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ABSTRACT

Despite significant advances in vision-language models (VLMSs), most ex-
isting work follows an English-centric design process, limiting their effec-
tiveness in multilingual settings. In this work, we provide a comprehen-
sive empirical study analyzing the impact of several multilingual design
choices, such as training data composition, encoder selection, and text back-
bones. The result is TOWERVISION, a family of open multilingual VLMs
for both image-text and video-text tasks, built upon the multilingual text-
only model TOWER+. TOWERVISION achieves competitive performance
on multiple multilingual benchmarks and shows particular strength in cul-
turally grounded tasks and multimodal translation. By incorporating vi-
sual and cultural context during fine-tuning, our models surpass existing
approaches trained on substantially larger datasets, as demonstrated on
ALM-Bench and Multi30K (image tasks) and VIMUL-Bench (video tasks).
Alongside the models, we release VISIONBLOCKS, a high-quality, curated
vision-language dataset. Our findings highlight that multilingual vision-
language training data substantially improves cross-lingual generalization—
both from high-resource to underrepresented languages and vice versa—and
that instruction-tuned LLMs are not always the optimal initialization point.
To support further research, we publicly release all models, data, and train-
ing recipes.

1 INTRODUCTION

The success and widespread adoption of large language models (LLMs) has naturally led
to a surge of interest in adding multimodal capabilities to these models. In particular,
the visual modality has recently received considerable attention, with recent releases of
frontier vision-language models (VLMs) (Deitke et al., [2024; (OpenAl et al.| 2024; |Comanici
et al., [2025; [Team et al., 2025; Bai et al., 2025bf). However, despite impressive progress,
the development of VLMs has been mostly built upon English-centric language models, and
trained with English vision-text data, giving little consideration to performance in most
other languages. A key challenge in multilingualization of VLMs stems from an asymmetric
data landscape—while high-quality text-only multilingual corpora are relatively abundant,
high-quality multilingual vision-text data is scarce. As such, a critical challenge remains:
What are the best strategies to effectively extend these models to support multiple languages
beyond English?

An effective strategy for VLM multilingualization is to let large-scale text-only multilingual
data carry most of the burden. This can be achieved by continuing pretraining of the text
backbone on multilingual corpora and by including multilingual content in the text-only
portion of the VLM fine-tuning mixture—thereby reducing reliance on scarce multilingual
multimodal data. A recent example of this approach is PANGEA (Yue et al., 2025)), which
introduced multilinguality exclusively during the VLM fine-tuning stage using a mixture of
data that combined multilingual vision-text pairs generated through synthetic data creation
and machine translation of English instructions. While this strategy proved effective, it
leaves open key questions: At which stages and on which modules should multilingualiza-
tion be applied? Which design decisions yield the greatest impact? And how can visual
grounding further enhance cross-lingual generalization?
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Figure 1: We present TOWERVISION and TOWERVIDEO, open VLMs with enhanced cultural
understanding and multilingual capabilities over leading open multimodal systems on image
and video.

In this work, we introduce TOWERVISION/|'|a suite of open-source multilingual VLMs built
on top of TOWER+ models (Rei et al., 2025)) for 20 languages and dialects}?| To train Tow-
ERVISION, we systematically address the challenges outlined above through comprehensive
ablation studies, component-level analysis, and cross-lingual evaluation of a multilingual-
ization recipe. Specifically, we investigate how to enhance the multilingual capabilities of
VLMs from two axes: first, by exploring the impact of the underlying components (includ-
ing the alignment projector, vision encoder and text-only LLM); and second, by creating
better, more multilingual vision-text datasets and exploring the impact of using this data
across different VLM training stages. Overall, compared to strong VLMs of similar size,
TOWERVISION exhibits competitive or superior performance on various multilingual and
multimodal benchmarks, as well as cross-lingual transfer capabilities.

In addition to image-based VLMs, we also train a separate multilingual video model, Tow-
ERVIDEO, built on top of TOWERVISION, thereby extending our analysis to the video
modality. TOWERVIDEO achieves competitive performance on ViMUL-Bench
, a culturally-diverse multilingual video benchmark. Taken together, these con-
tributions provide a comprehensive and systematic study of how to best integrate multilin-
guality into VLMs across modalities, architectural components, and training stages. Com-
plementing the TOWERVISION family, we also release VISIONBLOCKS, a curated dataset
that consolidates and filters existing vision/video-language resources, further enriched with
quality-controlled translations of English textual descriptions into 20 languages and dialects.

2 TOWERVISION

Our approach follows a multi-stage process encompassing three key components, illustrated
in Figure [I} (i) a multilingual text-only backbone model, TOWER+ (2025)); (ii)
a Vision Transformer encoder (ViT; Dosovitskiy et al.|[2021)) that processes visual inputs
and extracts meaningful features; (iii) a connector/adapter module that transforms these
visual features to generate representations compatible with the text embedding space. These
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modules can be selectively trained or kept frozen during different stages of development (Li
et al., 2025). Although this training recipe and variations thereof are well-established and
have produced several high-quality models (e.g., LLaVA (Liu et al.|2023b)), Intern-VL (Chen
et al.|2024]), NVLM (Dai et al., [2024)), Qwen2.5-VL (Bai et al.,[2025b|), Molmo (Deitke et al.,
2024))), most of these fall short in capturing multilingual and culturally diverse nuances.
We therefore introduce our multilingual adaptation, TOWERVISION—we first describe our
carefully curated multilingual vision-text data, VISIONBLOCKS (§2.1), and then describe
the overall architecture along with an empirically derived recipe, supported by controlled
ablations on data allocation, pretraining stages, and initialization strategies(§2.2)). (§2.2).

2.1 VisSIONBLOCKS: TOWARDS BETTER MULTILINGUAL VISION-TEXT DATA

Creating a large-scale, high-quality, multilingual multimodal dataset for training visual lan-
guage models to be helpful assistants is non-trivial for a series of intertwined reasons:

o Human-written vision-text data featuring user-model interactions (common in text-only
alignment) is severely limited. While abundant data exists from large-scale captioning
datasets (e.g., LAION-5B; |Schuhmann et al.|2022), such sources over prioritize scale over
quality which is not ideal for training VLMs with advanced capabilities (Dong et al.,
2025; |Zhou et al.| 2023) like instruction-following, helpfulness, and safety.

e High-quality multilingual vision-text data is scarce; furthermore, the lack of open, high-
quality multilingual VLMs makes controlled synthetic data challenging or restricted to
closed models with limited usage licenses. The most viable alternative, also employed
by PANGEA (Yue et all |2025)), involves translating English vision-text interactions into
target languages.

« Filtering techniques such as reward model scoring or LLM-as-judge approaches (Gu et al.,
2025) are significantly more challenging to implement for vision-text data, where even
state-of-the-art VLMs (both open and proprietary) struggle to provide reliable prefer-
ences (Li et al., [2024]).

With this in mind, we develop and release VISIONBLOCKS (Figure , which aggregates
and filters data from multiple sources, enhanced with new translated and synthetic data, as
described below.

Collection of existing VLM data For English vision-text data, we use the mixture
created in PIXMo (Deitke et al.l|2024) with a few minor changes: we exclude the Android-
Control, Points, and PointQA datasets, as they do not provide additional multilingual value
at this stage; For multilingual vision-text data, we leverage a subset of “Open-Ended” and
“Multiple-Choice” questions from CULTURALGROUND (de Dieu Nyandwi et al., [2025) and
the “Cultural” split of PANGEAINS (Yue et al., |2025) for our languages of interest. The
samples from PANGEAINS are originally found in LAIONMulti (Schuhmann et al., 2022)
that undergoes a series of automatic steps (using Gemini 1.5 Pro (Gemini Team et al.
2024))) including curating high-quality English instructions, carefully translating them to
multiple languages, and adapting them for culturally-relevant multilingual contexts. CUL-
TURALGROUND uses a data curation pipeline that gathers culturally relevant entities from
the Wikidata knowledge base, creates several questions and answers about each entity,
rephrases them using an LLM, and filters low-quality samples using a VLM. In our work,
we rely exclusively on CULTURALGROUND’s filtered subsets to ensure maximum quality.

Translated and synthetic generated vision-language data In addition to the origi-
nal English and multilingual captions, we translate the highly curated PIXMoO-CAP caption
data Deitke et al.| (2024) to our target languages using a TOWER model (Alves et al., |2024)).
These translations are scored using COMETKIWI (Rei et al., |2022)) and filtered with a high
threshold of 0.85 to ensure maximum quality. To further enhance diversity, we pair the
remaining high-quality translations with a variety of language-specific captioning prompt
templates (§A5.1 . We also augment the dataset with synthetic captions generated by
the Gemini 2.5 API. For each image, we sample multiple system prompts to elicit diverse
and detailed descriptions (see §A.5.2)). This augmentation is intended to improve coverage
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<@ VisionBlocks: A Collection of 6M Multilingual Data
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Figure 2: Overview of the VISIONBLOCKS dataset. Synthetic data are generated with
Gemini 2.5 API, while translated augmented ones use TOWER (Alves et all [2024). See
Table 8 §AT] for details.

of fine-grained visual details (e.g., spatial relations, attributes, and contextual cues) that
human-authored captions often omit, and provides instruction-like supervision, aligning our
model more closely with recent VLM training paradigms that leverage synthetic data to
boost generalization and response quality. Similar strategies have been shown to be ef-
fective in scaling up instruction-following capabilities of VLMs such as LLaVA
2023a: and InstructBLIP . We complete our image-text dataset by incor-
porating the text-only EUROBLOCKS set, a curated multilingual collection of high-quality
synthetic data from the EUROLLM (Martins et al., [2025)) synthetic post-training data. Eu-
ROBLOCKS provides diverse, instruction-aligned text that enriches our dataset with robust
multilingual coverage and fine-grained, high-quality descriptions.

Translated Multilingual Video Data As video-text data, we employ the LLaVA-
Video-178k dataset (Zhang et all 2025c)), which contains captions alongside open-ended
and multiple-choice questions in English. To make the dataset multilingual, we retain a
randomly sampled half of the conversations in English, and we translate the remaining

half uniformly into all supported languages using TOWER+9B (Rei et all [2025)), thereby
ensuring balanced cross-lingual coverage.

2.2 TOWERVISION: ARCHITECTURE & TRAINING DETAILS

One way to improve the multilinguality of LLMs (e.g., improving cross-lingual understanding
or extending multilingual support for other languages) is to start from a strong pretrained
model and continue pretraining on carefully curated data, with subsequent post-training
(Xu et al., 2024; 2025; Alves et al., 2024). TOWERVISION follows a similar principle, start-
ing from a strong multilingual Gemma-based backbone TOWER+ 2B/9B 2025)),
which achieves strong multilingual general-purpose performance by leveraging a curated
high-quality multilingual dataset and a training recipe designed to preserve general capa-
bilities. As shown in §4] starting from this multilingual backbone substantially improves
cross-lingual performance compared to starting from Gemma indicating that strong multi-
lingual priors tend to outperform general reasoning models.

For the vision encoder, TOWERVISION is initialized with the recently proposed SigLIP2-
$0400m/14@384px (Tschannen et all |2025), a vision transformer operating at 384 x 384
resolution that extracts image patch representations and produces multilingually-aligned
embeddings of size 729. SigLIP2 is trained on a more diverse data mixture compared to al-
ternatives such as CLIP-ViT (Radford et al.,2021)), Perception Encoder (Bolya et al., [2025)),
or SigLIP1 (Zhai et al., [2023]), and thereby yields better multilingual understanding, as we
shall see in §4l To align the vision and text modalities, we use a LLaVA-based architecture
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(Liu et al., 2023b)), where we train a projection layer consisting of a 2-layer MLP, randomly
initialized. By combining TOWER+ for text and SigLIP2 for vision, TOWERVISION benefits
from complementary multilingual strengths across both modalities. The training process
consists of three stages:

1. A projector pretraining phase, where we train the model to predict captions given images
on the PixMo-Cap dataset, freezing both the vision encoder and the language model
backbone (so only the projector is trained). Each image is encoded once (downscaled to
384x384 if necessary). During this phase, we focus exclusively on diverse, high-quality
English captions, which we show to be more effective for aligning visual and textual
representations (see .

2. A wision finetuning phase, where we unfreeze the full model and train it on the full
VISIONBLOCKS dataset (m, excluding the video-text data. In this phase, we use high-
dynamic resolution (Liu et all 2024a), breaking high-resolution images into a grid of
smaller tiles which are then encoded with the vision encoder independently (together
with a global thumbnail tile). The projected embeddings are then concatenated. We use
a maximum of six tiles, which provides the best trade-off (§A.3). This phase leads to the
TOWERVISION model.

3. A wvideo finetuning phase, where the video portion of VISIONBLOCKS is used to finetune
TOWERVISION on 32-frame video inputs at the encoder’s fixed resolution of 384x384.
Unlike the previous stage, we omit tiling for efficiency. This phase leads to the Tow-
ERVIDEO model.

The models were trained on a custom fork of the LLaVA-Next (Liu et al.,|2024al) codebaseﬂ

3 EvALuATION & MAIN RESULTS

We evaluate TOWERVISION and TOWERVIDEO on a comprehensive suite of benchmarks
spanning multiple modalities and task types (single-image, few-image, and video) across di-
verse languages, both within and beyond our training set. In this section, we focus on vision-
language tasks (i.e., single-image or few image), which including multilingual visual/video
question answering, cultural understanding, OCR-related tasks, and visual-language under-
standing, as well as multilingual video-language tasks. Our assessment relies primarily on
closed-form tasks, complemented by large language models serving as judges for video-based
evaluations.

3.1 Tasks & EVALUATION BENCHMARKS

Vision-language tasks We report results on ALM-Bench (Vayani et al.,[2024)), a cultural
understanding multilinguaﬁ visual QA benchmark, OCRBench (Liu et all |2024b) and cc-
OCR (Yang et al., [2024)) for English and multilinguaﬂ OCR-centric capabilities respectively,
and TextVQA (Singh et all 2019)), assessing scientific understanding. Within cc-OCR, we
report results on the multilingual text reading subset, as our primary focus is to evaluate
the model’s multilingual text recognition capabilities.

Multimodal translation We report results on COMMuTE (Futeral et al., [2023), a spe-
cialized multimodal translation benchmark that uses the visual content to resolve lexical
ambiguities present in the source language, and Multi30K (Elliott et al.l 2016), a standard
benchmark for multimodal machine translation (MT) of image captions.

Culturally-aware multilingual video tasks We use VIMUL-Bench (Shafique et al.|
2025)), a multilingual video QA benchmark spanning 14 languages: Arabic (ar), Bengali

3The code will be released upon acceptance.

4German, Spanish, French, Italian, Korean, Dutch, Russian, English, Portuguese, Chinese (Sim-
plified and Traditional), Icelandic, Czech, Ukrainian, Hindi, Japanese, Polish, Swedish, Hungarian,
Romanian, Danish, Norwegian (Nynorsk), and Finnish.

5German, French, Italian, Russian, Spanish, Korean, Portuguese.
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Table 1: Vision-Language Model Performance. Comparison of English and multilin-
gual VLMs across multiple benchmarks. Reported values correspond to final accuracy (7).
Bold indicates the best score per column. TowerVision results are highlighted.

English (1) Multilingual (1)
TextVQA OCRBench CC-OCR  ALM-Bench (en) ~ALM-Bench (multi)
Qwen2.5-VL-3B-Instruct 77.8 78.7 76.4 81.0 76.2
Qwen2.5-VL-7B-Instruct 82.5 84.5 78.6 83.1 83.6
Gemma3-4B-it 65.2 74.2 69.1 79.7 80.0
Gemma3-12B-it 73.2 4.7 73.8 83.5 84.5
CulturalPangea7B 69.8 63.5 51.7 61.3 65.2
Llama3-Llava-Next-8B 64.8 54.4 40.9 76.5 73.4
Aya-Vision-8B 66.9 61.0 46.3 78.2 77.3
TowerVision-2B 68.1 58.6 46.1 7.1 81.1
TowerVision-2B-OCR 69.1 63.5 55.5 76.1 77.1
TowerVision-9B 73.6 69.7 56.3 83.6 85.2
TowerVision-9B-OCR 76.2 2.7 65.1 86.1 84.8

(bn), Chinese (zh), English (en), French (fr), German (de), Hindi (hi), Japanese (ja), Rus-
sian (ru), Sinhala (si), Spanish (es), Swedish (sv), Tamil (ta), and Urdu (ur). The dataset
contains both open-ended and multiple-choice questions covering culturally diverse domains
such as festivals, customs, food, and heritage. Unlike prior datasets, VIMUL-Bench enables
comprehensive evaluation of video-language models across both high- and low-resource lan-
guages, promoting inclusive and culturally aware research.

3.2 BASELINES

For evaluation, we leverage the Imms-eval framework (Zhang et al., |2025b), which enables
a systematic comparison of TOWERVISION against leading open VLMs. We include several
multilingual multimodal models, such as CulturalPangea-7B (Yue et al., |2025), designed
to address gaps in multilingual cultural understanding, and Aya-Vision-8B (Singh et al.,
2024)), optimized for a broad range of vision-language tasks. In addition, we evaluate mod-
els from the Gemma3-Instruct (Gemma3-4B-it, Gemma3-12B-it;|Team et al.[2025) and the
Quen2.5-VL-Instruct families (Qwen2.5-VL-3B-Instruct, Qwen2.5-VL-7B-Instruct; |Qwen
et al.|2025), both of which have demonstrated strong performance across a variety of multi-
modal benchmarks. Finally, we report results for a LLaVA-based model, Llava-Next-7B (Liu
et al.|,[2024al), a general-purpose VLM with strong performance across a wide range of tasks.
The exact checkpoints for all models are listed in

For TOWERVIDEO, we consider several competitive open-source video models of compa-
rable scale, including VideoLLaMA3-7B (Zhang et al., |2025al), LLaVA-Video-7B (Zhang
et al. 2025c))—also trained on LLaVA-Video-178k—and VIMUL-7B (Shafique et al., |2025]),
a multilingual video model.

3.3 MAIN RESULTS

Tables report the performance of TOWERVISION on vision-language benchmarks as well
as multimodal translation benchmarks, while Table [3|reports the results on the multilingual
video-language benchmark. We summarize the main findings below.

TowerVision models are strong in cultural-aware tasks. Within our suite of vision-
language benchmarks, we achieve state-of-the-art results on ALM-Bench (Table [} a cul-
turally diverse benchmark, in both the English and multilingual split. Qwen2.5VL 7B and
Gemmad3 12B are the closest competitors, while other baselines lag behind. In the multi-
lingual split, we evaluate on a diverse set of 23 languages covering several language families
and scripts. TOWERVISION is able to exhibit enhanced cultural multimodal understanding,
suggesting that it is still performant in less seen and unseen languages within its training
data. We further assess the cross-lingual generalization capabilities of TOWERVISION in
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Table 2: Multimodal Translation Benchmarks. We report XCOMET (Guerreiro et al.,
2024)) for Multi30K and contrastive pairwise accuracy for CoOMMuTE. Bold is best.

Multi30K (1) CoMMuTE (1)
en—cs en—de en—fr en—de en—fr en—ru en—zh

Qwen2.5-VL-3B-Instruct 83.3 96.7 92.6 71.6 74.4 77.5 81.5
Qwen2.5-VL-7B-Instruct 83.9 97.1 93.2 74.7 76.9 77.2 82.4

Gemma3-4B-it 33.4 44.0 33.2 76.7 78.2 79.0 74.4
CulturalPangea7B 80.0 95.8 92.1 68.3 77.3 75.3 79.3
Llama3-Llava-Next-8B 79.1 93.3 88.1 72.0 74.4 74.4 73.5
Aya-Vision-8B 94.4 97.9 95.3 69.3 76.9 74.4 76.2
TOWERVISION-2B 90.3 97.5 94.7 70.0 74.3 73.2 76.6
TowERVISION-2B-OCR 90.1 97.5 94.7 70.0 77.3 74.2 76.9
TOWERVISION-9B 95.1 98.1 95.6 72.0 78.8 75.6 77.4

TowERVISION-9B-OCR 94.5 98.1 95.6 72.2 78.3 75.6 7.3

Table 3: Multilingual video performance per language. Accuracy (%) on ViIMUL-
Bench across 14 languages averaged across multiple-choice and open-ended questions.
Underlined values mark the best score within TOWERVISION/ TOWERVIDEO variants; bold
indicates the best overall. Unsupported languages are marked with *.

Model ar bn* zh en fr de hi ja ru si* es sv ta* ur’

ViMUL-7B 41.5 354 37.0 48.6 483 439 39.2 378 457 21.2 443 414 23.3 36.8
LLaVA-Video-7B  38.8 30.4 43.2 53.3 49.2 454 34.2 334 38.2 18.1 457 39.8 21.9 3338
VideoLLaMA3-7B 45.6 36.6 48.0 52.9 47.1 43.8 37.5 39.4 44.8 25.1 454 38.5 22.8 321

ToweRrVIsION-2B  18.9 19.5 21.7 34.2 289 283 25.1 222 24.8 16.3 304 27.1 16.1 19.9
TOWERVIDEO-2B  23.0 189 359 45.2 39.6 39.7 37.2 34.1 38.0 17.1 374 38.0 17.7 18.7

TowERVISION-9B 34.2 254 35.3 46.7 41.1 40.8 34.2 281 40.3 19.8 40.5 39.6 21.6 26.4
TOWERVIDEO-9B 38.6 22.1 44.8 51.9 49.1 47.1 32.2 42.3 40.9 20.8 46.0 44.8 24.1 19.5

TowerVision is less competitive on OCR-related tasks. We hypothesize this is
likely due to the limited amount of OCR-focused data in VISIONBLOCKS compared against
other models. Since we primarily pretrained TOWERVISION on large-scale image-caption
datasets emphasizing natural images and language alignment, it struggles with scanned text
or OCR-heavy scenarios. Despite these limitations, TOWERVISION does obtain superior
performance compared against Aya Vision 8B and LLaVA Next 8B, the former of which has
seen significant amounts of OCR-specific data (Singh et al., [2024)).

TowerVision-2B is competitive multilingually with larger models. In multimodal
translation benchmarks, TOWERVISION consistently demonstrates strong performance on
Multi30K and is competitive on CoMMuTE (Table . Our 9B variant achieves state-of-
the-art results on Multi30k across all language pairs, and we observe that even our smaller
2B variant is a competitive model against the larger baselines on translation-specific, as
well as vision-language benchmarks. For instance, on Multi30K, TOWERVISION-2B obtains
superior scores to Qwen2.5VL 7B and CulturalPangea 7B. Similarly, on the multilingual split
of ALM-Bench, TOWERVISION 2B is competitive with Qwen2.5VL 7B and outperforms Aya
Vision 8B. These results further highlight the efficacy of TOWERVI1SION’s multilinguality and
design choices. We also note that scaling from 2B to 9B parameters consistently improves
performance across all benchmarks, suggesting that our training recipe scales well.

Multilingual fine-tuning improves cross-lingual performance in TowerVideo. In
Table[3] we report averages across multiple-choice accuracy and open-ended responses, which
are automatically judged using GPT-40 (OpenAl et al) 2024), with the same evaluation
prompt as |Shafique et al.| (2025). We compare our TOWERVIDEO models, including the 9B
variant, to strong open-source baselines. Our multilingual models are competitive across sev-
eral languages despite using smaller datasets and fewer frames (for instance, VideoLLaMA3
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Table 4: Impact of backbone and instruction tuning across different benchmarks.

Backbone Model English (1) Multilingual (1)
TextVQA  OCRBench CC-OCR  ALM-Bench (en) ALM-Bench (multi)

GEMMA2-pt-2B 69.2 61.2 45.3 74.3 76.7
TowER+pt-2B 70.3 62.1 46.3 73.0 78.2
GEMMA2-it-2B 70.0 63.0 45.9 75.0 75.1
TowER+it-2B 68.1 58.6 46.1 77.1 81.1
GEMMA2-pt-9B 72.4 66.6 49.6 79.9 79.6
TOWER+pt-9B 73.2 64.5 54.5 81.3 84.4
GEMMA2-it-9B 74.4 67.2 49.5 79.6 81.5
TowER+it-9B 73.6 69.7 56.3 83.6 85.2

uses 180 frames). Specifically, VIMUL was trained with separate copies of the dataset for
each language, whereas our approach uses a single copy with half in English and the other
half uniformly translated into the supported languages. Overall, these results highlight the
effectiveness of video-based multilingual fine-tuning in improving cross-lingual reasoning.

Overall, our results demonstrate the effectiveness of our design choices in endowing our
model with strong multilingual capabilities due to a combination of increased multilingual
culturally-sensitive training data, a more multilingual text backbone (TOWER+), and a
multilingual vision encoder. We detail these choices in §4] with a carefully conducted set of
ablation experiments.

4 WHERE AND How DOES MULTILINGUALITY MATTER?

Following the main results of TOWERVISION, we delve deeper into its design choices.

Multilingual backbones improve cross-modal performance. The choice of backbone
in TOWERVISION can substantially influence performance across multilingual and multi-
modal tasks. We focus on two complementary aspects. First, we examine the significance
of multilingual capacity by comparing the TOWER+ backbone, which is highly multilingual
and designed for general-purpose multilingual text tasks, against GEMMAZ2, the model on
which TOWER+ was built. Second, we investigate the impact of instruction tuning before
modality fusion, which is widely applied in modern VLMs from the start (Liu et al., [2023bj
Bai et al 2025a), but whose effect on the final model remains unclear. To study these ef-
fects, we train TOWERVISION at 2B and 9B scales using three backbones: GEMMA2-pt (pre-
trained, not instruction-tuned), TOWER+pt (pretrained TOWER+, not instruction-tuned),
and TOWER+it (instruction-tuned TOWER+), following the recipe in §2| As shown in Table
[ using TOWER+ consistently outperforms GEMMA2, confirming the importance of a mul-
tilingual backbone for robust cross-modal understanding. At smaller scales, non-instructed
models (GEMMAZ2-pt, TOWER+pt) retain stronger raw visual extraction, while instruction-
tuned variants excel in cultural knowledge and reasoning. By the 9B scale, this gap narrows,
with instruction-tuned models integrating both skills and achieving state-of-the-art perfor-
mance. These findings underscore the complementary roles of multilingual pretraining and
instruction tuning, and the need for careful backbone selection in VLMs.

Multilingual-aware vision encoders improve performance in low-data regimes.
Effectively leveraging multilingual data is crucial for VLMs, yet it is unclear whether the
vision encoder’s own multilingual capacity plays an important role. We compare SigLIP2,
trained on diverse multilingual data, with SigL.IP1, an earlier English-centric version, to test
whether multilingual-aware encoders are essential or if sufficient fine-tuning can compensate.
We train TOWERVISION with both encoders on English-only and multilingual data at 2B
and 9B scales (results in Table .

Without additional multilingual data, SigL.LIP2 models consistently outperform SigLIP1,
showing clear benefits in low data regimes, where training data is scarce. With multilingual
fine-tuning, however, the gap narrows, showing that finetuning with sufficient multilingual
data can compensate for a weaker encoder. At 9B scale, both converge to strong perfor-
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Table 5: Multilingual impact of different vision encoders measure on ALM-Bench.

TowerVision 2B 9B

Variant En Multi En Multi
SiglL.IP1-En 67.4 60.2 78.3 81.2
SigL.IP2-En 69.3 67.1 77.2 81.1
SigLIP1-(En+Multi) 76.6 80.7 83.6 84.4
SigLIP2-(En+Multi) 77.1 81.1 83.6 85.2

mance. In short, multilingual-aware encoders provide an advantage when data is scarce, but
extensive multilingual training can close the gap.

High-quality English captions are enough to ensure strong alignment. To assess
whether multilingual supervision is necessary during alignment pretraining, we train two
versions of TOWERVISION on both scales, 2B and 9B.

The first Yersion uses only English- Table 6: Effect of using multilingual versus English-
only captions from PIXMO-CAP, only captions during projector pretraining on ALM-

comprising 702,205 text-image pairs. Bench. Results indicate low to no gains from adding
The second version uses the same pyltilingual data at this stage.

English captions combined with a
high-quality translated subset from TowerVision 2B 9B
PIXMO-CAP, Where data was uni- Projector En  Multi En  Multi
formly translated into the supported
languages as described in §2.1] com-
prising 367,779 samples. We evaluate
the models in ALM-BENCH to mea-
sure TOWERVISION performance both in English and across multiple non-English languages,
providing insights into how well cross-lingual generalization is preserved or improved. As
shown in Table[6] adding high-quality multilingual captions during the projector alignment
stage has little to no positive effect and, in some cases, slightly decreases performance on
the multilingual subset. This suggests that the most effective strategy is to focus on diverse
and high-quality captions, ensuring strong alignment between visual and textual modalities,
rather than prioritizing extensive multilingual coverage at this stage.

En 77.1 81.1 83.6 85.2
En+Multi 77.9 79.3 83.0 84.1

Expanding languages improves cross-lingual generalization in VLMs. We study
how language coverage in training data impacts performance on both included and excluded
languages. Specifically, we compare training on 10 high-resource “core languages” versus
the full set of languages, while controlling for dataset size. Our questions are: (i) whether
adding balanced multimodal data for more languages improves performance on core lan-
guages (Conneau et al.l 2020; Hu et al. 2020), and (ii) whether unsupported languages
benefit in zero-shot fashion if related languages are present (Ni et all [2021). We train
TOWERVISION at 2B and 9B scales using the recipe in first on 10 “core” languages (En-
glish, German, Dutch, Portuguese, Russian, Simplified and Traditional Chinese, Spanish,
French, Italian), then on all available languages. Results in Figure [3| (more details in
show that broader language coverage consistently improves performance, with larger gains
at the 2B scale. Zero-shot improvements for unsupported languages further support cross-
lingual transfer when related languages are included. These findings highlight the value of
expanding multilingual data, particularly for smaller models.

How does multilingual data affect video fine-tuning? To assess the impact of our
multilingual data (see § 2.1) during video fine-tuning, we present results in Table [7] for
two baselines: (i) the original TOWERVISION-2B model and (ii) TOWERVIDEO-2B trained
on the full English-only LLaVA-Video-178k dataset. Fine-tuning with video substantially
improves the performance of TowerVision models compared to image-text-only variants,
highlighting the importance of temporal information for video-language understanding. In-
corporating multilingual data further enhances cross-lingual generalization, while English
performance remains largely stable, indicating that adding multiple languages does not com-
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Figure 3: Performance of TowerVision models on 10 vs 20 languages/dialects at 2B and
9B scales. The bars indicate the accuracy gains by training on 20 (all) versus 10 (core)
languages.

Table 7: Accuracy (%) on VIMUL-Bench across 14 languages averaged across multiple-
choice and open-ended questions. Underlined values mark the best score within TOWERVI-
SION/TOWERVIDEO variants; bold indicates the best overall. Unsupported languages are
marked with *.

Model ar bn* zh en fr de hi ja ru si* es sv ta* ur’

TOWERVISION-2B 18.9 19.5 21.7 34.2 289 283 25.1 22.2 248 16.3 30.4 27.1 16.1 19.9
TOWERVIDEO-2B (english only) 25.7 17.8 26.7 45.5 42.3 34.8 27.8 27.7 34.4 17.9 37.8 34.0 18.3 19.7
TOWERVIDEO-2B (multilingual) 23.0 18.9 35.9 45.2 39.6 39.7 37.2 34.1 38.0 17.1 37.4 38.0 17.7 18.7

promise primary-language capabilities, even though the multilingual models are trained on
substantially less English data.

5 CONCLUSION

We introduced TOWERVISION, a suite of multimodal models for image-text and video-
text tasks, designed with a strong emphasis on cultural understanding and multilinguality.
Our models demonstrate competitive, and in several cases improved, multilingual perfor-
mance across a range of benchmarks when compared with existing open multimodal systems.
Alongside this, we released VISIONBLOCKS, a high-quality vision-language dataset, and pro-
vided a detailed training recipe covering data, encoders, and text backbones, complemented
by an extensive ablation study on key components of our approach.

We hope that these contributions—spanning models, data, and methodology—help advance
research on culturally diverse multilingual multimodal language models, and accelerate
progress toward narrowing the performance gap with English-centric settings.

6 KETHICS STATEMENT

This work develops and evaluates multilingual vision-language models using publicly avail-
able datasets as well as our own synthetic and translated data. We acknowledge potential
risks, including biased model outputs and unintended misuse of generated content. While
we have taken steps to ensure diversity and maximum data quality, we always encourage
careful evaluation and responsible deployment of these models in real-world scenarios. Our
research does not involve sensitive personal data or tasks with direct safety-critical impact.

7 REPRODUCIBILITY STATEMENT

This work provides detailed descriptions of the data, model architectures, training procedure
(including the codebase), and evaluation benchmarks used. All datasets used are either
publicly available or created by our team (synthetic and translated), with the respective
system prompts shared for maximum transparency. Additionally TOWERVISION all the
collection of models, code for data preprocessing, training, and evaluation will be released
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to facilitate replication of our results. We aim to ensure that other researchers can reproduce
our findings with minimal effort.

We ensure reproducibility by providing detailed descriptions of the data, model architec-
tures, training procedures, and evaluation benchmarks. Upon acceptance, we will release
the VisioBLOCKS datasetﬁ checkpoints of the TOWERVISION collection modelaﬂ and the
corresponding codebases for training and evaluatiorﬂ to facilitate replication of our results.
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Table 8: Overview of dataset composition across categories. Each dataset lists its sample
size with the proportion of the total in parentheses, along with its collection type tag (Public
Data, Synthetic (Generated), or Translated (Augmented)). Totals are shown for English-
only and Multilingual subsets, as well as the overall dataset size.

Category Dataset Samples (%) Tag
Chart/Plot DVQA 199,995 (3.17%) Public Data
ChartQA 25,055 (0.40%) Synthetic (Generated)
PlotQA 157,070 (2.49%) Public Data
TabMWP 22,717 (0.36%) Public Data
General VQA VQAv2 428,708 (6.79%) Public Data
RLAIF-4V 59,408 (0.94%) Synthetic (Generated)
Doc VQA DocVQA 9,664 (0.15%) Synthetic (Generated)
TextVQA 15,690 (0.25%) Synthetic (Generated)
ST-VQA 17,242 (0.27%) Public Data
PixMo-Docs 3,634 (0.06%) Public Data
Reasoning/Knowledge A-OKVQA 11,853 (0.19%) Synthetic (Generated)
OKVQA 9,009 (0.14%) Public Data
AI2D 7,791 (0.12%) Public Data
ScienceQA 758 (0.012%) Public Data
Multilingual/Cultural Pangea-Cultural 55,438 (0.88%) Public Data
Pangea-Multi 428,838 (6.79%) Public Data
PixMo-Cap-Translated 367,779 (5.83%) Translated (Augmented)
CulturalGround-OE 401,149 (6.35%) Public Data
CulturalGround-MCQs 379,834 (6.02%) Public Data
Specialized VQA IconQA 19,543 (0.31%) Synthetic (Generated)
InfographicVQA 2,049 (0.03%) Synthetic (Generated)
Stratos 12,585 (0.20%) Public Data
Counting/Math TallyQA 98,675 (1.56%) Public Data
PixMo-Count 8,128 (0.13%) Public Data
Vision/Text VBlocks-PixMo-AMA 154,336 (2.44%) Public Data
VBlocks-PixMo-Cap 702,205 (11.12%) Public Data
VBlocks-PixMo-CapQA 262,862 (4.16%) Public Data
EuroBlocks-SET 1,094,265 (17.34%) Public Data
Video/Text LLaVA-Video-178k-subset 697,618 (11.05%) Public Data
LLaVA-Video-178k-translated 697,617 (11.05%) Translated (Augmented)
Total (English) 3,982,630 (63.1%)
Total (Multilingual) 2,330,656 (36.9%)
Overall Total 6,313,286 (100%)

A APPENDIX

A.1 FuLL DESCRIPTION OF VISIONBLOCKS

Table [8 shows the full details and statistics of the ViSIONBLOCKS dataset.

A.2 MOoDELS CHECKPOINTS

Table [0] lists all model checkpoints used for comparative baselines. We use checkpoints
released HuggingFace when possible.

A.3 VISION ENCODER VARIANTS
Beyond selecting a more multilingual vision encoder, several other factors significantly influ-

ence its performance. These include the input image resolution supported by the encoder,
the number of patches it uses, which determines the total number of visual tokens for a
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Model Params Checkpoint Link

Qwen2.5-VL-Instruct 3B https://huggingface.co/Qwen/Qwen2.

5-VL-3B-Instruct

Qwen2.5-VL-Instruct 7B https://huggingface.co/Qwen/Qwen2.

5-VL-7B-Instruct

Gemma?2-it 2B https://huggingface.co/google/gemma-2-2b-it
Gemma?2-pt 2B https://huggingface.co/google/gemma-2-2b
Gemma?2-it 9B  https://huggingface.co/google/gemma-2-9b-it
Gemma?2-pt 9B  https://huggingface.co/google/gemma-2-9b
Gemma3d-it 4B https://huggingface.co/google/gemma-3-4b-it
Gemma3-it 12B  |https://huggingface.co/google/gemma-3-12b-it
CulturalPangea 7B https://huggingface.co/neulab/CulturalPangea-7B
LLaVA-Next 7B [1lava-hf/llava-vl.6-mistral-7b-hf

Aya-Vision 8B  https://huggingface.co/CohereForAl/aya-vision-8b
Pixtral 12B  https://huggingface.co/mistralai/

Pixtral-12B-2409

Phi-4-Multimodal 14B  https://huggingface.co/microsoft/

Phi-4-multimodal-instruct

Table 9: Model checkpoints. Parameters and HuggingFace links for models included in
our evaluation suite.

given image resolution (e.g, for an img resolution of 224 x 224 using patch size of 14 we
obtain 256 visual tokens) and the number of tiles.

Our goal is to empirically identify the optimal configuration for processing visual inputs,
focusing on these three factors.

Specifically, we perform experiments using the TOWERVISION 2B version with variants of
SIGLIP2 framework:

1.

Image resolution: We vary the input image size between 384 x 384, 224 x 224, and
512 x 512 to examine its effect on feature extraction quality.

. Patch numbers: We test different patch sizes (14 and 16) to assess how granularity

impacts the learned representations. Smaller patches capture finer details but increase
the number of tokens, affecting the context length the model must handle.

Number of tiles: Beyond the default 6 tiles, we also experiment with 4 and 22 tiles.
The number of tiles is adjusted to the image resolution: lower-resolution images (e.g,
224 x 224) require more tiles to cover the same amount of visual information as a higher-
resolution encoder (e.g., 512 x 512). For example, an image with resolution (1024,1024)
processed with a 512 x 512 encoder requires roughly 4 tiles to cover the full image,
whereas a 224 x 224 encoder would need at least 25 tiles (including padding) to achieve
similar coverage. This creates a trade-off between capturing detailed local information
and maintaining manageable context length.

These experiments allow us to systematically compare variations while keeping other com-
ponents constant, providing insights into which configuration yields the best overall per-
formance. Results are reported in Table highlighting the trade-offs between resolution,
patch granularity, and style diversity.

A.4 CRroSS-LINGUAL GENERALIZATION

A.5 SYSTEM PROMPTS

A.5.1 TOWER SYSTEM PROMPTS USED FOR TRANSLATION

The prompts vary in style and specificity to improve diversity and capture nuanced meaning
from the original English captions. They are grouped by language and include multiple
phrasings for the same instruction to encourage robust translations.
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Table 10: Impact of Vision Encoder Configuration and Instruction Tuning. Eval-
uation of TOWER+ models across English and multilingual tasks with varying image res-
olution, patch size, and number of tiles. Results highlight how these design choices affect
overall performance.

Resolution Patch Size Tiles English Multilingual
TextVQA | OCRBench CC-OCR ALM-Bench
224x224 14 22 59.1 53.3 37.2 70.5
224x224 16 20 68.6 57.8 44.3 75.2
384x384 14 6 70.3 62.1 46.1 75.6
512x512 16 4 64.0 55.7 39.6 74.7

Table 11: Cross-lingual performance of TOWERVISION models at 2B and 9B scales, evalu-
ated on the ALM-Bench benchmark. Core Langs refers to a set of 10 languages: English,
German, Dutch, Portuguese, Russian, Simplified and Traditional Chinese, Spanish, French
and Italian. Core+Added Langs includes all languages supported by TOWERVISION as in-
dicated in footnote 2] Unseen languages are those not encountered during training and
are marked with an asterisk (*). Bold values indicate the better result within each scale.
Positive gains from adding languages are highlighted in light green, negative gains in light
red.

Overall, adding more languages tends to improve performance across the board, demon-
strating strong cross-lingual transfer capabilities, even for unseen languages.

TowerVision-2B | Tower Vision-9B
Metric / Lang Core Langs Core 4+ Added Langs Gain | Core Langs Core + Added Langs Gain
English (en) 60.9 76.6 +15.8 70.3 82.8 +12.5
Core Avg 65.3 81.3 +16.1 81.5 82.6 +1.1
Added Avg 60.2 75.4 +15.2 76.3 84.3 +7.6
Unseen Avg 69.2 83.0 +13.9 81.2 82.5 +1.2
German (de) 75.9 84.5 +8.6 89.7 87.9 -1.8
Spanish (es) 56.6 60.5 +3.9 73.7 76.3 +2.6
French (fr) 76.9 82.7 +5.8 86.5 80.8 -5.7
Hindi (hi) 44.2 75.0 +30.8 82.7 80.8 -1.9
Ttalian (it) 75.0 81.7 +6.7 96.7 98.3 +1.6
Korean (ko) 76.4 70.8 -5.6 75.0 79.2 +4.2
Dutch (nl) 70.0 86.7 +16.7 90.0 86.7 -3.3
Portuguese (pt) 64.5 90.3 +25.8 85.5 91.9 +6.4
Romanian (ro) 58.9 80.4 +21.5 75.0 87.5 +12.5
Czech (cs) 61.4 75.7 +14.3 74.3 90.0 +15.7
Russian (ru) 65.5 84.5 +19.0 65.5 75.9 +10.4
Chinese (simp.) (zh-hans) 50.0 87.5 +37.5 68.8 71.9 +3.1
Chinese (trad.) (zh-hant) 53.8 76.9 +23.1 61.5 67.3 +5.8
Danish (da)* 66.1 70.9 +4.8 90.3 86.3 -4.0
Finnish (fi)* 56.0 82.0 +26.0 70.0 72.0 +2.0
Hungarian (hu)* 68.8 95.3 +26.5 79.7 82.8 +3.1
Icelandic (is)* 67.6 76.5 +8.9 76.5 83.8 +7.3
Japanese (jp)* 78.8 78.9 0.1 84.8 80.3 45
Swedish (sv)* 77.6 94.8 +17.2 86.2 89.7 +3.5

# English prompts

EN_PROMPTS = [
"Describe this image.",
"What can you see in this picture?",
"Tell me what’s in this image.",
"Explain what this image shows.",
"Caption this image.",
"What’s happening in this picture?",
"Provide a description of this image."

]

# European Portuguese prompts
PT_PROMPTS = [

22



Under review as a conference paper at ICLR 2026

"Descreva esta imagem.",

"0 que consegue ver nesta fotografia?",
"Diga-me o que esta nesta imagem.",
"Explique o que esta imagem mostra.",
"Legende esta imagem.",

"0 que se passa nesta fotografia?",
"Fornega uma descrig8o desta imagem."

# French prompts

FR_PROMPTS = [
"Décrivez cette image.",
"Que pouvez-vous voir sur cette photo?",
"Dites-moi ce qu’il y a dans cette image.",
"Expliquez ce que cette image montre.",
"Légendez cette image.",
"Que se passe-t-il sur cette photo?",
"Fournissez une description de cette image."

# Dutch prompts
NL_PROMPTS = [
"Beschrijf deze afbeelding.",
"Wat zie je op deze foto?",
"Vertel me wat er op deze afbeelding staat.",
"Leg uit wat deze afbeelding laat zien.",
"Onderschrift deze afbeelding.",
"Wat gebeurt er op deze foto?",
"Geef een beschrijving van deze afbeelding."

]

# German prompts
DE_PROMPTS = [
"Beschreiben Sie dieses Bild.",
"Was konnen Sie auf diesem Foto sehen?",
"Sagen Sie mir, was auf diesem Bild zu sehen ist.",
"Erkléren Sie, was dieses Bild zeigt.",
"Beschriften Sie dieses Bild.",
"Was passiert auf diesem Foto?",
"Geben Sie eine Beschreibung dieses Bildes."

# Spanish prompts
ES_PROMPTS = [
"Describe esta imagen.",
";Qué puedes ver en esta foto?",
"Dime qué hay en esta imagen.",
"Explica qué muestra esta imagen.",
"Pon un titulo a esta imagen.",
";Qué esta pasando en esta foto?",
"Proporciona una descripcidén de esta imagen."

# Italian prompts
IT_PROMPTS = [
"Descrivi questa immagine.",
"Cosa puoi vedere in questa foto?",
"Dimmi cosa c’é in questa immagine.",
"Spiega cosa mostra questa immagine.",
"Dai un titolo a questa immagine.",
"Cosa sta succedendo in questa foto?",
"Fornisci una descrizione di questa immagine."
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# Korean prompts
KO_PROMPTS = [

no] ofn A% AWFAL.",

vo] ALZle| A Fole B 4 givpar,

no] ou Ao TS0 A LPFAIL.,

no] o[u]A] 7t BelFr AL HuHFAL ",
vo] ofuAe] AL GelFAL. ",

no] ApZle|x] £ elo] dojubw gutarr,
vo] ofu Ao thet AwE AlFaHFAL."

# Chinese prompts

ZH_PROMPTS = [
"IIRIXGRE e
"RBEAEX IR PRI AT
RO A B R A
"RREXSKIE R R T4
"X R AN .
WXIKEE R RRE T AT
"R ALXEKIE A sk o

A.5.2 GEMINI 2.5 SYSTEM PROMPTS

We generate synthetic captions using the Gemini 2.5 API with a diverse set of system
prompts. These prompts are designed to produce varied response formats, including direct
answers, caption-plus-answer pairs, and structured final-answer formats.

# Direct answer formats
"Answer the question concisely.",
"Provide a brief, direct answer to the question.",
"Keep your response short and to the point.",
"Give a concise answer based on what you see in the image.",
"Answer directly based on the visual information.",
"Respond with a short, clear answer to the question.",
"Be brief and direct in your response."

# Simple caption + answer formats
"First provide a caption of what you see, then give your answer.",
"Write a brief caption describing the image, followed by your answer to the question.",
"Start with a description of the image, then provide your answer clearly marked as ’Answer:’.",
"First write ’Caption: <brief image description>’ then answer the question.",
"Begin with ’Caption: [what you see in the image]’ followed by your response to the question.",
"Start by writing ’CAPTION: {description}’ before answering the question."

# Final Answer formats
"End your response with ’Final Answer: <your answer>’.",
"Conclude with ’Final Answer: <your answer>’.",
"After looking at the image, provide ’Final Answer: <your answer>’.",
"Your response should end with ’Final Answer: <your answer>’.",
"First describe what you see, then provide ’Final Answer: <your answer>’.",
"Always end your response with ’Final Answer: <your answer>’ after analyzing the image.",
"Provide a concise answer. End with ’Final Answer: <your answer>’."

# Naive formats (simple, direct)
"Describe the image and answer the question.",
"Begin by describing the image and then answer the question.",
"Provide a brief description of the image and then answer the question.",
"Answer the question in a helpful and informative manner.",
"Start by describing the image and then answer the question.",
"You are a helpful assistant. Describe the image and answer the question."
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# Simple formatted caption/answer pairs
"Caption: <description> - Answer: <response>",
"Image shows: <description> | My answer: <response>",
" [CAPTION] <description> [ANSWER] <response>",
"# Image: <description>\n# Answer: <response>",
"First ’Image Description: <what you see>’ then ’Answer: <your response>’"

# With specific markers

"<description><answer>",

"Image: <description> -+ Answer: <conclusion>",

"<IMAGE> describe what you see </IMAGE> <ANSWER> provide your response </ANSWER>"
"Begin with ’{IMAGE DESCRIPTION}’ and end with ’{FINAL ANSWER}’."

These prompts are used to generate high-quality captions that improve instruction-following
and visual description diversity.
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