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ABSTRACT

Despite significant advances in vision-language models (VLMs), most existing
work follows an English-centric design process, limiting their effectiveness in
multilingual settings. In this work, we provide a comprehensive empirical study
analyzing the impact of several multilingual design choices, such as training data
composition, encoder selection, and text backbones. The result is TOWERVISION,
a family of open multilingual VLMs for both image-text and video-text tasks, built
upon the multilingual text-only model TOWER+. TOWERVISION achieves com-
petitive performance on multiple multilingual benchmarks and shows particular
strength in culturally grounded tasks and multimodal translation. By incorporat-
ing visual and cultural context during fine-tuning, our models surpass existing
approaches trained on substantially larger datasets, as demonstrated on ALM-
Bench and Multi30K (image tasks) and ViMUL-Bench (video tasks). Alongside
the models, we release VISIONBLOCKS, a high-quality, curated vision-language
dataset. Our findings highlight that multilingual vision-language training data
substantially improves cross-lingual generalization—both from high-resource to
underrepresented languages and vice versa—and that instruction-tuned LLMs are
not always the optimal initialization point. To support further research, we pub-
licly release all models, data, and training recipes.

1 INTRODUCTION

The success and widespread adoption of large language models (LLMs) has naturally led to a surge
of interest in adding multimodal capabilities to these models. In particular, the visual modality
has recently received considerable attention, with recent releases of frontier vision-language models
(VLMs) (Deitke et al., 20245 |(OpenAl et al.l 2024; Comanici et al., [2025; [Team et al., 2025} |Bai
et al., |2025b). However, despite impressive progress, the development of VLMs has been mostly
built upon English-centric language models, and trained with English vision-text data, giving lit-
tle consideration to performance in most other languages. A key challenge in multilingualization of
VLMs stems from an asymmetric data landscape—while high-quality texs-only multilingual corpora
are relatively abundant, high-quality multilingual vision-text data is scarce. As such, a critical chal-
lenge remains: What are the best strategies to effectively extend these models to support multiple
languages beyond English?

An effective strategy for VLM multilingualization is to let large-scale text-only multilingual data
carry most of the burden. This can be achieved by continuing pretraining of the text backbone
on multilingual corpora and by including multilingual content in the text-only portion of the VLM
fine-tuning mixture—thereby reducing reliance on scarce multilingual multimodal data. A recent
example of this approach is PANGEA (Yue et all 2025), which introduced multilinguality exclu-
sively during the VLM fine-tuning stage using a mixture of data that combined multilingual vision-
text pairs generated through synthetic data creation and machine translation of English instructions.
While this strategy proved effective, it leaves open key questions: At which stages and on which
modules should multilingualization be applied? Which design decisions yield the greatest impact?
And how can visual grounding further enhance cross-lingual generalization?
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Figure 1: We present TOWERVISION and TOWERVIDEO, open VLMs with enhanced cultural un-
derstanding and multilingual capabilities over leading open multimodal systems on image and video.

In this work, we introduce TOWERVISIONE a suite of open-source multilingual VLMs built on top
of TOWER+ models (Rei et al.|, for 20 languages and dialectsEl To train TOWERVISION,
we systematically address the challenges outlined above through comprehensive ablation studies,
component-level analysis, and cross-lingual evaluation of a multilingualization recipe. Specifically,
we investigate how to enhance the multilingual capabilities of VLMs from two axes: first, by ex-
ploring the impact of the underlying components (including the alignment projector, vision encoder
and text-only LLM); and second, by creating better, more multilingual vision-text datasets and ex-
ploring the impact of using this data across different VLM training stages. Overall, compared to
strong VLMs of similar size, TOWERVISION exhibits competitive or superior performance on vari-
ous multilingual and multimodal benchmarks, as well as cross-lingual transfer capabilities.

In addition to image-based VLMs, we also train a separate multilingual video model, TOWERVIDEO,
built on top of TOWERVISION, thereby extending our analysis to the video modality. TOWERVIDEO
achieves competitive performance on ViMUL-Bench (Shafique et al 2023), a culturally-diverse
multilingual video benchmark. Taken together, these contributions provide a comprehensive and
systematic study of how to best integrate multilinguality into VLMs across modalities, architec-
tural components, and training stages. Complementing the TOWERVISION family, we also release
VISIONBLOCKS, a curated dataset that consolidates and filters existing vision/video-language re-
sources, further enriched with quality-controlled translations of English textual descriptions into 20
languages and dialects.

2 TOWERVISION

Our approach follows a multi-stage process encompassing three key components, illustrated in Fig-
ure[T} (i) a multilingual text-only backbone model, TOWER+ (2025); (ii) a Vision Trans-
former encoder (ViT; Dosovitskiy et al.|2021) that processes visual inputs and extracts meaningful
features; (iii) a connector/adapter module that transforms these visual features to generate represen-
tations compatible with the text embedding space. These modules can be selectively trained or kept
frozen during different stages of development 2025). Although this training recipe and
variations thereof are well-established and have produced several high-quality models (e.g., LLaVA
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(Liu et al., 2023b), Intern-VL (Chen et al., 2024}, NVLM (Dai et al.,2024), Qwen2.5-VL (Bai et al.,
2025b), Molmo (Deitke et al., 2024))), most of these fall short in capturing multilingual and cul-
turally diverse nuances. We therefore introduce our multilingual adaptation, TOWERVISION—we
first describe our carefully curated multilingual vision-text data, VISIONBLOCKS (§2.1) and then
describe the overall architecture and training procedure (§2.2).

2.1 VISIONBLOCKS: TOWARDS BETTER MULTILINGUAL VISION-TEXT DATA

Creating a large-scale, high-quality, multilingual multimodal dataset for training visual language
models to be helpful assistants is non-trivial for a series of intertwined reasons:

* Human-written vision-text data featuring user-model interactions (common in text-only align-
ment) is severely limited. While abundant data exists from large-scale captioning datasets (e.g.,
LAION-5B; |Schuhmann et al|2022), such sources over prioritize scale over quality which is not
ideal for training VLMs with advanced capabilities (Dong et al., 2025 [Zhou et al., [2023) like
instruction-following, helpfulness, and safety.

* High-quality multilingual vision-text data is scarce; furthermore, the lack of open, high-quality
multilingual VLMs makes controlled synthetic data challenging or restricted to closed models
with limited usage licenses. The most viable alternative, also employed by PANGEA (Yue et al.|
2025), involves translating English vision-text interactions into target languages.

* Filtering techniques such as reward model scoring or LLM-as-judge approaches (Gu et al., 2025)
are significantly more challenging to implement for vision-text data, where even state-of-the-art
VLMs (both open and proprietary) struggle to provide reliable preferences (Li et al., 2024)).

With this in mind, we develop and release VISIONBLOCKS (Figure [2), which aggregates and filters
data from multiple sources, enhanced with new translated and synthetic data, as described below.

Collection of existing VLM data For English vision-text data, we use the mixture created in
PixMo (Deitke et al.| [2024) with a few minor changes: we exclude the AndroidControl, Points,
and PointQA datasets, as they do not provide additional multilingual value at this stage; For mul-
tilingual vision-text data, we leverage a subset of “Open-Ended” and “Multiple-Choice” questions
from CULTURALGROUND (de Dieu Nyandwi et al.,|2025) and the “Cultural” split of PANGEAINS
(Yue et al.| | 2025) for our languages of interest. The samples from PANGEAINS are originally found
in LAIONMulti (Schuhmann et al.,|2022) that undergoes a series of automatic steps (using Gemini
1.5 Pro (Team et al.| [2024)) including curating high-quality English instructions, carefully trans-
lating them to multiple languages, and adapting them for culturally-relevant multilingual contexts.
CULTURALGROUND uses a data curation pipeline that gathers culturally relevant entities from the
Wikidata knowledge base, creates several questions and answers about each entity, rephrases them
using an LLM, and filters low-quality samples using a VLM. In our work, we rely exclusively on
CULTURALGROUND’s filtered subsets to ensure maximum quality.

Translated and synthetic generated vision-language data In addition to the original English
and multilingual captions, we translate the highly curated PTIXMO-CAP caption data |Deitke et al.
(2024) to our target languages using a TOWER model (Alves et al. 2024). These translations are
scored using COMETKIWI (Rei et al.l 2022) and filtered with a high threshold of 0.85 to ensure
maximum quality. To further enhance diversity, we pair the remaining high-quality translations with
a variety of language-specific captioning prompt templates (§A.5.1). We also augment the dataset
with synthetic captions generated by the Gemini 2.5 API. For each image, we sample multiple sys-
tem prompts to elicit diverse and detailed descriptions (see §A.5.2). This augmentation is intended
to improve coverage of fine-grained visual details (e.g., spatial relations, attributes, and contextual
cues) that human-authored captions often omit, and provides instruction-like supervision, aligning
our model more closely with recent VLM training paradigms that leverage synthetic data to boost
generalization and response quality. Similar strategies have been shown to be effective in scaling up
instruction-following capabilities of VLMs such as LLaVA (Liu et al.| [2023a)) and InstructBLIP (Dai
et al.,[2023). We complete our image-text dataset by incorporating the text-only EUROBLOCKS set,
a curated multilingual collection of high-quality synthetic data from the EUROLLM (Martins et al.,
2025) synthetic post-training data. EUROBLOCKS provides diverse, instruction-aligned text that
enriches our dataset with robust multilingual coverage and fine-grained, high-quality descriptions.
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Figure 2: Overview of the VISIONBLOCKS dataset. Synthetic data are generated with Gemini 2.5

API, while translated augmented ones use TOWER 2024). See Table[8] §A T|for details.

Translated Multilingual Video Data As video-text data, we employ the LLaVA-Video-178k
dataset (Zhang et al} [2025¢), which contains captions alongside open-ended and multiple-choice
questions in English. To make the dataset multilingual, we retain a randomly sampled half of the
conversations in English, and we translate the remaining half uniformly into all supported languages

using TOWER+9B 2025)), thereby ensuring balanced cross-lingual coverage.

2.2 TOWERVISION: ARCHITECTURE & TRAINING DETAILS

One way to improve the multilinguality of LLMs (e.g., improving cross-lingual understanding or
extending multilingual support for other languages) is to start from a strong pretrained model and
continue pretraining on carefully curated data, with subsequent post-training (Xu et al.,[2024}; 2025}
Alves et al.} 2024). TOWERVISION follows a similar principle, starting from a strong multilingual
Gemma-based backbone TOWER+ 2B/9B 2025), which achieves strong multilingual
general-purpose performance by leveraging a curated high-quality multilingual dataset and a training
recipe designed to preserve general capabilities. As shown in §d] starting from this multilingual
backbone substantially improves cross-lingual performance compared to starting from Gemma.

For the vision encoder, TOWERVISION is initialized with the recently proposed SigLIP2-
$0400m/14 @384px (Tschannen et al,[2023), a vision transformer operating at 384 x 384 resolution
that extracts image patch representations and produces multilingually-aligned embeddings of size
729. SigLIP2 is trained on a more diverse data mixture compared to alternatives such as CLIP-ViT
(Radford et al}, [2021), Perception Encoder (Bolya et al.| 2025), or SigLIP1 [2023), and
thereby yields better multilingual understanding, as we shall see in §4] To align the vision and text
modalities, we use a LLaVA-based architecture [2023b), where we train a projection layer
consisting of a 2-layer MLP, randomly initialized. By combining TOWER+ for text and SigL.IP2 for
vision, TOWERVISION benefits from complementary multilingual strengths across both modalities.
The training process consists of three stages:

1. A projector pretraining phase, where we train the model to predict captions given images on the
P1xMo-Cap dataset, freezing both the vision encoder and the language model backbone (so only
the projector is trained). Each image is encoded once (downscaled to 384 x384 if necessary).
During this phase, we focus exclusively on diverse, high-quality English captions, which we
show to be more effective for aligning visual and textual representations (see §4).

2. A vision finetuning phase, where we unfreeze the full model and train it on the full VISION-
BLOCKS dataset (§2.1)), excluding the video-text data. In this phase, we use high-dynamic reso-
Iution 20244), breaking high-resolution images into a grid of smaller tiles which are
then encoded with the vision encoder independently (together with a global thumbnail tile). The
projected embeddings are then concatenated. We use a maximum of six tiles, which provides the
best trade-off (§A.3)). This phase leads to the TOWERVISION model.
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3. A video finetuning phase, where the video portion of VISIONBLOCKS is used to finetune TOW-
ERVISION on 32-frame video inputs at the encoder’s fixed resolution of 384x384. Unlike the
previous stage, we omit tiling for efficiency. This phase leads to the TOWERVIDEO model.

The models were trained on a custom fork of the LLaVA-Next (Liu et al.,[2024a) codebaseE]

3 EVALUATION & MAIN RESULTS

We evaluate TOWERVISION and TOWERVIDEO on a comprehensive suite of benchmarks spanning
multiple modalities and task types (single-image, few-image, and video) across diverse languages,
both within and beyond our training set. In this section, we focus on vision-language tasks (i.e.,
single-image or few image), which including multilingual visual/video question answering, cul-
tural understanding, OCR-related tasks, and visual-language understanding, as well as multilingual
video-language tasks. Our assessment relies primarily on closed-form tasks, complemented by large
language models serving as judges for video-based evaluations.

3.1 TASKS & EVALUATION BENCHMARKS

Vision-language tasks We report results on ALM-Bench (Vayani et all 2024), a cultural
understanding multilinguaﬂ visual QA benchmark, OCRBench (Liu et al., [2024b) and cc-
OCR (Yang et al., 2024)) for English and multilinguaﬂ OCR-centric capabilities respectively, and
TextVQA (Singh et al,[2019), assessing scientific understanding. Within cc-OCR, we report results
on the multilingual text reading subset, as our primary focus is to evaluate the model’s multilingual
text recognition capabilities.

Multimodal translation We report results on CoOMMUuTE (Futeral et al.|[2023)), a specialized mul-
timodal translation benchmark that uses the visual content to resolve lexical ambiguities present in
the source language, and Multi30K (Elliott et al.,[2016), a standard benchmark for multimodal ma-
chine translation (MT) of image captions.

Culturally-aware multilingual video tasks We use ViIMUL-Bench (Shafique et al.|[2025), a mul-
tilingual video QA benchmark spanning 14 languages: Arabic (ar), Bengali (bn), Chinese (zh), En-
glish (en), French (fr), German (de), Hindi (hi), Japanese (ja), Russian (ru), Sinhala (si), Spanish
(es), Swedish (sv), Tamil (ta), and Urdu (ur). The dataset contains both open-ended and multiple-
choice questions covering culturally diverse domains such as festivals, customs, food, and heritage.
Unlike prior datasets, VIMUL-Bench enables comprehensive evaluation of video-language models
across both high- and low-resource languages, promoting inclusive and culturally aware research.

3.2 BASELINES

For evaluation, we leverage the Imms-eval framework (Zhang et al [2025b)), which enables a sys-
tematic comparison of TOWERVISION against leading open VLMs. We include several multilingual
multimodal models, such as CulturalPangea-7B (Yue et al.,2025), designed to address gaps in mul-
tilingual cultural understanding, and Aya-Vision-8B (Singh et al.,2024), optimized for a broad range
of vision-language tasks. In addition, we evaluate models from the Gemma3-Instruct (Gemma3-
4B-it, Gemma3-12B-it; Team et al.|2025) and the Qwen2.5-VL-Instruct families (Qwen2.5-VL-3B-
Instruct, Qwen2.5-VL-7B-Instruct; Qwen et al.[|2025)), both of which have demonstrated strong per-
formance across a variety of multimodal benchmarks. Finally, we report results for a LLaVA-based
model, Llava-Next-7B (Liu et al.,2024al), a general-purpose VLM with strong performance across a
wide range of tasks. The exact checkpoints for all models are listed in §A.2]

3The code will be released upon acceptance.

4German, Spanish, French, Italian, Korean, Dutch, Russian, English, Portuguese, Chinese (Simplified and
Traditional), Icelandic, Czech, Ukrainian, Hindi, Japanese, Polish, Swedish, Hungarian, Romanian, Danish,
Norwegian (Nynorsk), and Finnish.

3German, French, Italian, Russian, Spanish, Korean, Portuguese.
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Table 1: Vision-Language Model Performance. Comparison of English and multilingual VLMs
across multiple benchmarks. Reported values correspond to final accuracy (7). Bold indicates the
best score per column. TowerVision results are highlighted.

English (1) Multilingual (1)
TextVQA OCRBench CC-OCR ALM-Bench (en) ALM-Bench (multi)
Qwen2.5-VL-3B-Instruct 77.8 78.7 76.4 81.0 76.2
Qwen2.5-VL-7B-Instruct 82.5 84.5 78.6 83.1 83.6
Gemma3-4B-it 65.2 74.2 69.1 79.7 80.0
Gemma3-12B-it 73.2 74.7 73.8 83.5 84.5
CulturalPangea7B 69.8 63.5 51.7 61.3 65.2
Llama3-Llava-Next-8B 64.8 54.4 40.9 76.5 73.4
Aya-Vision-8B 66.9 61.0 46.3 78.2 77.3
TowerVision-2B 68.1 58.6 46.1 77.1 81.1
TowerVision-9B 73.6 69.7 56.3 83.6 85.2

Table 2: Multimodal Translation Benchmarks. We report XCOMET (Guerreiro et al., [2024) for
Multi30K and contrastive pairwise accuracy for COMMuTE. Bold is best.

Multi30K (1) CoMMUuTE (1)
en—cs en—de en—fr en—de en—fr en—ru en—zh

Qwen2.5-VL-3B-Instruct 83.3 96.7 92.6 71.6 74.4 71.5 81.5
Qwen2.5-VL-7B-Instruct 83.9 97.1 93.2 74.7 76.9 77.2 824

Gemma3-4B-it 33.4 44.0 33.2 76.7 78.2 79.0 74.4
CulturalPangea7B 80.0 95.8 92.1 68.3 77.3 75.3 79.3
Llama3-Llava-Next-8B 79.1 93.3 88.1 72.0 74.4 74.4 73.5
Aya-Vision-8B 94.4 97.9 95.3 69.3 76.9 74.4 76.2
TOWERVISION-2B 90.3 97.5 94.7 70.0 74.3 73.2 76.6
TOWERVISION-9B 95.1 98.1 95.6 72.0 78.8 75.6 77.4

For TOWERVIDEO, we consider several competitive open-source video models of comparable scale,
including VideoLLaMA3-7B (Zhang et al., 2025a), LLaVA-Video-7B (Zhang et al.| [2025c)—also
trained on LLaVA-Video-178k—and VIMUL-7B (Shafique et al.,|2025)), a multilingual video model.

3.3 MAIN RESULTS

Tables report the performance of TOWERVISION on vision-language benchmarks as well as
multimodal translation benchmarks, while Table [3] reports the results on the multilingual video-
language benchmark. We summarize the main findings below.

TOWERVISION models are strong in cultural-aware tasks. Within our suite of vision-language
benchmarks, we achieve state-of-the-art results on ALM-Bench (TableE], a culturally diverse bench-
mark, in both the English and multilingual split. Qwen2.5VL 7B and Gemma3 12B are the closest
competitors, while other baselines lag behind. In the multilingual split, we evaluate on a diverse
set of 23 languages covering several language families and scripts. TOWERVISION is able to ex-
hibit enhanced cultural multimodal understanding, suggesting that it is still performant in less seen
and unseen languages within its training data. We further assess the cross-lingual generalization
capabilities of TOWERVISION in §4]

TOWERVISION is less competitive on OCR-related tasks. We hypothesize this is likely due to
the limited amount of OCR-focused data in VISIONBLOCKS compared against other models. Since
we primarily pretrained TOWERVISION on large-scale image-caption datasets emphasizing natural
images and language alignment, it struggles with scanned text or OCR-heavy scenarios. Despite
these limitations, TOWERVISION does obtain superior performance compared against Aya Vision
8B and LLaVA Next 8B, the former of which has seen significant amounts of OCR-specific data
(Singh et al., 2024)).
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Table 3: Multilingual video performance per language. Accuracy (%) on ViIMUL-Bench across
14 languages averaged across multiple-choice and open-ended questions. Underlined values mark
the best score within TOWERVISION/TOWERVIDEO variants; bold indicates the best overall. Un-
supported languages are marked with *.

Model ar bn* zh en fr de hi ja ru si* e sv ta® ur

ViMUL-7B 41.5 354 37.0 48.6 48.3 439 39.2 37.8 457 21.2 443 41.4 233 36.8
LLaVA-Video-7B  38.8 30.4 43.2 53.3 49.2 454 342 334 382 18.1 457 39.8 21.9 33.8
VideoLLaMA3-7B 45.6 36.6 48.0 52.9 47.1 43.8 37.5 394 44.8 25.1 454 385 22.8 32.1

TOWERVISION-2B 189 19.5 21.7 342 289 283 25.1 222 248 163 304 27.1 16.1 19.9
TOWERVIDEO-2B  23.0 189 359 45.2 39.6 39.7 37.2 34.1 38.0 17.1 37.4 38.0 17.7 18.7

TOWERVISION-9B 34.2 254 353 46.7 41.1 40.8 34.2 28.1 40.3 19.8 40.5 39.6 21.6 26.4
TOWERVIDEO-9B 38.6 22.1 44.8 519 49.1 47.1 322 423 409 20.8 46.0 44.8 24.1 19.5

TOWERVISION-2B is competitive multilingually with larger models. In multimodal transla-
tion benchmarks, TOWERVISION consistently demonstrates strong performance on Multi30K and
is competitive on COMMuTE (Table[2). Our 9B variant achieves state-of-the-art results on Multi30k
across all language pairs, and we observe that even our smaller 2B variant is a competitive model
against the larger baselines on translation-specific, as well as vision-language benchmarks. For
instance, on Multi30K, TOWERVISION-2B obtains superior scores to Qwen2.5VL 7B and Cultur-
alPangea 7B. Similarly, on the multilingual split of ALM-Bench, TOWERVISION 2B is competitive
with Qwen2.5VL 7B and outperforms Aya Vision 8B. These results further highlight the efficacy
of TOWERVISION’s multilinguality and design choices. We also note that scaling from 2B to 9B
parameters consistently improves performance across all benchmarks, suggesting that our training
recipe scales well.

Multilingual fine-tuning improves cross-lingual performance in TOWERVIDEO. In Table 3] we
report averages across multiple-choice accuracy and open-ended responses, which are automatically
judged using GPT-40 (OpenAl et al., [2024), with the same evaluation prompt as [Shafique et al.
(2025). We compare our TOWERVIDEO models, including the 9B variant, to strong open-source
baselines. Our multilingual models are competitive across several languages despite using smaller
datasets and fewer frames (for instance, VideoLLaMA3 uses 180 frames). Specifically, VIMUL
was trained with separate copies of the dataset for each language, whereas our approach uses a sin-
gle copy with half in English and the other half uniformly translated into the supported languages.
Overall, these results highlight the effectiveness of video-based multilingual fine-tuning in improv-
ing cross-lingual reasoning.

Overall, our results demonstrate the effectiveness of our design choices in endowing our model with
strong multilingual capabilities due to a combination of increased multilingual culturally-sensitive
training data, a more multilingual text backbone (TOWER+), and a multilingual vision encoder. We
detail these choices in §4 with a carefully conducted set of ablation experiments.

4  WHERE AND HOW DOES MULTILINGUALITY MATTER?

Following the main results of TOWERVISION, we delve deeper into its design choices.

Multilingual backbones improve cross-modal performance. The choice of backbone in TOW-
ERVISION can substantially influence performance across multilingual and multimodal tasks. We
focus on two complementary aspects. First, we examine the significance of multilingual capacity by
comparing the TOWER+ backbone, which is highly multilingual and designed for general-purpose
multilingual text tasks, against GEMMA?2, the model on which TOWER+ was built. Second, we in-
vestigate the impact of instruction tuning before modality fusion, which is widely applied in modern
VLMs from the start (Liu et al., 2023b};|Bai et al., 20254a), but whose effect on the final model remains
unclear. To study these effects, we train TOWERVISION at 2B and 9B scales using three backbones:
GEMMAZ2-pt (pretrained, not instruction-tuned), TOWER+pt (pretrained TOWER+, not instruction-
tuned), and TOWER-+it (instruction-tuned TOWER+), following the recipe in §E} As shown in Ta-
ble 4] using TOWER+ consistently outperforms GEMMA?2, confirming the importance of a multi-
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Table 4: Impact of backbone and instruction tuning. Performance of VLMs with different back-
bones on English and multilingual tasks.

Backbone Model English (1) Multilingual (1)
TextVQA  OCRBench CC-OCR ALM-Bench (en) ALM-Bench (multi)

GEMMA2-pt-2B 69.2 61.2 45.3 74.3 76.7
TOWER+pt-2B 70.3 62.1 46.3 73.0 78.2
TOWER+it-2B 68.1 58.6 46.1 771 81.1
GEMMA2-pt-9B 72.4 66.6 49.6 79.9 79.6
TOWER+pt-9B 73.2 64.5 54.5 81.3 84.4
TOWER+it-9B 73.6 69.7 56.3 83.6 85.2

lingual backbone for robust cross-modal understanding. At smaller scales, non-instructed models
(GEMMA2-pt, TOWER+pt) retain stronger raw visual extraction, while instruction-tuned variants ex-
cel in cultural knowledge and reasoning. By the 9B scale, this gap narrows, with instruction-tuned
models integrating both skills and achieving state-of-the-art performance. These findings underscore
the complementary roles of multilingual pretraining and instruction tuning, and the need for careful
backbone selection in VLMs.

Multilingual-aware vision encoders improve performance in low-data regimes. Effectively
leveraging multilingual data is crucial for VLMs, yet it is unclear whether the vision encoder’s
own multilingual capacity plays an important role. We compare SigLIP2, trained on diverse mul-
tilingual data, with SigL.IP1, an earlier English-centric version, to test whether multilingual-aware
encoders are essential or if sufficient fine-tuning can compensate. We train TOWERVISION with
both encoders on English-only and multilingual data at 2B and 9B scales (results in Table[5).

Without additional multilingual data, Taple 5: Multilingual impact of different vision encoders.
Sigl.IP2 models consistently outper-

form SigLIP1, showing clear benefits TOWERVISION 2B 9B

in low dgta regimes. With multilingual Variant En Multi En  Multi

fine-tuning, however, the gap narrows, .

showing that finetuning with sufficient SigLIP1-En 674 602 783 812
SigLIP2-En 69.3 67.1 772 8l.1

multilingual data can compensate for a
weaker encoder. At 9B scale, both con-
verge to strong performance. In short,
multilingual-aware encoders provide an
advantage when data is scarce, but extensive multilingual training can close the gap.

SigLIP1-(En+Multi) 76.6  80.7 83.6 844
SigLIP2-(En+Multi) 77.1 81.1 83.6  85.2

High-quality English captions are enough to ensure strong alignment. To assess whether multi-
lingual supervision is necessary during alignment pretraining, we train two versions of TOWERVI-
SION on both scales, 2B and 9B.

The first version uses only English-only cap- 1able 6: Effect of using multilingual versus
tions from PIXMO-CAP, comprising 702, 205 English-only captions durl'ng'prOJector pretraining
text-image pairs. The second version uses the N ALM-Bench. Results indicate low to no gains
same English captions combined with a high- from adding multilingual data at this stage.

quality translated subset from PIXMO-CAP,

where data was uniformly translated into the TOWERVISION 28 B

supported languages as described in §2.1 com- ~ Projector En  Multi  En  Multi
prising 367,779 samples. We evaluate the mod- En 77.1 81.1 83.6 852
els in ALM-BENCH to measure TOWERVI-  Ep+Multi 779 793 830 841

SION performance both in English and across
multiple non-English languages, providing insights into how well cross-lingual generalization is
preserved or improved. As shown in Table[6] adding high-quality multilingual captions during the
projector alignment stage has little to no positive effect and, in some cases, slightly decreases per-
formance on the multilingual subset. This suggests that the most effective strategy is to focus on
diverse and high-quality captions, ensuring strong alignment between visual and textual modalities,
rather than prioritizing extensive multilingual coverage at this stage.
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Figure 3: Performance of TowerVision models on 10 vs 20 languages/dialects at 2B and 9B scales.
The bars indicate the accuracy gains by training on 20 (all) versus 10 (core) languages.

Table 7: Accuracy (%) on VIMUL-Bench across 14 languages averaged across multiple-choice and
open-ended questions. Underlined values mark the best score within TOWERVISION/TOWERVIDEO
variants; bold indicates the best overall. Unsupported languages are marked with *.

*

Model ar bn* zh en fr de hi ja ru si* e sv ta* ur”

TOWERVISION-2B 18.9 19.5 21.7 34.2 28.9 28.3 25.1 22.2 24.8 16.3 30.4 27.1 16.1 19.9
TOWERVIDEO-2B (english only) 25.7 17.8 26.7 45.5 42.3 34.8 27.8 27.7 34.4 17.9 37.8 34.0 18.3 19.7
TOWERVIDEO-2B (multilingual) 23.0 18.9 35.9 45.2 39.6 39.7 37.2 34.1 38.0 17.1 37.4 38.0 17.7 18.7

Expanding languages improves cross-lingual generalization in VLMs. We study how language
coverage in training data impacts performance on both included and excluded languages. Specif-
ically, we compare training on 10 high-resource “core languages” versus the full set of languages,
while controlling for dataset size. Our questions are: (i) whether adding balanced multimodal data
for more languages improves performance on core languages (Conneau et al.,[2020; [Hu et al.,|2020),
and (ii) whether unsupported languages benefit in zero-shot fashion if related languages are present
(N1 et al.l 2021). We train TOWERVISION at 2B and 9B scales using the recipe in §|Z|, first on 10
“core” languages (English, German, Dutch, Portuguese, Russian, Simplified and Traditional Chi-
nese, Spanish, French, Italian), then on all available languages. Results in Figure|§| (more details
in §A-4) show that broader language coverage consistently improves performance, with larger gains
at the 2B scale. Zero-shot improvements for unsupported languages further support cross-lingual
transfer when related languages are included. These findings highlight the value of expanding mul-
tilingual data, particularly for smaller models.

How does multilingual data affect video fine-tuning? To assess the impact of our multilingual
data (see §[2.1) during video fine-tuning, we present results in Table[7]for two baselines: (i) the orig-
inal TOWERVISION-2B model and (ii) TOWERVIDEO-2B trained on the full English-only LLaVA-
Video-178k dataset. Fine-tuning with video substantially improves the performance of TowerVision
models compared to image-text-only variants, highlighting the importance of temporal information
for video-language understanding. Incorporating multilingual data further enhances cross-lingual
generalization, while English performance remains largely stable, indicating that adding multiple
languages does not compromise primary-language capabilities, even though the multilingual mod-
els are trained on substantially less English data.

5 CONCLUSION

We introduced TOWERVISION, a suite of multimodal models for image-text and video-text tasks,
designed with a strong emphasis on cultural understanding and multilinguality. Our models demon-
strate competitive, and in several cases improved, multilingual performance across a range of bench-
marks when compared with existing open multimodal systems. Alongside this, we released VISION-
BLOCKS, a high-quality vision-language dataset, and provided a detailed training recipe covering
data, encoders, and text backbones, complemented by an extensive ablation study on key compo-
nents of our approach.

We hope that these contributions—spanning models, data, and methodology—help advance research
on culturally diverse multilingual multimodal language models, and accelerate progress toward nar-
rowing the performance gap with English-centric settings.



Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

This work develops and evaluates multilingual vision-language models using publicly available
datasets as well as our own synthetic and translated data. We acknowledge potential risks, including
biased model outputs and unintended misuse of generated content. While we have taken steps to
ensure diversity and maximum data quality, we always encourage careful evaluation and responsi-
ble deployment of these models in real-world scenarios. Our research does not involve sensitive
personal data or tasks with direct safety-critical impact.

7 REPRODUCIBILITY STATEMENT

This work provides detailed descriptions of the data, model architectures, training procedure (includ-
ing the codebase), and evaluation benchmarks used. All datasets used are either publicly available
or created by our team (synthetic and translated), with the respective system prompts shared for
maximum transparency. Additionally TOWERVISION all the collection of models, code for data
preprocessing, training, and evaluation will be released to facilitate replication of our results. We
aim to ensure that other researchers can reproduce our findings with minimal effort.

We ensure reproducibility by providing detailed descriptions of the data, model architectures, train-
ing procedures, and evaluation benchmarks. Upon acceptance, we will release the VISIOBLOCKS
datasetﬂ checkpoints of the TOWERVISION collection model and the corresponding codebases
for training and evaluatiorﬂ to facilitate replication of our results.
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A APPENDIX
A.1 FULL DESCRIPTION OF VISIONBLOCKS
Table [8] shows the full details and statistics of the VISIONBLOCKS dataset.

A.2 MODELS CHECKPOINTS

Table [9] lists all model checkpoints used for comparative baselines. We use checkpoints released
HuggingFace when possible.

A.3 VISION ENCODER VARIANTS
Beyond selecting a more multilingual vision encoder, several other factors significantly influence

its performance. These include the input image resolution supported by the encoder, the number
of patches it uses, which determines the total number of visual tokens for a given image resolution
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Table 8: Overview of dataset composition across categories. Each dataset lists its sample size with
the proportion of the total in parentheses, along with its collection type tag (Public Data, Synthetic
(Generated), or Translated (Augmented)). Totals are shown for English-only and Multilingual sub-

sets, as well as the overall dataset size.

Category Dataset Samples (%) Tag
Chart/Plot DVQA 199,995 (3.17%) Public Data
ChartQA 25,055 (0.40%) Synthetic (Generated)
PlotQA 157,070 (2.49%) Public Data
TabMWP 22,717 (0.36%) Public Data
General VQA VQAvV2 428,708 (6.79%) Public Data
RLAIF-4V 59,408 (0.94%) Synthetic (Generated)
Doc VQA DocVQA 9,664 (0.15%) Synthetic (Generated)
TextVQA 15,690 (0.25%) Synthetic (Generated)
ST-VQA 17,242 (0.27%) Public Data
PixMo-Docs 3,634 (0.06%) Public Data
Reasoning/Knowledge A-OKVQA 11,853 (0.19%) Synthetic (Generated)
OKVQA 9,009 (0.14%) Public Data
AI2D 7,791 (0.12%) Public Data
ScienceQA 758 (0.012%) Public Data
Multilingual/Cultural Pangea-Cultural 55,438 (0.88%) Public Data
Pangea-Multi 428,838 (6.79%) Public Data
PixMo-Cap-Translated 367,779 (5.83%)  Translated (Augmented)
CulturalGround-OE 401,149 (6.35%) Public Data
CulturalGround-MCQs 379,834 (6.02%) Public Data

Specialized VQA

Counting/Math

Vision/Text

Video/Text

IconQA 19,543 (0.31%) Synthetic (Generated)
InfographicVQA 2,049 (0.03%) Synthetic (Generated)
Stratos 12,585 (0.20%) Public Data
TallyQA 98,675 (1.56%) Public Data
PixMo-Count 8,128 (0.13%) Public Data
VBlocks-PixMo-AMA 154,336 (2.44%) Public Data
VBlocks-PixMo-Cap 702,205 (11.12%) Public Data
VBlocks-PixMo-CapQA 262,862 (4.16%) Public Data
EuroBlocks-SFT 1,094,265 (17.34%) Public Data
LLaVA-Video-178k-subset 697,618 (11.05%) Public Data

LLaVA-Video-178k-translated

697,617 (11.05%)

Translated (Augmented)

Total (English)
Total (Multilingual)
Overall Total

3,982,630 (63.1%)
2,330,656 (36.9%)
6,313,286 (100%)

(e.g, for an img resolution of 224 x 224 using patch size of 14 we obtain 256 visual tokens) and the

number of tiles.

Our goal is to empirically identify the optimal configuration for processing visual inputs, focusing

on these three factors.

Specifically, we perform experiments using the TOWERVISION 2B version with variants of SIGLIP2

framework:

1. Image resolution: We vary the input image size between 384 x 384, 224 x 224, and 512 x 512
to examine its effect on feature extraction quality.

2. Patch numbers: We test different patch sizes (14 and 16) to assess how granularity impacts the
learned representations. Smaller patches capture finer details but increase the number of tokens,
affecting the context length the model must handle.

3. Number of tiles: Beyond the default 6 tiles, we also experiment with 4 and 22 tiles. The number
of tiles is adjusted to the image resolution: lower-resolution images (e.g, 224 x 224) require

19



Under review as a conference paper at ICLR 2026

Model Params Checkpoint Link

Qwen2.5-VL-Instruct 3B https://huggingface.co/Qwen/Qwen2.
5-VL-3B-Instruct

Gemma3-it 4B https://huggingface.co/google/
gemma—3—-4b-it

Qwen2.5-VL-Instruct 7B https://huggingface.co/Qwen/Qwen?2.
5-VL-7/B-Instruct

CulturalPangea 7B https://huggingface.co/neulab/
CulturalPangea-"7B

LLaVA-Next 7B llava-hf/llava-vl.6-mistral-7b-hf

Aya-Vision 8B https://huggingface.co/CohereForAI/
aya-vision-38b

Gemma3-it 12B https://huggingface.co/google/
gemma-3—-12b-it

Pixtral 12B https://huggingface.co/mistralai/
Pixtral-12B-2409

Phi-4-Multimodal 14B https://huggingface.co/microsoft/

Phi-4-multimodal-instruct

Table 9: Model checkpoints. Parameters and HuggingFace links for models included in our evalu-
ation suite.

Table 10: Impact of Vision Encoder Configuration and Instruction Tuning. Evaluation of
TOWER+ models across English and multilingual tasks with varying image resolution, patch size,
and number of tiles. Results highlight how these design choices affect overall performance.

Resolution Patch Size Tiles \ English Multilingual
\ TextVQA  OCRBench CC-OCR ALM-Bench
224x224 14 22 59.1 53.3 37.2 70.5
224x224 16 20 68.6 57.8 443 75.2
384x384 14 6 70.3 62.1 46.1 75.6
512x512 16 4 64.0 55.7 39.6 74.7

more tiles to cover the same amount of visual information as a higher-resolution encoder (e.g.,
512 x 512). For example, an image with resolution (1024, 1024) processed with a 512 x 512
encoder requires roughly 4 tiles to cover the full image, whereas a 224 x 224 encoder would
need at least 25 tiles (including padding) to achieve similar coverage. This creates a trade-off
between capturing detailed local information and maintaining manageable context length.

These experiments allow us to systematically compare variations while keeping other components
constant, providing insights into which configuration yields the best overall performance. Results
are reported in Table[T0] highlighting the trade-offs between resolution, patch granularity, and style
diversity.

A.4 CROSS-LINGUAL GENERALIZATION
A.5 SYSTEM PROMPTS
A.5.1 TOWER SYSTEM PROMPTS USED FOR TRANSLATION

The prompts vary in style and specificity to improve diversity and capture nuanced meaning from
the original English captions. They are grouped by language and include multiple phrasings for the
same instruction to encourage robust translations.

# English prompts

EN_PROMPTS = [
"Describe this image.",
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Table 11: Cross-lingual performance of TowerVision models at 2B and 9B scales. Bold values
indicate the better result within each scale. Positive gains from adding languages are highlighted
in light green, negative gains in light red. To reduce space, we show key languages relevant to our

analysis; the full table is provided in the appendix.

Metric / Lang Tower Vision2B \ TowerVision9B

Core Langs  Core + Added Langs  Gain \ Core Langs  Core + Added Langs ~ Gain
English (en) 60.9 76.6 +15.8 70.3 82.8 +12.5
Core Avg 65.3 81.3 +16.1 81.5 82.6 +1.1
Added Avg 60.2 75.4 +15.2 76.3 84.3 +7.6
Unseen Avg 69.2 83.0 +13.9 81.2 82.5 +1.2
German (de) 75.9 84.5 +8.6 89.7 87.9 -1.8
Spanish (es) 56.6 60.5 +3.9 73.7 76.3 +2.6
French (fr) 76.9 82.7 +5.8 86.5 80.8 -5.7
Hindi (hi) 44.2 75.0 +30.8 82.7 80.8 -1.9
Italian (it) 75.0 81.7 +6.7 96.7 98.3 +1.6
Korean (ko) 76.4 70.8 -5.6 75.0 79.2 +4.2
Dutch (nl) 70.0 86.7 +16.7 90.0 86.7 -33
Portuguese (pt) 64.5 90.3 +25.8 85.5 91.9 +6.4
Romanian (ro) 58.9 80.4 +21.5 75.0 87.5 +12.5
Czech (cs) 61.4 75.7 +14.3 74.3 90.0 +15.7
Russian (ru) 65.5 84.5 +19.0 65.5 75.9 +10.4
Chinese (simp.) (zh-hans) 50.0 87.5 +37.5 68.8 71.9 +3.1
Chinese (trad.) (zh-hant) 53.8 76.9 +23.1 61.5 67.3 +5.8
Danish (da)* 66.1 70.9 +4.8 90.3 86.3 -4.0
Finnish (fi)* 56.0 82.0 +26.0 70.0 72.0 +2.0
Hungarian (hu)* 68.8 95.3 +26.5 79.7 82.8 +3.1
Icelandic (is)* 67.6 76.5 +8.9 76.5 83.8 +7.3
Japanese (jp)* 78.8 78.9 0.1 84.8 80.3 -4.5
Swedish (sv)* 77.6 94.8 +17.2 86.2 89.7 +3.5

"What can you see in this picture?",
"Tell me what’s in this image.",
"Explain what this image shows.",
"Caption this image.",

"What’s happening in this picture?",
"Provide a description of this image."

]

# European Portuguese prompts

PT_PROMPTS = |
"Descreva esta imagem.",
"O que consegue ver nesta fotografia?",
"Diga-me o que estd nesta imagem.",
"Explique o que esta imagem mostra.",
"Legende esta imagem.",
"O que se passa nesta fotografia?",
"Forneca uma descricdo desta imagem."

]

# French prompts

FR_PROMPTS = [
"Décrivez cette image.",
"Que pouvez-vous voir sur cette photo?",
"Dites-moi ce qu’il y a dans cette image.",
"Expliquez ce que cette image montre.",
"Légendez cette image.",
"Que se passe-t-il sur cette photo?",

"Fournissez une description de cette image.
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# Dutch prompts
NL_PROMPTS = [
"Beschrijf deze afbeelding.",
"Wat zie Jje op deze foto?",
"Vertel me wat er op deze afbeelding staat.",
"Leg uit wat deze afbeelding laat zien.",
"Onderschrift deze afbeelding.",
"Wat gebeurt er op deze foto?",
"Geef een beschrijving van deze afbeelding."

]

# German prompts
DE_PROMPTS = [
"Beschreiben Sie dieses Bild.",
"Was koénnen Sie auf diesem Foto sehen?",
"Sagen Sie mir, was auf diesem Bild zu sehen ist.",
"Erkldren Sie, was dieses Bild zeigt.",
"Beschriften Sie dieses Bild.",
"Was passiert auf diesem Foto?",
"Geben Sie eine Beschreibung dieses Bildes."

]

# Spanish prompts
ES_PROMPTS = [
"Describe esta imagen.",
":Qué puedes ver en esta foto?",
"Dime qué hay en esta imagen.",
"Explica qué muestra esta imagen.",
"Pon un titulo a esta imagen.",
":Qué estd pasando en esta foto?",
"Proporciona una descripcidn de esta imagen."

]

# Italian prompts
IT_PROMPTS = [
"Descrivi questa immagine.",
"Cosa puoil vedere in questa foto?",
"Dimmi cosa c’ée in questa immagine.",
"Spiega cosa mostra questa immagine.",
"Dai un titolo a questa immagine.",
"Cosa sta succedendo in questa foto?",
"Fornisci una descrizione di questa immagine."

A.5.2 GEMINI 2.5 SYSTEM PROMPTS

We generate synthetic captions using the Gemini 2.5 API with a diverse set of system prompts.
These prompts are designed to produce varied response formats, including direct answers, caption-
plus-answer pairs, and structured final-answer formats.

# Direct answer formats
"Answer the question concisely.",
"Provide a brief, direct answer to the question.",
"Keep your response short and to the point.",
"Give a concise answer based on what you see in the image.",
"Answer directly based on the visual information.",
"Respond with a short, clear answer to the question.",
"Be brief and direct in your response."

# Simple caption + answer formats
"First provide a caption of what you see, then give your answer.",
"Write a brief caption describing the image, followed by your answer to the question.",
"Start with a description of the image, then provide your answer clearly marked as ’Answer
"First write ’Caption: <brief image description>’ then answer the question.",
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"Begin with ’Caption: [what you see in the image]’ followed by your response to the questi
"Start by writing ’CAPTION: {description}’ before answering the question."

# Final Answer formats
"End your response with ’Final Answer: <your answer>’.",
"Conclude with ’'Final Answer: <your answer>’'.",
"After looking at the image, provide ’'Final Answer: <your answer>’.",
"Your response should end with ’‘Final Answer: <your answer>’.",
"First describe what you see, then provide ’'Final Answer: <your answer>’'.",
"Always end your response with ’Final Answer: <your answer>’ after analyzing the image.",
"Provide a concise answer. End with ’Final Answer: <your answer>’."

# Naive formats (simple, direct)
"Describe the image and answer the question.",
"Begin by describing the image and then answer the question.",
"Provide a brief description of the image and then answer the question.",
"Answer the question in a helpful and informative manner.",
"Start by describing the image and then answer the question.",
"You are a helpful assistant. Describe the image and answer the question."

# Simple formatted caption/answer pairs
"Caption: <description> -+ Answer: <response>",
"Image shows: <description> | My answer: <response>",
"[CAPTION] <description> [ANSWER] <response>",
"# Image: <description>\n# Answer: <response>",
"First ’'Image Description: <what you see>’ then ’'Answer: <your response>'"

# With specific markers

"<description><answer>",

"Image: <description> =+ Answer: <conclusion>",

"<IMAGE> describe what you see </IMAGE> <ANSWER> provide your response </ANSWER>"
"Begin with ’ {IMAGE DESCRIPTION}’ and end with ’ {FINAL ANSWER}’."

These prompts are used to generate high-quality captions that improve instruction-following and
visual description diversity.
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