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Abstract

Intent classification is an essential task for001
goal-oriented dialogue systems, in order to002
automatically identify customers’ goals. Al-003
though intent classification performs well in004
general settings, domain-specific user goals005
can still present a challenge for this task. To006
address this challenge, we automatically gen-007
erate knowledge graphs for targeted datasets to008
capture domain-specific knowledge and lever-009
age embeddings trained on these knowledge010
graphs for the intent classification task. We011
compare our results with state-of-the-art pre-012
trained sentence embeddings. Our evaluation013
on three datasets show improvement on the in-014
tent classification task in terms of precision.015

1 Introduction016

A large part of global business is in the consumer017

domain, providing services such as consumer pay-018

ments, mobile cloud, and more. In providing these019

services to the customers, a business also needs020

to provide services to satisfy the customer needs021

that arise from their customer base (Temerak and022

El-Manstrly, 2019). Much of this support is pro-023

vided through online interactions in the form of024

web chats. The ability to address these customer025

requests more efficiently can be of a significant026

business benefit.027

The intent classification task is the automated028

categorisation of text, based on customer goals. It029

uses the concept of machine learning (ML) and nat-030

ural language processing (NLP) to categorise a text031

string with different intents. In a general setting, a032

sentence like "Where is the best place to buy a tele-033

vision?" could be associated with the purchase034

intent. Since most goal-oriented dialogue systems035

are used to engage with customers through per-036

sonalised conversations, intent classification is an037

essential component of these systems, where in-038

tent can be aligned with responses to a customer039

after typing in a question. The automated classifi-040

cation of user’s intent reduces the manual effort for041

analysing user comments to identify avenues for 042

improvements and issue remediation. 043

To enrich the classical classification task with 044

domain-specific knowledge, we focus in this work 045

on automatic Knowledge Graph (KG) generation. 046

For this, we perform term extraction, named en- 047

tity recognition (NER) and dependency parsing to 048

align the concepts (terms and named entities) with 049

semantic relations. We focus on publicly avail- 050

able datasets as well as on a proprietary domain- 051

specific dataset in the telecommunication domain, 052

where a classifier has to discriminate which utter- 053

ance belongs to which intent class. For this, we 054

generate automatically KGs based on the datasets 055

used in this study. We distinguish between generic 056

and domain-specific KGs. Since the automatically 057

generated KGs are based on domain-specific data, 058

they emphasise the depth of knowledge. We com- 059

pare these results to a general KG, i.e., DBpedia 060

(Lehmann et al., 2015), which is based on common 061

knowledge and emphasises the breadth of knowl- 062

edge. Within the process of KG generation, we 063

evaluate the knowledge extraction, in particular, 064

the extraction of entity classes and semantic rela- 065

tions between them, as expressed within the dataset. 066

Finally, we leverage this information as Knowledge 067

Graph Embeddings (KGEs) for intent classification 068

according to extracted classes and relations. 069

2 Related Work 070

In this section, we provide an overview of related 071

work focusing on intent classification using large 072

pre-trained models and the incorporation of exter- 073

nal knowledge for this task. 074

Zhang et al. (2019) demonstrate that informative 075

entities in KGs can enhance language representa- 076

tion with external knowledge. The authors utilize 077

large-scale textual corpora and KGs to train an 078

enhanced language representation model, named 079

ERNIE. The model can leverage lexical, syntactic, 080

and knowledge information simultaneously. Zhang 081
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et al. (2020) focus on the compositional aspects082

for intent classification. The authors decompose083

intents and queries into four factors (topic, pred-084

icate, object/condition, query type). To leverage085

the information they combine coarse-grained in-086

tents and fine-grained factor information applying087

multi-task learning. Purohit et al. (2015) study in-088

tent classification of short text from social media089

combining knowledge-guided patterns with syntac-090

tic features based on a bag of n-gram tokens. The091

authors explored knowledge sources (declarative,092

social behaviour about conversations and contrast093

patterns) to create pattern sets for examining im-094

provement in the multiclass intent classification.095

The work demonstrated a statistically significant096

gain in performance on the dataset collected from097

Twitter only. By leveraging a knowledge-base and098

slot-filling joint model, He et al. (2021) propose a099

multitasking learning intent-detection system. The100

proposed approach has been used to share informa-101

tion and rich external utility between intent and slot102

modules. The LSTM and convolutional networks103

are combined with a knowledge base to improve104

the model’s performance. Zhang et al. (2021a)105

proposed in their work IntentBERT, which is a106

pre-trained model for few-shot intent classifica-107

tion. The model is trained by fine-tuning BERT108

on a small set of publicly available labelled utter-109

ances. The authors demonstrate that using small110

task-relevant data for fine-tuning is far more ef-111

fective and efficient than the current practice that112

fine-tune on a large labelled or unlabeled dialogue113

corpus. Siddique et al. (2021) propose an intent114

detection model, named RIDE, that leverages com-115

monsense knowledge from ConceptNet in an unsu-116

pervised fashion to overcome the issue of training117

data scarcity. The model computes robust and gen-118

eralisable relationship meta-features that capture119

deep semantic relationships between utterances and120

intent labels. These features are computed by con-121

sidering how the concepts in an utterance are linked122

to those in an intent label via commonsense knowl-123

edge. Shabbir et al. (2021) present the generation124

of accurate intents for unstructured data in roman-125

ised Urdu and integrate this corpus in a RASA126

NLU module for intent classification. The authors127

embed the KG with the RASA framework to main-128

tain the dialogue history for semantic-based natural129

language mechanism for chatbot communication130

and compare results with existing linguistic sys-131

tems combined with semantic technologies. Hu132

et al. (2009) propose a general methodology to the133

problem of query intent classification by leverag- 134

ing Wikipedia, one of the largest human knowledge 135

bases. The Wikipedia concepts are used as the in- 136

tent representation space, thus, each intent domain 137

is represented as a set of Wikipedia articles and 138

categories. The intent of any input query is identi- 139

fied through mapping the query into the Wikipedia 140

representation space. The authors demonstrate the 141

effectiveness of this method in three different appli- 142

cations, i.e., travel, job, and person name. Cavalin 143

et al. (2020) explore intent classification where 144

class labels are not represented as a discrete set 145

of symbols but as a space where the word graphs 146

associated with each class are mapped using typi- 147

cal graph embedding techniques. This allows the 148

classification algorithm to take into account inter- 149

class similarities provided by the repeated occur- 150

rence of some words in the training examples of 151

the different classes. The classification is carried 152

out by mapping text embeddings to the word graph 153

embeddings of the classes. Their results demon- 154

strate a considerable positive impact for the detec- 155

tion of out-of-scope examples when an appropri- 156

ate sentence embedding such as LSTM and BERT 157

is used. Ahmad et al. (2021) explored a joint in- 158

tent classification and slot-filling task with unsuper- 159

vised information extraction for KG construction. 160

The authors trained the intent classifier in a super- 161

vised way but used this intent classifier for the slot- 162

filling task in an unsupervised manner. They train 163

a BERT based classifier for the intent classification 164

task, which is used in a masking based occlusion 165

algorithm, that extracts information for the slots 166

from an utterance. A KG construction algorithm 167

from dialogue data is also described in this paper. 168

Within their evaluation, they observed that in a com- 169

pletely unsupervised setting the occlusion based 170

slot-information extraction method yields good re- 171

sults. Furthermore, Pinhanez et al. (2021) leverage 172

symbolic knowledge from curators of conversa- 173

tional systems to improve the accuracy of those 174

systems. The authors use the context of a real- 175

world practice of curators of conversational sys- 176

tems who often embed taxonomically-structured 177

meta-knowledge, i.e. Knowledge Graphs, into 178

their documentation. The work demonstrates that 179

the Knowledge Graphs can be integrated into the 180

dialogue system, to improve its accuracy and to 181

enable tools to support curatorial tasks. Zhang 182

et al. (2021b) focus on the performance of few-shot 183

intent detection leveraging pre-training and fine- 184

tuning approaches. Within the self-supervised con- 185
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trastive pre-training approach the authors collected186

intent detection datasets without using any labels,187

where the model implicitly learns to separate fine-188

grained intents. In addition, the authors perform189

few-shot fine-tuning based on joint intent classifi-190

cation loss and supervised contrastive learning loss,191

where the supervised contrastive loss encourages192

the model to distinguish intents explicitly. Simi-193

larly, Liu et al. (2021) propose a new framework194

for few-shot intent classification and slot filling195

leveraging explicit-joint learning and supervised-196

contrastive learning. The authors demonstrate that197

explicit-joint learning utilises the close relationship198

between intent classification and slot-filling tasks,199

while supervised-contrastive learning benefits from200

more class-indicative representations.201

Differently from the approaches mentioned202

above, our work focuses on providing domain-203

specific knowledge into the classification model, by204

automatically generating semantically structured205

resources, i.e. Knowledge Graphs, from the tar-206

geted datasets.207

3 Experimental Setup208

To observe the impact of the extracted information209

and the amount of extracted terms present in the210

KG on the intent classification task, we generated211

several KGs. We performed several NLP tasks,212

i.e., term extraction, taxonomy relation extraction,213

NER. We evaluated their performance separately214

by manually curating the automatically generated215

KGs on the proprietary ProductServiceQA dataset,216

which led to "Benchmark" KGs (cf. Table 2).217

3.1 Knowledge Graph Creation218

To automatically generate KGs from the targeted219

datasets, we used the KG extraction framework220

Saffron1 (Bordea et al., 2013).221

3.2 Knowledge Graph Embeddings222

In a given KG, each subject h or object t entity223

can be associated as a point in a continuous vector224

space whereby its relation r can be modelled as225

displacement vectors (h+ r = t) while preserving226

the inherent structure of the KG. In this work, we227

use TuckER (Balažević et al., 2019), a linear model228

based on Tucker decomposition of the binary tensor229

representation of KG triples. This allows us to230

create semantically-enriched KGEs that are used231

in the network embedding layers in our system.232

1https://saffron.insight-centre.org/

3.3 Pre-trained Sentence-Embeddings 233

In this section, we provide a short description of 234

these pre-trained models and how we used them 235

to design our experiments. LASER (Artetxe and 236

Schwenk, 2019) is a multilingual sentence encoder 237

to calculate and use multilingual sentence embed- 238

dings. Created by Facebook Research, it learns 239

joint multilingual sentence representations for 93 240

languages. It uses a single Bi-LSTM encoder 241

combined with a decoder and is trained on pub- 242

licly available corpora. LASER transforms sen- 243

tences into language-independent vectors, which 244

allows it to learn a classifier using training data in 245

any of the covered languages. SBERT (Reimers 246

and Gurevych, 2019) was designed to overcome 247

the drawback of BERT or RoBERTa. While per- 248

forming sentence-pair regression tasks, BERT or 249

RoBERTa require that both the sentences should 250

be fed into the network that leads to a massive 251

computation overhead. SBERT uses a slightly dif- 252

ferent approach to construct semantically meaning- 253

ful sentence embeddings. SBERT uses siamese 254

and triplet network structures for generating the 255

embeddings, which can be compared using cosine- 256

similarity. MPNet (Song et al., 2020) is trained 257

through permuted language modelling (PLM), al- 258

lowing a better understanding of bidirectional con- 259

texts. In contrast to BERT, which neglects depen- 260

dency among predicted tokens, MPNet leverages 261

the dependency among predicted tokens through 262

permuted language modelling and takes auxiliary 263

position information as input to make the model see 264

a full sentence and thus reducing the position dis- 265

crepancy. The model is trained on various corpora 266

(over 160GB of text) and fine-tuned on a variety of 267

down-streaming tasks (GLUE, SQuAD, etc). 268

3.4 Datasets 269

The ComQA dataset2 (Abujabal et al., 2018) con- 270

sist of 11,214 questions of users’ interest, which 271

were collected from WikiAnswers,3 a community 272

question answering website. The dataset contains 273

questions with various challenging phenomena 274

such as the need for temporal reasoning, compari- 275

son, compositionality and unanswerable questions 276

(e.g., Who was the first human being on Mars?). 277

The questions in ComQA are originally grouped 278

into 4,834 clusters, which are annotated with their 279

answer(s) in the form of Wikipedia entities. 280

2http://qa.mpi-inf.mpg.de/comqa/
3https://www.answers.com/
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ProductServiceQA ComQA Paralex

# total samples 7,611 1,829 21,306
# samples (train) 4,795 1,097 12,784

# samples (val) 533 366 4,261
# samples (test) 2,283 366 4,261

# classes 338 272 275

Table 1: Statistics on the datasets used, i.e. ComQA,
Paralex and ProductServiceQA dataset.

The Paralex dataset4 (Fader et al., 2013) con-281

tains paraphrases, their word alignments, and basic282

NLP processed versions of the questions. There are283

about 2.5 million distinct questions and 18 million284

distinct paraphrase pairs. As an example, "What285

are the green blobs in plant cells?" and a green286

substance in the plant cell be the ? represent the287

question pairs within this dataset.288

In addition to the openly accessible datasets, we289

further used a proprietary question-answer dataset,290

named ProductServiceQA dataset. It consists of291

7,611 user queries, such as "Can the VISA and292

MASTER cards be added to the card package?",293

which are distributed among 338 different classes294

(i.e. Bank cards that can be added).295

To align the number of classes of all used296

datasets, we selected from ComQA only the QA297

pairs, which appear more than 6 times in the dataset.298

Similarly, to align a similar set to the ComQA and299

ProductServiceQA, we select the most frequent300

275 classes from the Paralex dataset (Table 1).301

4 Methodology302

In this section, we provide insights on creating KGs303

from the targeted datasets, NER, dependency pars-304

ing for relation extraction and a relation filtering305

approach. Each step of KG generation allowed306

us to evaluate the impact of the semantic informa-307

tion represented in the KG. Table 2 illustrates the308

different KGs generated within this work. We con-309

clude this section with the manual analysis of the310

automatically generated KGs.311

4.1 Knowledge Graph Creation312

The creation of domain-specific KGs follows a313

mixed approach based on the Saffron tool for tax-314

onomy generation, novel NER approaches, rela-315

tion extraction, triple filtering (Figure 1). Domain-316

specific terms and NEs are extracted from the cor-317

pus and used as a base for the generation of a tax-318

onomy. Additional relations are extracted from the319

4http://knowitall.cs.washington.edu/
paralex/

Term 
Extraction

Taxonomy 
Extraction

Dependency 
Parsing

Named Entity 
Extraction

Relation 
Filtering

Question-Answer 
Pairs

Figure 1: Knowledge Graph creation pipeline.

text corpus and filtered, before being added to the 320

taxonomy to form a KG. 321

4.1.1 Taxonomy Generation 322

For taxonomy generation, we follow the approach 323

by Pereira et al. (2019), where the term extraction 324

module is a domain-independent approach, which 325

is corpus-based and implements a four-step process: 326

(i) identification of candidate terms, (ii) scoring, 327

(iii) ranking, and (iv) filtering. The candidate term 328

identification extracts noun phrases and uses other 329

distribution metrics to select candidates. Then, a 330

combination of scoring functions is used to mea- 331

sure the domain relevance of the terms (occurrence- 332

based, context-based, using a reference corpus (e.g. 333

Wikipedia), or based on topic modelling). Finally, 334

terms are ranked by score and the top N is kept 335

for the final list. The taxonomy construction step 336

is constructing a taxonomy from the input set of 337

terms extracted at the previous phase. For each 338

distinct pair of concepts, c, d ∈ C, we attempt to 339

estimate the probability, p(c v d). Based on the 340

probability scores given by the Pairwise Scoring, a 341

likelihood function is defined that represents how 342

likely a given structure of concepts represents a 343

taxonomy for the set of terms provided. Then, a 344

search mechanism is used to find the taxonomy that 345

maximizes the value of the likelihood function. 346

4.1.2 Named Entities Extraction 347

A domain-specific Named Entities (NEs) extrac- 348

tion model was built to extend the term extraction 349

step to include NEs of relevance. A list of NEs that 350

are specific to the dataset was provided and was 351

used to train the NER system. Additionally, Flair 352

was used to apply state-of-the-art NLP models.5 353

5https://github.com/flairNLP/flair
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Benchmark V1 Benchmark V2 Benchmark V3 Auto V1 Auto V2 Auto V3 Auto V4

Taxonomy Y Y Y Y Y Y Y
Semantic Relations N Y Y N Y Y Y

Named Entities N N Y N N Y Y
Triple Filtering N N N N N N Y

Unique Concepts 84 84 97 100 100 908 908
Unique Relations 1 221 221 1 230 259 157

Vocabulary 60 190 392 36 166 468 427

Table 2: Information on different KG information and statistics on the benchmarks and the automatically generated
KG of the ProductServiceQA dataset.

Embedding Prec. Rec. F1

Flair (Forward+Backward) 0.94 0.92 0.93
Flair (forward+backward) + GloVe 0.95 0.92 0.93

Flair (Forward)+GloVe 0.94 0.92 0.93
GloVe 0.92 0.91 0.91
BERT 0.93 0.91 0.93
ELMo 0.94 0.91 0.93

Table 3: Flair evaluation results for different embed-
ding types.

It provides multiple embedding methods, which354

can be used either individually or stacked to find355

the best fit for our dataset. After running several356

experiments with different combinations of stacked357

and individual embeddings, we have chosen358

Flair(forward+backward)+GloVe em-359

bedding as the best fit for our target domain. Table360

3 gives the evaluation result of the experiments361

conducted on ProductServiceQA dataset.362

4.1.3 Dependency-based Relation Extraction363

This task makes use of dependency parsing to con-364

nect terms, based on a given corpus of texts. The365

corpus is parsed using the universal dependencies366

of the Stanford parser (Chen and Manning, 2014)367

implemented in the tool Stanza).6 We replace I,368

me with Customer as the corpus contains ques-369

tions from customers who refer to themselves. All370

dependencies involving a term (extracted previ-371

ously using the Saffron framework) and a verb (us-372

ing the POS information) are extracted. This pro-373

vides a set of predicate-term pairs (nsubj(pay,374

Customer), obj(pay, bill)). For phrasal375

verbs, particles are added to the predicate us-376

ing an hyphen (-) (get-up), and for depen-377

dencies involving a preposition (obl dependency378

type), we concatenate the preposition to the379

predicate (add_to, phone). Triples (term1,380

predicate, term2) are constructed by com-381

bining any dependency pairs where, in the same382

sentence, the same predicate is the head of two de-383

pendencies in the list of pairs obtained in the previ-384

6https://stanfordnlp.github.io/stanza/depparse.html

True Class

Predicted Class

Positive Negative
Positive 97 16
Negative 31 60

Table 4: Evaluation for the relation filtering model.

ous step (e.g. nsubj_obj(Customer, pay, 385

bill)). The triple relations are added to the exist- 386

ing Saffron-constructed taxonomy, by introducing 387

a link labelled using the predicate as a relation be- 388

tween the two terms. 389

4.1.4 Relation Filtering 390

Relation filtering is a fully connected multi-layer 391

perceptron model trained to identify a valid set of 392

triples that are extracted from the dependency pars- 393

ing step. The model is trained on both positive and 394

negative sets of triples on the ProductServiceQA 395

dataset. To obtain the negative set, we interchange 396

subject and object and then evaluate existing triples 397

for duplicates. If the negative triple is not present 398

in the existing set, then we label this triple as a 399

negative example. The evaluation for the relation 400

filtering model is given in Table 4. 401

4.2 Sentence-Embedding Classification 402

We perform sentence embedding based intent clas- 403

sification that is built using some of the ideas pre- 404

sented in (Manjunath and McCrae, 2021). It is a 405

multi-layer feed-forward neural network and the 406

intuition behind it is that each dense layer learns a 407

slightly more abstract representation. We create a 408

sequential model. It is a fully connected network 409

structure with five hidden layers. The dimension of 410

the input layer is decided based on the dimension of 411

the input embedding. The activation function used 412

is ReLU (Nair and Hinton, 2010) and we use the 413

Sigmoid function in the output layer. Categorical 414

Cross-Entropy is used as loss function and Adam 415

(Kingma and Ba, 2015) is used as the optimiser. 416

We apply Dropout between the two hidden layers 417

and between the last hidden layer and the output 418
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layer. We use 30% Dropout rate. The number of419

training epochs are 300 and batch size is 512.420

The embeddings are fed through the above-421

explained network architrave for model building.422

KGEs are generated by running Tucker over the KG423

produced by Saffron. We also used other embed-424

ding such as GloVe, LASER, SBERT, and, MPNet425

in combination with KGEs. Basically, we gener-426

ate an n dimensional embedding, where n varies427

based on the embedding method used. We use vari-428

ous sentence embedding techniques to perform the429

intent classification task. These various sentence430

embedding techniques can be categorised in three431

broad methods. In the first category, the network432

is trained with the state-of-the-art pretrained mod-433

els, i.e., LASER, SBERT or MPNet. The results434

obtained from a single embedding category are435

considered baseline results. We performed Con-436

catenation between LASER, SBERT, GloVe and437

KGEs. For a given sentence, two or more embed-438

dings are concatenated to get the embedding matrix439

(E). A concatenation function is used to concate-440

nate the different embedding vectors to get the final441

embedding vector. For Substitution, we are exam-442

ining, if an embedding is present in the KG. If443

it is, we use KGEs otherwise GloVe embeddings.444

As both KG and GloVe have 300 dimensions the445

dimensions remain the same.446

4.3 Manual Curation and Evaluation of KGs447

We manually analysed and curated the automati-448

cally generated KGs, which yielded the "Bench-449

mark" KGs that allowed us to evaluate the quality450

of the generated KGs. Three curators, one male and451

two female, all NLP specialists in term extraction,452

performed the curation.453

Term Extraction Curation: The terms list was454

provided to the three annotators, where they in-455

dependently identified terms that were correctly456

extracted, based on the definition of a term and457

the domain of the dataset. As an example,458

the extracted term interconnection card459

free card was annotated as incorrectly ex-460

tracted term, while interconnection card461

was labeled as correct. Where possible, if the462

term span was incorrect, a corrected version was463

proposed. In this case, wearable device464

support bank was corrected to wearable465

device. The three annotators conferred to make466

a final decision. Within this manual curation step,467

50% of terms were identified as correct , 13 terms468

were modified, and the Inter-Annotator Agreement469

(Fleiss Kappa) was 81%. 470

Taxonomic Relations Curation: A similar cu- 471

ration was performed on the extracted taxonomic 472

relations . The curators were presented with pairs 473

of terms involved in a taxonomic relation, i.e., 474

parent_term → child_term, and had to identify 475

whether the parent term was correctly identified for 476

the child term (flash payment → payment 477

- correct; device → support - incorrect). If 478

the taxonomic relation was not correctly extracted, 479

the experts proposed a replacement parent term 480

from the list or a new term if none was deemed 481

appropriate. Evaluating this step, 33% of relations 482

were considered correct, with an Inter-Annotator- 483

Agreement agreement of 70%. 20 new terms were 484

defined and added to the taxonomy. This KG ver- 485

sion contains 83 terms and the taxonomy has a 486

depth of 5. 487

Named Entity with Dependency Relation Cu- 488

ration For the benchmark KGs, we collected a list 489

of Named Entities (NEs) and their types, which 490

resulted in 619 NEs (e.g. card) belonging to 491

22 different types (CARD_TYPE). In order to add 492

the NEs to the KG, we selected the NE types that 493

match a term in the taxonomy. Seven such types 494

were identified. We then collected all the NEs 495

corresponding to these seven types from the list 496

(amounting to 25 NEs) and added them to their 497

parent in the KG using a taxonomic relation. 498

The dependency-based relation extraction algo- 499

rithm is performed, extracting predicates involving 500

two NEs, or involving a NE and a term (from the 501

initial list of terms in the third step of the approach 502

(see 4.1.3). This list of triples with terms and NEs 503

are finally added as relations that contain NEs to the 504

previous KG. 126 new relations were added to the 505

KG after curation, which showed 95% correctness 506

and 79% Inter-Annotator agreement. 507

5 Results 508

Analysing the results for the ComQA dataset, MP- 509

Net embeddings contribute best to the classification 510

task compared to LASER, SBERT or embeddings 511

from the automatically generated KGs. Neverthe- 512

less, the performance of the KGs improves in rela- 513

tion to the number of terms within the KG. When 514

concatenating sentence embeddings with GloVe 515

or the automatically generated KGs, the AutoV1 516

KG with 500 and 750 terms perform best (99.45), 517

when they are combined with LASER and SBERT 518

or MPNET. Comparing the performance between 519

the GloVe embeddings and the automatically gen- 520
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Method Embeddings Dim. Precision

SOTA

SBERT 384 98.36
LASER 1,024 96.75
MPNet 768 98.63
LASER+SBERT 1,408 98.28
LASER+SBERT+GloVe 1,708 98.63

OURS
LASER+SBERT+AutoV1 (750) 1,708 99.45
LASER+MPNet+AutoV1 (500) 2,092 99.45
LASER+SBERT++AutoV1 (750)/GloVe 1,708 99.45

AutoV1 AutoV1 AutoV1 AutoV2 AutoV2 AutoV2
(100) (500) (750) (100) (500) (750) DBpedia

KG 40.71 75.41 86.89 45.08 75.13 83.61 14.92

Concat.

LASER+KG 1,324 95.35 95.62 95.08 95.63 95.08 95.08 96.17
LASER+SBERT+KG 1,708 98.90 99.18 99.45 98.91 98.63 98.63 98.91
LASER+MPNet+KG 2,092 99.18 99.45 98.09 98.91 98.36 98.63 98.36

Substit. LASER+KG/GloVe 1,324 94.81 94.54 95.36 94.81 93.72 94.26 96.72
LASER+SBERT+KG/GloVe 1,708 98.36 98.63 98.91 98.09 98.91 99.45 98.09
LASER+MPNet+KG/GloVe 2,092 97.54 98.09 98.36 97.54 98.36 98.09 98.36

Table 5: Intent Classification evaluation for the ComQA dataset.

Method Embeddings Dim. Precision

SOTA
SBERT 384 54.06
LASER 1,024 52.92
MPNet 768 53.80
LASER+SBERT 1,408 54.07
LASER+SBERT+GloVe 1,708 54.41

OURS LASER+MPNet+KG 2,092 55.40

AutoV1 AutoV1 AutoV1 AutoV2 AutoV2 AutoV2
(100) (500) (750) (100) (500) (750) DBpedia

KG 22.38 46.67 49.39 25.86 47.82 47.65 20.15

Concat.

LASER+KG 1,324 54.04 54.39 54.72 53.94 54.74 54.48 53.24
LASER+SBERT+KG 1,708 54.25 54.76 54.48 54.04 54.43 55.00 53.66
LASER+MPNet+KG 2,092 54.48 55.40 54.81 53.89 55.07 55.16 53.66

Substit.
LASER+KG/GloVe 1,324 51.41 54.27 53.47 52.91 54.20 54.27 51.55
LASER+SBERT+KG/GloVe 1,708 52.37 54.39 53.26 52.11 52.49 53.54 53.43
LASER+MPNet+KG/GloVe 2,092 51.69 54.65 53.10 53.45 53.40 54.79 51.64

Table 6: Intent Classification evaluation for the Paralex dataset.

Method Embeddings Dimension Precision

SOTA
SBERT 384 68.02
LASER 1,024 62.68
MPNet 768 69.25
LASER+SBERT 1,408 68.60
LASER+SBERT+GloVe 1,708 68.40

OURS LASER+MPNet+KG 2,092 70.00

Bench v1 Bench v2 Bench v3 Auto v1 Auto v2 Auto v3 Auto v4 DBpedia

KG 300 26.19 34.91 38.10 25.62 31.80 45.15 39.33 23.61

Concat.

LASER+KG 1,324 63.20 62.06 62.46 63.64 63.16 63.42 63.03 62.77
LASER+SBERT+KG 1,708 68.68 68.37 67.14 68.50 68.76 67.89 68.11 67.37
LASER+MPNet+KG 2,092 68.77 68.94 68.24 69.51 68.16 68.77 69.21 70.00

Substit.
LASER+KG/GloVe 1,324 59.75 61.76 60.93 59.75 60.18 62.33 62.07 60.27
LASER+SBERT+KG/GloVe 1,708 67.15 67.85 68.33 67.76 68.55 68.46 68.07 67.76
LASER+MPNet+KG/GloVe 2,092 67.59 67.02 66.14 67.85 68.51 67.15 68.37 68.64

Table 7: Intent Classification evaluation for the ProductServiceQA dataset.
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Method Embeddings Dimension Precision

SOTA
SBERT 384 68.02
LASER 1,024 62.68
MPNet 768 69.25
LASER+SBERT 1,408 69.39
LASER+SBERT+GloVe 1,708 68.61

OURS LASER+MPNet+KG 2,092 69.99

Number of set Terms
100 200 300 500 1,000

KG 300 40.34 40.34 41.61 42.14 44.20

Concatenation

LASER+KG 1,324 62.15 62.15 61.94 62.85 52.91
LASER+SBERT+KG 1,708 68.24 68.24 67.89 67.85 67.85
LASER+MPNet+KG 2,092 69.99 68.37 68.77 68.29 68.46

Substitution
LASER+KG/GloVe 1,324 62.51 60.58 61.54 62.64 60.36
LASER+SBERT+KG/GloVe 1,708 68.20 68.37 68.20 67.81 67.41
LASER+MPNet+KG/GloVe 2,092 67.89 67.90 67.19 67.76 67.24

Table 8: Impact of terms in the KG (AutoV3) for intent classification based on the ProductServiceQA dataset.

terms 100 200 300 500 1,000

Taxonomy Y
Semantic Relations Y

Named Entities Y
Triple Filtering N

Unique Concepts 908 1,008 1,108 1,308 1,808
Unique Relations 259 279 299 305 324

Vocabulary 468 494 529 553 653

Table 9: Statistics on the automatically generated KGs
(AutoV3) with different thresholds of terms.

erated KGs, the latter outperforms the former in521

the majority of the setups. The substitution per-522

forms comparably to the concatenation approach,523

where combining LASER+SBERT+AutoV2 KG524

achieves the same precision as the best-reported525

concatenation approach.526

For the Paralex dataset, leveraging SBERT pre-527

trained model performs best, when using it as a528

single resource (54.06). Although extracting more529

terms by the Saffron tool for KG creation improves530

the classification task, it does not reach the per-531

formance of the large pre-trained models. On the532

other hand, AutoV2 KG with 750 terms in com-533

bination with LASER+SBERT with performs best534

in the concatenation approach. In line with the535

previous experiments, the substitution approach536

demonstrates slightly worse results.537

Furthermore, we leverage sentence embeddings538

on the proprietary ProductServiceQA dataset (Ta-539

ble 7). Analysing single embeddings, MPNet per-540

forms best (69.25), compared to SBERT, LASER541

or the automatically generated KGs and DBpedia.542

When combining sentence embeddings with the543

KGs, DBpedia contributes most in the concatena-544

tion approach with LASER+MPNet. Similarly to545

the results described above, embedding substitution 546

does not outperform the concatenation approach. 547

At last, we analyse the impact of the set of 548

terms within the KG, generated by the Saffron 549

tool, which in its default setting will extract the 550

100 most domain-specific terms from the targeted 551

document. Therefore, we extended this set gradu- 552

ally (Table 9). As seen in Table 8, extending the 553

set of terms positively contributes when using the 554

KGs as a single embedding resource. Nevertheless, 555

even the KG with 1,000 terms does not outper- 556

form any pre-trained sentence embeddings used in 557

this work. Nevertheless, when concatenating the 558

KGs with these resources, LASER+MPNet+KG 559

with 100 terms performs best. 560

6 Conclusion 561

In this work, we presented work on leveraging au- 562

tomatically generated knowledge graphs for intent 563

classification. Along with the automatically gen- 564

erated Knowledge Graphs, we provide an analysis 565

of each step towards their creation and provide 566

insights on their evaluation and manual curation 567

steps. We perform the intent classification using 568

state-of-the-art sentence embeddings and combine 569

these with domain-specific Knowledge Graph Em- 570

beddings, trained on the automatically generated 571

Knowledge Graphs. We evaluate our methodol- 572

ogy on three different datasets and demonstrate 573

that the domain-specific knowledge within the se- 574

mantically structured Knowledge Graphs further 575

improves the intent classification task. Our ongo- 576

ing work focuses on different neural architectures, 577

such as Siamese networks, and the explainability 578

of the classification outcomes. 579
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Question Gold Standard
Single Concat

KG SBERT+KG

DBpedia Auto v1 (100) Auto v1 (750) Auto v1 (750)

which mountain
range separates
russia from
georgia?

.../caucasus_
mountains

.../austria .../caucasus_mountains .../caucasus_mountains .../caucasus_mountains

what states does
west virginia
border?

.../ohio .../mexico_
city

.../red_sea .../prague .../prague

who is the first
woman chief
minister in
india?

.../sucheta_
kriplani

.../mexico_
city

.../tricia_nixon_ cox .../missouri .../arkansas

what is the first
book of alex
rider?

.../storm-
breaker

.../albert_a._
michelson

.../frost/nixon_(film) .../monaco .../united_arab_emirates

which country
is right next to
switzerland?

.../austria .../maryland .../the_curious_
case_of_benjamin_
button_(film)

.../northern_ireland .../cathy_burge

Table 10: ComQA Intent Examples

Question Gold Standard
Single Concat Substitution

KG LASER+SBERT LASER+MPNet+KG/GloVe

DBpedia Auto v1 (100) Auto v1 (750) Auto v2 (100)

how many
ounce in 1
litre bottle ?

how many
ounce be a liter
?

1.75 liter
ounce ?

1.75 liter ounce
?

how many calo-
rie do a ham-
burger have ?

how many
ounce be a liter
?

how many ounce be in one
liter ?

what be
the two
zone that a
glacier be
divide into
?

what be two
type of glacier ?

what be
inappropri-
ate subject
matter for
wikianswer
?

what be two
type of glacier ?

what language
do guyana
speak ?

what be two
type of glacier ?

what be two type of glacier
?

salary and
job avail-
ability for a
cardiologist
?

what be the
yearly salary of
a cardiologist ?

what be
the yearly
salary of
nurse ?

how much do
a esthetician
make ?

how much do
dental assistant
get pay ?

what be the
yearly salary of
a cardiologist ?

what be the yearly salary of
a cardiologist ?

how much
be hamster
in jollye pet
shop new-
townabby
?

how much do
hamster cost in
kearney ?

how much
will a
hamster
cost with
everything
?

how much will
a pet hamster
cost to by ?

what job can
you get with a
associte degree
in education ?

how much will
a hamster cost
with everything
?

how much do hamster cost
at pet co ?

does saturn
have satel-
lite if so
how many ?

how many
moon do saturn
have ?

how many
satellite do
saturn have
?

how many satel-
lite do saturn
have ?

what natural re-
source do new
jersey have ?

how many
moon do saturn
have ?

how many satellite do saturn
have ?

Table 11: Paralex Intent Examples
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Question Gold Standard
Single Concat

KG LASER+SBERT+KG

DBpedia Auto v1 (100) Auto v3 (750) Auto v2 (100)

Which phones can
use the Pay code?

Which of the
following mobile
phones support the
Pay code?

How do I delete a
bank card, traffic
card, Eid, or door
key if the phone
is not repaired or
sold or replaced by
a non customer ser-
vice center?

Say Hi Pay is not dis-
played on the
third-party app.

Which of the following
mobile phones support
the Pay code?

Failed to recharge
the mobile phone
during the full
reduction activity.
Solve the problem
quickly.

Why does the phone
number fail to be
recharged all the
time when the mo-
bile phone is fully
deleted?

How Do I Cancel
the Automatic Re-
newal Service?

Which models
support mobile
phone recharge
and full subtrac-
tion?

How Do I
Participate in a
Mobile Phone
Recharge
Amount Dele-
tion Activity?

Why does the phone
number fail to be
recharged all the time
when the mobile phone
is fully deleted?

City Traffic Card
opening fee ad-
justed to 16 cent.

City Traffic Card
opening fee ad-
justed to 16 cent.

Traffic card opening
service fee and card
deletion and refund
description

How Do I Can-
cel the Auto-
matic Renewal
Service?

City Traffic
Card opening
fee adjusted to
16 cent.

City Traffic Card open-
ing fee adjusted to 16
cent.

The traffic card can-
not be added.

Add a traffic card to
the Pay.

The entrance for
adding a traffic card
to the Pay is not dis-
played.

Which cities
can a traffic
card be used in?

Handling
Method of
Traffic Card
Recharge
Failure

Failed to add a traffic
card to the Pay.

What the hell is
real name authenti-
cation?

What is real-name
authentication?

How Do I Cancel
the Automatic Re-
newal Service?

Pay method of
deregistering
real-name
authentication
(non-personal
authentication)

Pay method of
deregistering
real-name
authentication
(non-personal
authentication)

What is real-name au-
thentication?

Table 12: ProductServiceQA Intent Examples
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