward steps. When encountering out-
of-manifold cases in sample generation, the diffusion network must handle degraded samples that
were not seen during training, leading to less predictable outcomes and lower generation quality.

The analyses above reveal an inherent trade-off between model learning dynamics and data manifold
shifts, where the choice of BNR value plays a crucial role in generation quality. As the diffusion
process transitions from hot to cold, the model increasingly depends on leveraging the spectral
dependency of images for learning. However, this shift also introduces the risk of divergence from
the data manifold during generation, potentially resulting in degraded performance.

4.4 SELECTING BNR

6
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Figure 4: Illustration of the connection between BNR and the data manifold. When comparing two
different BNRs at the same blur level, a higher BNR corresponds to a smaller noise scale, resulting
in a narrower noise-covering space, as shown on the right. In the deblurring (reverse) step, a sample
is guided toward the deblurring target, representing the mean image of all possible paired outputs.
It is important to note that during the forward process, a single low-quality (LQ) sample is typically
paired with multiple high-quality (HQ) samples for training. Due to this ill-posed nature of the
deblurring task, samples with higher BNR values are more likely to deviate from the data manifold
during the transition. Once samples fall out of the manifold, the neural network struggles to produce
accurate predictions, leading to a decline in generation quality.

We’ve discussed how BNR influences model behavior and the data manifold. A higher BNR allows
the model to better exploit spectral dependency, simplifying learning by shifting the focus to de-
blurring. However, it also heightens the risk of samples deviating from the data manifold. Striking
the right balance is crucial, as one must weigh the benefits of more straightforward neural network
training against the risk of such deviations. This raises the question of whether a better BNR value
exists that preserves the data manifold’s integrity while enhancing model training.

An interesting observation from previous studies (van der Schaaf & van Hateren, 1996; Rissanen
et al., 2023) is that the power spectral density of natural images follows an approximate power law,
1/fα, where α ≈ 2. In contrast, Gaussian white noise exhibits a flat frequency response across
all frequency bands. This discrepancy results in a much lower signal-to-noise ratio (SNR) in high-
frequency bands compared to low-frequency ones. When the SNR in these bands is sufficiently
low, the observed signal becomes dominated by noise, helping to maintain the integrity of the data
manifold while attenuating the image signal in these bands.

As shown in Fig. 3(b), our empirical findings indicate that selecting BNR=0.5 causes the image
signal to begin attenuating when noise intensity exceeds the signal in these frequency bands, keep-
ing the blurry-noisy signal comparable to the noisy signal in hot diffusion. Beyond this threshold,
Fig. 3(c) illustrates that for a higher BNR value, the observed signal diverges from that in hot diffu-
sion, as the image signal attenuates significantly before noise dominates those frequency bands.

5 EXPERIMENTS

5.1 IMAGE GENERATION

Datasets. We validate our proposed diffusion process on three widely used benchmarks: CIFAR-10
(Krizhevsky, 2009) 32×32, FFHQ (Karras et al., 2019) 64×64, and LSUN-church (Yu et al., 2016)
128×128. These datasets were chosen to demonstrate the effectiveness of our method across various
scenarios. The CIFAR-10 dataset contains 32 × 32 color images across 10 classes, allowing us to
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Table 1: Quantitative results and comparison for
32 × 32 and 64 × 64 image generation tasks
on CIFAR-10 (Krizhevsky, 2009) and FFHQ
(Karras et al., 2019) datasets correspondingly.
Lower FID and higher IS scores indicate bet-
ter sample quality. NFE denotes the “Number
of Function Evaluations”. The best results are
highlighted in bold; the second-best results are
underlined.

Methods NFE ↓ FID ↓ IS ↑
Unconditional CIFAR-10

Cold Diffusion (Blur) (Bansal et al., 2022) 50 80.08 -
IHDM (Rissanen et al., 2023) 200 18.96 -
Blurring Diffusion (Hoogeboom & Salimans, 2024) 1000 3.17 9.51
EDM (Karras et al., 2022) 35 1.97 9.78
EDM-ES (Ning et al., 2024) 35 1.95 -
STF (Xu et al., 2023b) 35 1.92 9.79
PFGM++ (Xu et al., 2023a) 35 1.91 -

Ours 35 1.85 10.02

Class-conditional CIFAR-10

EDM (Karras et al., 2022) 35 1.79 -
EDM-ES (Ning et al., 2024) 35 1.80 -
PFGM++ (Xu et al., 2023a) 35 1.74 -

Ours 35 1.68 10.19

FFHQ 64× 64

EDM (Karras et al., 2022) 79 2.53 -
PFGM++ (Xu et al., 2023a) 79 2.43 -

Ours 79 2.29 3.41

Table 2: Quantitative results and comparisons
for 128 × 128 image generation tasks on the
unconditional LSUN-church (Yu et al., 2016)
dataset. For a fair comparison, we evaluate sam-
ple quality using the same number of samples as
in previous studies.

Methods NFE ↓ FID ↓
Number of samples = 10k

Denoising Diffusion (Hoogeboom & Salimans, 2024) 1000 4.68
Blurring Diffusion (Hoogeboom & Salimans, 2024) 1000 3.88
Ours 511 3.47

Number of samples = 50k

IHDM (Rissanen et al., 2023) 400 45.06
Ours 511 2.56

Table 3: Ablation study on the impact of dif-
ferent BNR values for CIFAR-10, with a fixed
number of sampling steps (NFE=35).

BNR FID ↓ IS ↑
0 (EDM (Karras et al., 2022)) 1.97 9.78
0.1 1.97 9.96
0.3 1.90 10.02
0.5 1.85 10.02
0.65 1.91 10.00
1 2.01 9.96
2 2.57 9.89
10 11.97 8.51

test both unconditional and class-conditional image generation. For the FFHQ and LSUN-church
datasets, we evaluate the model in unconditional settings. The FFHQ 64 × 64 dataset comprises
70,000 images of human faces, which have a higher degree of shared structure compared to general
scene datasets. The LSUN-church 128× 128 dataset features images of church scenes, enabling us
to validate our method in higher-resolution scenarios.

Implementation Details. For training, we adopt the improved DDPM++/NCSN++ (Song et al.,
2021) network architectures, training strategies, and hyperparameters from the state-of-the-art dif-
fusion model, EDM (Karras et al., 2022). Modifications are made to enable the network to accept
two conditioning signals—the blur and noise levels—and we double the output channels to produce
predictors for deblurring and denoising, respectively. In our current design, the two networks share
most components, so altering the BNR keeps the model capacity nearly constant, ensuring a fair
comparison. For sampling, we adapt Heun’s 2nd solver, following EDM (Karras et al., 2022). More
details are available in Appendix B.

Performance Comparison. To evaluate image generation quality, we use two commonly adopted
benchmarks: Fréchet Inception Distance (FID) (Heusel et al., 2018) and Inception Score (IS) (Sal-
imans et al., 2016). The FID score measures the distance between the generated and reference
datasets; a lower FID score indicates greater similarity between the two, reflecting better recovery
of the data distribution by the generative model. The Inception Score is computed by passing gen-
erated images through a pre-trained classifier. The optimal IS is achieved when the entropy of the
label distribution for the generated images is minimized and the predictions are evenly spread across
classes, indicating sharp and diverse generated images.

Following established procedures, we sample 50,000 images over three rounds and report the mini-
mum scores to mitigate random variation effects. As shown in Tab. 1, we assess sample quality using
FID and IS alongside the number of function evaluations (NFE) during sampling—a metric closely
related to the sampling speed of diffusion-based methods. Our approach significantly enhances the
performance of the baseline model, EDM, across both CIFAR-10 and FFHQ datasets, regardless of
their differing characteristics. This improvement is evident in both conditional and unconditional
settings on CIFAR-10, outperforming recent methods designed to enhance EDM.
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Figure 5: Illustration of sample quality corre-
sponding to different BNR and NFE. Each curve
represents a specific BNR value. As shown in
the chart, higher BNR values require more sam-
pling steps to achieve better sample quality.

Figure 6: Comparison of blur and noise sched-
ules with previous methods. Most related stud-
ies, except the hot diffusion, selected higher
BNR values in their schedules, leading to out-
of-manifold issues. Details in Appendix A.2.

Moreover, in addition to comparing our approach with techniques aimed at improving hot diffusion,
we evaluate it against Cold Diffusion and intermediate methods such as IHDM (Rissanen et al.,
2023) and Blurring Diffusion (Hoogeboom & Salimans, 2024). Our method not only achieves su-
perior sample quality but also requires significantly fewer sampling steps for image generation. In
Tab. 2, we also show our method outperforms the previous methods on a more complex and higher-
resolution dataset, LSUN-church 128 × 128. To make a fair comparison, we use the same number
of samples for the FID evaluation since the FID score is sensitive to the number of samples.

5.2 ANALYSIS OF DIFFERENT BNRS AND SCHEDULING

Relation between BNRs and Data Manifolds. We first validate our assumptions by testing various
BNR values ranging from 0 to 10. As shown in Tab. 3, using the same number of sampling steps as
the baseline method, EDM (Karras et al., 2022), the sample quality improves as the BNR value in-
creases up to 0.5. Beyond this threshold, performance rapidly declines, eventually falling below the
baseline. These results support our hypothesis in Sec. 4.4 that a BNR value of 0.5, guided by spectral
analysis, can effectively balance the trade-off between mitigating negative impacts on data manifold
shifts and enhancing model learning. As discussed in Sec. 4.4, when the BNR value exceeds 0.5,
the data manifold tends to shift significantly. Consequently, following the same sampling steps, the
samples are more likely to fall outside the manifold, resulting in lower generation quality. This
suggests that higher BNR values may require additional sampling steps to mitigate out-of-manifold
issues and enhance sample quality. In Fig. 5, we further assess the impact of different BNR values
and sampling steps on sample quality. The results confirm that higher BNR values indeed demand
more sampling steps to reach better sample quality, supporting our analysis.

Revisiting the BNR Scheduling in Prior Studies. We conduct experiments to compare the BNR
schedules from prior studies with our proposed method. Specifically, we re-implement the BNR
schedule from Blurring Diffusion (Hoogeboom & Salimans, 2024) under the same experimental
conditions to eliminate the effects of differing parameterization techniques. The results, presented
in Tab. 4, indicate that Blurring Diffusion’s BNR schedule results in poor generation quality when
using fewer sampling steps, although quality improves significantly with more steps. This highlights
a limitation in Blurring Diffusion’s BNR scheduling, as depicted in Fig. 6, where higher BNR values
necessitate additional sampling steps to prevent the reverse process from deviating from the data
manifold. Consequently, fewer steps result in poorer sample quality. These findings help explain
why previous approaches, such as cool diffusion, have struggled to generate high-quality samples,
particularly under limited sampling budgets.

9
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Table 4: We re-implement Blurring Diffusion using our parameterization and training scheme on
CIFAR-10. Results marked with ∗ are those reported by Hoogeboom & Salimans (2024).

BNR Schedule NFE ↓ FID ↓ IS ↑

Blurring Diffusion (Hoogeboom & Salimans, 2024)

35 12.97 8.57
79 4.13 9.27

159 2.91 9.46
239 2.77 9.52
319 2.73 9.54
399 2.71 9.54
999 2.68 9.56

Blurring Diffusion∗ (Hoogeboom & Salimans, 2024) 1000 3.17 9.51

Table 5: An ablation study on different parameterization of x0 and V Mαt
V Tx0 in Eq. (6). We

fix a constant number of sampling steps (NFE=35) to investigate various parameterizations for the
generation task using CIFAR-10.

Training Objectives Parameterization of
Rθ Dθ x0 V MαtV

Tx0 FID ↓

(a) x0 - Rθ V MαtV
TRθ 13.19

(b) - V MαtV
Tx0 V (Mαt)

−1V TDθ Dθ 9.09
(c) x0 V MαtV

Tx0 Rθ Dθ 1.98
(d) xrest V MαtV

Tx0 V (I −Mαt)
−1V TRθ Dθ 1.85

5.3 ABLATION STUDIES ON TRAINING OBJECTIVES AND VARIATIONS OF
PARAMETERIZATIONS

In Sec. 4.2, we reformulate the reverse function, Eq. (6), to simplify the neural network’s training
objectives through a divide-and-conquer approach. This method separates the task of predicting the
clean signal x0 into two sub-tasks: denoising to a blurry signal and predicting the residual signal for
deblurring. In this subsection, we explore various parameterization strategies derived from Eq. (6)
and evaluate their performances, demonstrating the advantages of our divide-and-conquer strategy
for model learning.

As shown in Tab. 5(a), using a single branch to directly predict the entire clean signal results in
significantly poorer generation quality, as this task proves too challenging. In Tab. 5(b), shifting the
target to learn a blurry signal yields a slight improvement in sample quality since this target is easier
to model; however, it still faces issues with inaccuracies in high-frequency components, which may
be exacerbated during sampling, occasionally resulting to noisy patterns in the generated samples.
In Tab. 5(c), employing two branches to predict both clean and blurry signals effectively addresses
these challenges, leading to substantially better results, though they remain comparable to those of
hot diffusion models as EDM (Karras et al., 2022). Finally, in Tab. 5(d), the proposed divide-and-
conquer strategy further improves performance, benefiting especially from the BNR schedule and
the parameterization. More visual examples are provided in Fig. 11.

6 CONCLUSION

In this paper, we introduce a unified Warm Diffusion framework that effectively bridges the gap
between hot and cold diffusion models while addressing their inherent limitations. Our analysis
reveals that hot diffusion models underutilize the spectral dependency of images, whereas cold dif-
fusion models risk reverse sampling steps that deviate from the data manifolds. By examining the
Blur-to-Noise Ratio (BNR), we uncover its significant influence on model behavior and data man-
ifolds. This insight enables us to propose a strategy for balancing the trade-off between hot and
cold diffusion, ultimately enhancing diffusion models for image generation. Experimental results
across various benchmarks validate the effectiveness of our approach, demonstrating improvements
in sample quality over state-of-the-art diffusion models.
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A DERIVATION

A.1 PROOF

In this section, we prove that the inference transition distribution defined in Eq. (5) matches the
marginal distribution defined in Eq. (4), using an induction hypothesis.

Base Case:

For t = T , it is given that

qσ(xαT ,βT
|x0) = N (V MαT

V Tx0, β
2
T I), (11)

so the base case holds.

Induction Hypothesis:

Assume that for t, the following holds

qσ(xαt,βt |x0) = N (V MαtV
Tx0, β

2
t I). (12)

We now aim to show that it holds for t− 1.

Inductive Step:

We have

qσ(xαt−1,βt−1
|x0) =

∫
xαt,βt

qσ(xαt,βt
|x0)qσ(xαt−1,βt−1

|xαt,βt
,x0)dxαt,βt

(13)

and also the inference transition distribution

qσ(xαt−1,βt−1
|xαt,βt

,x0) = N (V Mαt−1
V Tx0 +

√
β2
t−1 − σ2

t (
xαt,βt

− V Mαt
V Tx0

βt
), σ2

t I).

(14)
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Following Bishop & Nasrabadi (2006) (2.115), we have that qσ(xαt−1,βt−1
|x0) is Gaussian, denoted

as N (µt−1,Σt−1) where

µt−1 = V Mαt−1V
Tx0 +

√
β2
t−1 − σ2

t (
V Mαt

V Tx0 − V Mαt
V Tx0

βt
)

= V Mαt−1
V Tx0

(15)

and

Σt−1 = σ2
t I + (

β2
t−1 − σ2

t

β2
t

)β2
t I = β2

t−1I. (16)

Therefore we have
qσ(xαt−1,βt−1

|x0) = N (V Mαt−1
V Tx0, β

2
t−1I). (17)

Conclusion:

The marginal distribution qσ(xαt,βt
|x0) = N (V Mαt

V Tx0, β
2
t I) holds for all t according to the

derivation above.

A.2 BNR SCHEDULE OF PRIOR STUDIES

Here, we further analyze the BNR schedule of prior studies as depicted in Fig. 6. For Blurring
Diffusion (Hoogeboom & Salimans, 2024), we begin by examining its blurring and noising schedule
indexed by t ∈ {1, 2, . . . , T}. As defined in (Hoogeboom & Salimans, 2024), the blurring schedule,
αt, is parameterized as:

αt = 20 sin2(
πt

2T
). (18)

Given that a cosine noise schedule is applied—scaling the signal throughout the diffusion pro-
cess—the noising schedule, βt, can be parameterized from the perspective of the signal-to-noise
ratio (SNR) as:

βt ≈
sin( πt

2T )

cos( πt
2T )

= tan(
πt

2T
). (19)

Thus the BNR schedule can be written as:

BNRt =
αt

βt
=

20 sin2( πt
2T )

tan( πt
2T )

= 20 sin(
πt

2T
) cos(

πt

2T
)

= 10 sin(
πt

T
).

(20)

Regarding other related work, IHDM (Rissanen et al., 2023) introduces a diffusion process by ap-
plying a small, constant amount of noise while progressively increasing blur levels. As a result, the
BNR schedule for IHDM is represented as a vertical line in Fig. 6. In contrast, Bansal et al. (2022)
develop Cold Diffusion by constructing the diffusion process entirely without noise, leading to a
BNR value of ∞.

B ADDITIONAL DETAILS OF OUR IMPLEMENTATION

We adopt the network architectures, training techniques, and hyperparameters from the state-of-
the-art diffusion model, EDM (Karras et al., 2022), making only minor modifications to preserve
constant model capacity. In this section, we first provide detailed information on the architecture and
training settings, demonstrating that the observed improvement in generation quality is not due
to a larger or more complex network design nor to hyperparameter fine-tuning. Subsequently,
we present the algorithms for both training and sampling within our proposed diffusion process to
facilitate a clearer understanding of the methodology.
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Table 6: Hyperparameters and model sizes used in the experiments.

CIFAR-10 FFHQ 64× 64 LSUN-church 128× 128
Hyperparameter Baseline Ours Baseline Ours Baseline Ours

Number of GPUs 8 8 8 8 8 8
Duration (Mimg) 200 200 200 200 512 200
Minibatch size 512 512 256 256 256 256

Learning rate ×10−4 10 10 2 2 1 1
LR ramp-up (Mimg) 10 10 10 10 10 10
EMA half-life (Mimg) 0.5 0.5 0.5 0.5 0.89 0.5
Dropout probability 0.13 0.13 0.05 0.05 0.1 0.1

Channel multiplier 128 128 128 128 64 64
Channels per resolution 2-2-2 2-2-2 1-2-2-2 1-2-2-2 1-2-4-6-8 1-2-4-6-8
Residual blocks per resolution 4 4 4 4 3 3
Attention resolutions {16} {16} {16} {16} {8, 16, 32} {8, 16, 32}
Attention heads 1 1 1 1 4-6-8 4-6-8

Model size 55.734 M 55.741 M 62.761 M 62.765 M 117.955 M 117.957 M

α

β

Denoising Loss

Deblurring LossU-Net

+
Sum++

Figure 7: Our model architecture includes an additional embedding branch to incorporate a condi-
tioning signal for the blurring and noising levels. Furthermore, to enable the network to simultane-
ously perform both deblurring and denoising, the output channels are doubled and split to handle
each task separately.

B.1 NETWORK ARCHITECTURES AND HYPERPARAMETERS

In Tab. 6, we list the hyperparameters used in our experiments. For CIFAR-10 and FFHQ, we adopt
the same settings as EDM (Karras et al., 2022), without tuning for optimal hyperparameters. For
LSUN-church, we follow the network architecture and settings from Blurring Diffusion to ensure a
fair comparison. Across all datasets, we apply slight modifications to the network architecture, as
depicted in Fig. 7. These modifications include: (1) incorporating an additional conditioning signal
for the blurring level, using an embedding branch fused with the noise-level embedding, and (2)
doubling the output channels of the neural network and splitting them to compute separate losses,
allowing the model to predict both the residual high-frequency detail and the underlying blurry
signal. These two changes result in less than a 0.15 ‰ increase in model size, as shown in Tab. 6,
indicating that the observed improvement in sample quality stems from the proposed method rather
than the architecture.

B.2 PROCEDURE OF TRAINING AND SAMPLING

We present the training procedure in Algorithm 1, which follows the training scheme of the state-of-
the-art diffusion model EDM (Karras et al., 2022), with slight modifications. To prepare the training
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Algorithm 1 Training Phase

1: Require: Hyperparameters {Pmean, Pstd, BNR}
2: Initialize Neural network Fθ

3: repeat
4: x0 ∼ q(x0) ▷ Sample from training dataset
5: ϵ ∼ N (0, I) ▷ Sample a Gaussian noise
6: ln(β) ∼ N (Pmean, P

2
std) ▷ Sample a noise level

7: α = BNR× β ▷ Get corresponding blur level from given noise level
8: xα,0 = V MαV

Tx0 ▷ Apply blurring operation
9: xα,β = xα,0 + βϵ ▷ Add noise

10: xres = x0 − xα,0 ▷ Compute the residual signal
11: D̂θ, R̂θ = Fθ(xα,β ;α, β) ▷ Split the output of the neural network
12: Take gradient step on
13: ∇θλ(β)(∥D̂θ − xα,0∥2 + ∥R̂θ − xres∥2) ▷ Jointly learn denoising and deblurring
14: until converged

Algorithm 2 Generation phase: Deterministic sampling with Heun’s 2nd order method

1: Require: Neural network Fθ, Sampling schedule {(α0, β0), (α1, β1), . . . , (αN , βN )}
2: sample xN ∼ N (0, β2

NI)
3: for i ∈ {N,N − 1, . . . , 1} do
4: D̂θ, R̂θ = Fθ(xi;αi, βi) ▷ Split the model prediction
5: ϵ̂ = xi−D̂θ

βi
▷ First-order gradient term

6: x̂0 = V (I −Mαi
)
−1

V T R̂θ ▷ Transform residual signal xres to get x0

7: xi−1 = xi + V (Mαi−1
−Mαi

)V T x̂0 + (βi−1 − βi)ϵ̂ ▷ Eq. (6), taking a Euler’s step

8: if i ̸= 1 then ▷ Apply second-order correction except for the last step
9: D̂′

θ, R̂
′
θ = Fθ(xi−1;αi−1, βi−1)

10: ϵ̂′ =
xi−1−D̂′

θ

βi−1

11: x̂′
0 = V (I −Mαi−1)

−1
V T R̂′

θ

12: xi−1 = xi + V (Mαi−1 −Mαi)V
T (

x̂0+x̂′
0

2 ) + (βi−1 − βi)(
ϵ̂+ϵ̂′

2 )
13: end if
14: end for
15: return x0

data pairs, after sampling a noise level β, we further determine a corresponding blur level α based
on the predefined BNR value. The image signals are then transformed into blurry and noisy signals
according to the sampled blur and noise levels. The decoding neural network is then trained to
simultaneously denoise and deblur these signals, conditioned on the blur and noise levels. Unlike
methods that require two separate function evaluations for denoising and deblurring, we utilize a
single forward pass to predict both signals at once and split the output into two branches, each
handling one task.

In Algorithm 2, we outline the sampling procedure of our proposed diffusion process, integrated with
Heun’s 2nd order sampling method, similar to EDM (Karras et al., 2022). Following a predefined
sampling schedule, for each reverse step, we first use the denoiser’s prediction to guide the sample
toward a blurry prediction, then apply the deblurring prediction to move the sample toward a sharper
state, as outlined in Eq. (6). To integrate Heun’s 2nd order method, we temporarily update the
signal xi to obtain xi−1, then repeat the process to obtain a refined update direction. The two
predictions from consecutive iterations are averaged to correct the update step, yielding the final
sample xi−1. This process is applied throughout, except for the last step, ensuring more accurate
and stable sampling.
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(a) CIFAR-10 (b) FFHQ 64× 64

Figure 8: Sampling schedule and sample quality. Compared to the baseline noise schedule proposed
by EDM (i.e., ρ = 7), our method benefits from using a higher ρ value. With a fixed number of
sampling steps, this adjustment enables our sampling process to focus more on the later stages of
the reverse process, where high-frequency detail are generated. As a result, the sample quality is
improved across both CIFAR-10 and FFHQ datasets.

C ADDITIONAL EXPERIMENTS

C.1 SAMPLING SCHEDULES FOR IMAGE GENERATION

This section explains how the noise level schedule affects the reverse process in our diffusion
model. Before starting the reverse process, a predefined sequence of blur and noise levels is needed
for each reverse step. Since the blur level in our method is controlled by the BNR and linked to the
noise level, we only need to focus on the schedule of the noise level.

Following the formula proposed by Karras et al. (2022), the sequence of noise levels can be formu-
lated as:

β0<i≤N = (β
1
ρ
max +

N − i

N − 1
(β

1
ρ

min − β
1
ρ
max))

ρ, β0 = 0, (21)

where ρ controls the emphasis on different phases of noise levels. Setting ρ = 1 corresponds to
uniform discretization, while a higher ρ places more emphasis on lower noise levels, resulting in
more sampling steps in this phase.

Empirically, Karras et al. (2022) found that ρ = 7 worked well across various tasks, and adopted
this value in all experiments. However, we discovered that our method benefits from using a higher
ρ value, as illustrated in Fig. 8. This improvement arises because our model learns a simpler target
in the early stages of the reverse diffusion process, thereby reducing prediction error. By shifting the
focus to lower noise levels, more sampling steps are allocated to generate high-frequency detail (i.e.,
the later stages of the reverse process), ultimately enhancing the quality of the generated samples.

C.2 EXPERIMENTAL RESULTS ON DDPM ARCHITECTURE

In the main manuscript, we demonstrate the effectiveness of our proposed approach using the
stronger baseline, improved DDPM++/NSCN++, introduced by Karras et al. (2022). In this section,
we extend our experiments to the network architecture proposed in DDPM (Ho et al., 2020), The
quantitative comparison on unconditional CIFAR-10 is presented in Tab. 7. Our method achieves
a lower FID score and a higher IS, indicating improved image distribution modeling and enhanced
sample quality. The consistent performance improvement across different network architectures
further demonstrates the generalizability of our proposed method. Additionally, we conduct exper-
iments with a lower BNR value, as reported in Tab. 7, and the trend of the results aligns with those
presented in Tab. 3. These findings highlight the enhanced generation quality achieved by transition-
ing from Hot Diffusion to our proposed Warm Diffusion. This improvement stems from effectively
leveraging the spectral dependency of images while addressing out-of-manifold issues by avoiding
excessive blurring in the diffusion process.
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Table 7: Quantitative comparisons of FID and IS scores on unconditional CIFAR-10 for different
BNR values, evaluated using the DDPM (Ho et al., 2020) architecture.

Methods BNR FID ↓ IS ↑
DDPM (Ho et al., 2020) 0 3.17 9.46
Ours 0.3 3.11 9.48

Ours 0.5 3.03 9.51

FID 1.97    NFE 35

BNR=0.1 BNR=0.5

FID 1.85    NFE 35

BNR=2.0

FID 2.57    NFE 35

BNR=10.0

FID 11.97    NFE 35FID 1.97    NFE 35

EDM (BNR=0)

Figure 9: Visual comparison of different BNR values with a constant number of sampling steps. For
cases where BNR > 0.5, using the same number of sampling steps, the generated samples tend
to become blurrier as the BNR value increases, leading to poorer FID scores. This highlights the
trade-off between blurring and noising, where overly prioritizing the blurring process can negatively
impact sample quality.

D ADDITIONAL RESULTS

In this section, we provide additional visual comparisons to present more qualitative results. Fig. 9
showcases generated samples for various BNR values, as discussed in Tab. 3. Fig. 10 illustrates
samples produced by our re-implementation of Blurring Diffusion (Hoogeboom & Salimans, 2024),
as outlined in Tab. 4. A visual comparison of different parameterization techniques, discussed in
Tab. 5, is shown in Fig. 11. Furthermore, uncurated (non-cherry-picked) samples from all datasets
used in our experiments are presented in Fig. 12.
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FID 12.97    NFE 35 FID 4.13    NFE 79 FID 2.91    NFE 159 FID 2.71    NFE 399 FID 2.68    NFE 999

Figure 10: Visual results of our re-implemented Blurring Diffusion (Hoogeboom & Salimans, 2024)
generated samples with different NFEs. As the number of sampling steps increases, the generated
samples show progressively more detailed high-frequency components. Lower NFEs lead to blurrier
samples due to insufficient reverse steps as discussed in Sec. 4.3 due to the data manifold shifts.

FID 13.19    NFE 35

Setting (a)

Setting (c)

FID 1.98    NFE 35

Setting (d)

FID 1.85    NFE 35

FID 9.09    NFE 35

Setting (b)

Figure 11: Visual comparison of different training objectives and parameterization techniques dis-
cussed in Tab. 5. Setting (a) and (b) either suffer from inaccurate predictions or amplified high-
frequency signals, which lead to poorer generation quality. Although Setting (c) generates better
results, it does not take advantage of the BNR adjustment to ease the neural network’s learning pro-
cess. In contrast, Setting (d), which employs a divide-and-conquer strategy, benefits from the BNR
adjustment by better leveraging the spectral dependency of images. This leads to improved learning
for the neural network and results in a noticeable improvement in sample quality.
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(a) Unconditional CIFAR-10, FID 1.85

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

(b) Class-conditional CIFAR-10, FID 1.68

(c) FFHQ 64× 64, FID 2.29 (d) LSUN-church 128× 128, FID 2.56

Figure 12: Uncurated samples from CIFAR-10, FFHQ 64× 64, and LSUN-church 128× 128.
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