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Abstract

Beyond the success story of pre-trained language models (PrLMs) in recent natu-1

ral language processing, they are susceptible to over-fitting due to unusual large2

model size. To this end, dropout serves as a therapy. However, existing methods3

like random-based, knowledge-based and search-based dropout are more general4

but less effective onto self-attention based models, which are broadly chosen as5

the fundamental architecture of PrLMs. In this paper, we propose a novel dropout6

method named AttendOut to let self-attention empowered PrLMs capable of more7

robust task-specific tuning. We demonstrate that state-of-the-art models with elab-8

orate training design may achieve much stronger results. We verify the universal-9

ity of our approach on extensive natural language processing tasks.10

1 Introduction11

Self-attention network (SAN) empowered models like Transformer [1] have achieved remarkable12

success in recent natural language processing, which have been broadly chosen as basic architec-13

ture in a series successful pre-trained language models (PrLMs) such as BERT [2], RoBERTa [3],14

ALBERT [4], ELECTRA [5], DeBERTa [6] and GPT [7].15

SAN has drawn a great deal of curiosity on its conceptually simple but powerful attention mecha-16

nism. However, SAN still remains a black box and more and more works attempt to unveil its inner17

principle, where the biggest mystery lies in its attention matrix. Our work is inspired by several18

recent discoveries which turn our views up and down. [8, 9] show that fixed Gaussian or even ran-19

dom alignment attention matrix may rival standard SAN, while more recently, [10, 11] prove that20

SAN may encounter a rank collapse with deepening of layers. A more concrete explanation is in-21

formation diffusion [12], which states that the input vectors are progressively assimilating through22

continuously making self-attention. We attribute these problems to the sever co-adaption [13] be-23

tween attention elements, a form of over-fitting onto SAN. As a result, self-attention empowered24

PrLMs hardly bring into their full play, especially for the fine-tuning stage, where task-specific data25

is always with limited capacity.26

Dropout [13] serves as a therapy to deal with the problem, by randomly shutting down a set of units27

during training stage. When specified on self-attention, dropout is equivalent to adding attention28

mask to the attention matrix. However, random-based dropout methods like vanilla Dropout [13] or29

DropConnect [14] are all subject to a pre-defined distribution like Bernoulli or Gaussian, longing for30

exhaustive grid search for an optimal probability. Thereby a variety of works attempt to utilize man-31

ual attention mask to obtain a more informative attention matrix [15, 16], whereas all these methods32

require prior knowledge on model or data, which could be costly or unavailable. More recently, the33

rise of Neural Architecture Search [17, 18] gives birth to search-based dropout [19], which automat-34

ically chooses an optimal dropout pattern based on additional validation performances. However,35

the huge search space brings heavy consumption and more importantly, the obtained dropout pattern36

is still fixed with a pre-defined probability, which is static and sample-independent, ignoring the37

dynamics within different samples. In this paper, we focus on task-specific tuning of self-attention38
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Figure 1: A diagram of different dropout methods, where p refers to the dropout probabilities while
R refers to the reward in reinforcement learning.

empowered PrLMs and propose a novel dropout method named AttendOut onto attention layers,39

which leverages self-attention to dynamically generate dropout patterns for each attention layer as40

well as each sample through an end-to-end manner. We demonstrate that the previous state-of-the-art41

models with elaborate training design may achieve much stronger results. We verify the universality42

of our approach on extensive natural language processing tasks. Guided by AttendOut, we pro-43

pose another two attention regularizers to enable simple but effective performance boost with no44

additional cost.45

2 Related Work46

Dropout is proposed to alleviate over-fitting problem in DNNs. Apart from vanilla Dropout [13]47

and DropConnect [14] which randomly shut down a subset of activations or hidden weights, there48

are a variety of dropout methods proposed, e.g. Alpha Dropout [20], Variational Dropout [21, 22],49

Adversarial Dropout [23], Energy-based Dropout [24]. However, random-based dropout encounters50

slow experiment cycle due to inevitable grid search. Inspired by Neural Architecture Search [17, 18],51

[19] proposes AutoDropout to automate the process of designing dropout patterns. A similar line of52

work is dynamic tuning of dropout, which further allows adaptive dropout probabilities under differ-53

ent training moments. [25] proposes Concrete Dropout with continuous relaxation under Concrete54

distribution, [26] proposes Learnable Bernoulli Dropout under discrete Bernoulli distribution using55

Augment-REINFORCE-Merge estimator [27], while [28] proposes Context Dropout by optimizing56

the evidence lower bound.57

With self-attention network continuously stands out, dropout is being explored onto self-attention58

based models. LayerDrop [29] randomly removes entire SAN blocks, while DropHead [30], Head-59

Mask [31] randomly remove certain attention heads. UniDrop [32] unifies these dropout methods,60

which facilitates text classification and machine translation tasks. Additionally, prior knowledge is61

shown highly effective for guiding attention dropout as in SG-Net [15] and SIT [16], which inten-62

tionally discard syntax-unrelated attention units with the help of structural clues.63

3 Preliminaries64

In this section, we provide the preliminaries for the proposed approach. We first review the details65

of self-attention proposed in [1]. Based on the specific architecture, we elaborate the concerned66

attention dropout.67

3.1 Self-Attention68

Generally, a standard SAN block is mainly composed of an attention layer and several feed-forward69

layers (actually there are residual connection, layer normalization, etc. as well). The input of it is a70

sentence or batch of sentences of length n, which is first embedded through an embedding layer. The71

embedded input E may go through three linear projections WQ, WK and WV referring to query, key72
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and value layers respectively, and then obtain three matrices Q, K and V referring to the query, key73

and value components of self-attention. Subsequently, a dot-product of Q and K is taken and then74

normalized using Softmax function to obtain the attention matrix A. Then another dot-product of75

A and V follows. The mentioned calculation can be formalized as follow:76

Attention(Q,K, V ) = Softmax

(
Q ·KT

√
dk

)
· V (1)

where
√
dk is a scaling factor. Finally, the self-attention layer ends up with a linear projection WO77

to output.78

During the aforementioned process, we highlight a key phases, that is the attention matrix A, which79

is a dot-product of n×n from two separate linear projections WQ and WK . A is viewed as a feature80

map which stores the node-to-node significance in different scores. Various works show that there81

hides implicit but highly needed semantic clues.82

3.2 Dropout on Self-Attention83

Our dropout will apply to the attention matrix of the concerned attention layer. We first define two84

specific dropouts onto Eq. 1, where both implementations are just as simple as in standard dropout85

via a mask matrix M .86

Weights Dropout. Weights dropout is applied to the attention matrix after Softmax function by87

default, which is formulated as:88

Attention(Q,K, V ) =

(
Softmax

(
Q ·KT

√
dk

)
⊙M

)
· V (2)

where M is a binary matrix with elements in {0, 1} and ⊙ refers to element-wise multiplication.89

Scores Dropout. Different from weights dropout, scores dropout is applied before Softmax func-90

tion, which is formulated as:91

Attention(Q,K, V ) = Softmax

(
Q ·KT

√
dk

+M

)
· V (3)

Since the outer Softmax, we conduct an addition instead of multiplication, where elements in M92

are set to 0 for kept units and −inf for removed ones. Note that the Softmax takes a similar93

function as the scaling factor of 1/p in vanilla Dropout [13], which balances the expectation of the94

network.95

Weights dropout is commonly used in self-attention based models, while scores dropout is less96

explored, which is our focus in this paper. For scores dropout, we need to pay attention to a special97

case, when all attentions are shut down, that is, all elements in M equal to −inf at the same time.98

Such case can be formulated as follow:99

Attention(Q,K, V ) = Softmax (M) · V (4)

Note that Softmax (M) obtains to a constant matrix, where each unit equals to 1/n. In this case,100

the attention matrix is fixed and consequently the WQ, WK and dot-product in between are skipped.101

4 Methodology102

In this paper, we propose Attention differentiable dropOut (AttendOut), which contributes technique103

novelty in the following way: (1) dynamic and task-specific tuned; (2) end-to-end trained; (3) gra-104

dient optimized dropout method onto self-attention empowered PrLMs. We elaborate our approach105

with two parts, in which the first is composition, while the second is training algorithm.106

4.1 Elements of AttendOut107

Our training architecture is composed of three modules, A-Net (Attacker), D-Net (Defender) and108

G-Net (Generator). D-Net and A-Net are two identical models and trained simultaneously through109

standard gradient descent, while G-Net is a learnable dropout maker and trained through policy110

gradient. Now we elaborate each of them.111
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Defender - Attacker As suggested, defender and attacker are two competitors playing a game112

with each other on specific criteria, e.g. training accuracy, training loss. Specifically, D-Net and A-113

Net are two identical self-attention empowered PrLMs, e.g. BERT, RoBERTa. However, they follow114

different dropout strategies. D-Net receives regular dropout as default in specific models, while A-115

Net receives additional dropout decision from G-Net onto its corresponding attention layers.116

Generator G-Net acts as a dropout maker through generating a mask matrix for each attention117

layer during training stage. As aforementioned, the common dropout strategies rely on randomness,118

which intends to shut down the co-adaption but not powerful enough. However, our dropout maker119

is an agent which is able to intelligently choose and learn dropout patterns for each sample. Specif-120

ically, after training for a fixed number of steps, we conduct evaluation for both A-Net and D-Net.121

When A-Net obtains a higher score than D-Net, which means attacker wins the game, G-Net will be122

rewarded positively. When defender wins, G-Net will be punished with a negative reward. In con-123

sequence, G-Net learns appropriate dropout patterns through the game between D-Net and A-Net,124

while assisting A-Net to win the game. On the other hand, A-Net needs to be stronger when training125

under such powerful dropout, which makes it much more robust from over-fitting. Compared to126

search-based dropout, G-Net is triggered by the difference between two model derivatives with and127

without dropout, instead of the final feedback on validation set, which makes it end-to-end-possible128

and sample-dependent.129

The design of G-Net is the most delicate part, which is also a self-attention based model with iden-130

tical number of layers with D-Net and A-Net. However, we make several improvements. 1) G-Net131

only exports the attention scores from attention layers with no extra output layers, from which we132

apply Gumbel [33, 34] to sample the actions to obtain the dropout mask. 2) G-Net only makes133

one-head attention and share one group of parameters for all attention layers. 3) G-Net is excluded134

of feed-forward layers, which may obscure the impact of self-attention [11, 10].135

4.2 Training with AttendOut136

The core of training with AttendOut is to find a way to optimize G-Net, which receives signals from137

the difference between D-Net and A-Net. Supposing there is a list of dropout actions by G-Net:138

a1:T = {a1, a2, a3, · · · , aT }

where T refers to the number of samples, for each action at, G-Net may achieve a reward rt. The139

optimization objective is to maximize the overall rewards of list a1:T , denoted as R, that is:140

J(θG) = EP (a1:T ;θG)[R]

where R =
∑T

t=1 rt. Since R is non-differentiable, we use policy gradient to update θG as in [17]:141

∇θGJ(θG) =

T∑
t=1

EP (a1:T ;θG)[∇θG logP (at|a(t−1):1; θG)rt]

The above equation could be approximated as:142

1

m

m∑
k=1

T∑
t=1

∇θG logP (at|a(t−1):1; θG)rt

For a model with n attention layers, each dropout decision is composed of n inner decisions of each143

layer. Additionally, each attention layer contains an attention matrix of l × l, namely l2 elements144

dropped or kept. Thus, we denote a dropout unit as dij , where i refers to the ith layer while j refers145

to the jth element of the attention matrix.146

However, nl2 dropout units bring a huge space, which makes it impossible to calculate the joint prob-147

ability. To this end, we introduce the independence assumption that each dropout unit is independent148

with each other. Under the relaxation, we can make the following probability likelihood:149
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logP (at|a(t−1):1; θG) =
1

nl2

∑
i,j

logP (dijt |d
ij
(t−1):1; θG)

where the summation
∑n

i=1

∑l2

j=1 is briefly denoted as
∑

i,j .150

Thus, the final gradient could be formalized as:151

∇θGJ(θG) =
1

m

1

nl2

m∑
k=1

T∑
t=1

∑
i,j

∇θG logP (dijt |d
ij
(t−1):1; θG)(rt − b) (5)

where b is a baseline function of moving average [35]. Note that we do not apply additional regular-152

izers like L0 and L1 penalty, which impose unnecessary bias.153

Algorithm 1 summarizes the overall procedure of training PrLMs with AttendOut. We first initialize154

all three networks. Note that D-Net and A-Net should be kept identical at the beginning of each155

training step. A straightforward strategy is to choose the better one to cover the other. To add156

randomness, we sample from D-Net and A-Net based on their evaluation performances, with higher157

probability for the better one. Then for each step, D-Net and A-Net are fed with the same mini-batch158

data and updated via standard gradient descent, meanwhile each batch will be cached. After training159

for T steps, which we denote as a dropout step, both D-Net and A-Net are evaluated on additional160

validation samples, which could be development set data, noisy training data or a small split of train-161

ing data. In this paper, we simply use development set. For efficiency, we make random sampling162

on it to retrieve T samples for evaluation. Based on the evaluation scores, G-Net is rewarded with163

{r1, r2, r3, · · · , rT } and updated via Eq. 5. At the end of each dropout step, the cached samples164

will be released and D-Net and A-Net will be re-initialized.165

Algorithm 1 AttendOut
Input: Attacker A, Defender D, Generator G, dropout
step T

1: initialize θD, θA, θG, where θD = θA
2: for each training step do
3: θD ← θ′D
4: dropout A with G via Eq. 3
5: θA ← θ′A
6: for each T steps do
7: evaluate D and A and reward G
8: θG ← θ′G via Eq. 5
9: initialize θD, θA for next step

10: end for
11: end for

Output

Query Key Value

Output

Embedding

Figure 2: Architecture of G-Net.

166

Resource Usage We notice that training PrLMs with AttendOut may sacrifice time and memory167

cost. The detailed resource usage is shown in Appendix. Taking RoBERTa as an example, the168

algorithm requires two RoBERTa models as well as a smaller self-attention based generator, which169

is 1/3 of RoBERTa size. Considering cached samples, roughly speaking, AttendOut requires twice170

graphic memory as well as twice training time compared to a single model, which is a middle speed171

line between random-based dropout and neural architecture search (Dropout [13] < AttendOut≪172

AutoDropout [19]). However, AttendOut contributes to remarkable performance gain compared to173

other attention dropout methods.174

Pre-training Our approach is both feasible for both fine-tuning and pre-training stage of PrLMs175

but expensive for the latter. However, we try to serve for the most delicate part of concerned issue,176

since pre-training is generally done on large-scale data with modest training epochs, which makes it177

less susceptible from over-fitting.178
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Table 1: Results (test / dev) of GLUE sub-tasks.

Model SST-2
Acc

MRPC
F1

QNLI
Acc

MNLI-mm
Acc

CoLA
Mcc

BERT 92.9 / 92.2 86.6 / 86.3 89.7 / 88.9 83.3 / 84.0 51.2 / 58.8
+ AtendOut 93.6 / 93.8 88.1 / 87.5 90.2 / 91.1 84.2 / 84.6 57.4 / 60.9

RoBERTa 95.4 / 94.4 90.5 / 90.2 92.9 / 92.0 86.1 / 86.6 61.3 / 62.5
+ AtendOut 96.2 / 95.1 91.2 / 90.9 93.3 / 93.0 87.3 / 87.8 63.0 / 63.8

Table 2: Results of IMDB, CoNLL03, PTB and SWAG respectively.

Model IMDB
Acc

CoNLL03
F1

PTB
F1

SWAG
Acc

BERT 92.2 94.1 95.4 81.1
+ AttendOut 92.9 94.7 96.5 81.6

RoBERTa 93.6 94.5 96.6 83.8
+ AttendOut 94.2 95.2 97.3 84.1

5 Experimental Setup179

We demonstrate the universal effectiveness of AttendOut on extensive natural language processing180

tasks. For all mentioned tasks, we apply our method on BERT [2] and its stronger variant RoBERTa181

[3]. Our implementations are based on PyTorch using transformers [36]. For further training details,182

please refer to Appendix.183

Our experiments include: (1) natural language understanding: General Language Understanding184

Evaluation (GLUE) benchmark [37], a collection of nine natural language understanding tasks (here185

we experiment on five of them, SST-2, MRPC, QNLI, MNLI-mm and CoLA; (2) document clas-186

sification: IMDB [38], a sentiment analysis dataset where about 15% of the documents are longer187

than 512 word-pieces; (3) named entity recognition: CoNLL2003 [39]; (4) part-of-speech tag-188

ging: English Penn Treebank (PTB) [40]; (5) multiple choices question answering: SWAG [41].189

We report both test and development results for GLUE sub-tasks since the large bias between them,190

while development results only for all the other tasks.191

Note that we only adjust the dropout steps and keep all other parameters the same for strict fair192

comparison. For example, the parameters we use in RoBERTa are identical with what we use in193

training with AttendOut including both D-Net and A-Net.194

6 Results195

6.1 Significance Analysis196

Pictorially in Table 1, RoBERTa is strong enough as it outperforms BERT by a big margin, while197

AttendOut empowered RoBERTa still outperforms it on all five GLUE sub-tasks. For small-scale198

datasets, which are more likely to over-fit, AttendOut helps unfold remarkable performance gain199

(12.1% / 3.5% over BERT on CoLA, 1.7% / 1.4% over BERT on MRPC). However, for large-200

scale one like MNLI, which tends to be more stable, AttendOut still produces considerable boost,201

(1.4% / 1.4% over RoBERTa, 1.1% / 0.7% over BERT).202

Furthermore, AttendOut is shown universally effective as in Table 2. For POS Tagging, BERT203

and RoBERTa have achieved very strong baselines, while AttendOut empowered ones are even204

stronger, (1.1% over BERT on PTB). Similar results are seen on document classification and NER.205

For SWAG, however, AttendOut seems weakly effective (0.6% over BERT, 0.4% over RoBERTa).206
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Figure 3: Dropout probabilities on specific attention layers over training steps.
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Figure 4: Convergence over training epochs.

6.2 Visual Analysis207

Dropout Patterns Another concerned issue is the dropout proportions by AttendOut. Figure 3208

depicts the patterns on several datasets. We may find several interesting phenomenons. First, the209

overall patterns largely differ from datasets, which is fair since AttendOut is sample-dependent.210

However, we may observe something in common. Overall, the lower layers take higher dropout211

probabilities. For example on QNLI, the first layer almost remains steady with the probability of212

0.55 during the training process, while the fourth one continuously decays in a higher rate. Intu-213

itively, the first three layers undertake a similar trend in each dataset, while there might be an up and214

down for the fourth one as in SST-2 and CoLA. Especially for CoLA, we see unusual high dropout215

probabilities in the final period (around 0.9), which are close to complete dropout. We notice that216

CoLA is a small set with 8500 training samples, on which SAN model is more inclined to suffer217

from over-fitting. Therefore, PrLM on CoLA encounters more intensive dropout through AttendOut.218

Convergence Figure 4 depicts the accuracy trends of RoBERTa on SST-2, QNLI, MNLI respec-219

tively. Due to a stronger dropout module, the one with AttendOut tends to fall behind (SST-2,220

MNLI) at the beginning of training. However, model becomes stronger since the second epoch221

(SST-2, QNLI). Especially on MNLI, RoBERTa obtains better results in the first two epochs and it222

drops in the last one, while with AttendOut, the performance is steadily rising for all three epochs.223

7 Ablation Study224

In this section, we conduct further experiments to demonstrate the effectiveness of AttendOut. Due225

to space limitation, we conduct corresponding experiments on development sets only.226

7.1 Attention Dropout227

Vanilla Dropout We conduct comparison with vanilla Dropout [13], in which we dropout the228

attention matrix for all layers with Bernoulli distribution of p. Here, we choose the dropout proba-229

bilities in {0.1, 0.2}.230
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Table 3: Comparison of AttendOut, vanilla Dropout and LayerDrop.

Model CoLA QNLI MNLI-mm

RoBERTa 62.5 92.0 86.6
+ Vanilla 61.3 92.2 86.9
+ AttendOut 63.8 93.1 87.8
+ LayerDrop 62.1 92.6 87.1
+ Attn.LayerDrop 64.2 92.7 87.3

Table 4: Comparison of AttendOut and scheduled Bernoulli dropout.

Model CoLA QNLI SWAG

RoBERTa 62.5 92.0 83.8
+ Scheduler 63.3 92.6 83.6
+ AttendOut 63.8 93.1 84.1

LayerDrop We also compare with LayerDrop [29], which focuses on skipping the entire encoder231

blocks, Inspired of it, we design another strategy which randomly skips attention layers via Eq. 4.232

For fair enough comparison, we set the dropout probabilities to 0.2 for both methods, following the233

settings in [29].234

Intuitively in Table 3, vanilla Dropout with fixed probability does not produce noticeable gain (1.9%235

bellow RoBERTa on CoLA). However, AttendOut shows powerful advantage (4.1%, 1.0% and 1.0%236

over vanilla Dropout on CoLA, QNLI and MNLI), which stresses the necessity of dynamic dropout237

patterns rather than fixed static one. On the other hand, both layer-level regularizers are effective,238

while attention LayerDrop performs stronger and more stable on all the three. Especially on CoLA,239

it outperforms RoBERTa by 1.7 points, while LayerDrop meets a performance drop, which demon-240

strates that removing the attention layers act as a more effective regularizer than removing the entire241

SAN block as for self-attention based models.242

7.2 Pattern Approximation243

Guided by AttendOut, we design a dropout scheduler, in which we utilize piece-wise linearity to244

approximate the real curves as depicted in Figure 3. Taking QNLI as an example, we initialize245

the dropout probabilities to 0.6 for all attention layers and set a a specific slope for each of them.246

Note that here the corresponding mask matrices are randomly-generated and subject to Bernoulli247

distribution. In AttendOut, however, the distribution are learned dynamically through self-attention248

of G-Net.249

As shown in Table 4, RoBERTa with scheduled Bernoulli dropout works surprisingly well on both250

CoLA and QNLI, which outperforms RoBERTa by 0.8 and 0.6 points respectively, closer to At-251

tendOut, even if the strategy here is random-based and much looser. The guided scheduled dropout252

helps unfold the correctness of the dynamic dropout patterns learned by AttendOut as well as the253

self-attention based dropout maker.254

8 Conclusion255

This paper focuses on the co-adaption problem of deep self-attention networks, and presents a novel256

dropout method onto self-attention empowered pre-trained language models. Extensive experiments257

on multiple natural language processing tasks demonstrate that our proposed approach is universal258

and qualified to enable more robust task-specific tuning, which contributes to much stronger state-259

of-the-arts. We probe into the learned dropout patterns on different tasks, which empirically guide260

us to the very needed dynamic attention dropout design.261
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