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Abstract

Graph neural networks (GNNs) have been shown to be astonishingly capable
models for molecular property prediction, particularly as surrogates for expensive
density functional theory calculations of relaxed energy for novel material discovery.
However, one limitation of GNNs in this context is the lack of useful uncertainty
prediction methods, as this is critical to the material discovery pipeline. In this
work, we show that uncertainty quantification for relaxed energy calculations
is more complex than uncertainty quantification for other kinds of molecular
property prediction, due to the effect that structure optimizations have on the error
distribution. We propose that distribution-free techniques are more useful tools for
assessing calibration, recalibrating, and developing uncertainty prediction methods
for GNNs performing relaxed energy calculations. We also develop a relaxed
energy task for evaluating uncertainty methods for equivariant GNNs, based on
distribution-free recalibration and using the Open Catalyst Project dataset. We
benchmark a set of popular uncertainty prediction methods on this task, and show
that latent distance methods, with our novel improvements, are the most well-
calibrated and economical approach for relaxed energy calculations. Further, we
challenge the community to develop improved uncertainty prediction methods for
GNN-driven relaxed energy calculations, and benchmark them on this task.

1 Introduction

To keep up with growing energy demands, it is necessary to search for novel catalyst materials to
enable more efficient storage of renewable sources of energy [1, 2, 3, 4]. Computational material
discovery is crucial to this process, as it enables less expensive screening of an enormous space
of possible catalyst materials than physical experiments. Faster and more accurate computational
material discovery methods will be required to meet our society’s renewable energy needs in the face
of a rapidly changing climate.

Graph neural networks are state of the art in accelerating computational material discovery pipelines
with machine learning potentials. Machine learning potentials work as surrogate models trained
to approximate computationally expensive density functional theory (DFT) calculations of energy
and forces on atomistic structures. This task is referred to as structure to energy and forces (S2EF).
These energy and force calculations are used to iteratively perform geometric optimizations of
atomic positions (referred to in this work as "relaxations"), to minimize their energy. These relaxed
structure and relaxed energy calculations are what enable high-throughput predictions of catalyst
performance in the real world. For a given catalyst-adsorbate system, the global minimum relaxed
energy (adsorption energy) directly correlates with the reactivity and selectivity of reaction pathways
on that catalyst surface [5, 6, 7, 8, 9, 10].
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In recent years, graph neural network (GNN)s have made tremendous strides in replacing DFT codes
with an inexpensive, accurate alternative [11, 12, 13, 14]. Thanks to methods like AdsorbML, GNNs
can speed up adsorption energy calculations alone at the cost of accuracy, or in tandem with DFT at
the cost of speed [15]. The recent OCP Demo (https://open-catalyst.metademolab.com) is
a publicly available tool where GNNs are used to calculate these adsorption energies without any
expensive DFT calculations. However, a major limitation of current GNNs is their lack of uncertainty
estimates for relaxed energy predictions. Ideally, users of these methods would know when it is safe
to trust the GNN predictions, and when additional DFT calculations are warranted. In this work, we
specifically examine methods of uncertainty quantification (UQ) of GNN predictions for this relaxed
structure to relaxed energy (RS2RE) task.

2 Background

2.1 AdsorbML

AdsorbML [15] is a method to calculate adsorption energy using machine learning potentials. In
order to find the global minimum relaxed energy for a specified surface and adsorbate, this method
places the adsorbate in many different starting configurations, relaxes each configuration, and returns
the minimum of all the relaxed energies. Traditionally, this would be done using an ab initio method
such as DFT, but DFT is very costly and this approach is infeasibly expensive. AdsorbML uses
GNNs as a surrogate for DFT to perform the relaxations instead, requiring only a solitary DFT
single point calculation for the relaxed structure to verify the relaxed energy. The required number
of expensive DFT calculations is further reduced by using GNNs to filter out all but the few most
promising candidates. This method provides an adjustable spectrum of trade-offs between accuracy
and efficiency, with one balanced option finding an equivalent or better adsorption energy 87.36%
of the time while reducing DFT compute by more than a factor of 2000. Ideally, no DFT would be
required, but even state of the art GNNs are unreliable energy predictors, and using them alone drops
the success rate to 56%. Without DFT, such as in the OCP demo, we need uncertainty metrics, so
users know when to trust the results of these models.

2.2 Graph Neural Networks

This work focuses on quantifying uncertainty prediction methods for EquiformerV2 [14], a GNN
model architecture for molecular property prediction. We choose EquiformerV2 because it is the
current state of the art in molecular property prediction for catalyst materials, according to the
Open Catalyst Project (OCP) leaderboard[2]. We also compare it to Gemnet-OC [11], another high
performing GNN on the leaderboard. Both of these models are used in the OCP Demo, to run
the AdsorbML algorithm and predict minimum relaxed energies without the use of expensive DFT
calculations[15].

2.3 Predictive Uncertainty Quantification

Many prior studies have examined the application of UQ techniques to machine learning potentials
and molecular property prediction. Most UQ metrics seek to measure some description of the
calibration of an uncertainty prediction method. The most popular UQ metrics are miscalibration
area, Spearman’s rank correlation coefficient, and the negative log likelihood of the errors given the
uncertainties[16, 17, 18, 19, 20, 21, 22]. These metrics all rely on an assumption of of Gaussian
errors, and all have significant drawbacks. Notably these metrics are not consistently in agreement
about which uncertainty prediction performs best, even within a single study [23].

Calibration is the primary UQ metric for making direct comparisons between uncertainty prediction
methods. Prior work by Rasmussen et al., Pernot, and Levi et al. show distribution free methods of
measuring local and global miscalibration: the CI(Var(Z)) test and the error-based calibration plot
[24, 25, 26]. These approaches can be more effective in describing the performance of predicted
uncertainties of surrogate models when the expected error distribution cannot be assumed to be
Gaussian. Error-based calibration measures can also be used to recalibrate uncertainty predictions,
allowing a variety of uncertainty quantification methods to be recalibrated and compared.
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3 Methods

3.1 Uncertainty Prediction Methods for GNNs

In this work we examine four common methods of uncertainty prediction on a pre-trained GNN:
ensembles, latent space distances, mean variance estimation, and sequence regression models. The
most prolific of these are ensemble methods, where a set of similar surrogate models are trained on
similar sets of data to perform the same task, and the variance between their predictions is used to
calculate the uncertainty of the model. We train ensembles of GNNs on the S2EF task to calculate
energies of adsorbate-catalyst structures, but we are interested in the performance of predicting the
uncertainty of EquiformerV2 on the relaxed structures. We construct three different ensembles for
testing this approach, which we refer to as architecture (11 members), bootstrap (10 members), and
parameter ensembles (6 members). Prior work has shown that diversity between members is typically
the most important factor in developing a well-calibrated and expressive ensemble for uncertainty
prediction [27, 28, 29, 30]. The architecture ensemble contains a variety of GNN model architectures,
while the parameter and bootstrap ensembles contain only EquiformerV2 models, but vary the
number of parameters, and the composition of training data respectively. More details on ensemble
construction can be found in the supplemental information. Because we are specifically interested
in the uncertainty of relaxed energy predictions, which requires a sequence of prior energy/force
predictions during the relaxation, we hypothesize that taking the mean or the maximum of the
predicted variances over each step (here referred to as a frame) of the trajectory might contain
additional information which better models the uncertainty. For each ensemble composition, we test
this theory by computing the uncertainty using the variance at the first frame, last frame, mean over
all the frames, and max over over all the frames.

Another proven uncertainty method is the use of latent space distances [16, 17, 24]. In this approach,
we extract some latent representation of each training point from the GNN, and create an index of
these points to compute the L2-norm of the distance from any new test point to the training points. In
practice, using libraries such as FAISS, the computational cost of this method is the lowest of any of
the uncertainty methods we test [31]. Because this approach produces a distance of arbitrary scale,
it is necessary to recalibrate on some calibration set to produce a meaningful uncertainty estimate.
Prior work has shown the latent distance method to be effective for rotationally invariant models such
as GemNet-OC, however EquiformerV2 improves upon the accuracy of GemNet-OC by preserving
rotational equivariance all the way through the model [14, 11]. We expect this rotational equivariance
will contribute undesirable noise to the L2 distance between latent representations, so we test this
hypothesis by comparing the performance of the full EquiformerV2 latent representation, and the
latent representation of its single rotationally invariant channel. We also compare these methods
to the performance of using the latent space representation of GemNet-OC, trained on the same
data, but used to predict the uncertainty of the same EquiformerV2 model. Additionally, for each
latent distance approach, we test a novel strategy of computing the latent distance on a per-atom
basis, and then taking the mean/max/sum over these distances. We compare this method to the
more common approach of computing the latent distance for an entire frame by taking the mean of
latent representations over all the atoms. More details on how all of the latent representations were
extracted, and how the distances were computed can be found in the supplemental information.

The final categories of methods we test are mean variance estimation (MVE) and sequence regression
models [22, 20, 23, 32]. In practice, we implement these methods in similar ways. For MVE methods
we append an output-head, or an ensemble of output-heads to the EquiformerV2 architecture, and
fine-tune this new output head on the calibration set to predict the residual of the energy prediction of
the larger model. For the sequence regression model, we extract the same latent space representations
used in the latent distance method, and train a sequence regression transformer architecture to
predict the residual of the energy prediction on the calibration set. A significant distinction between
these approaches is that the sequence regressor takes the latent representations of each frame of
the trajectory as input, in sequence, with the hypothesis that some additional information about the
uncertainty of the GNN model might be contained within its latent representations along the trajectory.
More details on the implementation of both of these approaches can be found in the supplemental
information.
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3.2 Uncertainty Quantification Metrics

We hypothesize that the negative log likelihood (NLL), Spearman’s rank correlation coefficient,
and miscalibration area, which all assume a normal distribution of errors, will be inappropriate for
uncertainty quantification on this task due to bias inherent to the RS2RE task. We test this using
an approach suggested by Rasmussen et al. where we compute a simulated NLL and Spearman’s
coefficient by sampling from a normal distribution, with variance equal to the uncertainty, for each
predicted uncertainty taken from an ensemble [24]. We perform this simulation 1000 times, and
compute the average simulated metrics, then we compare this to the empirical NLL and Spearman’s
coefficient for the predicted uncertainty and measured error. If these metrics differ significantly
from their simulated counterparts, then we infer that the errors do not follow the assumed normal
distribution, and we consider these metrics to be ineffective for quantifying or calibrating these
uncertainty methods.

Prior work by Pernot suggests the use of a distribution-free method to test whether an uncertainty
method is calibrated [25]. The CI(Var(Z)) test uses the BCa boostrap method to compute a confidence
interval of Var(Z) on a set of errors and uncertainties, without making any assumptions about the
distribution [33, 34]. If 1 lies within the confidence interval, the uncertainty method is considered
calibrated, because the Z values for a calibrated uncertainty metric are expected to have a variance
of 1. Rasmussen et al. expands on this to suggest using an error-based calibration plot to quantify
local calibration, distribution-free [26, 24]. The error-based calibration plot is predicated on the
expected relationship between the root mean variance (RMV) and root mean square error (RMSE)
being one-to-one.
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RMV
⇡ 1 (1)

We sort the test points by their predicted uncertainty, and then bin them into 20 bins. We compute the
RMV of each bin, and the RMSE of each bin, using the BCa bootstrap method to compute a 95%
confidence interval for the RMSE. Then we fit a line through the points to test for calibration, ideally
the fitted line should have a high R2correlation with the points, and be as close as possible to the
parity line. We can identify problems with local miscalibration where the parity line does not lie
within the binned RMSE confidence intervals.

Table 1: Simulated NLL and Spearman correlations for uncertainty predictions made by identical
ensembles across S2EF and RS2RE tasks. Values in parenthesis represent the standard deviation
across 1000 runs of simulation.

Method Task NLL NLLsim ⇢ ⇢sim Amis CI(Var(Z))

bootstrap RS2RE 0.366 -0.163(0.005) 0.569 0.615(0.004) 0.144 [1.34, 2.14]
bootstrap S2EF 0.055 -0.195(0.001) 0.673 0.682(0.001) 0.051 [0.87, 0.90]
architecture RS2RE 0.380 -0.117(0.005) 0.604 0.610(0.004) 0.136 [1.25, 2.20]
architecture S2EF 0.075 -0.097(0.001) 0.670 0.641(0.001) 0.023 [0.68, 0.71]

3.3 Recalibration and Evaluation

We compare all of the uncertainty methods benchmarked in this work after recalibration on a
calibration set. In this case we use Open Catalyst 2020 dataset (OC20) in-domain validation set, and
relax each structure (approximately 25,000 structures) to the same relaxation criterion as OC20, with
the publicly available EquiformerV2 31M parameter checkpoint. We then compute a the Vienna Ab
initio Simulation Package (VASP) single point calculation on the final frame to serve as the ground
truth energy value for the RS2RE task [35, 36, 37, 38]. This set of relaxed energy predictions serves
as the calibration set, and we repeat this process with the out-of-domain-both validation set to serve
as the test set for this task. To recalibrate each uncertainty method, we use same the approach as the
error-based calibration plot, to find the line of best fit through the binned RMSE/RMV points of the
calibration set. We then simply recalibrate the uncertainty using the formula for the line of best fit:

�recalibrated = slopefit ⇤ �uncalibrated + interceptfit (2)
We suggest a small modification to the characterization of global calibration of uncertainties recal-
ibrated with the error-based method. For this task, in addition to checking the global calibration
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(a) Bootstrap ensemble RS2RE (b) Bootstrap ensemble S2EF

(c) Architecture ensemble RS2RE (d) Architecture ensemble S2EF

Figure 1: Error-based calibration plots on the out-of-domain test set for the two types of ensembles
(bootstrap and architecture) and the two tasks (S2EF and RS2RE). With this distribution-free cali-
bration measurement, we see that the bootstrap ensemble leads to a similar fit of the parity line in
Figures 1a and 1b (i.e. the slope and intercept match more closely), while the architecture ensemble
leads to a similar fit in Figures 1c and 1d. Note that the S2EF task contains more data, which causes
the extremely narrow confidence intervals around the RMSE at each point, and the higher recorded
errors.

CI(Var(Z)) test, we also select the most effective uncertainty metric by measuring the R2 correlation
of the binned RMSE/RMV ratio with the parity line. By recalibrating the uncertainty method on the
calibration set and then testing on the test set, we can make direct comparisons between different
uncertainty methods on the basis of their R2 correlation with the parity line.

4 Results

4.1 Error Distribution and Uncertainty Quantification Metrics

Predicting the uncertainty of a surrogate model on the broader S2EF task is a much less challenging
task than uncertainty prediction for RS2RE. We believe this is the result of selecting points only
from the end of the structural optimization process creating a non-Gaussian distribution of errors
from the predictions. This can be seen in Table 1, where the NLL and Spearman’s rank correlation
coefficientmetrics are very different from the simulated negative log likelihood (NLLsim) and
simulated Spearman’s rank correlation coefficient (Spearmansim) metrics for uncertainty predictions
made by ensembles on the RS2RE task. Meanwhile, for the uncertainty predictions made on the S2EF
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task, the NLL and Spearman’s rank correlation coefficientmetrics are closer to their corresponding
simulated metrics, although still too dissimilar to be considered Gaussian. This indicates that this
assumption is closer to reality for the S2EF task than for the RS2RE task. Therefore metrics such
as NLL, Spearman’s rank correlation coefficient, and miscalibration area are much less appropriate
for quantifying the performance of uncertainty prediction methods for the RS2RE task. Therefore
we turn to distribution-free uncertainty quantification to understand which uncertainty prediction
methods are most effective.

Using distribution-free uncertainty quantification in Figure 1, we see that the metrics are more similar
across the RS2RE and RS2RE tasks for identical uncertainty prediction methods. The bootstrap
ensemble is an overall worse fit on both tasks, and we can see it becomes less well calibrated earlier for
both tasks. The architecture ensemble stays better calibrated for longer in both tasks. This is a good
indicator of the distribution-free UQ techniques being more appropriate for characterizing uncertainty
methods on this task, we expect to see similar behavior for the same method on similar tasks. This is
unlike the UQ techniques which assume normally distributed errors, where the miscalibration area,
NLL, and Spearman correlation coefficient report different comparisons of the same method across
similar tasks. The larger quantity of data in the RS2RE task causes much smaller 95% confidence
intervals to be computed by the bootstrap method for each bin. There is still some disparity between
the two tasks, the RS2RE predictions are better calibrated globally according to the error-based
calibration parity R2. This is most likely a result of propagation of errors through the relaxation
process being inherently difficult to account for by any method of uncertainty prediction.

4.2 Benchmarking Uncertainty Prediction Methods

Table 2: Distribution free calibration metrics for the best performing candidate uncertainty method
for each of the categories we benchmark. Note that only the distance method is calibrated globally
according to the CI(Var(Z)) test.

Method Parity R2 Fit R2 Slope Intercept CI(Var(Z))

Latent distance 0.952 0.967 1.022 0.026 [0.85, 1.58]*
GNN ensemble 0.905 0.940 0.946 0.070 [1.09, 2.13]
Residual model 0.331 0.955 1.200 0.127 [2.64, 3.72]
MVE 0.849 0.964 1.187 0.041 [1.20, 1.97]

Of the four methods we benchmark on the RS2RE task, the latent distance method is the best
performer according to the distribution-free uncertainty quantification techniques, as seen in Table 2.
The latent distance approach is the only method to pass the CI(Var(Z)) global calibration test, and it
achieves the best calibration according to the parity R2on the out-of-domain test set. Note that all
four models are capable of a comparable fit (if this test set were used for calibration) according to the
similar scores on the fit R2.

In figure 2 the error-based calibration plots and parity plots characterize the best performing latent
distance method and ensemble. We see that the latent distance method generally retains good local
calibration throughout, which we can see by the error bars of nearly every confidence interval intersect
the parity line. Both methods do see poor calibration in the 0.6 eV to 1.0 eV range, but the ensemble
method also experiences poorer calibration earlier than its competitor, starting near 0.3 eV. We see in
the parity plots the latent distance method fans out in a more linear fashion, the parity line appears to
be a good upper bound for the errors for longer than the ensemble method, which is desirable in a
well-calibrated uncertainty method.

4.3 Comparing Distance Methods

The latent space representation sampled from EquiformerV2 after all graph convolutional interactions
have been performed is inherently equivariant with respect to rotations. This is a valuable property for
training GNN regressors to predict properties of molecular systems, but it renders distance measures
invalid in the latent space, as latent space distance should be invariant and not equivariant to rotations
of input structures. Since the same structure can be rotated to a numerically different latent space
representation, many more samples must be present in training set for the latent space distance to
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(a) Best latent distance, calibration plot
(GemNet-OC, sum of per-atom distances)

(b) Best latent distance, parity plot
(GemNet-OC, sum of per-atom distances)

(c) Best ensemble, calibration plot
(Architecture ensemble, mean over trajectory)

(d) Best ensemble, parity plot
(Architecture ensemble, mean over trajectory)

Figure 2: Parity plot and calibration for the best performing latent distance method and best perform-
ing ensemble method. The ensemble method shows worse global calibration, and suffers from poor
local calibration at higher predicted uncertainties. The latent distance method shows better global
and local calibration, with only slight local miscalibration in the second highest uncertainty bin.

be meaningful. Therefore we compare distances measured using the full latent space, to distances
measured using only the rotationally invariant (degree 0 spherical harmonic) latent space.

Table 3 shows that the choice of latent space representation is by far the most important factor in
choosing a good distance metric for predicting uncertainty. The second most important factor is
choosing a per-atom distance metric, instead of taking the mean over all the atoms. And finally
selecting the right type of per atom distance measure makes some difference, but is less significant as
long as a good latent representation is chosen.

5 Conclusion

Effective uncertainty prediction methods for GNN relaxed energies are key to the development
of faster and more accurate screening techniques for novel material discovery. Quantifying the
performance of uncertainty methods on relaxed energy predictions is especially complex, due
to distribution assumptions built into most commonly employed UQ techniques. Distribution-
free techniques which employ bootstrapped confidence intervals, such as the CI(Var(Z)) test and
error-based calibration plots, have been shown to be better metrics for analyzing the calibration
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Table 3: Distribution free calibration metrics for each latent distance method tested. The latent
representations correspond to model and method that was used to extract the latent representation
for each atom. The distance corresponds to how the distance was computed for each system. A
description of these methods can be found in section 3.1. A * indicates the method is calibrated
according the CI(Var(Z)) test.

Latent Rep. Distance Parity R2 Fit R2 Slope Intercept CI(Var(Z))

EqV2 equiv. atom max -0.078 0.577 0.761 0.182 [1.31, 1.67]
EqV2 equiv. atom mean 0.813 0.902 0.974 0.060 [1.27, 180.65]
EqV2 equiv. system mean -14.709 0.000 -0.236 0.547 [1.29, 1.56]
EqV2 equiv. atom sum 0.672 0.907 0.711 0.159 [1.24, 2.48]
EqV2 inv. atom max 0.842 0.892 0.983 0.054 [0.98, 1.45]*
EqV2 inv. atom mean 0.866 0.913 0.974 -0.037 [0.90, 127178.90]*
EqV2 inv. system mean -0.628 0.795 1.540 -0.061 [1.38, 1.69]
EqV2 inv. atom sum 0.826 0.955 0.750 0.081 [0.74, 1.35]*
GNOC atom max 0.924 0.967 0.951 0.064 [0.94, 1.43]*
GNOC atom mean 0.932 0.965 1.108 0.006 [0.87, 1.87]*
GNOC system mean 0.818 0.973 1.126 0.050 [1.20, 1.66]
GNOC atom sum 0.952 0.967 1.022 0.026 [0.85, 1.58]*

of a UQ method in similar contexts, and we employ them here to great effect. We show that
latent distance methods outperform ensembles and other uncertainty methods on the RS2RE task,
which is of practical relevance to workflows such as AdsorbML. We also show that the choice of
latent representation is very important to the calibration of the latent distance as an uncertainty
metric. In the GNN latent space, atom-wise distances produce better calibrated than system-wise
distances. Using rotationally invariant latent representations is crucial to producing calibrated distance
measures, and the rotationally invariant latent space of GemNet-OC, a less accurate model, serves to
compute a more well calibrated measure of uncertainty for EquiformerV2 than its own rotationally
invariant latent space. Finally, we challenge the community to improve on this RS2RE task for
predicting uncertainties, using our proposed recalibration framework as a measure. Future work in
this area should also explore the prediction of global minimum energy uncertainties directly, and the
development of model architectures training methods or distance measures which preserve rotational
equivariance while producing meaningful latent space distances.
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A Ensemble Methods

The architecture ensemble contains eleven members, and uses several different graph neural network
(GNN) architectures to achieve diversity, trained on largely the same data from the Open Catalyst
2020 dataset (OC20) structure to energy and forces (S2EF) training set. These model architectures
include GemNet-OC, eSCN, and EquiformerV2. The parameters ensemble contains six members,
all using the EquiformerV2 architecture, trained on the entire OC20 training set, and varies only
by the number of parameters used during training. The bootstrap ensemble contains 10 identical
members, using the EquiformerV2 architecture, each trained on a randomly selected slice (66%) of
the OC20 training set. For each trajectory, we intend to predict a single uncertainty on the final frame,
from the variance in the energy predictions of each of the members of the ensemble. We assess the
predicted uncertainty for the ensemble methods by computing the variance in the energy predictions
across all members of the ensemble for each system. We hypothesize that trajectory of all the energy
predictions may contain some information relevant to predicting the uncertainty, so in addition to
comparing across three ensembles, we also compare the effect of computing the uncertainty from the
trajectory of variances. We consider four methods, using the variance of only the first frame, only the
last frame, the max variance over the whole trajectory, and the mean of the variances over the whole
trajectory. Taking the variances of all the frames over the whole trajectory contributes significantly
more computational cost to this method.

Table 1: Distribution free calibration metrics for each ensemble method tested. We construct three
different ensembles, and test them using three different methods of predicting the relaxed energy
uncertainty. Although some are close, none of the ensembles passed the CI(Var(Z)) test.

Ensemble Method Parity R2 Fit R2 Slope Intercept CI(Var(Z))

Bootstrap First 0.809 0.896 1.056 0.065 [1.14, 1.65]
Bootstrap Last 0.838 0.914 0.897 0.104 [1.26, 2.00]
Bootstrap Max 0.817 0.890 1.025 0.074 [1.19, 1.92]
Bootstrap Mean 0.870 0.930 0.912 0.094 [1.20, 2.06]
Parameters First 0.793 0.874 0.985 0.081 [1.15, 1.64]
Parameters Last 0.842 0.927 0.828 0.114 [1.25, 1.99]
Parameters Max 0.844 0.905 0.978 0.079 [1.11, 1.75]
Parameters Mean 0.849 0.921 0.845 0.107 [1.16, 1.94]
Architecture First 0.830 0.933 1.050 0.070 [1.20, 1.81]
Architecture Last 0.891 0.942 0.945 0.081 [1.18, 2.03]
Architecture Max 0.860 0.933 1.078 0.053 [1.09, 1.88]
Architecture Mean 0.905 0.940 0.946 0.070 [1.09, 2.13]

Table 1 shows the choice of ensemble seems to be the most important to the success of the uncertainty
prediction, followed by the method used to predict the uncertainty. For the better ensemble (architec-
ture) all but the first-frame method beat every other ensemble-method combination in terms of parity
R2. This supports prior work which shows diversity between different members of an ensemble to be
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the most critical factor in producing good uncertainty predictions. Within each ensemble, there is a
fairly consistent pattern of the mean method (taking the mean over the variances of all the frames
in the trajectory) being the most effective method of computing uncertainty. This is followed by
either the max method, or the last frame method, and then the first frame method is always the worst.
This aligns with the notion that some additional information about the uncertainty of the model
on a particular relaxed point can be gleaned from its uncertainty on other related points along the
trajectory.

B Distance Methods

The distance methods make use of the distance between points in some hidden latent space for
each inference call. In every case, we extract the latent representation from some hidden layer after
the interaction blocks in a GNN. We then compute a latent space representation for every relaxed
system in the training data set (460,000 systems), and relaxed systems from the in-domain and
out-of-domain validation data sets (25,000 systems each). The in-domain validation data is used as a
calibration set, while the out-of-domain validation data is used as the test set. For each data point
in the calibration and test sets, we compute the shortest distance from that latent representation to
any latent representation in the train set. These latent representations are calculated on a per-atom
basis, with two options for computing distances. Either the distances between atom representations
are computed, or the mean of the representations is computed and the distances between those means
are computed. We make three different comparisons to assess the effects of different choices on the
performance of latent space distance methods.

First we compare the effect of using the distance between the means of the latent representation
over the entire system, to using the distances between the per-atom latent representations. For the
per-atom latent representations, to reduce all the per-atom distances to a single value, we compare
taking the mean of the distances, the sum of the distances, or the maximum of the distances. Across
the different versions of the EquiformerV2 latent space that we sampled, we found that any version
of the per-atom latent distances universally outperformed the per-system latent distance. Within the
per-atom latent distance approaches, we found the mean of the per-atoms distances to be often the
best performer, and reliably high-performing across all models and latent representations. These
results can be found in the main text.

Second we compare the effect of different latent space sampling methods for expressing rotational
equivariance and/or invariance in the latent representation. We do this by sampling latent represen-
tations from EquiformerV2 from certain spherical channels, and before and after edge alignment.
We take three approaches to sampling spherical channels: sampling only the l=0, m=0 channel,
sampling all the m=0 channels, and sampling all the channels. The l=0, m=0 channel should be
inherently invariant to rotation. All of the m=0 channels should be sensitive to some rotations when
the representation is subject to random rotations, but during the output blocks, the representation is
reliably rotated to be aligned with the edges of the input graph, and therefore these channels should
behave as though they are invariant to rotation. Finally, the representation of all of the channels
should always be equivariant to rotation [1]. We find that using all the channels for the latent space is
consistently worse than using only the invariant channels. And that using the edge-aligned version of
the l=0, m=0 performs best. These results can be found in Table 2.

Table 2: Comparison of latent space distances extracted from Equiformer V2 using different ap-
proaches aimed at eliminating rotational equivariance, all used to predict the error of Equiformer V2
on relaxed structures.

Model Sphharms Parity R2 Fit R2 Slope Intercept CI(Var(Z))

EqV2 unaligned (m=2, l=4) 0.813 0.902 0.974 0.060 [1.27, 180.65]
EqV2 aligned (sphharm) (m=2, l=4) 0.788 0.872 1.055 0.042 [1.13, 2.79]
EqV2 aligned (channel) (m=2, l=4) 0.745 0.957 1.211 0.008 [1.17, 2.02]
EqV2 unaligned (m=0, l=0) 0.866 0.913 0.974 -0.037 [0.90, 127178.90]*
EqV2 aligned (m=0, l=0) 0.910 0.911 1.014 -0.002 [1.43, 369.43]
EqV2 aligned (m=0, l=4) 0.906 0.913 0.998 -0.020 [0.92, 24.51]*
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Third, we test 4 different GNNs for their ability to predict the uncertainty of relaxed structure to
relaxed energy (RS2RE) predictions made using EquiformerV2: PAINN, eSCN, EquiformerV2, and
GNOC [2, 3, 4, 1]. PAINN, eSCN, and EquiformerV2 all take a rotationally equivariant approach,
while GNOC preserves rotational invariance throughout the model. In each case, we sample the entire
latent space of the GNN immediately after the final interaction block. We find that GNOC outperforms
even the invariant latent space of EquiformerV2 at predicting EquiformerV2’s uncertainty. These
results can be found in Table 3.

Table 3: Comparison of latent space distances extracted from different models, all used to predict the
error of Equiformer V2 on relaxed structures.

Model Distance Parity R2 Fit R2 Slope Intercept CI(Var(Z))

EqV2 equiv. atom mean 0.813 0.902 0.974 0.060 [1.27, 180.65]
EqV2 inv. atom mean 0.866 0.913 0.974 -0.037 [0.90, 127178.90]*
eSCN atom mean 0.818 0.931 1.090 0.021 [1.13, 5.82]
PAINN atom mean 0.856 0.934 0.971 -0.050 [0.57, 1.04]*
GNOC atom mean 0.932 0.965 1.108 0.006 [0.87, 1.87]*

C MVE and Sequence Regression Methods

The MVE and sequence regression methods we tested both aim to directly predict the uncertainty
of EquiformerV2 by training a neural network, or portion of a neural network. These models take
the full latent representation at the end of the last interaction block, and are fit on residuals of the
EquiformerV2’s energy predictions. In the case of the MVE methods, an additional output head,
or an ensemble of output heads is added to the fully trained EquiformerV2 checkpoint. These new
output heads are initialized randomly, the rest of the model is frozen, and they are trained on the
residuals of the in-domain validation data, until the performance of the direct residual prediction
stops improving on a held out portion of the validation data set. In the case of the single head, the
loss is computed as a the difference between its direct prediction and the residual values. In the case
of the ensemble of heads, the loss is computed as the difference between the variance in each of the
ten heads energy predictions, and the residual values.

The sequence regression models are similarly trained using the full latent representations as input.
However, we hypothesize that change in the latent representation over the entire trajectory might
contain information relevant to the task of directly learning the residuals on the last frame. We use
a transformer sequence regression model, as implemented in Hugging Face [5]. We modify the
transformer to accept vectors of latent representations for each atom as input, and batch over all of
the atoms in the system. Then for each trajectory, we train it on the sequence of atoms, batching
over all the atoms, and regress to fit the residual on the final frame of the EquiformerV2 trajectory.
Similar to the MVE approach, we train on the in-domain validation data set, until performance stops
improving on a held out portion of the data set. As in all other cases, we recalibrate all uncertainty
predictions on the out-of-domain validation data set, using error-based recalibration. We compare the
best performing result for each of these implementations in Table 4. However we note that both of
these direct residual fitting methods had a tendency to overfit, performing much more poorly on the
out-of-domain validation data than on the in-domain validation data, despite using a held-out portion
of the validation data to perform early stopping.

D Additional Results

D.1 UMAP of EquiformerV2 Latent Spaces

In Figure 1 we see the results of performing UMAP dimensionality reduction on a rotationally
equivariant and invariant versions of the EquiformerV2 latent space [6]. Dense clustering in the
invariant latent space shows that all of the elements are easily distinguished. While the noisy
clustering in the equivariant latent space, particularly the overlap between metals like Cu and Pd,
shows that the equivariant latent space makes these distinctions less clear. This seems to align with
explanations for why the distance methods for uncertainty perform better in the invariant versions
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of these latent spaces, since the distances between different atoms ought to be less noisy and more
meaningful.

(a) Equivariant Latent Space (b) Invariant Latent Space

Figure 1: Plots of UMAP dimensionality reduction performed on the equivariant (all channels)
and invariant (m=0, l=0) latent spaces for a subset of the training set. We see that the different
elements represented are clearly clustered in both plots, but that there is significantly more noise
in the clustering of similar elements in the equivariant latent space, while the invariant latent space
clusters are much denser and less noisy

D.2 Error Distribution

(a) RS2RE Histogram (b) S2EF Histogram

Figure 2: Histograms of the distribution of errors for the bootstrap ensemble on S2EF and RS2RE
tasks. The errors should follow the normal distribution, and we have plotted a normal distribution
fit to each measured distribution. We can see that neither task truly follows a normal distribution,
however it seems that the RS2RE task in (2a) is less aligned with the normal distribution than the
S2EF task in (2b). This leads to worse miscalibration area despite the fact that the two tasks ought to
be quite similar for the same uncertainty method.

D.3 Comparing Best Methods per Metric

4



Table 4: Best performers for each of the UQ metrics. UQ metrics which assume normally distributed
errors for a non-normal error distribution appear to be very inconsistent with one another. Only
method that is calibrated according to the CI(Var(Z)) test is the distance method.

Method Parity R2 Amis,u Amis,r NLL ⇢ AUROC CI(Var(Z))

GNOC distance 0.952 0.365 0.178 0.279 0.468 0.755 [0.85, 1.58]*
Architecture ens. 0.830 0.050 0.156 0.411 0.453 0.746 [1.20, 1.81]
Traj. transformer 0.331 0.174 0.102 1.170 0.360 0.695 [2.64, 3.72]
MVE head 0.831 0.340 0.114 0.251 0.526 0.785 [1.15, 1.89]
Bootstrap ens. 0.870 0.248 0.121 0.303 0.585 0.817 [1.20, 2.06]

Table 5: Simulated NLL and Spearman coefficient scores for the best performers for each of the UQ
metrics. Simulated metrics appear to suggest that the assumption of normally distributed errors is
inaccurate for this RS2RE data.

Method Parity R2 NLL NLLsim ⇢ ⇢sim CI(Var(Z))

GNOC distance 0.952 0.279 0.092(0.005) 0.468 0.469(0.005) [0.85, 1.58]*
Architecture ens. 0.830 0.411 -0.003(0.004) 0.453 0.640(0.004) [1.20, 1.81]
Traj. transformer 0.331 1.170 -0.243(0.004) 0.360 0.554(0.005) [2.64, 3.72]
MVE head 0.831 0.251 -0.187(0.004) 0.526 0.584(0.004) [1.15, 1.89]
Bootstrap ens. 0.870 0.303 -0.163(0.004) 0.585 0.603(0.004) [1.20, 2.06]
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