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ABSTRACT

Sample efficiency and performance in the offline setting have emerged as among the
main challenges of deep reinforcement learning. We introduce Q-Value Weighted
Regression (QWR), a simple RL algorithm that excels in these aspects. QWR is
an extension of Advantage Weighted Regression (AWR), an off-policy actor-critic
algorithm that performs very well on continuous control tasks, also in the offline
setting, but struggles on tasks with discrete actions and in sample efficiency. We
perform a theoretical analysis of AWR that explains its shortcomings and use
the insights to motivate QWR theoretically. We show experimentally that QWR
matches state-of-the-art algorithms both on tasks with continuous and discrete
actions. We study the main hyperparameters of QWR and find that it is stable in a
wide range of their choices and on different tasks. In particular, QWR yields results
on par with SAC on the MuJoCo suite and – with the same set of hyperparameters –
yields results on par with a highly tuned Rainbow implementation on a set of Atari
games. We also verify that QWR performs well in the offline RL setting, making it
a compelling choice for reinforcement learning in domains with limited data.

1 INTRODUCTION

Deep reinforcement learning has been applied to a large number of challenging tasks, from games
(Silver et al., 2017; OpenAI, 2018; Vinyals et al., 2017) to robotic control (Sadeghi & Levine, 2016;
OpenAI et al., 2018; Rusu et al., 2016). Since RL makes minimal assumptions on the underlying
task, it holds the promise of automating a wide range of applications. However, its widespread
adoption has been hampered by a number of challenges. Reinforcement learning algorithms can be
substantially more complex to implement and tune than standard supervised learning methods and
can have a fair number of hyper-parameters and be brittle with respect to their choices, and may
require a large number of interactions with the environment.

These issues are well-known and there has been significant progress in addressing them. The policy
gradient algorithm REINFORCE (Williams (1992)) is simple to understand and implement, but
is both brittle and requires on-policy data. Proximal Policy Optimization (PPO, Schulman et al.
(2017)) is a more stable on-policy algorithm that has seen a number of successful applications despite
requiring a large number of interactions with the environment. Soft Actor-Critic (SAC, Haarnoja et al.
(2018)) is a much more sample-efficient off-policy algorithm, but it is defined only for continuous
action spaces and does not work well in the offline setting, known as batch reinforcement learning,
where all samples are provided from earlier interactions with the environment, and the agent cannot
collect more samples. Advantage Weighted Regression (AWR, Peng et al. (2019)) is a recent off-
policy actor-critic algorithm that works well in the offline setting and is built using only simple and
convergent maximum likelihood loss functions, making it easier to tune and debug. It is competitive
with SAC given enough time to train, but is less sample-efficient and has not been demonstrated to
succeed in settings with discrete actions.

We replace the value function critic of AWR with a Q-value function. Next, we add action sampling to
the actor training loop. Finally, we introduce a custom backup to the Q-value training. The resulting
algorithm, which we call Q-Value Weighted Regression (QWR) inherits the advantages of AWR but
is more sample-efficient and works well with discrete actions and in visual domains, e.g., on Atari
games.
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To better understand QWR we perform a number of ablations, checking different number of samples
in actor training, different advantage estimators, and aggregation functions. These choices affect the
performance of QWR only to a limited extent and it remains stable with each of the choices across
the tasks we experiment with.

We run experiments with QWR on the MuJoCo environments and on a subset of the Atari Learning
Environment. Since sample efficiency is our main concern, we focus on the difficult case when the
number of interactions with the environment is limited – in most our experiments we limit it to 100K
interactions. The experiments demonstrate that QWR is indeed more sample-efficient than AWR. On
MuJoCo, it performs on par with Soft Actor-Critic (SAC), the current state-of-the-art algorithm for
continuous domains. On Atari, QWR performs on par with OTRainbow, a variant of Rainbow highly
tuned for sample efficiency. Notably, we use the same set of hyperparameters (except for the network
architecture) for both our final MuJoCo and Atari experiments.

2 Q-VALUE WEIGHTED REGRESSION

2.1 ADVANTAGE WEIGHTED REGRESSION

Peng et al. (2019) recently proposed Advantage Weighted Regression (AWR), an off-policy, actor-
critic algorithm notable for its simplicity and stability, achieving competitive results across a range of
continuous control tasks. It can be expressed as interleaving data collection and two regression tasks
performed on the replay buffer, as shown in Algorithm 1.

Algorithm 1 Advantage Weighted Regression.
1: θ ← random actor parameters
2: φ← random critic parameters
3: D ← ∅
4: for k in 0..n_iterations− 1 do
5: add trajectories {τi} sampled by πθ to D
6: for i in 0..n_critic_steps− 1 do
7: sample (s,a) ∼ D
8: φ← φ− αV∇φ

[
||Rs,a
D − Vφ(s)||2

]
9: end for

10: for i in 0..n_actor_steps− 1 do
11: sample (s,a) ∼ D
12: θ ← θ + απ∇θ

[
log πθ(a|s) exp( 1β (R

s,a
D − Vφ(s))

]
13: end for
14: end for

AWR optimizes expected improvement of an actor policy π(a|s) over a sampling policy µ(a|s) by
regression towards the well-performing actions in the collected experience. Improvement is achieved
by weighting the actor loss by exponentiated advantage Aµ(s,a) of an action, skewing the regression
towards the better-performing actions. The advantage is calculated based on the expected return
Rs,a
µ achieved by performing action a in state s and then following the sampling policy µ. To

calculate the advantage, one first estimates the value, Vµ(s), using a learned critic and then computes
Aµ(s,a) = Rs,a

µ − Vµ(s). This results in the following formula for the actor:

argmax
π

Es∼dµ(s)Ea∼µ(·|s)

[
log π(a|s) exp

(
1

β
(Rs,a

µ − Vµ(s))
)]

, (1)

where dµ(s) =
∑∞
t=1 γ

t−1p(st = s|µ) denotes the unnormalized, discounted state visitation distri-
bution of the policy µ, and β is a temperature hyperparameter.

The critic is trained to estimate the future returns of the sampling policy µ:
argmin

V
Es∼dµ(s)Ea∼µ(·|s)

[
||Rs,a

µ − V (s)||2
]
. (2)

To achieve off-policy learning, the actor and the critic are trained on data collected from a mixture of
policies from different training iterations, stored in the replay buffer D.
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2.2 ANALYSIS OF AWR WITH LIMITED DATA

While AWR achieves very good results after longer training, it is not very sample efficient, as noted
in the future work section of (Peng et al., 2019). To understand this problem, we analyze a single
loop of actor training in AWR under a special assumption.

The assumption we introduce, called state-determines-action, concerns the content of the replay
buffer D of an off-policy RL algorithm. The replay buffer contains all state-action pairs that the
algorithm has visited so far during its interactions with the environment. We say that a replay buffer
D satisfies the state-determines-action assumption when for each state s in the buffer, there is a
unique action that was taken from it, formally:

for all (s, a), (s′, a′) ∈ D : s = s′ =⇒ a = a′.

This assumption may seem very limiting and indeed – it is not true in many artificial experiments
with RL algorithms, such as Atari games. Even a random policy starting from the same state could
violate the assumption the second time it collects a trajectory. But note that this assumption is almost
always satisfied in real-world experiments with high-dimensional state spaces as any amount of noise
added to a high-dimensional space will make repeating the exact same state highly improbable. For
example, consider a robot observing 32x32 pixel images. To repeat a state, each of the 1024 pixels
would have to have exactly the same value, which is highly improbable even with a small amount
of noise. This assumption also holds in cases with limited data. When only a few trajectories are
collected in a large state space, it is unlikely a state will be repeated in the replay buffer, which makes
the assumption relevant to the study of sample efficiency.

How does AWR perform under the state-determines-action assumption? In Theorem 1, formulated
and proven in Appendix A.2, we show that the AWR update rule under this assumption will converge
to a policy that assigns probability 1 to the actions already present in the replay buffer, thus cloning
the previous behaviors. This is not the desired behavior, as an agent should consider various actions
from each state, to ensure exploration.

The state-determines-action assumption is the main motivating point behind QWR, whose theoretical
properties are proven in Theorem 2 in Appendix A.3. We now illustrate the importance of this
assumption by creating a simple environment in which it holds with high probability. We verify
experimentally that AWR fails on this simple environment, while QWR is capable of solving it.

The environment, which we call BitFlip, is parameterized by an integer N . The state of the environ-
ment consists of N bits and a step counter. The action space consists of N actions. When an action i
is chosen, the i-th bit is flipped and the step counter is incremented. A game of BitFlip starts in a
random state with the step counter set to 0, and proceeds for 5 steps. The initial state is randomized in
such a way to always leave at least 5 bits set to 0. At each step, the reward is +1 if a bit was flipped
from 0 to 1 and the reward is −1 in the opposite case.

Since BitFlip starts in one random state out of 2N , at large enough N it is highly unlikely that the
starting state will ever be repeated in the replay buffer. As the initial policy is random and BitFlip
maintains a step counter to prevent returning to a state, the same holds for subsequent states.

BitFlip is a simple game with a very simple strategy, but the initial replay buffer will satisfy the state-
determines-action assumption with high probability. As we will see, this is enough to break AWR.

Figure 1: AWR and QWR on the BitFlip environment. The maximum possible return is 5.
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We ran both AWR and QWR on BitFlip for different values of N , for 10 iterations per experiment. In
each iteration we collected 1000 interactions with the environment and trained both the actor and the
critic for 300 steps. All shared hyperparameters of AWR and QWR were set to the same values, and
the backup operator in QWR was set to mean. We report the mean out of 10 episodes played by the
trained agent. The results are shown in Figure 1.

As we can see, the performance of AWR starts deteriorating at a relatively small value of N = 8,
which corresponds to a state space with 5 ·28 = 1280 states, while QWR maintains high performance
even at N = 30, so around 5 · 109 states. Notice how the returns of AWR drop with N – at higher
values: 20− 30, the agent struggles to flip even a single zero bit. This problem with AWR and large
state spaces motivates us to introduce QWR next.

2.3 Q-VALUE WEIGHTED REGRESSION

To remedy the issue indicated by Theorem 1, we introduce a mechanism to consider multiple different
actions that can be taken from a single state. We calculate the advantage of the sampling policy µ
based on a learned Q-function: Aµ(s,a) = Qµ(s,a) − V̂µ(s), where V̂µ(s) is the expected return
of the policy µ, expressed using Qµ by expectation over actions: V̂µ(s) = Ea∼µ(·|s)Qµ(s,a). We
substitute our advantage estimator into the AWR actor formula (Equation 1) to obtain the QWR actor:

argmax
π

Es∼dµ(s)Ea∼µ(·|s)

[
log π(a|s) exp

(
1

β
(Qµ(s,a)− V̂µ(s))

)]
. (3)

Similar to AWR, we implement the expectation over states in Equation 3 by sampling from the
replay buffer. However, to estimate the expectation over actions, we average over multiple actions
sampled from µ during training. Because the replay buffer contains data from multiple different
sampling policies, we store the parameters of the sampling policy µ(a|s) conditioned on the current
state in the replay buffer and restore it in each training step to compute the loss. This allows us to
consider multiple different possible actions for a single state when training the actor, not only the one
performed in the collected experience.

The use of a Q-network as a critic provides us with an additional benefit. Instead of regressing it
towards the returns of our sampling policy µ, we can train it to estimate the returns of an improved
policy µ?, in a manner similar to Q-learning. This allows us to optimize expected improvement
over µ?, providing a better baseline - as long as Ea∼µ?(·|s)Qµ(s,a) ≥ Ea∼µ(·|s)Qµ(s,a), the policy
improvement theorem for stochastic policies (Sutton & Barto, 2018, Section 4.2) implies that the
policy µ? achieves higher returns than the sampling policy µ:

Ea∼µ?(·|s)Qµ(s,a) ≥ Vµ(s)⇒ Vµ?(s) ≥ Vµ(s) (4)

µ? need not be parametric - in fact, it is not materialized in any way over the course of the algorithm.
The only requirement is that we can estimate the Q backup Ea∼µ?(·|s)Q(s,a). This allows great
flexibility in choosing the form of µ?. Since we want our method to work also in continuous action
spaces, we cannot compute the backup exactly. Instead, we estimate it based on several samples from
the sampling policy µ. Our backup has the form Ea1,...,ak∼µ(·|s)F ({Q(s,a1), ..., Q(s,ak)}). In this
work, we extend the term Q-learning to mean training a Q-value using such a generalized backup.
To make training of the Q-network more efficient, we use multi-step targets, described in detail in
Appendix A.4. The critic optimization objective using single-step targets is:

argmin
Q

Es∼dµ(s)Ea∼µ(a|s)Es′∼T (·|s,a)Ea′1,...,a′k∼µ(·|s′)
[
||Q? −Q(s,a)||2

]
,

where Q? = r(s,a) + γF ({Qµ(s,a1), ..., Qµ(s,ak)})
and T (s′|s,a) is the environment’s transition operator.

(5)

In this work, we investigate three choices of F : average, yielding µ? = µ; max, where µ? approx-
imates the greedy policy; and log-sum-exp, F (X) = τ log

[
1
|X|
∑
x∈X exp(x/τ)

]
, interpolating

between average and max with the temperature parameter τ . This leads to three versions of the QWR
algorithm: QWR-AVG, QWR-MAX, and QWR-LSE. The last operator, log-sum-exp, is similar to the
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backup operator used in maximum-entropy reinforcement learning (see e.g. Haarnoja et al. (2018))
and can be thought of as a soft-greedy backup, rewarding both high returns and uncertainty of the
policy. It is our default choice and the final algorithm is shown in Algorithm 2.

Algorithm 2 Q-Value Weighted Regression.
1: θ ← random actor parameters
2: φ← random critic parameters
3: D ← ∅
4: for k in 0..n_iterations− 1 do
5: add trajectories {τi} sampled by πθ to D
6: φt ← φ
7: for i in 0..n_critic_steps− 1 do
8: if i mod update_frequency = 0 then
9: φt ← φ

10: end if
11: sample (s, µ,a, r, s′) ∼ D
12: sample a′0, ...,a

′
n−1 ∼ µ(·|s′)

13: Q? ← r+ γF ({Qφt(s′,a′0), ..., Qφt(s′,a′n−1)})
14: φ← φ− αV∇φ

[
||Q? −Qφ(s,a)||2

]
15: end for
16: for i in 0..n_actor_steps− 1 do
17: sample (s, µ, ...) ∼ D
18: sample a0, ...,an−1 ∼ µ(·|s)
19: V̂ ← 1

n

∑n−1
j=0 Qφ(s,aj)

20: θ ← θ + απ∇θ 1
n

∑n−1
j=0

[
log πθ(aj |s) exp( 1β (Qφ(s,aj)− V̂ ))

]
21: end for
22: end for

3 RELATED WORK

Reinforcement learning algorithms. Recent years have seen great advances in the field of rein-
forcement learning due to the use of deep neural networks as function approximators. Mnih et al.
(2013b) introduced DQN, an off-policy algorithm learning a parametrized Q-value function through
updates based on the Bellman equation. The DQN algorithm only computes the Q-value function, it
does not learn an explicit policy. In contrast, policy-based methods such as REINFORCE (Williams,
1992) learn a parameterized policy, typically by following the policy gradient (Sutton et al., 1999)
estimated through Monte Carlo approximation of future returns. Such methods suffer from high
variance, causing low sample efficiency. Actor-critic algorithms, such as A2C and A3C (Sutton et al.,
2000; Mnih et al., 2016), decrease the variance of the estimate by jointly learning policy and value
functions, and using the latter as an action-independent baseline for calculation of the policy gradient.
The PPO algorithm (Schulman et al., 2017) optimizes a clipped surrogate objective in order to allow
multiple updates using the same sampled data.

Continuous control. Lillicrap et al. (2015) adapted Q-learning to continuous action spaces. In ad-
dition to a Q-value function, they learn a deterministic policy function optimized by backpropagating
the gradient through the Q-value function. Haarnoja et al. (2018) introduce Soft Actor-Critic (SAC):
a method learning in a similar way, but with a stochastic policy optimizing the Maximum Entropy RL
(Levine, 2018) objective. Similarly to our method, SAC also samples from the policy during training.

Advantage-weighted regression. The QWR algorithm is a successor of AWR proposed by Peng
et al. (2019), which in turn is based on Reward-Weighted Regression (RWR, Peters & Schaal (2007))
and AC-REPS proposed by Wirth et al. (2016). Mathematical and algorithmical foundations of
advantage-weighted regression were developed by Neumann & Peters (2009). The algorithms share
the same good theoretical properties: RWR, AC-REPS, AWR, and QWR losses can be mathematically
reformulated in terms of KL-divergence with respect to the optimal policy (see formulas (7)-(10) in
Peng et al. (2019)). QWR is different from AWR in the following key aspects: instead of empirical
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returns in the advantage estimation we train a Q function (see formulas 1 and 3 below for precise
definition) and use sampling for the actor. QWR is different from AC-REPS as it uses deep learning
for function approximation and Q-learning for fitting the critic, see Section 2.

Several recent works have developed algorithms similar to QWR. We provide a brief overview and
ways of obtaining them from the QWR pseudocode (Algorithm 2). AWR can be recovered by learning
a value function V (s) as a critic (Line 14) and sampling actions from the replay buffer (lines 12
and 18 in Algorithm 2). AWAC (Nair et al., 2020) modifies AWR by learning a Q-function for the
critic. We get it from QWR by sampling actions from the replay buffer (lines 12 and 18). Note that
compared to AWAC, by sampling multiple actions for each state, QWR is able to take advantage
of Q-learning to improve the critic. CRR (Wang et al., 2020) augments AWAC with training a
distributional Q-function in Line 14 and substituting different functions for computing advantage
weights in Line 20 1. Again, compared to CRR, QWR samples multiple actions for each state, and
so can take advantage of Q-learning. In a way similar to QWR, MPO (Abdolmaleki et al., 2018)
samples actions during actor training to improve generalization. Compared to QWR, it introduces a
dual function for dynamically tuning β in Line 20, adds a prior regularization for policy training and
trains the critic using Retrace (Munos et al., 2016) targets in line 13. QWR can be thought of as a
significant simplification of MPO, with addition of Q-learning to provide a better baseline for the
actor. Additionally, the classical DQN (Mnih et al., 2013a) algorithm for discrete action spaces can be
recovered from QWR by removing the actor training loop (lines 16-21), computing a maximum over
all actions in Q-network training (line 13) and using an epsilon-greedy policy w.r.t. the Q-network
for data collection.

Offline reinforcement learning. Offline RL is the main topic of the survey Levine et al. (2020).
The authors state that “offline reinforcement learning methods equipped with powerful function
approximation may enable data to be turned into generalizable and powerful decision making
engines”. We see this as one of the major challenges of modern RL and this work contributes to this
challenge. Many current algorithms perform to some degree in offline RL, e.g., variants of DDPG
and DQN developed by Fujimoto et al. (2018); Agarwal et al. (2019), as well as the MPO algorithm
by Abdolmaleki et al. (2018) are promising alternatives to AWR and QWR analyzed in this work.

ABM (Siegel et al., 2020) is a method of extending RL algorithms based on policy networks to
offline settings. It first learns a prior policy network on the offline dataset using a loss similar to
Equation 1, and then learns the final policy network using any algorithm, adding an auxiliary term
penalizing KL-divergence from the prior policy. CQL (Kumar et al., 2020) is a method of extending
RL algorithms based on Q-networks to offline settings by introducing an auxiliary loss. To compute
the loss, CQL samples actions on-line during training of the Q-network, similar to Line 14 in QWR.
EMaQ (Ghasemipour et al., 2020) learns an ensemble of Q-functions using an Expected-Max backup
operator and uses it during evaluation to pick the best action. The Q-network training part is similar
to QWR with F = max in line 13 in Algorithm 2.

The imitation learning algorithm MARWIL by Wang et al. (2018) confirms that the advantage-
weighted regression performs well in the context of complex games.

4 EXPERIMENTS

Neural architectures. In all MuJoCo experiments, for both value and policy networks, we use
multi-layer perceptrons with two layers 256 neurons each, and ReLU activations. In all Atari
experiments, for both value and policy networks, we use the same convolutional architectures as in
Mnih et al. (2013a). To feed actions to the network, we embed them using one linear layer, connected
to the rest of the network using the formula o · tanh(a) where o is the processed observation and a is
the embedded action. This is followed by the value or policy head. For the policy, we parameterize
either the log-probabilities of actions in case of discrete action spaces, or the mean of a Gaussian
distribution in case of continuous action spaces, while keeping the standard deviation constant, as 0.4.

1CRR sets the advantage weight function f to be a hyperparameter in log πθ(aj |s)f(Qφ(s, aj) − V̂ )
(Line 20). In QWR, f(x) = exp(x/β).
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Algorithm Half-Cheetah Walker Hopper Humanoid
QWR-LSE 2323± 332 1301± 445 1758± 735 511± 57
QWR-MAX 2250± 254 1019± 1185 1187± 345 503± 49
QWR-AVG 1691± 682 1052± 231 420± 65 455± 41
AWR −0.4± 0 67± 11 110± 81 500± 4
SAC 5492± 8 493± 6 1197± 175 645± 27
PPO 51± 41 −14± 98 15± 75 72± 18

Table 1: Comparison of variants of QWR with AWR (Peng et al., 2019), SAC (Haarnoja et al., 2018)
and PPO (Schulman et al., 2017) on 4 MuJoCo environments at 100K samples.

Algorithm Boxing Breakout Freeway Gopher Pong Seaquest
QWR-LSE 4.6 8 21.2 776 −7.6 308
QWR-MAX −1.8 0.8 16.8 580 −2 252
QWR-AVG −0.8 1.4 19.2 548 −9 296
PPO −3.9 5.9 8 246 −20.5 370
OTRainbow 2.5 1.9 27.9 349.5 −19.3 354.1
MPR 16.1 14.2 23.1 341.5 −10.5 361.8
MPR-aug 30.5 15.6 24.6 593.4 −3.8 603.8
SimPLe 9.1 16.4 20.3 845.6 12.8 683.3
Random 0.1 1.7 0 257.6 −20.7 68.4

Table 2: Comparison of variants of QWR with the sample-efficient variant of Rainbow (Hessel et al.,
2017; van Hasselt et al., 2019), MPR (Schwarzer et al., 2020), SimPLe (Kaiser et al., 2019) and
random scores on 6 Atari games at 100K samples. We report results of the the augmented and
on-augmented version of the MPR algorithm. Since MPR and SimPLe are based on learning a model
of the environment, we do not consider them when choosing the best scores.

4.1 SAMPLE EFFICIENCY

Since we are concerned with sample efficiency, we focus our first experiments on the case when
the number of interactions with the environment is limited. To use a single number that allows
comparisons with previous work both on MuJoCo and Atari, we decided to restrict the number of
interactions to 100K. This number is high enough, that the state-of-the-art algorithms such as SAC
reach good performance.

We run experiments on 4 MuJoCo environments and 6 Atari games, evaluating three versions of QWR
with the 3 backup operators introduced in Section 2.3: QWR-LSE (using log-sum-exp), QWR-MAX
(using maximum) and QWR-AVG (using average). For all those experiments, we set the Q target
truncation horizon T to 3 and the number of action samples k to 8. We discuss the choice of these
values and show ablations below, while more experimental details are given in Appendix A.1.

In Tables 1 and 2 we present the final numbers at 100K samples for the considered algorithms and
environments. To put them within a context, we also provide numbers for SAC, PPO, OTRainbow - a
variant of Rainbow tuned for sample efficiency, MPR and SimPLe.

On all considered MuJoCo tasks, QWR exceeds the performance of AWR and PPO. The better sample
efficiency is particularly well visible in the case of Walker, where each variant of QWR performs
better than any baseline considered. On Hopper, QWR-LSE - the best variant - outpaces all baselines
by a large margin. On Humanoid, it comes close to SAC - the state of the art on MuJoCo.

QWR surpasses PPO and Rainbow in 4 out of 6 Atari games. In Gopher and Pong QWR wins even
against the augmented and non-augmented versions of the model-based MPR algorithm.

4.2 ABLATIONS

In Figure 2 we provide an ablation of QWR with respect to the backup method F , multistep target
horizon T ("margin") and the number of action samples k to consider when training the actor and the
critic. As we can see, the algorithm is fairly robust to the choice of these hyperparameters.
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(a) QWR-LSE, margin 1. (b) QWR-LSE, margin 3. (c) QWR-LSE, margin 7.

(d) QWR-MAX, margin 1. (e) QWR-MAX, margin 3. (f) QWR-MAX, margin 7.

Figure 2: Ablation of QWR with respect to the margin, the number of action samples and the method
of training the critic. The results are shown on the Half-Cheetah environment. The plots show the
median of 5 runs with the shaded area denoting the interquartile range.

In total, the log-sum-exp backup (LSE) achieves the best results – compare Figure 2b and Figure 2e.
Max backup performs well with margin 1, but is more sensitive to higher numbers of samples –
compare Figure 2d and Figure 2e. The log-sum-exp backup is less vulnerable to this effect – compare
Figure 2a and Figure 2d. Higher margins decrease performance – see Figure 2c and Figure 2b. We
conjecture this to be due to stale action sequences in the replay buffer biasing the multi-step targets.
Again, the log-sum-exp backup is less prone to this issue – compare Figure 2c to Figure 2f.

4.3 OFFLINE RL

Both QWR and AWR are capable of handling expert data. AWR was shown to behave in a stable way
when provided only with a number of expert trajectories (see Figure 7 in Peng et al. (2019)) without
additional data collection. In this respect, the performance of AWR is much more robust than the
performance of PPO and SAC. In Figure 3 we show the same result for QWR – in terms of re-using
the expert trajectories, it matches or exceeds AWR. The QWR trainings based on offline data were
remarkably stable and worked well across all environments we have tried.

For the offline RL experiments, we have trained each algorithm for 30 iterations, without additional
data collection. The training trajectories contained only states, actions and rewards, without any
algorithm-specific data. In QWR, we have set the per-step sampling policies µ to be Gaussians with
mean at the performed action and standard deviation set to 0.4, as usual in MuJoCo experiments.

5 DISCUSSION AND FUTURE WORK

We present Q-value Weighted Regression (QWR), an off-policy actor-critic algorithm that extends
Advantage Weighted Regression with action sampling and Q-learning. It is significantly more sample-
efficient than AWR and works well with discrete actions and in visual domains, e.g., on Atari games.
QWR consists of two interleaved steps of supervised training: the critic learning the Q function using
a predefined backup operator, and the actor learning the policy with weighted regression based on
multiple sampled actions. Thanks to this clear structure, QWR is simple to implement and debug. It
is also stable in a wide range of hyperparameter choices and works well in the offline setting.
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(a) HalfCheetah (b) Hopper (c) Walker2d

(d) HalfCheetah (e) Hopper (f) Walker2d

Figure 3: Figures 3a, 3b and 3c show offline trainings based on 50 trajectories of length 1000
collected by diverse policies. The horizontal lines mark the average return of a policy from the
dataset. The bars denote median returns out of 4 runs, and the vertical lines denote the interquartile
range. Data for figures 3d, 3e and 3f is borrowed from Peng et al. (2019) to cover a broader family of
algorithms and show that offline training fails for many RL algorithms.

Importantly, we designed QWR thanks to a theoretical analysis that revealed why AWR may not
work when there are limits on data collection in the environment. Our analysis for the limited data
regime is based on the state-determines-action assumption that allows to fully solve AWR analytically
while still being realistic and indicative of the performance of this algorithm with few samples. We
believe that using the state-determines-action assumption can yield important insights into other RL
algorithms as well.

QWR already achieves state-of-the-art results in settings with limited data and we believe that it can
be further improved in the future. The critic training could benefit from the advances in Q-learning
methods such as double Q-networks (van Hasselt et al., 2015) or Polyak averaging (Polyak, 1990),
already used in SAC. Distributional Q-learning Bellemare et al. (2017) and the use of ensembles like
REM Agarwal et al. (2020) could yield further improvements.

Notably, the QWR results we present are achieved with the same set of hyperparameters (except for
the network architecture) both for MuJoCo environments and for Atari games. This is rare among
deep reinforcement learning algorithms, especially among ones that strive for sample-efficiency.
Combined with its stability and good performance in offline settings, this makes QWR a compelling
choice for reinforcement learning in domains with limited data.
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