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Abstract
Despite recent advancements of fine-tuning large
language models (LLMs) to facilitate agent tasks,
parameter-efficient fine-tuning (PEFT) method-
ologies for agent remain largely unexplored. In
this paper, we introduce three key strategies for
PEFT in agent tasks: 1) Inspired by the increas-
ingly dominant Reason+Action paradigm, we first
decompose the capabilities necessary for the agent
tasks into three distinct roles: reasoner, executor,
and summarizer. The reasoner is responsible for
comprehending the user’s query and determin-
ing the next role based on the execution trajec-
tory. The executor is tasked with identifying the
appropriate functions and parameters to invoke.
The summarizer conveys the distilled informa-
tion from conversations back to the user. 2) We
then propose the Mixture-of-Roles (MoR) frame-
work, which comprises three specialized Low-
Rank Adaptation (LoRA) groups, each designated
to fulfill a distinct role. By focusing on their re-
spective specialized capabilities and engaging in
collaborative interactions, these LoRAs collec-
tively accomplish the agent task. 3) To effectively
fine-tune the framework, we develop a multi-role
data generation pipeline based on publicly avail-
able datasets, incorporating role-specific content
completion and reliability verification. We con-
duct extensive experiments and thorough abla-
tion studies on various LLMs and agent bench-
marks, demonstrating the effectiveness of the pro-
posed method. This project is publicly available
at https://mor-agent.github.io/.

1. Introduction
Large language models (LLMs), trained on extensive cor-
pora, have exhibited impressive performance across a wide
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range of natural language processing (NLP) tasks. Further-
more, LLMs have also demonstrated their capability in more
challenging tasks, such as function-calling as AI agents. For
instance, certain research endeavors (Hong et al., 2023;
Shen et al., 2024b; Wang et al., 2024) employ prompt engi-
neering methodologies. This approach involves the design
of meticulously crafted prompts to effectively activate the
agent-related capabilities in LLMs such as reasoning and
tool-utilization. These works have shown superior agent
performance in large commercial models, like ChatGPT
and GPT-4. For open source LLMs (Touvron et al., 2023;
Yang et al., 2024), although they have achieved consider-
able success across various NLP tasks, they still lag behind
commercial models when acting as agents. Consequently,
another approach has emerged: fine-tuning models using
agent-specific data, which has yielded remarkable results on
a variety of agent tasks (Qin et al., 2023; Zeng et al., 2023;
Chen et al., 2024).

Most existing research on agent fine-tuning focuses on full-
parameter fine-tuning, which presents two significant chal-
lenges. First, the computational resources required to han-
dle billions or tens of billions of model parameters pose
a substantial barrier to the widespread adoption of agents.
Second, full-parameter fine-tuning compromises the general
capabilities of the original base model, thereby limiting the
flexibility of users to seamlessly switch between general
tasks and agent-specific tasks. To address these challenges,
Parameter-Efficient Fine-Tuning (PEFT) methods offer a vi-
able solution (Houlsby et al., 2019; Li & Liang, 2021; Lester
et al., 2021; Hu et al., 2021). Among these, Low-Rank Adap-
tation (LoRA) (Hu et al., 2021) is a prominent method that
introduces low-rank adaptation matrices to simulate gradi-
ent updates while keeping the pre-trained model weights
frozen. LoRA achieves the performance comparable to full-
parameter fine-tuning across a range of downstream tasks
while requiring significantly fewer computational resources.

However, directly applying LoRA for fine-tuning agents
often yields performance that is significantly inferior to that
achieved through full-parameter fine-tuning. Successfully
accomplishing agent tasks typically requires LLMs to si-
multaneously exhibit multiple capabilities. For instance,
LLMs must first comprehend the user’s query and perform a
reasonable analysis and planning, demonstrating the ability
of reasoning. Subsequently, it needs to invoke the correct
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User

Thought: I will call get_weather to get 

the weather information, and the input 

parameters are Bali and tomorrow.

Next Role: Executor

Reasoner

Available APIs: book_flight (city,date), 

get_weather (city,date), 

check_stock_price (company), …

Executor

API: get_weather

Params: (Bali, tomorrow)

Observation

Rain, 86oF, …

Thought: The API has been 

successfully executed, the observation 

can fully resolve the user query.

Next Role: Summarizer

Reasoner

The weather in Bali tomorrow will be 

rainy, the temperature is 86oF, and the 

air quality is excellent.

Summarizer

I want to know the 

weather in Bali 

tomorrow.

Figure 1. Workflow example of multiple roles collaborate to accomplish one agent task.

functions with suitable parameters, reflecting the ability of
execution. After multiple rounds of interaction with the real
environment, it should organize the conversation history and
provide feedback to the user, exhibiting the ability of sum-
marization. Learning multiple capabilities simultaneously
is challenging for the parameter matrix, particularly when
constrained to a low-rank form.

In this paper, we first decompose the capabilities necessary
for the agent into three distinct roles: reasoner, executor,
and summarizer. Specifically, the reasoner is responsible
for comprehending the user’s query and determining the
next role based on the execution trajectory. The executor
is tasked with identifying the appropriate functions and
parameters to invoke, informed by the analysis of reasoner.
The summarizer organizes the conversations history and
conveys the distilled information back to the user. The
pipeline of the multi-roles is illustrated in Figure 1. It should
be noted that the summarizer is engaged to provide user
feedback only when the reasoner deems the user’s query
fully addressed or, after multiple invocations of the executor,
still cannot resolve the user’s query and decides to give up.

To better characterize these capabilities, we then propose
the Mixture-of-Roles (MoR) architecture, which comprises
three specialized LoRA groups, each designated to fulfill
a distinct role. By focusing on their respective specialized
capabilities and engaging in collaborative interactions, these
groups collectively accomplish the overall agent task. In
practice, each group consists of a different number of LoRA
modules. Our guiding principle is to allocate more LoRAs
to relatively important roles and fewer to less important ones,
aiming to achieve better performance with fewer trainable
parameters. Additionally, we introduce both a rule-based
role-aware gate and learnable token-aware routers to more
reasonably allocate LoRAs to the input features. During
the training process, auxiliary balance loss and orthogo-

nal loss between LoRAs are further introduced for better
optimization.

To effectively fine-tune the framework, we develop a multi-
role data generation pipeline based on publicly available
datasets, incorporating role-specific content completion and
reliability verification. Specifically, we prompt GPT4o to fill
in missing multi-role content in agent data, such as thought
and summary. The completed execution trajectories are
further evaluated for quality by DeepSeek-V3 (Liu et al.,
2024a), with low-quality samples being filtered out. Subse-
quently, we unify the data format to facilitate downstream
fine-tuning. In practice, we observe certain issues in the
outputs of executors within some samples, such as selecting
functions outside the candidate list, encountering runtime
errors, or failing to resolve user problems despite error-free
execution. To address these issues, we adopt a hybrid ap-
proach combining manual corrections and LLM to further
enhance its reliability.

We extensively evaluate the proposed method on various
benchmarks, including StableToolBench (Guo et al., 2024),
BFCL (Yan et al., 2024), GSM8K (Cobbe et al., 2021), and
MATH (Hendrycks et al., 2021). For example, on Stable-
ToolBench, our method achieves improvements in DFS pass
rates of 40.6% and 14.2% for Llama3.2-1B-Instruct (Tou-
vron et al., 2023) and Phi-3.5-mini-Instruct (Abdin et al.,
2024), respectively, while introducing only an additional
0.16B and 0.36B trainable parameters.

2. Related Work
2.1. Agent Tuning

Fine-tuning open source LLMs on agent-specific data has
shown to be an effective approach for developing agent ca-
pabilities. ToolLLM (Qin et al., 2023) presents a general
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tool-use framework encompassing data construction, model
training, and evaluation. The automatically constructed
instruction-tuning dataset for tool invocation using Chat-
GPT has been widely adopted. AgentTuning (Zeng et al.,
2023) focuses on improving the agent capabilities of LLMs
themselves without compromising their general abilities.
To achieve this, they employ a hybrid instruction-tuning
strategy by combining AgentInstruct with instructions from
general domains. Gorilla (Patil et al., 2023) constructs the
APIBench, a large corpus of APIs with complex and often
overlapping functionality by scraping ML APIs from public
model hubs. Toolformer (Schick et al., 2023) incorporates
a range of tools, including a calculator, a Q&A system, a
search engine, a translation system, and a calendar. KwaiA-
gents (Pan et al., 2023) and ModelScope-Agent (Li et al.,
2023) presents a comprehensive framework spanning over
tool-use data collection, tool retrieval, customized model
training, and evaluation for practical real-world applications.
Many works have also been proposed to synthesize higher
quality data for agent tasks. APIGen (Liu et al., 2024d) in-
troduces a function-calling data generation pipeline to facil-
itate the fine-tuning of function-calling LLMs by providing
high-quality, diverse datasets that better reflect the variabil-
ity and complexity of real-world API use. xLAM (Zhang
et al., 2024) and ToolACE (Liu et al., 2024c) further discuss
the data pipeline including data unification, augmentation,
quality verification, general instruction data synthesis, and
preference data generation.

In addition to a single model, multiple models working to-
gether to complete agent tasks has recently attracted the
interest of many researchers. Mobile-Agent-v2 (Wang et al.,
2024) presents a multi-agent architecture for mobile device
operation assistance, which includes planning agent, deci-
sion agent, and reflection agent. α-UMi (Shen et al., 2024a)
decomposes the agent capabilities into three roles, each role
is implemented by a single LLM that focuses on a specific
capability and collaborates with others to accomplish the
task. However, multiple models pose high requirements on
computing resources, both for training and inference.

2.2. Parameter Efficient Fine-tuning

Parameter-efficient fine-tuning (PEFT) has emerged as a
crucial technique for adapting large pre-trained models to
downstream tasks while minimizing computational costs
and preserving model performance. LoRA (Hu et al., 2021)
freezes the pretrained model weights and injects trainable
rank decomposition matrices into each layer of the Trans-
former architecture, greatly reducing the number of train-
able parameters. LoRA+ (Hayou et al., 2024) corrects the
suboptimality of LoRA by setting different learning rates
for the LoRA adapter matrices with a well-chosen fixed
ratio. DoRA (Liu et al., 2024b) decomposes the pre-trained
weight into two components i.e., magnitude and direction,

for fine-tuning, specifically employing LoRA for directional
updates. QLoRA (Dettmers et al., 2024) further reduces
memory use without sacrificing performance with 4-bit Nor-
malFloat, double quantization and paged optimizers.

To further improve the accuracy, researchers recently pay
more attention to using multiple LoRA combinations. Lo-
RAHub (Huang et al., 2023) and MoA (Feng et al., 2024)
pioneer the approach of training several LoRA weights on
downstream tasks and then integrating the LoRA modules
into a shared LLM using a routing mechanism. MoLE (Wu
et al., 2024) treats each layer of trained LoRAs as a dis-
tinct expert and implements hierarchical weight control by
integrating a learnable gating function to learn optimal com-
position weights. OCTAVIUS (Chen et al., 2023) design
a multimodal LoRA-MoE decoder for modality-specific
learning. MoLA (Gao et al., 2024) introduces a method of
layer-wise expert allocation, where each model layer has
the flexibility to employ a varying number of LoRA experts.
However, these studies overlook the characteristics of agent
tasks, making them challenging to apply in practice.

3. Method
In this section, we first introduce the decomposition of capa-
bilities in agent tasks, then we elaborate the framework of
mixture-of-roles and the objectives adopted in fine-tuning.
The pipeline of preparing multi-role data is discussed at the
end.

3.1. Capabilities Decomposition

ReAct (Yao et al., 2022) introduces a paradigm of Rea-
son+Action for LLM inference, which has gradually be-
come dominant in agent tasks (Qin et al., 2023; Gou et al.,
2023; Shen et al., 2024a; Lu et al., 2024; Wang et al., 2024).
Given system prompt p, user query q and previous execution
trajectory τ , the LLM with weights W outputs thought Tt
and action At in sequence at t-th step:

Tt, At = W (p, q, τt−1), (1)

where τt−1 = {T1, A1, O1, ..., Tt−1, At−1, Ot−1} repre-
sents the execution trajectory before t-th step. Action con-
sists of two parts: function name and the corresponding
input parameters. Ot indicates the observation of the action
At when invoked in a real deployment environment. Learn-
ing multiple capabilities simultaneously is challenging for
the weights of LLM, especially for low-rank forms. There-
fore, we first propose to decompose the agent capability into
three roles.

Reasoner: The reasoner starts to understand the user’s
query and generate its analytical reasoning, which is then
passed to the executor. Additionally, based on the obser-
vation returned after invoking tools in the real deployment
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Figure 2. The framework of our method. The capabilities necessary for agent are decomposed into three distinct roles: reasoner, executor,
and summarizer. Each role consists of different number of LoRAs according to their learning difficulty. The rule-based role-aware gate
and learnable token-aware routers are introduced to more reasonably allocate LoRAs.

environment, the reasoner analyzes the execution trajectory
to determine whether the user’s query has been addressed.
If the user query is solved, or if it cannot be solved after
enough attempts, the next role is transferred to summarizer.
Otherwise, it is returned to the executor for further action.
Formally,

Tt, Rolet = W r(pr, q, τt−1), (2)

where Rolet denotes the activated role in the next step, W r

and pr denote the weights of reasoner and the system prompt
of reasoner, respectively.

Executor: The executor is responsible for selecting the
appropriate functions and parameters to invoke, based on
the analytical thought of reasoner.

Funt, Paramt = W e(pe, q, τt−1, Tt−1), (3)

where Funt and Paramt represent the functions and pa-
rameters in the next step, W e and pe denote the weights
and the system prompt of executor. Then, the functions
are executed in the real deployment environment, such as
RapidAPI Hub (Qin et al., 2023), Python IDE, etc.

Summarizer: The summarizer needs to re-organize the
conversations history and convey the distilled information
Sum back to the user.

Sum = W s(ps, q, τ), (4)

where W s and ps denote the weights and the system prompt
of summarizer, respectively.

3.2. Mixture-of-Roles

To characterize the decomposed capabilities, we then pro-
pose the framework of Mixture-of-Roles (MoR) as illus-
trated in Figure 2.

Forward Procedure. The MoR framework can be
equipped on the linear layer of attention or feed-forward
network in each transformer block. While freezing the
pretrained weights in the backbone, we fine-tune only the
parameters in MoR, including LoRAs and routers. Given in-
put hidden u ∈ Rlen×d1 and the frozen pretrained weights
W 0 ∈ Rd1×d2 , where len is the sequence length of input,
d1 and d2 denote the dimension of input and output, re-
spectively. The final output hidden h can be calculated by:

h = h0 + ∆h, (5)

where h0 = W 0u and ∆h = ∆hr + ∆he + ∆hs, i.e., the
sum of the outputs of reasoner, executor and summarizer. It
should be noted that there is only one role that is non-zero,
and the other two are all zeros. Formally, ∀i ∈ {0, ..., len−
1}:

1{∆hi
r 6= 0}+ 1{∆hi

e 6= 0}+ 1{∆hi
s 6= 0} = 1. (6)

That is, u[i, :] is processed by only one active role, which
is achieved through the rule-based role-aware gate. Specifi-
cally, when a user inputs a query, the reasoner is activated
first. The next role to be activated is determined based on
the output of the reasoner, i.e., Rolet in Equation. 2. Be-
sides, the observations Ot in Equation. 1 is always input
to the reasoner to decide whether to continue execution or
summarize.
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Without loss of generality, taking the output of reasoner as
an example: ∆hr = ∆W rur, where ∆W r denotes the
LoRAs’ weights of reasoner, ur denotes the input that is
allocated to reasnoer.

∆W r = B0
rA

0
r +

Er∑
i=1

Bi
rA

i
rRr(ur), (7)

Each role consists of a shared LoRA (superscript 0) and
a number of Er routed LoRAs (superscript from 1 to Er).
B0

r,B
i
r ∈ Rd1×d3 , A0

r,A
i
r ∈ Rd3×d2 , and the rank d3 �

min(d1, d2). Rr denotes the Top-K token-aware router in
reasoner to select the specific LoRAs for different input.

Training Objective. We adopt the following objective to
guide the processs of supervised fine-tuning:

Ltotal = LCE + α1Laux + α2Lorth, (8)

where LCE is the cross-entropy loss, which measures the dif-
ference of distribution between predication and truth. Laux
is the auxiliary balancing loss to avoid the load imbalance
among LoRAs. Lorth is the orthogonal loss between Lo-
RAs, which makes the LoRAs as independent as possible
to capture features in different directions. α1 and α2 are
hyper-parameters.

LCE = −
B∑

i=1

log pw(yi|ui), (9)

where B is the batch size, y is the label for input u, and
pw indicates the distribution of predication with weights
w. The auxiliary balancing loss is inherited from Switch
transformers (Fedus et al., 2022), ∀O ∈ {r, e, s},

Laux = EO ·
EO∑
i=1

f iO · P i
O , (10)

where f iO represents the fraction of tokens dispatched to i-th
LoRA in reasoner, executor and summarizer,

f iO =
1

|B|
∑
uO∈B

1{RO(uO)i 6= 0} , (11)

and P i
O denotes the average fraction of the router probability

allocated for i-th LoRA in role O:

P i
O =

1

|B|
∑
uO∈B

Softmax
(
uO ·WO

R

)i
, (12)

where WO
R denotes the weights of router in different roles.

In addition, to encourage LoRAs to learn distributions in
different directions and reduce redundancy, we propose the
orthogonal loss.

Lorth =

EO∑
i=1

EO∑
j=i+1

(∥∥∥Ai T
O Aj

O

∥∥∥2
F

+
∥∥∥Bi T

O Bj
O

∥∥∥2
F

)
,

(13)

Algorithm 1 Fine-tuning LLM with MoR for agent tasks.
input A pre-trained LLM M , data D and iterations T for

fine-tuning, hyper-parameters α1 and α2 in loss, the mod-
ules need fine-tuning inM , the rank value d3, the number
of LoRAs E in each role.
repeat

1. Randomly select a batch of data from D .
2. Conduct the forward process for M accompanied
with MoR by Equation 5.
3. Compute the loss function by Equation 8.
4. Freeze all parameters in M , update the parameters
of LoRAs and routers.

until iterations T .
output A fine-tuned LLM with MoR for agent tasks.

where F represents the frobenius norm. Through appro-
priate hyper-parameters to combine different losses, better
results can be achieved. The complete fine-tuning process
is illustrated in Algorithm 1.

3.3. Data Preparation

To effectively fine-tune the framework, we develop a multi-
role data generation pipeline based on publicly available
datasets, incorporating role-specific content completion and
reliability verification.

Role-Specific Content Completion. We adopt the pub-
licly available datasets including ToolBench (Qin et al.,
2023), the combination of APIGen (Liu et al., 2024d) and
ToolACE (Liu et al., 2024c) and glaive-function-calling-v2
1, MathGenie (Lu et al., 2024) to fine-tune the correspond-
ing downstream agent tasks respectively. For ToolBench,
which contains implicit multi-role content, we can directly
convert it into an explicit multi-role format using rule-based
methods. However, many samples in other datasets lack
multi-role content, such as thought and summary. For these
samples, we prompt GPT4o to complete them. The detailed
prompts are presented in Figure 6 and Figure 7. In practice,
we observe many execution trajectories in which the rea-
soning or summarizing steps are of low quality, a common
issue in the outputs of LLM. To address this, we prompt
DeepSeek-V3 (Liu et al., 2024a) to evaluate both the overall
trajectory and the individual reasoning or summarization
steps.

Further, we unify the data into JSON format to facilitate
downstream fine-tuning. Specifically, the JSON begins with
a list of candidate functions, if available. Each function
is characterized by its name, description, parameters, and
whether it is marked as required. This is followed by the
system prompt and a detailed execution trajectories. The ex-

1https://huggingface.co/datasets/glaiveai/glaive-function-
calling-v2
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Function Call
Function:

{

name: ‘function name‘

description: ‘function description‘

parameter: { type: ‘ ’, description: ‘ ’ },

{ ... [more parameters] ...}

},

{ ... [more functions] ... }

System prompt: ‘ ‘

Conversation:

{

role: ‘user‘

content: ‘user query‘

},

{

role: ‘reasoner‘

content: ‘thought and next role‘

},

{

role: ‘executor‘

content: ‘function names and parameters‘

},

{

role: ‘observation‘

content: ‘result of function execution‘

},

{ ... [more conversations] ... }

{

role: ‘summarizer‘

content: ‘summarize and feed back to user‘

}

Math
System prompt: ‘ ‘ 

Conversation:

{

role: ‘user‘

content: ‘user query‘

},

{

role: ‘reasoner‘

content: ‘thought and next role‘

},

{

role: ‘executor‘

content: ‘python code‘

},

{

role: ‘observation‘

content: ‘result of code execution‘

},

{ ... [more conversations] ... }

{

role: ‘summarizer‘

content: ‘summarize and feed back to user‘

}

Figure 3. The JSON format on different scenarios in our fine-
tuning datasets.

ecution trajectories starts with the user’s query and proceeds
with the interaction between the reasoner and the execu-
tor. If necessary, this includes execution results from the
real deployment environment, i.e., observations. Finally, it
concludes with the feedback from summarizer. The JSON
formats for different scenarios are shown in Figure 3.

Reliability Verification. Although the original publicly
available datasets are carefully reviewed, we observe in
practice that some samples contain wrong outputs from the
executor. To enhance the effectiveness of fine-tuning data,
we conduct a series of filtering and correction procedures.
The errors can be categorized into the following types:1)
Function not included in the candidate list. This issue can
be identified using rule-based methods and corrected by re-
prompting other LLM. 2) Incorrect numbers of parameters
and type mismatches. These can be detected through execu-
tion failures and subsequently corrected manually. 3) Errors
in function selection or parameter assignment. These cases
are more subtle, as it does not trigger execution failures.
We examine them by comparing the outputs from prompt-
ing other LLM with the execution results. Samples with
inconsistencies are then manually reviewed and corrected.

4. Experiments
4.1. Models and Datasets

We conduct experiments on multiple pre-trained LLMs,
including Llama3.2-1B-Instruct (Touvron et al., 2023),
Phi3.5-mini-instruct (Abdin et al., 2024) and code-specific
Qwen2.5-1.5B-Coder (Hui et al., 2024). For evaluations, the
benchmarks including StableToolBench (Guo et al., 2024),
BFCL (Yan et al., 2024), GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021) are evaluated. Specifically,

StableToolBench comprises a total of 765 questions span-
ning across 6 subtasks, evolving from ToolBench (Qin et al.,
2023). It introduces a virtual API server and stable eval-
uation system. BFCL presentes the first comprehensive
evaluation on the LLMs’ ability to call functions and tools.
We report the results on Abstract Syntax Tree (AST) of live
and non-live, Executable Function Evaluation (Exec) of non-
live, Relevance of live, containing a total of 2797 questions.
GSM8K and MATH are designed to be evaluated in the area
of mathematics, which contain 1319 and 5000 questions,
respectively. Different from directly generating the answer,
we solve the math problems by importing python package
and then executing it.

During fine-tuning, we choose the corresponding datasets
for fine-tuning in their respective downstream tasks. Specif-
ically, for StableToolBench, we sample 120k multi-role
execution trajectories from the training set of toolbench.
For BFCL, we sample 90k items from the combination of
APIGen (Liu et al., 2024d) and ToolACE (Liu et al., 2024c)
and glaive-function-calling-v2. For GSM8K and MATH,
we adopte the 80k execution trajectories in MathGenie (Lu
et al., 2024). All datasets are filtered and corrected by our
multi-role content completion and reliability verification.
The detailed prompts for system and roles in our data are
illustrated in Figure 8, Figure 9 and Figure 10.

4.2. Implementation Details

Figure 4. The loss and levenshtein accuracy of respective roles
with different number of LoRAs.

To determine the optimal number of LoRAs per role, aim-
ing to balance performance and the number of trainable
parameters, we conduct toy experiments using the specific
capability dataset of each role. The dataset is constructed
by first combining all multi-role data and then splitting it
based on roles. For each role, 80k samples are randomly
selected as the training set, while 5k samples are sampled
as the validation set. We set the dimension d3 in Equation 7
to 16 and vary the number of LoRAs for each role from 1
to 8. The modules including query, key, value, out, gate,
up, and down are selected as target modules for fine-tuning
with MoR. Additionally, routers are removed for simplicity.
The loss and levenshtein accuracy after 2 epoch fine-tuning
based on Llama3.2-1B-Instruct are shown in Figure 4. We
can observe that the trend of loss and accuracy changes
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Table 1. The pass rate and win rate of different LLMs on StableToolBench.

Model Setting I1-Inst I1-Tool I1-Cat I2-Inst I2-Cat I3-Inst AVG
Pass Win Pass Win Pass Win Pass Win Pass Win Pass Win Pass Win

GPT4 CoT 52.8 48.4 51.9 40.3 56.6 54.2 52.8 36.6 51.9 47.6 52.5 45.2 53.1 45.4
DFS 59.2 50.1 65.7 44.2 61.7 57.9 55.2 41.2 55.6 53.7 66.1 45.4 60.6 48.8

ToolLLaMA- CoT 51.8 39.2 46.4 33.1 53.1 39.9 48.9 31.3 51.6 40.7 37.2 42.2 48.2 37.7
v2-7B DFS 61.0 43.6 45.6 35.8 58.8 41.3 53.5 34.2 60.3 43.8 48.1 45.1 54.6 40.6

Base Model: Llama3.2-1B-Instruct (1.24B)

Base CoT 14.4 23.3 10.1 15.8 12.2 15.0 3.9 11.3 5.9 11.3 8.2 13.1 9.1 15.0
DFS 11.7 20.8 11.3 17.1 14.6 18.3 8.5 9.4 2.3 12.9 11.5 11.5 10.0 15.0

MoRAgent-Llama CoT 54.9 40.5 58.2 38.0 53.1 39.9 38.1 34.0 42.6 41.1 47.9 29.5 49.1 (+40.0) 37.2 (+22.2)
(1.24B+0.16B) DFS 54.6 44.8 45.5 32.9 53.2 40.5 46.8 36.8 68.2 46.8 58.8 39.4 54.5 (+44.5) 40.2 (+25.2)

Base Model: Phi3.5-mini-Instruct (3.82B)

Base CoT 29.7 30.7 37.9 30.4 36 34.6 20.9 17.0 26.7 25.0 17.8 15.8 28.2 25.6
DFS 46.4 35.0 50.6 30.4 51.1 49.0 39.9 30.2 41.5 27.4 37.6 32.8 44.5 34.1

MoRAgent-Phi CoT 51.8 47.2 54.4 38.6 55.4 51.0 48.1 33.0 55.0 45.2 62.3 42.6 54.5 (+26.3) 42.9 (+17.3)
(3.82B+0.36B) DFS 55.9 48.5 56.6 41.1 60.9 47.1 55.4 44.3 59.7 48.4 63.6 50.8 58.7 (+14.2) 46.7 (+12.6)

slows down significantly when the number of LoRAs for
both the reasoner and the executor is changed from 4 to
5. While for summarizer, it occurs at 3 to 4. Accordingly,
in subsequent experiments, we set the number of activated
LoRAs to 4 and the total number of LoRAs to 5 for reasoner
and executor, and set the number of activated LoRAs to 3
and the total number of LoRAs to 4 for summarizer. This
is also in line with our perception that the summarizer’s
primary task is to convey the distilled information from the
historical conversation to the user, making its learning pro-
cess relatively less challenging. Also, we set the learning
rate to 5e-5, with 4 epochs of fine-tuning by MoR, and α1

and α2 in Equation 8 set to 1e-3 and 1e-4, respectively.

4.3. Experimental Results

Results on StableToolBench. We first evaluate the pro-
posed method with various LLMs on StableToolBench (Guo
et al., 2024). Specifically, we report the solvable pass rate
and solvable win rate based on the solvable tasks with two
settings including Chain-of-Thought (CoT) and Depth-First-
Search (DFS). For win rate, we run all models once against
GPT3.5-1106+CoT and evaluate them three times. We re-
spectively adopt two LLMs including Llama3.2-1B-Instruct
and Phi3.5-mini-Instruct as our base models. As reported
in Table 1, for Llama3.2-1B-Instruct, with only introduced
0.16B trainable parameters, we improve the pass rate and
win rate by 44.5% and 25.2% on DFS setting respectively.
Also, for Phi3.5-mini-Instruct, with only introduced 0.36B
trainable parameters, we improve the pass rate and win rate
by 26.3% and 17.3% on CoT setting respectively. With
fewer parameters, our MoRAgent-Phi even surpasses the
agent-specific model ToolLLaMA-v2, which validates the
effectiveness of our method.

Results on BFCL leaderboard. We then evaluate our
method on BFCL leaderboard. Specifically, We report the
results on Abstract Syntax Tree (AST) of live and non-live,
Executable Function Evaluation (Exec) of non-live, Rel-

Table 2. The performance of different LLMs on BFCL.

Model Non-live Live AVGAST Exec AST Relevance
Qwen2.5-72B-it 90.8 92.7 75.3 100.0 89.7

GPT4 88.1 89.4 79.8 83.3 85.2
ToolACE-8B 87.5 89.2 78.5 83.3 84.6

MiniCPM3-4B 80.8 87.6 70.0 72.2 77.7
Llama3.2-3B-it 80.6 83.7 55.8 88.9 77.3

Base Model: Llama3.2-1B-Instruct (1.24B)
Base 21.9 19.2 29.8 38.9 27.5

MoRAgent-Llama 75.2 80.0 60.7 94.4 77.6 (+50.1)(1.24B+0.16B)
Base Model: Phi3.5-mini-Instruct (3.82B)

Base 69.0 57.3 58.2 72.2 64.2
MoRAgent-Phi 83.0 78.2 72.7 94.4 82.1 (+17.9)(3.82B+0.36B)

evance of live. We also adopt Llama3.2-1B-Instruct and
Phi3.5-mini-Instruct as our base models. As reported in
Table 2, with only introduced 0.16B and 0.36B trainable
parameters, we improve the average accuracy of Llama3.2-
1B-Instruct and Phi3.5-mini-Instruct by 50.1% and 17.9%,
respectively.

Table 3. The performance of different LLMs on GSM8K and
MATH.

Model GSM8K MATH
Llama-3.1-8B-it 54.8 21.4
Llama-3.2-1B-it 52.6 29.2

DeepSeekMath-7B 64.2 36.2
Base Model: Qwen2.5-1.5B-Coder (1.54B)

Base (w/ packages) 54.7 23.5
Base (w/o packages) 41.7 33.5
MoRAgent-Qwen 68.5 (+13.8) 45.5 (+12.0)(1.54B+0.27B)

Results on GSM8K and MATH. We also extend our ap-
proach to the mathematical scenarios. Different from di-
rectly generating the answer, we solve the math problems
by importing python package and then executing it. We
use Qwen2.5-1.5B-Coder as the base model and the results
are reported in Table 3. Specifically, we adpot the frame-
work of ToRA (Gou et al., 2023) to infer and evaluate. For

7



MoRAgent: Parameter Efficient Agent Tuning with Mixture-of-Roles

Table 4. Analysis on each loss functions.

loss function AVG
cross-entropy balance orthogonal Acc

X 72.3
X X 75.1
X X 74.4
X X X 77.6

the Qwen2.5-1.5B-Coder base model, we evaluate both the
methods of with and without python packages. From the
results, with only introduced 0.27B trainable parameters,
compared with the best accuracy of the two baseline meth-
ods, we improve by 13.8% and 12.0% on GSM8K and
MATH respectively.

4.4. Ablation Studies

We conduct a series of ablation studies in this sub-section,
the Llama3.2-1B-Instruct is adopted as the base model, and
the results on BFCL leaderboard are repoted.

Loss Functions. We first analyze each loss functions in
Equation 8, the results are reported in Table 4. For the loss
of balance and orthogonal, the introduction of each loss
can bring about an improvement in average accuracy. The
combination of them can bring a 5.3% improvement. We
visualize the similarity of routed LoRAs without and with
orthogonal loss in Figure 5. The multiplied weights B and
A of the query module at layer 7 are used for visualization.
With the introduction of orthogonal loss, we encourage
different LoRAs to learn features in different directions,
thereby reducing parameter redundancy and improving the
performance of downstream tasks.

Figure 5. Visualization of the similarity of routed LoRAs without
(top) and with (bottom) orthogonal loss. From left to right are
reasoner, executor and summarizer.

Number of LoRAs. We also explore the influence of dif-
ferent number of LoRAs for various roles. In practice, we
leave only one LoRA inactive by default. From Table 5,

Table 5. Analysis on the number of LoRAs.

Total LoRAs Trainable AVG
reasoner executor summarizer Params Acc

4 4 3 0.13B 73.2
5 5 4 0.16B 77.6
6 6 5 0.19B 79.1
7 7 6 0.23B 80.0

Table 6. The accuracy of different fine-tuning methods.

Method Trainable Non-live Live AVG
Params AST Exec AST Rele Acc

Base - 21.9 19.2 29.8 38.9 27.5
LoRA 0.16B 59.7 64.2 56.3 81.8 65.5 (+38.0)
DoRA 0.16B 61.2 65.7 58.4 82.0 66.8 (+39.3)
SFT 1.24B 72.3 77.6 61.5 92.6 76.0 (+48.5)
Ours 0.16B 75.2 80.0 60.7 94.4 77.6 (+50.1)

increasing the number of LoRAs will generally increase
the performance on agent task, but will undoubtedly also
increase the trainable parameters. For example, when the
trainable parameters decreases from 0.16B to 0.13B, the
performance decreases from 77.6% to 73.2%. When the
trainable parameters increases from 0.16B to 0.19B, the per-
formance only increases by 1.5%, and further increasing the
parameters does not bring significant improvement in per-
formance. In order to achieve a balance between trainable
parameters and performance, we set the number of LoRAs
to 5, 5, and 4 for reasoner, executor, and summarizers in our
experiments, respectively.

Comparisons with other methods. We compare the pro-
posed method with other methods including parameter-
efficient and full-parameter fine-tuning with the same multi-
roles dataset in Table 6. From the results, SFT exhibits
superior accuracy compared to PEFT methods (LoRA and
DoRA), which can be attributed to its more trainable pa-
rameters, achieving an average accuracy 10.5% higher than
LoRA. Notably, DoRA (Liu et al., 2024b) introduces an
advanced scheme by decomposing pretrained weight matri-
ces into magnitude vectors (m) and directional matrices (V),
where LoRA is applied specifically to V while m is trained
separately. This architectural innovation allows DoRA to
surpass LoRA slightly in accuracy. Crucially, our method
achieves statistically significant performance improvements
through two key innovations: 1) a more rational capacity
decomposition strategy, and 2) a novel Mixture-of-Roles
framework enabling dynamic interaction between decom-
posed modules. These enhancements collectively contribute
to our method’s marked accuracy superiority over SFT and
PEFT methods.

Number of fine-tuning samples. In order to analyze the
impact of various numbers of fine-tuning samples on accu-
racy, we conduct corresponding experiments here, and the
results are shown in Table 7. Even with only 1k training
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Table 7. The accuracy of different number of fine-tuning samples.

#Samples Non-live Live AVG
AST Exec AST Rele Acc

0 21.9 19.2 29.8 38.9 27.5
1K 49.5 44.6 46.3 79.1 54.9 (+27.4)
5K 55.3 51.8 50.6 82.1 60.0 (+32.5)

10K 58.8 57.4 52.7 85.9 63.7 (+36.2)
50K 70.4 74.9 56.5 91.7 73.4 (+45.9)
90K 75.2 80.0 60.7 94.4 77.6 (+50.1)

samples, we still achieves a 27.4% improvement in average
accuracy, demonstrating its well generalization capability.
As the fine-tuning data volume increases, the accuracy fur-
ther improves accordingly.

5. Conclusion
To improve the efficiency of applying PEFT to agent, in
this paper, we introduce three strategies: 1) Following the
increasingly dominant Reason+Action paradigm, we first
decompose the capabilities necessary for the agent tasks
into three distinct roles: reasoner, executor, and summarizer.
2) We then propose the Mixture-of-Roles (MoR) framework,
which comprises three specialized LoRA groups, each desig-
nated to fulfill a distinct role. By focusing on their respective
specialized capabilities and engaging in collaborative inter-
actions, these LoRAs collectively accomplish the overall
agent task. Additionally, we introduce both a rule-based
role-aware gate and learnable token-aware routers to more
reasonably allocate LoRAs to the input features. During
the training process, auxiliary balance loss and orthogonal
loss between LoRAs are further introduced for better opti-
mization. 3) We also develop a multi-role data generation
pipeline based on publicly available datasets to effectively
fine-tune the framework. We conduct extensive experiments
and thorough ablation studies on various LLMs and agent
benchmarks, demonstrating the effectiveness of our method.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Detailed Prompts for Completing the Content of Roles.

Reasoner: Your role is a reasoner with reasoning capabilities; you have the ability to analyze the current
task resolution status based on user queries and conversation history, and decide which role to call next.
Please note the following:

1. You do not need to directly generate task answers, you only need to analyze and think about the solution
approach that can complete the task based on the current status.

2. If you believe that the executor has completed the task in the historical conversation, designate the next
role as summarizer to provide a summary, and let him output the results of the executor.

3. If you believe the executor has not yet completed the task, analyze and output the correct solution
approach, and designate the next role as executor to carry out a detailed resolution.

Please output in the following format: The solution approach after thoughtful analysis. Next: Choose the
next role to call, either executor or summarizer. Please strictly adhere to the above format for output, and
end with either ”Next: executor” or ”Next: summarizer”.

Executor: Your role is an executor, and you have the capability to provide specific answers to tasks based
on user queries and the analysis provided by the reasoner. If the task involves tool invocation, directly output
the correct tool and its parameters in the required format. Please note the following:

1. If you feel that based on the current information, you are not yet able to output the correct answer,
designate a role as reasoner to continue further reasoning and analysis.

2. Even though you are certain that you have completed the user’s task, please designate the next role as
reasoner and let him determine further.

Please output in the following format: The function or tool called and its parameters (if the user’s query is
a tool invocation task). Next: Choose the next role to call, either reasoner or summarizer. Please strictly
adhere to the above format for output, and only end with ”Next: reasoner”.

Summarizer: Your role is a summarizer, and you have the ability to produce summaries based on user
queries and the dialogue history. Please strictly adhere to the following rules:

1. If the task involves tool invocation and there are no actual tool invocation return observation results in
the historical conversation, you can examine the correctness of the tools and parameters output by the
executor, as well as the output format.

2. If you believe there are errors in the output, correct the output according to the required format.
3. If you believe the output is entirely correct, then directly copy and output the correct answer generated

by the executor.
4. If the task involves tool invocation and there are actual tool invocation return observation results in the

historical conversation, you can provide a concise summary of the tool invocation feedback results in
natural language.

5. If the task does not involve tool invocation, you can summarize the information you have received to
answer the user’s queries.

Please note the format requirements for the output. As you are the final step in the conversation, there is no
need to specify the next role to be called.

Figure 6. Detailed prompts for completing the content of roles in function-calling scenarios.

B. Detailed Prompts for System and Roles.

C. Visualization of Execution Trajectory.
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Reasoner: You’re a professional math problem thinking assistant. You can deduce a thought process
based on a given problem and existing code solutions. Please give the thought process based on the above
information. Please note that you need to follow the following rules:

1. Read and understand the math problems and code solutions above, and give answers.
2. Your thinking process needs to give a step-by-step solution to the problem, and you need to provide

formulas and parameters for the code solution, but you don’t need to calculate the results.
3. The first step should be to extract the variables and corresponding values from the problem, and use

First, Next, and Finally as transition words between steps.
4. It’s best to conclude the thought process by pointing out which parameters lead to the final result we

need.
5. Formulas in the thinking process are best highlighted in parentheses.
6. The thought process you give needs to be as concise as possible. Don’t use mathematical symbols

elsewhere to avoid miscalculations.

Figure 7. Detailed prompts for completing the content of roles in mathmatical scenarios.

System: You have access to the following APIs within XML tags:<tools>[doc]</tools>

Reasoner: Your role is a reasoner with reasoning capabilities, and you have the ability to analyze the current
task status based on user queries and conversation history, and decide which role to call next. Please note the
following:

1. You do not need to directly generate task answers, you only need to analyze and think about the solution
approach that can complete the task based on the current status.

2. If you believe that the Executor has completed the task in the historical conversation, designate the next
role as summarizer to provide a summary.

3. If you believe the executor has not yet completed the task, analyze and output the correct solution
approach, and designate the next role as executor to carry out a detailed solution.

Please output in the following format: The solution approach after thoughtful analysis. Next: Choose the
next role to call, either executor or summarizer.

Executor: Your role is an executor, and you have the capability to provide specific api calling to tasks
based on user queries and the analysis provided by the reasoner. Please directly output the correct api
tool and its parameters with the following format: [unused11]Action: <function-name> Arguments:
<args-dict>[unused12] Please strictly adhere to the above format for output.

Summarizer: Your role is a summarizer, and you have the ability to produce summaries based on user
queries and the dialogue history. Please strictly adhere to the following rules:

1. If the task involves tool invocation and there are actual tool invocation return observation results in the
historical conversation, you can provide a concise summary of the tool invocation feedback results in
natural language.

2. If the task does not involve tool invocation, you can summarize the information you have received to
answer the user’s queries.

Figure 8. Detailed prompts of the datasets for fine-tuning in BFCL.
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System: You have access to the following APIs within XML tags:<tools>[doc]</tools>

Reasoner: Your role is a reasoner with reasoning capabilities; you have the ability to analyze the current
task status based on user queries and conversation history, and decide which role to call next. Please note the
following:

1. You do not need to directly generate task answers; you only need to analyze and think about the solution
approach that can complete the task based on the current status.

2. If you believe that the Executor has completed the task in the historical conversation, designate the next
role as summarizer to provide a summary.

3. If you believe the executor has not yet completed the task, analyze and output the correct solution
approach, and designate the next role as executor to carry out a detailed solution.

Please output in the following format: The solution approach after thoughtful analysis. Next: Choose the
next role to call, either executor or summarizer. Please strictly adhere to the above format for output, and
end with either ”Next: executor.” or ”Next: summarizer.

Executor: Your role is an executor, and you have the capability to provide specific api calling to tasks
based on user queries and the analysis provided by the reasoner. Please directly output the correct api
tool and its parameters with the following format: [unused11]Action: <function-name> Action-Input:
<args-dict>[unused12] Please strictly adhere to the above format for output.

Summarizer: Your role is a summarizer, and you have the ability to produce summaries based on user
queries and the dialogue history. Please strictly adhere to the following rules:

1. If the task involves tool invocation and there are actual tool invocation return observation results in the
historical conversation, you can provide a concise summary of the tool invocation feedback results in
natural language.

2. If the task does not involve tool invocation, you can summarize the information you have received to
answer the user’s queries.

Figure 9. Detailed prompts of the datasets for fine-tuning in ToolBench.

System: You have the capability to address the following user’s query.

Reasoner: Your role is a reasoner with reasoning capabilities; you have the ability to analyze the current
task status based on user queries and conversation history, and decide which role to call next. Please note the
following:

1. You do not need to directly generate task answers; you only need to analyze and think about the solution
approach that can complete the task based on the current status.

2. If you believe that the executor has completed the task in the historical conversation, designate the next
role as summarizer to provide a summary.

3. If you believe the executor has not yet completed the task, analyze and output the correct solution
approach, and designate the next role as executor to carry out a detailed solution.

Please output in the following format: The solution approach after thoughtful analysis. Next: Choose the
next role to call, either executor or summarizer. Please strictly adhere to the above format for output, and
end with either ”Next: executor.” or ”Next: summarizer.”

Executor: Your role is an executor. You have the capability to generate specific Python code based on the
conversation history and the output of the executot to address the user’s query. Please directly generate a
segment of Python code.

Summarizer: Your role is a summarizer, and you have the ability to produce summaries based on user
queries and the dialogue history.

Figure 10. Detailed prompts of the datasets for fine-tuning in Math.
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MoRAgent: Parameter Efficient Agent Tuning with Mixture-of-Roles

User Query: I’m planning a small outdoor event in Ottawa, and I need to make sure the weather is going to
cooperate. Could you fetch the current weather for me at latitude 45.4215 and longitude -75.6972 using
the Open-Meteo API? Also, I’m running a small game at the event, and I’m curious about the chances of
winning. If I have 10 attempts at this game and the chance of winning each time is 50%, how likely is it that
I’ll win 5 times?

ToolList: get-weather-data, calc-binomial-probability

Reasoner: I need to use the tool get-weather-data and calc-inomial-probability to solve this problem. This
involves providing the following parameters:first param is {coordinates’: [45.4215, -75.6972]}, second
param is {‘n’: 10, ’k’: 5, ’p’: 0.5}

Executor: Action: get-weather-data Arguments: {’coordinates’: [45.4215, -75.6972]}, Action: calc-
binomial-probability Arguments: {‘n’: 10, ’k’: 5, ’p’: 0.5}

Summarizer: According to the historical record, I’ve provided you with the api for finding the weather and
calculating the odds of winning games.

Figure 11. Visualization of execution trajectory on BFCL.
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MoRAgent: Parameter Efficient Agent Tuning with Mixture-of-Roles

User Query: If 2x = 5y and 7y = 10z, what is the value of z
x expressed as a common fraction?

Reasoner: Alright, let’s solve this step by step.Given:

2x = 5y

7y = 10z

We want to find the value of z
x . Step 1: Solve for y from the first equation.From 2x = 5y, we get:

y =
2x

5

Step 2: Substitute the expression for y into the second equation to solve for z. Substituting y = 2x
5 into

7y = 10z:

7

(
2x

5

)
= 10z

Solving for z:

z =
7× 2x

5

10

Step 3: Find the ratio z
x . Now, we’ll calculate z

x . Next: Executor

Executor:
from sympy import symbols, Eq, solve

# Define the variables
x, y, z = symbols(’x y z’)

# Given equations
eq1 = Eq(2*x, 5*y)
eq2 = Eq(7*y, 10*z)

# Solve eq1 for y
y_expr = solve(eq1, y)[0]

# Substitute y in eq2
eq2_sub = eq2.subs(y, y_expr)

# Solve for z
z_value = solve(eq2_sub, z)[0]

# Calculate z/x
ratio_z_to_x = z_value / x
print(ratio_z_to_x)

Summarizer: By solving the given equations step-by-step, we determined that the value of z
x is

7

25
. This

result was obtained through substitution and simplification, confirming our calculations and validating the
relationship between x, y, and z.

Figure 12. Visualization of execution trajectory on Math.
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