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ABSTRACT

Typed entailment graphs try to learn the entailment relations between predicates
from text and model them as edges between predicate nodes. The construction
of entailment graphs usually suffers from severe sparsity and unreliability of dis-
tributional similarity. We propose a two-stage method, Entailment Graph with
Textual Entailment and Transitivity (EGT2). EGT2 learns the local entailment re-
lations by recognizing the textual entailment between template sentences formed
by typed CCG-parsed predicates. Based on the generated local graph, EGT2 then
uses three novel soft transitivity constraints to consider the logical transitivity in
entailment structures. Experiments on benchmark datasets show that EGT2 can
well model the transitivity in entailment graph to alleviate the sparsity, and leads
to significant improvement over current state-of-the-art methods.

1 INTRODUCTION

Entailment, as an important relation in natural language processing (NLP), is critical to correct se-
mantic understanding and natural language inference (NLI). Entailment relation has been widely
applied in different NLP tasks such as Question Answering, Machine Translation and Knowledge
Graph Completion. While coming across a question that ”Which medicine cures the infection?”, one
can recognize the information ”Griseofulvin is preferred for the infection,” in the corpus and appro-
priately write down the answer with the knowledge that ”is preferred for” entails ”cures” when
their arguments are medicines and diseases, although the surface form of predicate ”cures” does not
exactly appear in the corpus. There are many ways to present one question, and it is impossible to
handle them without understanding the entailment relations behind the predicates. Previous works
about entailment focus on Recognizing Textual Entailment (RTE), and recently reach relatively good
performance in detecting entailment relations with the transformer-based language models (He et al.,
2020; Raffel et al., 2020; Schmitt & Schütze, 2021).

By modeling typed predicates as nodes and entailment relations as directed edges, the Entailment
Graph (EG) is a powerful and well-established form to contain the context-independent entailment
relations between predicates and the global features of entailment inference, such as paraphrasing
and transitivity. As EGs are able to help reasoning without additional contexts or resource, they
can be seen as a special type of structural knowledge in natural language. Figure 1 shows a sim-
ple example of entailment graph about two types of arguments, Medicine and Disease. Generally
speaking, the entailment graphs are built based on a three-step process: extracting predicate pairs
from corpus, building local graphs with locally computed entailment scores, and modifying graphs
with global methods.

However, existing methods of entailment graphs face different problems in both local and global
stages. The Distributional Inclusion Hypothesis (DIH) about entailment assumes that given a pred-
icate (relation) p, it can be replaced in any context by another predicate (relation) q if and only if
p entails q (Geffet & Dagan, 2005). Most of local methods in previous works are guided by DIH
and thus use the distributional co-occurrence in corpus, including named entities, entity pairs and
contexts, as the features to compute the entailment scores as local models. By processing different
entailment relations of predicate pairs independently, the locally built graphs suffer from severe data
sparsity. The data sparsity means that many correct entailment relations between predicates are not
indicated as edges in the graphs while the two predicates do not co-occur in the corpus. Furthermore,
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[medicine] is prefer-

red for [disease]

[medicine] 
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[medicine] is 

effective for [disease]
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related to [disease]

[medicine] 

causes [disease]

t1=medicine

t2=disease

Figure 1: A simple example of entailment graph with types medicine and disease. The dashed line
represents a missing entailment recovered by considering the transitivity constraint (red) based on
the two premise entailment between three boldfaced predicates.

local models often have flaws for logical irrationality, which signifies the disobedience of predicates
under some logical rules, especially transitivity.

To overcome the problem faced by local models, different global approaches are used to take the
interactions and dependencies between entailment relations into consideration. The global depen-
dency firstly implemented is the logical transitivity, which implies that predicate a entails predicate
c if there is another predicate b making both ”a entails b” and ”b entails c” hold simultaneously. Be-
rant et al. (2011) uses the Integer Linear Programming (ILP) to ensure the transitivity constraints on
the entailment graphs, which is not scalable on large graphs with thousands of nodes. Hosseini et al.
(2018) models the structural similarity across graphs and paraphrasing relations within graphs to
learn the global consistence, but does not achieve high performance due to the lack of high-quality
local graphs and the transitivity modeling.

In order to deal with the problems in local and global stage, we propose a novel entailment graph
learning approach, Entailment Graph with Textual Entailment and Transitivity (EGT2). EGT2
builds high-quality local entailment graphs by inputting predicates as sentences into a transformer-
based language model fine-tuned on RTE task to avoid the unreliability of distributional scores, and
models the global transitivity on them by designed soft constraints losses, which alleviates the data
sparsity and is available on large-scale local graphs. Our key insight is that the entailment relation
a → c correctly implied by transitivity is based on two conditions: (1) the appropriate constraint
scalable on large graphs containing rich information, and (2) the reliability of local graphs offering
the premise a → b and b → c, which is impractical in distributional approaches, but maybe available
by the models well-behaved on RTE tasks. The inputting sentences are formed without contexts,
which make our method accessible to those predicates not appearing in the corpus. The transitivity
implication is confined to entailment relations with high confidence, which improves the quality of
implied edges and cuts down the computational overheads. In a word, this paper makes the following
contributions:

• It presents a new approach based on textual entailment to scoring the predicate pairs on
local entailment graphs, which is reliable without distributional features and valid for arbi-
trary predicate pairs.

• It presents three meticulously designed global soft constraint loss functions to model the
transitivity between entailment relations and alleviate the data sparsity of local approaches,
which are available on large-scale entailment graphs.

• The results of extensive experiments on standard benchmarks show that our model, EGT2,
significantly outperforms previous approaches of learning entailment graphs.

2 RELATED WORK

Based on DIH, previous works extract feature vectors for typed predicates to compute the local dis-
tributional similarities. The set of entity argument pair strings, like ”Griseofulvin-infection” in the
example of Section 1, are used as the features weighted by Pointwise Mutual Information (Berant
et al., 2015; Hosseini et al., 2018). Given two feature vectors of predicates, different local simi-
larity scores, like cosine similarity, Lin (Lin, 1998), DIRT (Lin & Pantel, 2001), Weeds (Weeds &
Weir, 2003) and Balanced Inclusion (Szpektor & Dagan, 2008), are calculated as the local simi-
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larities. Hosseini et al. (2019) and Hosseini et al. (2021) use Markov Chain on a entity-predicate
bi-partial graph weighted by link prediction scores to calculate the transition probability between
two predicates as the local score. They rely on the link predication model to calculate the features in
fact. Guillou et al. (2020) adds temporal information by extracting the entity pairs within a limited
temporal window as predicate features. McKenna et al. (2021) extends the graphs to include entail-
ment relations between predicate with different numbers of arguments by splitting the features from
argument pairs into independent entity slots, which impairs the representation ability of features.

As mentioned in Section 1, entailment graphs are generally learned by imposing global constraints
on the local entailment relations about extracted predicates. The transitivity in entailment graph is
modeled by the Integer Linear Programming (ILP) in Berant et al. (2011), which selects a transitive
sub-graph of local weighted graph to maximize the summation over the weights of its edges. Their
work is limited to a few hundreds of predicates due to the computational complexity of ILP. For
better scalability, Berant et al. (2012) and Berant et al. (2015) propose a strong FRG-assumption
that ”if predicate a entails predicates b and c, b and c entail each other”, and an approximation
method, called Tree-Node-Fix (TNF). Obviously, the assumption is too strong to be satisfied by real
cases.

Because the hard constraints show bad scalability on large-scale entailment graphs, Hosseini et al.
(2018) proposes two global soft constraints that maintain the similarity between paraphrasing pred-
icates within typed graphs and between predicates with the same names in graphs with different
argument types. Their soft constraints are also used in Hosseini et al. (2019) and Hosseini et al.
(2021). The first similarity implicitly takes the transitivity between paraphrasing predicates and
third predicate into consideration, but ignores the transitivity in more common cases, and leads to a
limited improvement on performance.

Meanwhile, the transformer-based Language Model (LM), although proved to be effective in RTE
tasks (He et al., 2020; Raffel et al., 2020; Schmitt & Schütze, 2021), is not widely used in entail-
ment graph learning. Hosseini et al. (2021) uses pretrained BERT to initialize the contextualized
embeddings in their contextualized link prediction and entailment score calculation. High scores are
assigned to the entailed predicates in the context of their premises, which is one implicit expression
form of DIH and quite different from our direct utilization of LM on textual entailment.

3 OUR METHOD: EGT2

3.1 DEFINITION AND NOTATIONS

The target of entailment graph learning is to extract predicates, learn the entailment relations and
build entailment graphs from raw text corpus. Following previous works (Hosseini et al., 2018;
2019), we use the binary relations from neo-Davisonian semantics as predicates, which is a type
of first-order logic with event identifiers. For instance, the sentence ”Griseofulvin is preferred for
the infection.” contains the predicate p =(prefer.2,prefer.for.2,medicine,disease), and the sentence
”Griseofulvin cures the infection.” contains q =(cure.1,cure.2,medicine,disease). The numbers after
the predicate words are corresponding argument positions of entity ”Griseofulvin” and ”infection”,
and the later two items are the types of arguments. Formally, a predicate with argument types t1
and t2 is represented as p = (wp,1.ip,1, wp,2.ip,2, t1, t2). The predicate form is strong enough to
describe most of the relations in real cases.

With T as the set of types and P as the set of all typed predicates, V (t1, t2) contains typed
predicates p with unordered argument type t1 and t2, where p ∈ P and t1, t2 ∈ T . For pred-
icate p = (wp,1.ip,1, wp,2.ip,2, t1, t2), we denote that τ1(p) = t1, τ2(p) = t2 and π(p) =
(wp,1.ip,1, wp,2.ip,2). In other words, V (t1, t2) = {p|(τ1(p) = t1 ∧ τ2(p) = t2) ∨ (τ1(p) =
t2 ∧ τ2(p) = t1)}.

A typed entailment graph G(t1, t2) =< V (t1, t2), E(t1, t2) > is composed of the nodes of typed
predicates V (t1, t2) and the weighted edges E(t1, t2). The edges can be also represented as sparse
score matrix W (t1, t2) ∈ [0, 1]|V (t1,t2)|×|V (t1,t2)|, containing the entailment scores between pred-
icates with type t1 and t2. As the different argument types can naturally determine whether two
predicates have the same order of arguments, the order of argument type is not important while
t1 ̸= t2, and therefore we can ensure that G(t1, t2) = G(t2, t1). For those predicates p with
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Table 1: Examples of sentence generator S.
Predicates Sentences
(be.1,be.capital.of.2,location1,location2) Location A is capital of Location B.
(contain.1,contain.2,location2,location1) Location B contains Location A.
(prefer.2,prefer.for.2,medicine,disease) Medicine A is preferred for Disease B.
(give.2,give.3,person,thing) Person A is given Thing B.
(aggrieved.by.2,aggrieved.felt.1,thing,person) Person B feels aggrieved by Thing A.

τ1(p) = τ2(p), the two argument types are labeled with orders, which allows the graph to contain the
entailment relations with different argument orders, like (be.1,be.capital.of.2,location1,location2) →
(contain.1,contain.2,location2,location1).

3.2 LOCAL ENTAILMENT BASED ON TEXTUAL ENTAILMENT

Inspired by the outstanding performance of pretrained and fine-tuned LMs on RTE task, which is
closely related to the entailment graphs, EGT2 uses fine-tuned transformer-based LM to calculate
the local entailment scores of typed predicated pairs.

In order to utilize the knowledge about entailment relations in pretrained and fine-tuned LM, EGT2
firstly transfers the predicate pair (p, q) into corresponding sentence pair (S(p), S(q)) by sentence
generator S, as the complicated predicates cannot be directly inputted into the LM. For typed pred-
icate p = (wp,1.ip,1, wp,2.ip,2, t1, t2), the generator deduces the positions of arguments about the
predicate based on ip,1 and ip,2, generates the surface form of p based on wp,1 and wp,2, and finally
concatenates the surface form with capitalized types as its arguments. Some generated examples are
shown in Table 1, and the detailed algorithm of S is described in Appendix ??.

After generating sentence pair (S(p), S(q)) for predicate pair (p, q), EGT2 inputs (S(p), S(q)) into
a transformer-based LM to calculate the probability of the entailment relation p → q as the local
entailment score in G(t1, t2). In our experiments, the LM is implemented as DeBERTa (He et al.,
2020). Generally, an entailment-oriented LM will output three scores for a sentence pair, represent-
ing the probability of relationship entail, contradict and neutral respectively. Formally, we denote
the weighted matrix of local entailment graph with type t1 and t2 as W local, and the weight of the
edge between p and q in W local is calculated as:

W local
p,q = P (p → q) ∈ [0, 1],

P (p → q) =
eLM(entail|p,q)∑

r∈{entail,contradict,neutral} e
LM(r|p,q) ,

(1)

where LM(r|p, q) is the output score of corresponding relationship by the LM. As the local entail-
ment is based on the LM fine-tuned to perform textual entailment, the local graph can be built for
any predicates in the parsed semantic form, or in any other forms by changing sentence generator S.

3.3 GLOBAL ENTAILMENT WITH SOFT TRANSITIVITY CONSTRAINT

Existing approaches use global learning to find correct entailment relations which are missing or
despised in local entailment graphs to overcome the data sparsity. Following Hosseini et al. (2018),
the evidence from existing local edges with high confidence is used by EGT2 to predict missing
edges in the entailment graphs.

The transitivity in entailment relation inference implies a → c while both a → b and b → c
hold. For instance, in the example of Figure 1, the entailment ”is preferred for” → ”is effective
for” is discovered because ”is preferred for” → ”cures” and ”cures” → ”is effective for” have
been learned. The key challenge to incorporate the transitivity constraint into weighted graphs is
discreteness of logical rules. Discreteness makes the rules impossible to be directly used in gradient-
based learning methods without NP-hard complexity, as different predicate pairs are jointly involved
in the calculation. To unify the discrete logical rules with gradient-based learning, inspired by Li
et al. (2019), EGT2 uses the logical constraints in the form of differentiable triangular norms (Gupta
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L1 = −log
∏

a,b,c∈V (t1,t2),
Wa,b,Wb,c>1−ϵ

min(1,
Wa,c

Wa,bWb,c
)

=
∑

a,b,c∈V (t1,t2)

I1−ϵ(Wa,b)I1−ϵ(Wb,c)ReLU(logWa,b + logWb,c − logWa,c)

L2 =
∑

a,b,c∈V (t1,t2)

−I1−ϵ(Wa,b)I1−ϵ(Wb,c)I0(Wa,bWb,c −Wa,c)logWa,c

L3 =
∑

a,b,c∈V (t1,t2)

−I1−ϵ(Wa,b)I1−ϵ(Wb,c)I0(Wa,bWb,c −Wa,c)Wa,bWb,clogWa,c

(2)

& Qi, 1991; Klement et al., 2013), or called t-norms, as the soft constraints so that the gradient-
based learning methods can be applied.

Different t-norm methods transfer the discrete rules into different continuous loss functions. Tradi-
tional product t-norm maps P (A∧B) into P (A)P (B), P (A∨B) into P (A)+P (B)−P (A)P (B),
and P (A → B) into min(1, P (B)

P (A) ). For the entailment relations, the probability of transitivity to be
satisfied is:

P [(a → b ∧ b → c) → (a → c)]

=min(1,
Wa,c

Wa,bWb,c
),

(3)

where the probability of the entailment relation a → b is represented by the local entailment scores
Wa,b. To alleviate the noise from those edges assigned low confidence by local LM, EGT2 only
takes the local edges whose scores are higher than 1− ϵ into account (as a → b and b → c), where ϵ
is a small hyper-parameter because the local probability scores tend to be close to 0 or 1 in practice.
Therefore, to maximize the probability of transitivity constraint satisfied over all predicates in the
entailment graph G(t1, t2), EGT2 tries to minimize the following minus-log-likelihood loss function
L1 in Eq. 2, where Iy(x) = 1 if x > y, or 0 otherwise.

Another important t-norm, called the Gödel t-norm, maps P (A → B) into 1 if P (B) ≥ P (A) or
P (B) otherwise. Therefore, the Gödel probability of transitivity to be satisfied is:

P [(a → b ∧ b → c) → (a → c)]

=

{
Wa,c Wa,bWb,c > Wa,c

1 otherwise
,

(4)

and EGT2 similarly tries to minimize the loss function L2 in Eq. 2. It should be noted that transitivity
constraints will be disobeyed not only by the missing edges, but also by the spurious edges in the
local graphs. Therefore, we expect the soft constraints to take reducing the weights of premise edges
into consideration. L1 do this by the loss item Wa,b and Wb,c, and we modify L2 to L3 in Eq. 2 so
that the low confidence of Wa,c will help to detect whether Wa,b and Wb,c are spurious.

Given the local entailment graph G(t1, t2) with weighted edges W local, in order to ensure that the
global entailment graph W is not too far from W local, EGT2 finally minimizes the following loss
function L to trade off the distance from local graphs and the soft transitivity constraint:

L =
∑

a,b∈V

(Wa,b −W local
a,b )2 + λLi, i = 1, 2, 3 (5)

where Li is the specified implementation of soft transitivity constraint in Eq. 2, and λ is a non-
negative hyper-parameter that controls the influence of two loss terms.
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4 EXPERIMENTAL SETUP

4.1 PREDICATE EXTRACTION

Following Hosseini et al. (2018) and Hosseini et al. (2019), we use the multiple-source NewsSpike
corpus (Zhang & Weld, 2013), which contains 550K news articles, to extract binary relations as
generated predicates in EGT2. We make use of the triples released and filtered in Hosseini et al.
(2019), which applies GraphParser (Reddy et al., 2014) based on Combinatorial Categorial Grammar
(CCG) syntactic derivations to extracting binary relations between predicates and arguments. The
argument entities are linked to Freebase (Bollacker et al., 2008) and mapped to the first level of
the FIGER types (Ling & Weld, 2012) hierarchy. The type of a predicate is determined by its two
corresponding argument entities. The triples are filtered by two rules to remove the noisy binary
relations and arguments: (1) we only keep those argument-pairs appearing in at least 3 relations; (2)
we only keep those relations with at least 3 different argument-pairs. The number of relations in
the corpus is reduced from 26M to 3.9M, covering 304K typed predicates in 355 typed entailment
graphs.

4.2 EVALUATION DATASETS AND METRICS

We use Levy/Holt Dataset (Levy & Dagan, 2016; Holt, 2018) and Berant Dataset (Berant et al.,
2011) to evaluate the performance of entailment graph models.

In Levy’s dataset, each example contains a pair of triple with the same entities but different pred-
icates. Some questions with one predicate were shown to the annotating workers, like ”Which
medicine cures the infection?”. The label for each example are either True or False, indicating
whether the first typed predicate entails the second one, by asking the workers whether the first
predicates can answer the question with the second one. For example, if ”Griseofulvin is preferred
for the infection” is a correct answer of the above question, the dataset labels ”is preferred for”
→ ”cures”. Holt (2018) re-annotates Levy’s dataset and forms the renewed dataset with 18,407
examples (3,916 positive and 14,491 negative), referred as Levy/Holt Dataset. The dataset is split
into validation set (30%) and test set (70%) as Hosseini et al. (2018) in our experiments.

Berant et al. (2011) annotates all the entailment relations in their corpus, which generates 3,427
positive and 35,585 negative examples, referred as Berant Dataset. Their entity types do not ex-
actly match with the first level of FIGER types hierarchy, and therefore a simple hand-mapping by
Hosseini et al. (2018) is used to unify the predicate types.

To be comparable with previous works, we evaluate our methods on the test set of Levy/Holt Dataset
and the whole Berant Dataset by calculating the area under the curves (AUC) with changing the
classification threshold of global entailment scores. Hosseini et al. (2018) argues that the AUC
of Precision-Recall Curve (PRC) for precisions in the range [0.5, 1], as predictions with higher
precision than random are more important for the downstream applications. Therefore, we report
both the AUC of PRC for precisions in the range [0.5, 1] and the traditional AUC of ROC, which is
more widely used in evaluation of other tasks.

4.3 COMPARISON METHODS

We compare our model with existing entailment graph construction methods (Berant et al., 2011;
Hosseini et al., 2018; 2019; 2021) and the best local distributional method, Balanced Inclusion
(Szpektor & Dagan, 2008), referred as BInc. We also include ablation variants of our EGT2, includ-
ing local models with or without fine-tuning.

4.4 IMPLEMENTATION DETAILS

For local transformer-based LM, EGT2 uses DeBERTa (He et al., 2020) implemented by the Hug-
ging Face transformers library (Wolf et al., 2019)1, which has been fine-tuned on MNLI (Williams
et al., 2018) dataset. In order to adapt it to the special type-oriented sentence pattern generated by S,

1https://github.com/huggingface/transformers
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Table 2: Model performance on Levy/Holt Dataset and Berant Dataset. The best performances on
every metric are boldfaced. Results with ∗ are from original papers, as they did not share the codes
or implementation details to reproduce the results.

Methods Levy/Holt Berant
Metrics PRC ROC PRC ROC
BInc .155 .632 .147 .677
Local-Sup .161 .632 .129 .651
Hosseini18 .163 .637 .174 .682
Hosseini19∗ .187 - - -
- Local .167 .639 .118 .378
Hosseini21∗ .195 - - -
EGT2-Local .313 .712 .360 .857
- w/o Fine-tuning .234 .673 .147 .732
EGT2-L1 .345 .761 .437 .880
EGT2-L2 .319 .755 .361 .879
EGT2-L3 .356 .755 .443 .871

we expand the validation set by extracting all of the predicates, generating sentence pairs by gener-
ator S for every two predicates, and checking whether they are labeled as paraphrase or entailment
in the Paraphrase Database collection (PPDB) (Pavlick et al., 2015). We split 80% of the generated
corpus to fine-tune the DeBERTa with Cross-Entropy Loss, and the rest as the validation set of fine-
tuning process. The fine-tuning learning rate αf = 10−5, and the process is terminated while the F1

score of entail on validation set does not increase in 10 epochs or training after 100 epochs.

For global soft transitivity constrains, we use SGD (Cun et al., 1998) to optimize the scores W in
entailment graphs with loss function L in Eq. 5 for e = 5 epochs. The SGD learning rate α = 0.05,
the coefficient λ = 1, and the confidence threshold ϵ = 0.02. The hyper-parameters are selected
based on Levy/Holt validation dataset. More implementation details are given in Appendix ??.

For testing, if one or both predicates of the example do not appear in the corresponding typed
entailment graph, we handle the example as untyped one by resorting to its average score among all
typed entailment graphs. This setting is used for all methods in the experiments for fair comparison.

5 EXPERIMENT RESULTS AND DISCUSSION

5.1 MAIN RESULTS

We summarize the model performances on both Levy/Holt and Berant datasets in Table 2. All global
methods, including Hosseini et al. (2018), Hosseini et al. (2019) and EGT2, perform better than their
corresponding local methods, which demonstrates the effect of global constraints in alleviating the
data sparsity. Although using the same extracted entailment relations with Hosseini et al. (2019),
our EGT2-Local significantly outperforms previous local methods because of the high-quality en-
tailment scores generated by reliable fine-tuned textual entailment LM. On the whole, EGT2 with
transitivity constraint L3 outperforms all the other models on both Levy/Holt Dataset and Berant
Dataset with AUC of PRC, while EGT2-L1 performs best with AUC of ROC. All of three soft tran-
sitivity constraints boost the performance of local model on all evaluation metrics, which shows that
making use of transitivity rule between entailment relations improves the local entailment graph.
EGT2-L1 or EGT2-L3 performs better than EGT2-L2, which indicates that involving the premises
a → b and b → c into loss function is also important for using transitivity constraints.

The Precision-Recall Curves of different methods and the Precision-Recall Point of Berant et al.
(2011) on the two evaluation datasets are shown in Figure 2(a) and 2(b) respectively. The local
and global models of EGT2 consistently outperform previous state-of-the-art methods on all levels
of precision and recall, which indicates the effect of our local model based on textual entailment
and global soft constraints based on transitivity. The EGT2-Local achieves slightly higher precision
than global models in the range recall < 0.5, but its precision drops quickly if we requires higher
recall and therefore leads to worse performance than global models. The result indicates that global
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Figure 2: The Precision-Recall Curves of different methods on (a) Levy/Holt Dataset and (b) Berant
Dataset. The result of Berant et al. (2011) is shown as a point, as they generate entailment graphs
without weight.

Table 3: The number of testing examples appearing in entailment graphs learnt by corresponding
models .

Methods Positive # Negative #
EGT2-Local 378 75
EGT2-L1 642 174
EGT2-L2 783 277
EGT2-L3 685 190

models with transitivity constraints gain significant improvement on recall with far less expense on
precision than EGT2-Local.

5.2 HOW THE LOCAL MODEL FINE-TUNING WORKS?

As referred in Section 4.4, a new corpus is generated for fine-tuning the local model. We claim
that the fine-tuning corpus helps to improve the performance of EGT2-Local by adapting it to the
special sentence pattern by S, rather than offering additional data to fit the distribution of target
datasets as traditional training datasets do. To prove this, we also test a simple supervised method,
labelled as Local-Sup, which fits a 2-layers feedforward neural network on the fine-tuning corpus
with cosine similarity, Weed, Lin and BInc scores as features. If the corpus acts as training dataset,
the performance of Local-Sup should be obviously better than its unsupervised features.

As shown in Table 2, Local-Sup does not perform significantly better on Levy/Holt Dataset, and
even worse on Berant Dataset than BInc, which is one of the inputting features of Local-Sup. The
result illustrates the difference between the fine-tuning corpus and the evaluation datasets, and shows
that the corpus plays a role as pattern adapting corpus rather than training dataset.

5.3 WHY ARE GLOBAL CONSTRAINTS HELPFUL?

In Section 1, we expect that the improvement of soft transitivity constraints is attributed to the
alleviation of data sparsity in corpus. To examine the sparsity before and after the applying of
transitivity constraints, we count how many the positive and negative entailment relations in the
Levy/Holt test set exactly appear in the local and global entailment graph respectively, and show
the counting results in Table 3. All three soft transitivity constraints help to find more entailment
relations than local entailment graph and therefore achieve better performance on the evaluation
datasets. Although EGT2-L2 finds the most entailment relations in the dataset in global stage, it
finds more negative examples concurrently and thus performs worse than L1 and L3 as shown in
Table 2. On the other hand, EGT2-L1 and EGT2-L3 obtain more proportions of positive examples
by considering premise relations during the gradient calculation. The low confidence of hypothesis
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Table 4: The major error types of false positive and false negative predictions by EGT2-L3 in
Levy/Holt test set, with predicted scores.

Error Types Examples
False Negative

Sparsity (46%)
Pain relieves by application
of Chloroform. → Chloro-
form reduces pain. (0.0)

Under-weighted
Relations (23%)

The Druids build the
Stonehenge. → The Druids
construct the Stonehenge.
(0.558)

Dataset Wrong
Labels (31%)

Salicylates reduces pain.
→ Salicylates is given for
pain. (0.034)

False Positive
Spurious Cor-
relation (68%)

The cat sleeps on a fur. →
The cat has a fur. (0.683)

Lemma-based
Process (5%)

Lincoln comes to New
York. → Lincoln comes
from New York. (0.867)

Dataset Wrong
Labels (27%)

The lamps are made of
metal. → the lamps are
made of metal. (1.0)

relationship Wa,c should be helpful to detect spurious premises Wa,b and Wb,c. Therefore, EGT2-L3

slightly outperforms EGT2-L1 as the gradients of Wa,b and Wb,c in L3 are related to the hypothesis
relationship Wa,c.

We have also applied the soft transitivity constraints on the local graph with BInc and Hosseini
et al. (2019), but observed only slightly improvement of performance, as .155 → .157 and .167 →
.170 for EGT2-L3 on PRC of Levy/Holt Dataset respectively. Comparing it with the significant
improvement based on EGT2-Local, we claim that the high-quality local entailment graphs are the
basis of effective soft transitivity constraints.

5.4 ERROR ANALYSIS

We randomly sample and analyze 100 false positive (FP) examples and 100 false negative (FN)
examples from Levy/Holt test set according to predictions by EGT2-L3. We manually setup the
decision threshold as 0.574 to make the precision level close to 0.76, which is the same as Berant
et al. (2011). The major error types are shown in Table 4. Although the global constraint is used,
about half of FN errors are due to the data sparsity where the entailment relations are not found in
the entailment graph. When compared with the results in Hosseini et al. (2018), EGT2-L3 reduces
the ratio of Sparsity in FN errors from 93% to 46% with stronger alleviation ability of data sparsity.
About a quarter of FN are caused by the Under-weighted Relations in the graph, where EGT2 finds
the entailment relations but gives them scores lower than the threshold.

Most of FP errors are caused by the Spurious Correlation as these relations are too fraudulent for
EGT2 to see through their spurious relationships and consequently given high scores. A few FP
errors are caused by Lemma-based Processing in LM inevitably, but the ratio still reduces from 12%
in Hosseini et al. (2018) to 5%. The result indicates that our fine-tuned LM can handle the predicates
even with similar surface forms and contexts better than parsing-based distributional local features.

6 CONCLUSIONS

In this paper, we propose a novel typed entailment graphs learning framework, EGT2, which utilizes
fine-tuned textual entailment LM to calculate local entailment scores and applies soft transitivity
constraints to learn global entailment graphs in gradient-based method. The transitivity constraints
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are achieved by carefully designed loss functions, and effectively boost the quality of local entail-
ment graphsBy using the fine-tuned local LM and global soft constraints, EGT2 does not rely on
distributional features, and can be easily applied to large-scale graphs. Experiments on standard
benchmark datasets show that EGT2 achieves significantly better performance than existing state-
of-the-art entailment graph methods.
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