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ABSTRACT

Unsupervised learning plays an important role in many fields, such as machine
learning, data compression, and neuroscience. Compared to static data, methods
for extracting low-dimensional structure for dynamic data are lagging. We de-
veloped a novel information-theoretic framework, Compressed Predictive Infor-
mation Coding (CPIC), to extract predictive latent representations from dynamic
data. Predictive information quantifies the ability to predict the future of a time se-
ries from its past. CPIC selectively projects the past (input) into a low dimensional
space that is predictive about the compressed data projected from the future (out-
put). The key insight of our framework is to learn representations by balancing the
minimization of compression complexity with maximization of the predictive in-
formation in the latent space. We derive tractable variational bounds of the CPIC
loss by leveraging bounds on mutual information. The CPIC loss induces the la-
tent space to capture information that is maximally predictive of the future of the
data from the past. We demonstrate that introducing stochasticity in the encoder
and maximizing the predictive information in latent space contributes to learn-
ing more robust latent representations. Furthermore, our variational approaches
perform better in mutual information estimation compared with estimates under
the Gaussian assumption commonly used. We show numerically in synthetic data
that CPIC can recover dynamical systems embedded in noisy observation data
with low signal-to-noise ratio. Finally, we demonstrate that CPIC extracts features
more predictive of forecasting exogenous variables as well as auto-forecasting in
various real datasets compared with other state-of-the-art representation learning
models. Together, these results indicate that CPIC will be broadly useful for ex-
tracting low-dimensional dynamic structure from high-dimensional, noisy time-
series data.

1 INTRODUCTION

Unsupervised methods play an important role in learning representations that provide insight into
data and exploit unlabeled data to improve performance in downstream tasks in diverse applica-
tion areas Bengio et al. (2013); Chen et al. (2020); Grill et al. (2020); Devlin et al. (2018); Brown
et al. (2020); Baevski et al. (2020); Wang et al. (2020). Prior work on unsupervised representation
learning can be broadly categorized into generative models such as variational autoencoders(VAEs)
(Kingma & Welling, 2013) and generative adversarial networks (GAN) (Goodfellow et al., 2014),
discriminative models such as dynamical components analysis (DCA) (Clark et al., 2019), con-
trastive predictive coding (CPC) (Oord et al., 2018), and deep autoencoding predictive components
(DAPC) (Bai et al., 2020). Generative models focus on capturing the joint distribution between
representations and inputs, but are usually computationally expensive. On the other hand, discrim-
inative models emphasize capturing the dependence of data structure in the low-dimensional latent
space, and are therefore easier to scale to large datasets.

In the case of time series, some representation learning models take advantage of an estimate of mu-
tual information between encoded past (input) and the future (output) (Creutzig & Sprekeler, 2008;
Creutzig et al., 2009; Oord et al., 2018). Although previous models utilizing mutual information ex-
tract low-dimensional representations, they tend to be sensitive to noise in the observational space.
DCA directly makes use of the mutual information between the past and the future (i.e., the predic-
tive information (Bialek et al., 2001)) in a latent representational space that is a linear embedding of
the observation data. However, DCA operates under Gaussian assumptions for mutual information
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estimation. We propose a novel representation learning framework which is not only robust to noise
in the observation space but also alleviates the Gaussian assumption and is thus more flexible.

We formalize our problem in terms of data generated from a stationary dynamical system and pro-
pose an information-theoretic objective function for Compressed Predictive Information Coding
(CPIC). Instead of leveraging the information bottleneck (IB) objective directly as in Creutzig &
Sprekeler (2008) and Creutzig et al. (2009), where the past latent representation is directly used to
predict future observations, we predict the compressed future observations filtered by the encoder.
It is because that in the time series setting, future observations are noisy, and treating them as labels
is not insightful. Specifically, our target is to extract latent representation which can better predict
future underlying dynamics. Since the compressed future observations are assumed to only retain
the underlying dynamics, better compression thus contributes to extracting better dynamical repre-
sentation. In addition, inspired by Clark et al. (2019) and Bai et al. (2020), we extend the prediction
from single input to a window of inputs to handle high order predictive information.

Moreover, instead of directly estimating the objective information with Gaussian assumption
(Creutzig & Sprekeler, 2008; Creutzig et al., 2009; Clark et al., 2019; Bai et al., 2020), we developed
variational bounds and a tractable end-to-end training framework based on the neural estimator of
mutual information studied in Poole et al. (2019). Note that our inference first leverages the varia-
tional boundary technique for self-supervised learning on the time series data. Since it alleviates the
Gaussian assumption, it is applicable to a much larger class of dynamical systems.

In CPIC, we also demonstrate that introducing stochasticity into either a linear or nonlinear en-
coder robustly contributes to numerically better representations in different tasks. In particular,
we illustrate that CPIC can recover trajectories of a chaotic dynamical system embedded in high-
dimensional noisy observations with low signal-to-noise ratios in synthetic data. Furthermore, we
conduct numerical experiments on four real-world datasets with different goals. In two neuroscience
datasets, monkey motor cortex (M1) and rat dorsal hippocampus (HC), compared with the state-of-
the-art methods, we show that the latent representations extracted from CPIC have better forecast-
ing accuracy for the exogenous variables of the monkey’s future hand position for M1, and for the
rat’s future position for HC. In two other real datasets, historical hourly weather temperature data
(TEMP) and motion sensor data (MS), we show that latent representations extracted by CPIC have
better forecasting accuracy of the future of those time series than other methods. In summary, the
primary contributions of our paper are as follows:

• We developed a novel information-theoretic self-supervised learning framework, Com-
pressed Predictive Information Coding (CPIC), which extracts low-dimensional latent rep-
resentation from time series. CPIC maximizes the predictive information in the latent space
while minimizing the compression complexity.

• We introduced the stochastic encoder structure where we encode inputs into stochastic
representations to handle uncertainty and contribute to better representations.

• Based on prior works, we derived the variational bounds of the CPIC’s objective function
and a tractable, end-to-end training procedure. Since our inference alleviates the Gaussian
assumption common to other methods, it is applicable to a much larger class of dynamical
systems. Moreover, to the best of our knowledge, our inference is the first to leverage the
variational boundary technique for self-supervised learning on time series data.

• We demonstrated that, compared with the other unsupervised based methods, CPIC more
robustly recovers latent dynamics in dynamical system with low signal-to-noise ratio in
synthetic experiments, and extracts more predictive features for downstream tasks in vari-
ous real datasets.

2 RELATED WORK

Mutual information (MI) plays an important role in estimating the relationship between pairs of
variables. It is a reparameterization-invariant measure of dependency:

I(X,Y ) = Ep(x,y)
[
log

p(x|y)
p(x)

]
(1)
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It is used in computational neuroscience (Dimitrov et al., 2011), visual representation learning (Chen
et al., 2020), natural language processing (Oord et al., 2018) and bioinformatics (Lachmann et al.,
2016). In representation learning, the mutual information between inputs and representations is used
to quantify the quality of the representation and is also closely related to reconstruction error in gen-
erative models (Kingma & Welling, 2013; Makhzani et al., 2015). Estimating mutual information is
computationally and statistically challenging except in two cases: discrete data, as in Tishby et al.
(2000) and Gaussian data, as in Chechik et al. (2005). However, these assumptions both severely
constrain the class of learnable models (Alemi et al., 2016). Recent works leverage deep learning
models to obtain both differentiable and scalable MI estimation (Belghazi et al., 2018; Nguyen et al.,
2010; Oord et al., 2018; Alemi et al., 2016; Poole et al., 2019; Cheng et al., 2020).

In terms of representation learning in time series, Wiskott & Sejnowski (2002); Turner & Sahani
(2007) targeted slowly varying features, Creutzig & Sprekeler (2008) utilized the information bot-
tleneck (IB) method (Tishby et al., 2000) and developed an information-theoretic objective func-
tion. Creutzig et al. (2009) proposed an alternative objective function based on a specific state-space
model. Recently, Oord et al. (2018) proposed CPC to extract dynamic information based on an
autoregressive model on representations and contrastive loss on predictions. Clark et al. (2019);
Bai et al. (2020) proposed unsupervised learning approach to extract low-dimensional representa-
tion with maximal predictive information(PI). All of the above unsupervised representation learning
models, except for CPC, assume the data to be Gaussian, which may be not realistic, especially
when applied to neuroscience datasets (O’Doherty et al., 2017; Glaser et al., 2020), given the non-
Gaussianity of neuronal activity. Here, we leverage recently introduced neural estimation of mutual
information to construct upper bounds of the CPIC objective and develop an end-to-end training
procedure. CPIC enables generalization beyond the Gaussian case and autoregressive models.

Recently, deep encoder networks are leveraged to model nonlinear relations between latent repre-
sentations and observed data in time series (Chen et al., 2020; Bai et al., 2020; He et al., 2020).
However, use of complicated nonlinear encoders induced hinders computational efficiency (Wang
et al., 2019). CPIC proposes an efficient representation learning framework for time series that en-
codes data with maximal predictive information. We also note that there exists several works on
the time series modeling from generative modeling perspective. Initially, Fabius & Van Amersfoort
(2014) leveraged the recurrent neural network with variational autoencoder to model time series
data. Frigola et al. (2014) proposed variational Gaussian-process state-space model. Meng et al.
(2021) proposed variational structured Gaussian-process regression network which can efficiently
handle more complicated relationships in time series. Most generative modeling inference would
depend on the length of time series, while the inference of CPIC depends on the window size T ,
which is more scalable for long time series.

3 COMPRESSED PREDICTIVE INFORMATION CODING

The main intuition behind Compressed Predictive Information Coding (CPIC) is to extract low di-
mensional representations with minimal compression complexity and maximal dynamical structure.
Specifically, CPIC first discards low-level information that is not relevant for dynamic prediction
and noise that is more local by minimizing compression complexity (i.e., mutual information) be-
tween inputs and representations to improve model generalization. Second, CPIC maximizes the
predictive information in the latent space of compressed representations.

Compared with Clark et al. (2019); Bai et al. (2020), CPIC first utilizes stochastic encoder to handle
uncertainty of representations, which contributes to more robust representations, and also relieves
the Gaussian assumption by constructing bounds of mutual information based on neural estimations.
In more detail, instead of employing a deterministic linear mapping function as the encoder to com-
press data as in Clark et al. (2019), CPIC takes advantage of a stochastic linear or nonlinear mapping
function. Given inputs, the stochastic representation follows Gaussian distributions, with means and
variances encoded from any neural network structure. A nonlinear CPIC utilizes a stochastic non-
linear encoder which is composed of a nonlinear mean encoder and a linear variance encoder, while
a linear CPIC utilizes a stochastic linear encoder which is composed of a linear mean encoder and
a linear variance encoder. Note that stochastic representations conditioned on inputs are parameter-
ized as a conditional Gaussian distribution, but the marginal distribution of the representation is a
mixture of Gaussian distribution, which is widely recognized as universal approximator of densities.
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On the other hand, avoiding the Gaussian assumption on mutual information (Creutzig & Sprekeler,
2008; Creutzig et al., 2009; Clark et al., 2019; Bai et al., 2020), CPIC leverages neural estimations
of mutual information. Specifically, we propose differentiable and scalable bounds of the CPIC
objective via variational inference, which enables end-to-end training.

Formally, let X = {xt}, xt ∈ RN be a stationary, discrete time series, and let Xpast =
(x−T+1, . . . , x0) and Xfuture = (x1, . . . , xT ) denote consecutive past and future windows of length
T. Then both past and future data are compressed into past and future representations denoted as
Ypast = (y−T+1, . . . , y0) and Yfuture = (y1, . . . , yT ) with embedding dimension size Q. Similar to
the information bottleneck (IB) (Tishby et al., 2000), the CPIC objective contains a trade-off between
two factors. The first seeks to minimize the compression complexity and the second to maximize the
predictive information in the latent (representation) space. Note that when the encoder is determin-
istic the compression complexity is deprecated and when the encoder is stochastic the complexity
is measured by the mutual information between representations and inputs. In the CPIC objective,
the trade-off weight β > 0 dictates the balance between the compression and predictive information
terms:

min
ψ

L, where L ≡ β(I(Xpast;Ypast) + I(Xfuture;Yfuture))− I(Ypast;Yfuture) (2)

where ψ refer to the model parameters which encode inputs X to latent variables Y . Larger β
promotes a more compact mapping and thus benefits model generalization, while smaller β leads to
more predictive information in the latent space on training data. This objective function is visualized
in Figure 1, where inputs X are encoded into latent space as Y via tractable encoders and the
dynamics of Y are learned in a model-free manner.

Figure 1: The overall framework of compressed
predictive information coding. The encoder com-
press information of the input X into Y such
that the predictive information between Ypast and
Yfuture is maximized while minimizing the mutual
information between X and Y .

The encoder p(Y |X) could be implemented by
fitting deep neural networks (Alemi et al., 2016)
to encode data X . Instead, CPIC takes an ap-
proach similar to VAEs (Kingma & Welling,
2013), in that it encodes data into stochastic
representations. In particular, CPIC employs
a stochastic encoder (genc in Figure 1) to com-
press input xt into yt as

yt|xt ∼ N (µt, diag(σ2
t )) , (3)

for each time stamp t. The mean of yt is given
by µt = gEncoder

µ (xt), whereas the variance
arises from σt = gEncoder

σ (xt).

Encoders gEncoder
µ and gEncoder

σ can be any non-
linear mapping and is usually modeled using
neural network architectures. We use a two-
layer perceptron with ReLU activation function
(Agarap, 2018) for a nonlinear mapping. In
terms of a linear CPIC, we specify the mean of
representation as µt = uTxt. In both linear and
nonlinear CPIC setting, if σt = 0, the stochas-
tic encoder reduces to a deterministic encoder.

We extend single input to multiple inputs in the
CPIC framework in terms of a specified win-
dow size T . The selection of window size is
discussed in Appendix A. Due to the stationary
assumption, the relation between past/future
blocks of input data X(−T ), X(T ) ∈ RN×T and encoded data Y (−T ), Y (T ) ∈ RQ×T are
equivalent, pX(−T ),Y (−T ) = pX(T ),Y (T ). Note that −T and T indexes to past and future
T data. Without loss of generality, the compression relation can be expressed as Y (T ) =
gEncoder
µ (X(T )) + ξ(T ), where ξ(T ) ∈ N (0, blockdiag(diag(σ2

1), . . . , diag(σ2
T )) and noise standard

deviation σt = gEncoder
σ (xt).
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4 VARIATIONAL BOUNDS OF COMPRESSED PREDICTIVE INFORMATION
CODING

In CPIC, since data X are stationary, the mutual information between the input data and the com-
pressed data for the past is equivalent to that for the future I(X(−T );Y (−T )) = I(X(T );Y (T )).
Therefore, the objective of CPIC can be rewritten as

minL = βI(X(T );Y (T ))− I(Y (−T );Y (T )) . (4)

We developed the variational upper bounds on mutual information for the compression com-
plexity I(X(T );Y (T )) and lower bounds on mutual information for the predictive information
I(Y (−T );Y (T )).

4.1 UPPER BOUNDS OF COMPRESSION COMPLEXITY

In the section, we derived a tractable variational upper bound (VUB) depending on a single sample
and a leave-one-out upper bound (L1Out) (Poole et al., 2019) depending on multiple samples.

Theorem 1 By introducing a variational approximation r(y(T )) to the marginal distribution
p(y(T )), a tractable variational upper bound of mutual information I(X(T );Y (T )) is derived as
IVUB(X(T );Y (T )) = EX(T )

[
KL(p(y(T )|x(T )), r(y(T )))

]
.

Theorem 2 By utilizing a Monte Carlo approximation for variational distribution r(y(T )), the
L1Out upper bound of mutual information I(X(T );Y (T )) is derived as IL1Out(X(T );Y (T )) =

E
[
1
S

∑S
i=1

[
log p(y(T )i|x(T )i)

1
S−1

∑
j ̸=i p(y(T )i|x(T )j)

]]
, where S is the sample size.

The derivation details are in Appendix B and C. In practice, the L1Out bound depends on the sample
size S and may suffer from numerical instability. Thus, we would like to choose the sample size
S as large as possible. In general scenarios where p(y(T )|x(T )) is intractable, Cheng et al. (2020)
proposed a variational version of VUB and L1Out by using a neural network to approximate the
condition distribution p(y(T )|x(T )). Since the conditional distribution p(y(T )|x(T )) is parameter-
ized as a known stochastic/deterministic encoder in CPIC, those variational versions are not taken
into consideration.

4.2 LOWER BOUNDS OF PREDICTIVE INFORMATION

For the predictive information (PI), we derived lower bounds of I(Y (−T );Y (T )) using results in
Agakov (2004); Alemi et al. (2016); Poole et al. (2019). In particular, we derived tractable unnor-
malized Barber and Agakov (TUBA) (Barber & Agakov, 2003) lower bounds depending on a single
sample and an infoNCE lower bound (Oord et al., 2018) depending on multi samples. All derivation
details are discussed in Appendix D, E and F.

Theorem 3 We derived a lower bound on predictive information (PI) I(Y(-T); Y(T)) as
IV LB(Y (−T );Y (T )) = H(Y (T )) + Ep(y(−T ),y(T ))[log q(y(T )|y(−T ))], where q(y(T )|y(−T ))
is a variational conditional distribution.

However, this lower bound requires a tractable decoder for the conditional distribution
q(y(T )|y(−T )) (Alemi et al., 2016). Alternatively we derived a TUBA lower bound (Barber &
Agakov, 2003) which is free of the parametrization of decoder.

Theorem 4 By introducing a differentiable critic function f(x, y) and a baseline function
a(y(T )) defined in Appendix E, the TUBA lower bound of predictive information is derived as

ITUBA(Y (−T ), Y (T )) = Ep(y(−T ),y(T ))[f̃(y(−T ), y(T ))]−log
(
Ep(y(−T ))p(y(T ))[e

f̃(y(−T ),y(T ))]
)

where f̃(y(−T ), y(T )) = f(y(−T ), y(T ))− log(a(y(T ))).

Different forms of the baseline function lead to different neural estimators in the literature such as
MINE (Belghazi et al., 2018) and NWJ (Nguyen et al., 2010). On the other hand, all TUBA based
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estimators have high variance due to the high variance of f(x, y). Oord et al. (2018) proposed a
low-variance MI estimator based on noise-contrastive estimation called InfoNCE. Moreover, there
exists other differentiable mutual information estimator including SMILE (Song & Ermon, 2019)
and Echo noise estimator (Brekelmans et al., 2019).

Theorem 5 In the CPIC setting, the InfoNCE lower bound of predictive information is derived as

IinfoNCE(Y (−T );Y (T )) = E

[
1

S

S∑
i=1

log
ef(y(−T )i,y(T )i)

1
S

∑S
j=1 e

f(y(−T )i,y(T )j)

]
(5)

The expectation is over S independent samples from the joint distribution:
p(y(−T ), y(T )) following Markov Chain rule in Figure 1 such as p(y((−T ), y(T )) =∫
p(x(−T ), x(T ))p(y(−T )|x(−T ))p(y(T )|x(T ))dx(−T )x(T ).

4.3 VARIATIONAL BOUNDS OF CPIC

We propose two classes of upper bounds of CPIC based on whether the bounds depend on a single
sample or multiple samples. According to the uni-sample and multi-sample bounds derived in Sec-
tion 4.1 and Section 4.2, we name the first class as uni-sample upper bounds, which take the VUB
upper bound of mutual information for the complexity of data compression I(X(T ), Y (T )) and the
TUBA as the lower bound of predictive information in equation 14. Thus we have

LUNI = βKL(p(y(T )|x(T )), r(y(T )))− ITUBA(Y (−T ), Y (T )) . (6)

Notice that by choosing different baseline functions, the TUBA lower bound would be equivalent
to different mutual information estimator such as MINE and NWJ. The second class is named as
multi-sample upper bound, which take advantage of the noise-contrastive estimation approach. The
multi-sample upper bound is expressed as

LMUL = βIL1Out(X(T );Y (T ))− IinfoNCE(Y (−T );Y (T )) . (7)

Two main differences exist between these classes of upper bounds. First, the performance of multi-
sample upper bound depend on batch size while uni-sample upper bounds do not, so when compu-
tational budgets do not allow large batch size in training, uni-sample upper bounds may be preferred
in training. Secondly, multi-sample upper bound has lower variance than uni-sample upper bounds.
Thus, they have different strengths and weaknesses depending on the context. We evaluated the
performance of those variational bounds of CPIC in terms of the reconstruction performance in syn-
thetic experiments in Appendix G, and find that with sufficiently large batch size, the multi-sample
upper bound would outperform most of the uni-sample upper bounds. Thus, without further spec-
ification, we choose the multi-sample upper bound as the variational bounds of CPIC objective in
this work. Furthermore, we classify the upper bounds into stochastic and deterministic versions
by whether we employ a deterministic or stochastic encoder. Notice that when choosing the de-
terministic encoder, the compression complexity term (first term) in equation 6 and equation 7 are
constant.

5 NUMERICAL EXPERIMENTS

In this section, we demonstrate the superior performance of CPIC in both synthetic and real data
experiments. We first examine the reconstruction performance of CPIC in noisy observations of a
dynamical system (the Lorenz Attractor). The results show CPIC better recovers the latent trajec-
tories from noisy high dimensional observations. Moreover, we demonstrate that maximizing the
predictive information(PI) in the compressed latent space is more effective than maximizing PI be-
tween latent and observation space as in Creutzig & Sprekeler (2008); Creutzig et al. (2009), and also
demonstrate the benefits of the stochastic representation over the deterministic representation. Sec-
ondly, we demonstrate better predictive performance of the representation evaluated by linear fore-
casting. The motivation for using linear forecasting models is that good representations contribute
to disentangling complex data in a linearly accessible way (Clark et al., 2019). Specifically, we
extract latent representations and then conduct forecasting tasks given the inferred representations
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on two neuroscience datasets and two other real datasets. The two neuroscience datasets are multi-
neuronal recordings from the hippocampus (HC) while rats navigate a maze (Glaser et al., 2020)
and multi-neuronal recordings from primary motor cortex (M1) during a reaching task for monkeys
(O’Doherty et al., 2017). The two other real datasets are multi-city temperature data (TEMP) from
30 cities over several years (Gene, 2017) and 12 variables from an accelerater, gyroscope, and grav-
ity motion sensor (MS) recording human kinematics (Malekzadeh et al., 2018). The forecasting
tasks for the neuroscience data sets is to predict the future of the relevant exogenous variables from
the past neural data, while the forecasting task for the other datasets is to predict the future of those
time-series from their past. The results illustrate that CPIC has better predictive performance on
these forecasting tasks compared with existing methods.

𝑆𝑁𝑅 = 10!"

𝑆𝑁𝑅 = 10!#

𝑆𝑁𝑅 = 10!$

Determistic CPIC (O) Deterministic CPIC (L) Stochastic CPIC (O) Stochastic CPIC (L)

𝑅#=0.928 𝑅#=0.914 𝑅#=0.943 𝑅#=0.963

𝑅#=0.527 𝑅#=0.487 𝑅#=0.869 𝑅#=0.932

𝑅#=0.050 𝑅#=0.464 𝑅#=0.036 𝑅#=0.413

Figure 2: Left panel. Top: 3D trajectories of lorenz attractor’s ground-truth. Middle: 30D pro-
jected trajectory. Bottom: Corrupted 30D trajectory with SNR=0.001. Right Panel. 3D trajectories
obtained by deterministic CPIC and stochastic CPIC with PI in latent space or between latent and
observation space in terms of different SNRs (0.1, 0.008, 0.001). We refer (L) to the case with PI
in latent space and (O) to the case with PI between latent and observation space. We encode the
point-wise Euclidean distance between the aligned inferred latent dynamics and the true dynamics
into color on trajectories. Color from blue to red corresponds to the distance from short to long
respectively. Separate colorbars are used for their corresponding SNRs.

5.1 SYNTHETIC EXPERIMENT WITH NOISY LORENZ ATTRACTOR

The Lorenz attractor is a 3D time series that are realizations of the Lorenz dynamical system (Pche-
lintsev, 2014). It describes a three dimensional flow generated as:

dx

dt
= σ(y − x),

dy

dt
= f1(ρ− z)− y,

dz

dt
= xy − γz . (8)

Lorenz sets the values σ = 10, ρ = 8/3 and γ = 28 to exhibit chaotic behavior, as done in recent
works (She & Wu, 2020; Clark et al., 2019; Zhao & Park, 2017; Linderman et al., 2017). We
simulated the trajectories from the Lorenz dynamical system and show them in the left-top panel
in Figure 2. We then mapped the 3D latent signals to 30D lifted observations with a random linear
embedding in the left-middle panel and add spatially anisotropic Gaussian noise on the 30D lifted
observations in the left-bottom panel. The noises are generated according to different signal-to-noise
ratios (SNRs), where SNR is defined by the ratio of the variance of the first principle components of
dynamics and noise as in Clark et al. (2019). Specifically, we utilized 10 different SNR levels spaced
evenly on a log (base 10) scale between [-3, -1] and corrupt the 30D lifted observations with noise
corresponding to different SNR levels. Details of the simulation are available in Appendix G Finally,
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we deploy different variants of CPICs to recover the true 3D dynamics from different corrupted 30D
lifted observations with different SNR levels, and compare the accuracy of recovering the underlying
Lorenz attractor time-series.

We aligned the inferred latent trajectory with the true 3D dynamics with optimal linear mapping due
to the reparameterization-invariant measure of latent trajectories. We validated the reconstruction
performance based on theR2 regression score of the extracted vs. true trajectories. We first compare
the reconstruction performance on different variational bounds of CPIC with the latent dimension
size Q = 3 and the time window size T = 4, and find that multi-sample upper bound outperforms
uni-sample upper bounds for almost all of the 10 SNR levels. Thus, we recommend the multi-sample
upper bound for CPIC in practice and use that for further results. We also find that, compared to
DCA (Clark et al., 2019) and CPC (Oord et al., 2018) CPIC is more robust to noise and thus better
extracts the true latent trajectory from the noisy high dimensional observations. The detailed results
are reported in Appendix H
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Figure 3: Comparison on R2 scores of latent dy-
namics regression on 10 SNR levels for four vari-
ants of CPIC. The first row shows the mean per-
formance of R2 scores over running N=10/100
different random initializations and the second
row shows the best performance over running
N=10/100 different random initializations.

In order to demonstrate the benefits of introduc-
ing stochasticity in the encoder and maximiz-
ing the predictive information in latent space,
we considered four variants of CPICs: with
stochastic or deterministic encoder, and with
predictive information in latent space or be-
tween latent and observation space. All four
variants of CPIC models utilize the latent di-
mension size Q = 3 and the time window size
T = 4. For each model and each SNR level, we
run 100 replicates with random initializations.
We show the aligned latent trajectories inferred
from corrupted lifted observation for high, in-
termediate and low SNR (0.001, 0.01, 0.1) lev-
els of noise with the median R2 scores across
100 replicates in Figure 2. The point-wise dis-
tances between the recovered dynamics and the
ground-truth dynamics are encoded in the col-
ors from blue to red, corresponding to short to
long distance. For high SNR (SNR = 0.1, top-
right), all models did a good job of recover-
ing the Lorenz dynamics though the stochas-
tic CPIC with predictive information on latent
space had larger R2 than others. For interme-
diate SNR (SNR = 0.008, middle-right), we
see that stochastic CPICs performs much bet-
ter than the deterministic CPICs. Finally, as the SNR gets lower (SNR = 0.001, bottom-right) all
methods perform poorly, but we note that, numerically, considering predictive information in latent
space is much better than that between latent and observation space.

To more thoroughly characterize the benefits of stochastic encoding and PI in the latent space, we
examined the mean of R2 scores for the four variants on each level of SNR across N = 10 and N =
100 replicates in the top row of Figure 3. It shows that the CPIC with stochastic representations and
PI in latent space robustly outperforms other variants on average. We also report the best R2 scores
for the four variants in the sense that we report the R2 score for the model with the smallest training
loss across N runs. The bottom row of Figure 3 shows that CPIC with stochastic representation
and PI in latent space achieves better reconstruction and robustness to noise than other variants,
especially when the number of runs N is small. Even when N is large, stochastic CPIC with PI
in latent space greatly outperforms others when the noise level is high. We note that in the case
of high-dimensional noisy observations with large numbers of samples common in many modern
real-world time series datasets, CPICs robustness to noise and capacity to achieve good results in a
small number of runs is a clear advantage. Moveover, we displayed the quantile anaylsis of the R2

scores in Appendix I with consistent result.
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5.2 REAL EXPERIMENTS WITH DIVERSE FORECASTING TASKS

In this section, we show that latent representations extracted by stochastic CPIC perform better in
the downstream forecasting tasks on four real datasets. We compared stochastic CPIC with con-
trastive predictive coding (CPC) (Oord et al., 2018), PCA, SFA (Wiskott & Sejnowski, 2002), DCA
(Clark et al., 2019) and deterministic CPIC. As for CPC, we use a linear encoder for fair compar-
ison. In addition, we compared the result from CPCs and CPICs with nonlinear encoder in which
the linear mean encoder is replaced by a multi-layer perceptron. For each model, we extract the
latent representations (conditional mean) and conduct prediction tasks on the relevant exogenous
variable at a future time step for the neural datasets. For example, for the M1 dataset, we extract a
consecutive 3-length window representation of multi-neuronal spiking activity to predict the mon-
key’s arm position in a future time step which is lag time stamps away. The details of experiments
are available in Appendix J. Neuroscientists often want to interpret latent representations of data to
gain insight into the processes that generate the observed data. Thus, we used linear regression 1 to
predict exogenous variables, with the intuition that a simple (i.e., linear) prediction model will only
be sensitive to the structure in the data that is easiest to interpret as in (Yu et al., 2008; Pandarinath
et al., 2018; Clark et al., 2019). Furthermore, the neuroscience data sets (M1 and HC) present ex-
tremely challenging settings for prediction of the exogenous variables due to severe experimental
undersampling of neurons due to technical limitations, as well as sizeable noise magnitudes. For
these tasks, R2 regression score is used as the evaluation metric to measure the forecasting perfor-
mance. Four datasets are split into 4:1 train and test data and the forecasting task considered three
different lag values (5, 10, and 15). For DCA and deterministic/stochastic CPICs, we took three
different window sizes T = 1, 2, 3 and report the best R2 scores. Table 1 reports all R2 scores and
demonstrates that our stochastic CPIC outperforms all other models except for the case for Temp
data with forecasting at lag 15.

Table 1: Comparison between CPC-L (linear encoder), CPC-NL (non-linear encoder), PCA, SFA,
DCA, D-CPIC-L (deterministic CPIC with linear encoder), S-CPIC-L (stochastic CPIC with linear
encoder), D-CPIC-NL (deterministic CPIC with non-linear encoder), and S-CPIC-NL (stochastic
CPIC with non-linear encoder) on R2 regression scores on M1, Hippocampus, Temperature, and
Motion sensor datasets with the optimal window size among T ∈ [1, 2, 3] for three different lag
values (5, 10, and 15). R2 regression scores are averaged across five folds.

Dataset Lag CPC-L CPC-NL PCA SFA DCA D-CPIC-L S-CPIC-L D-CPIC-NL S-CPIC-NL

M1
5 0.041 0.168 0.135 0.203 0.215 0.222 0.223 0.232 0.264

10 0.066 0.180 0.157 0.223 0.226 0.234 0.235 0.249 0.291
15 0.068 0.152 0.145 0.199 0.200 0.202 0.203 0.226 0.252

HC
5 0.025 0.018 0.007 0.112 0.113 0.120 0.127 0.145 0.150

10 0.012 0.012 0.001 0.101 0.101 0.107 0.113 0.121 0.133
15 -0.002 0.002 -0.005 0.085 0.085 0.091 0.095 0.094 0.114

Temp
5 0.666 0.639 0.651 0.669 0.668 0.672 0.673 0.673 0.673

10 0.630 0.584 0.615 0.630 0.632 0.629 0.633 0.630 0.634
15 0.624 0.529 0.581 0.623 0.622 0.620 0.621 0.621 0.621

MS
5 0.281 0.184 0.107 -0.051 0.443 0.247 0.457 0.290 0.483

10 0.212 0.154 0.068 -0.107 0.377 0.177 0.385 0.243 0.425
15 0.182 0.136 0.044 -0.131 0.342 0.161 0.358 0.216 0.379

6 CONCLUDING REMARKS

We developed a novel information-theoretic framework, Compressed Predictive Information Cod-
ing, to extract representations in sequential data. CPIC balances the maximization of the predictive
information in latent space with the minimization of the compression complexity of the latent repre-
sentation. We leveraged stochastic representations by employing a stochastic encoder and developed
variational bounds of the CPIC objective function. We demonstrated that CPIC extracts more accu-
rate low-dimensional latent dynamics and more useful representations that have better forecasting
performance in diverse downstream tasks in four real-world datasets. Together, these results indicate
that CPIC will yield similar improvements in other real-world scenarios. Moreover, we note that in
most real datasets, using nonlinear CPIC would lead to better representation in terms of prediction
performance than linear CPIC.

1https://scikit-learn.org/stable/modules/linear model.html
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APPENDIX

A SELECTION OF WINDOW SIZE

Selecting optimal window size T is important for the downstream use of the dynamics. Poor selec-
tion of T may cause aliasing artifacts. In general, we nee to select it by cross validation. Further-
more, we can make plots of the predictive information as a function of both window size T and the
embedding dimension Q as diagnostic tools.

B DERIVATION OF IV UB

Directly estimating the compression complexity is intractable, because I(X(T );Y (T )) :=
EX(T )

[
KL(p(y(T )|x(T )), p(y(T )))

]
in which the population distribution p(y(T )) is unknown.

Thus we introduce a variational approximation to the marginal distribution of encoded inputs

12
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p(y(T )), denoted as r(y(T )). Due to the non-negativity of the Kullback-Leibler (KL) divergence,
the variational upper bound (VUB) is derived as

I(X(T );Y (T )) = EX(T )

[
KL(p(y(T )|x(T )), r(y(T )))

]
− KL(p(y(T )), r(y(T )))

≤ EX(T )

[
KL(p(y(T )|x(T )), r(y(T )))

]
= IVUB(X(T );Y (T )) . (9)

C DERIVATION OF IL1Out

Generally, learning r(y(T )) was recognised as the distribution density estimation problem (Silver-
man, 2018), which is challenging. In this setting, the variational distribution r(y(T )) is assumed
to be learnable, and thus estimating the variational upper bound is tractable. In particular, Alemi
et al. (2016) fixed r(y(T )) as a standard normal distribution, leading to high-bias in MI estimation.
Recently, Poole et al. (2019) utilized a Monte Carlo approximation for variational distribution. In
our case, with S sample pairs (x(T )i, y(T )i)Si=1, ri(y(T )) = 1

S−1

∑
j ̸=i p(y(T )|x(T )j) ≈ p(y(T ))

and the L1Out is derived as below:

IL1Out(X(T );Y (T )) = E

[
1

S

S∑
i=1

[
log

p(y(T )i|x(T )i)
1

S−1

∑
j ̸=i p(y(T )i|x(T )j)

]]
. (10)

D DERIVATION OF IV LB

Similar to Agakov (2004), we replace the intractable conditional distribution p(y(T )|y(−T )) with a
tractable optimization problem over a variational conditional distribution q(y(T )|y(−T )). It yields
a lower bound on PI due to the non-negativity of the KL divergence:

I(Y (−T );Y (T )) ≥ H(Y (T )) + Ep(y(−T ),y(T ))[log q(y(T )|y(−T ))] (11)

where H(Y ) is the differential entropy of variable Y and this bound is tight if and only if
q(y(T )|y(−T )) = p(y(T )|y(−T )), suggesting that the second term in equation 11 equals the neg-
ative conditional entropy −H(Y (T )|Y (−T )).
However the variational lower bound requires a tractable decoder for the conditional q(y|x). Alter-
natively, by considering an energy-based variational family for conditional distribution

The conditional expectation in equation 11 can be estimated using Monte Carlo sampling based on
the encoded data distribution p(y(−T ), y(T )). And encoded data are sampled by introducing the
augmented data x(−T ) and x(T ) and marginalizing them out as

p(y((−T ), y(T )) =
∫
p(x(−T ), x(T ))p(y(−T )|x(−T ))p(y(T )|x(T ))dx(−T )x(T ) (12)

according to the Markov chain proposed in Figure 1.

E DERIVATION OF ITUBA

According to Poole et al. (2019), by considering an energy-based variational family to express and
conditional distribution q(y(T )|y(−T )):

q(y(T )|y(−T )) = p(y(T ))ef(y(T ),y(−T ))

Z(y(−T ))
(13)

where f(x, y) is a differentiable critic function, Z(y(−T )) = Ep(y(T )

[
ef(y(T ),y(−T ))

]
is a partition

function, and introducing a baseline function a(y(T )), we derived a tractable TUBA lower bound
(Barber & Agakov, 2003) of the predictive information as:

I(Y (−T ), Y (T )) ≥ Ep(y(−T ),y(T ))[f̃(y(−T ), y(T ))]− log
(
Ep(y(−T ))p(y(T ))[e

f̃(y(−T ),y(T ))]
)

= ITUBA(Y (−T ), Y (T )) (14)

where f̃(y(−T ), y(T )) = f(y(−T ), y(T ))− log(a(y(T ))) is treated as an updated critic function.
Notice that different choices of baseline functions lead to different mutual information estimators.
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When a(y(T )) = 1, it leads to mutual information neural estimator (MINE) (Belghazi et al., 2018);
when a(y(T )) = Z(y(T )), it leads to the lower bound proposed in Donsker & Varadhan (1975)
(DV) and when a(y(T )) = e, it recovers the lower bound in Nguyen et al. (2010) (NWJ) also known
as f-GAN (Nowozin et al., 2016) and MINE-f (Belghazi et al., 2018). In general, the critic function
f(x, y) and the log baseline function a(y) are usually parameterized by neural networks (Oord
et al., 2018; Belghazi et al., 2018): Oord et al. (2018) used a separable critic function f(x, y) =
hθ(x)

T gθ(y), while Belghazi et al. (2018) used a joint critic function f(x, y) = fθ(x, y), and Poole
et al. (2019) claimed that joint critic function generally performs better than separable critic function
but scale poorly with batch size.

F DERIVATION OF IinfoNCE

The derivation of infoNCE in our CPIC setting is trivial by treating Y (−T ) and Y (T ) as the input
and output in the infoNCE formula from the CPC setting (Oord et al., 2018).

G DETAILS OF SIMULATION

In this section, we first generated the 3D latent signals according to the Lorenz dynamic system
8 denoted as X ∈ R3×T . We calculated the largest eigenvalue of the covariance matrix of X as
dynamic variance denoted as σ2

dynamics, and the noise variance is σ2
noise = σ2

dynamics/SNR where
SNR is signal-to-noise ratio. Then we randomly generate a semi orthogonal matrix V ∈ R30×3.
Then we generated the true 30D signal V X embedded with additive spatially structured white noise,
where the noise subspace Vnoise is generated with median principle angles with respect to dynamics
subspaces V . The noise covariance is generated via Σnoise with the largest eigenvalue σ2

noise, and
then we generate the noisy signal at the nth dimension by [Ynoisy]n ∼ N (vTnX,Σnoise), n =
1, . . . 30.

H MODEL COMPARISON IN TERMS OF R2 REGRESSION SCORE IN THE NOISY
LORENZ ATTRACTOR EXPERIMENT

In this section, theR2 regression scores for CPC, DCA, deterministic & stochastic CPICs (three uni-
sample upper bounds in terms of NWJ, MINE, TUBA, and one multi-sample upper bound) for all
ten different SNRs are reported in Table 2. It shows that stochastic CPIC with multi-sample upper
bound outperforms other approaches in majority of SNRs. It also shows that that CPIC is most
robust to the noisy data and thus detect best latent trajectories from noisy observation compared
with CPC and DCA.

We also show the aligned latent trajectories inferred from corrupted lifted observation for high,
intermediate and low SNR (0.001, 0.01, 0.1) levels of noise with the median R2 scores across 100
replicates for PCA and DCA (as the extension of Figure 2) in Figure 4. The point-wise distances
between the recovered dynamics and the ground-truth dynamics are encoded in the colors from blue
to red, corresponding to short to long distance. It show that stochastic CPIC outperforms both PCA
and DCA.

I COMPARISON ON R2 SCORES OF LATENT DYNAMICS REGRESSION FOR
NOISY LORENZ ATTRACTOR IN TERMS OF QUANTILE ANALYSIS

We displayed the medium performance (with the inter-quantile range as the error bars) of R2 scores
of latent dynamics regression for noisy Lorenz attractor in Figure 5.

J DETAILS OF REAL-WORLD EXPERIMENTS

The four real data are Monkey motor cortical dataset (M1), Rat hippocampal data (HC), Temperature
dataset (Temp) and Accelerate dataset (MS).
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Figure 4: Left panel. Top: 3D trajectories of lorenz attractor’s ground-truth. Middle: 30D projected
trajectory. Bottom: Corrupted 30D trajectory with SNR=0.001. Right Panel. 3D trajectories ob-
tained by PCA and DCA in terms of different SNRs (0.1, 0.008, 0.001). We encode the point-wise
Euclidean distance between the aligned inferred latent dynamics and the true dynamics into color
on trajectories. Color from blue to red corresponds to the distance from short to long respectively.
Separate colorbars are used for their corresponding SNRs.

Table 2: R2 regression scores for CPC, DCA, deterministic & stochastic CIPCs including three uni-
sample upper bounds (UNI): NWJ, MINE, TUBA, and one multi-sample upper bound (MUL) for
all ten different SNRs

SNR CPC DCA

CPIC
Deterministic Stochastic
UNI MUL UNI MUL

NWJ MINE TUBA NWJ MINE TUBA
0.001 0.132 0.458 0.554 0.543 0.547 0.482 0.539 0.550 0.553 0.459

0.00167 0.195 0.466 0.539 0.538 0.574 0.430 0.573 0.569 0.571 0.576
0.00278 0.265 0.473 0.573 0.573 0.573 0.413 0.587 0.583 0.590 0.588
0.00464 0.344 0.478 0.579 0.562 0.584 0.438 0.598 0.583 0.556 0.593
0.00774 0.421 0.480 0.597 0.559 0.515 0.912 0.582 0.579 0.589 0.598
0.01292 0.491 0.484 0.587 0.596 0.597 0.468 0.580 0.563 0.592 0.923
0.02154 0.547 0.486 0.590 0.596 0.592 0.688 0.568 0.599 0.864 0.930
0.03594 0.592 0.491 0.587 0.912 0.594 0.923 0.937 0.632 0.907 0.951
0.05995 0.635 0.952 0.933 0.837 0.936 0.474 0.970 0.939 0.896 0.970

0.1 0.671 0.953 0.920 0.893 0.889 0.922 0.926 0.910 0.854 0.989

J.1 MONKEY MOTOR CORTICAL DATASET

O’Doherty et al. (2017) released multi-electrode spiking data for both M1 and S1 for two monkeys
during a continuous grid-based reaching task. We used M1 data from the subject “Indy” (specifically,
we used the file “indy 20160627 01.mat”). We discarded single units with fewer than 5,000 spikes,
leaving 109 units. We binned the spikes into non-overlapping bins , square-root transformed the
data and mean-centered the data using a sliding window 30 s in width.
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𝑁 = 10 𝑁 = 100

Figure 5: Comparison on R2 scores of latent dynamics regression on 10 SNR levels for four vari-
ants of CPIC. The first row shows the medium performance (with the inter-quantile range as the
error bars) of R2 scores for CPICs (O) with PI between latent and obersvation space over running
N=10/100 different random initializations, and the second row shows the performance for CPICs
(L) with PI in latent space.

J.2 RAT HIPPOCAMPAL DATA

Glaser et al. (2020) released the original data. The data consist of 93 minutes of extracellular record-
ings from layer CA1 of dorsal hippocampus while a rat chased rewards on a square platform. We
discarded single units with fewer than 10 spikes, leaving 55 units. We binned the spikes into non-
overlapping 50 ms bins, then square-root transformed the data.

J.3 TEMPERATURE DATASET

The temperature dataset consists of hourly temperature data for 30 U.S. cities over a period of
7 years from OpenWeatherMap.org. We downsampled the data by a factor of 24 to obtain daily
temperatures.

J.4 ACCELEROMETER DATASET

Malekzadeh et al. (2018) released accelerometer data which records roll, pitch, yaw, gravity x, y, z,
rotation x, y, z and acceleration x, y, z for a total of 12 kinematic variables. The sampling rate is 50
Hz. We used the file “sub 19.csv” from “A DeviceMotion data.zip”.

J.5 FORECASTING TASK

The forecasting task is the same in Clark et al. (2019). We use the extracted consecutive 3-length
window representation of endogenous data to forecast the future relevant exogenous variables at log
n. In M1 and HC, the endogenous variables are processed spiking data, and the exogenous variables
are location data. In Temp and MS, we assume endogenous variables and exogenous variables are
the same, 30 U.S. cities’ hourly temperature for Temp data and 12 kinematic variables for MS data.
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