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Abstract

In this paper, we explore the question of001
whether large language models can support002
cost-efficient information extraction from ta-003
bles. We introduce schema-driven information004
extraction, a new task that transforms tabular005
data into structured records following a human-006
authored schema. To assess various LLM’s ca-007
pabilities on this task, we present a benchmark008
comprised of tables from four diverse domains:009
machine learning papers, chemistry literature,010
material science journals, and webpages. We011
use this collection of annotated tables to eval-012
uate the ability of open-source and API-based013
language models to extract information from ta-014
bles covering diverse domains and data formats.015
Our experiments demonstrate that surprisingly016
competitive performance can be achieved with-017
out requiring task-specific pipelines or labels,018
achieving F1 scores ranging from 74.2 to 96.1,019
while maintaining cost efficiency. Moreover,020
through detailed ablation studies and analyses,021
we investigate the factors contributing to model022
success and validate the practicality of distill-023
ing compact models to reduce API reliance.1024

1 Introduction025

Vast quantities of experimental data are locked026

away in tables found in scientific literature. These027

tables are primarily designed for visual presenta-028

tion, and the underlying data is typically not avail-029

able in any structured format, such as a relational or030

graph database. Some table collections have simple031

or uniform structures (Cafarella et al., 2008), mak-032

ing them easy to convert to relational data, for ex-033

ample, Wikipedia tables (Lebret et al., 2016; Iyyer034

et al., 2017), however a lot of information is stored035

in tables with complex and varied layouts, such as036

tables of results in papers found on arXiv.org.037

Prior work on extracting data from tables has038

focused on developing custom pipelines for each039

1Code and data are available at an anonymous repository.
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Figure 1: Overview of Schema-Driven Information Ex-
traction. The input includes two elements: the source
code of a table and a human-authored extraction schema,
outlining the target attributes and their data types. The
output consists of a sequence of JSON records that con-
form to the extraction schema.

new table format or domain, for example extracting 040

machine learning leaderboards from LATEX result 041

tables (Kardas et al., 2020). Importantly, the devel- 042

opment of these specialized pipelines necessitates 043

domain-specific labeled data, which not only in- 044

curs a significant cost in collection for every new 045

extraction task but also constrains their applicabil- 046

ity outside the originating domain. 047

In this paper, we show how LLMs can enable ac- 048

curate domain-independent extraction of data from 049

heterogeneous tables. We present a new formu- 050

lation of the table extraction problem, which we 051

refer to as Schema-Driven Information Extraction. 052

In Schema-Driven IE, the only human supervision 053
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provided is a schema that describes the data model,054

including the target attributes and their data types,055

formulated in a JSON format.2 Given an extraction056

schema, and a table as input, the model then out-057

puts a sequence of JSON objects, each of which058

describes a table cell. For example, as demon-059

strated in Figure 1, a domain expert outlines the060

attributes of interest related to result cells in a ma-061

chine learning table, and the model extracts JSON062

objects following this schema.063

To evaluate the ability of LLMs to perform064

Schema-Driven IE, we introduce a new benchmark065

consisting of table extraction datasets in four di-066

verse domains: machine learning papers, chemistry067

literature, material science journals, and webpages068

- each of which has a different data format (LATEX,069

XML, CSV, and HTML, respectively). We curate070

and annotate new datasets for the first two domains,071

while adapting existing datasets for the latter two.072

Using this newly developed benchmark, we an-073

alyze the performance of open-source and propri-074

etary LLMs. We find that state-of-the-art propri-075

etary models are capable of accurately extracting076

data from diverse domains and table formats with-077

out supervision. For example, GPT-4 (OpenAI,078

2023) and code-davinci (Chen et al., 2021), are079

capable of accurate table extraction (ranging from080

74.2 to 96.1 F1), given only a relevant data schema081

as input to define the task. This performance is082

comparable to fully supervised models, which op-083

erate at an F1 range of about 64.1 to 96.1. We also084

present a number of analyses on various factors that085

are key to achieving good performance while min-086

imizing inference costs, including retrieving text087

from outside the table, in addition to an iterative088

error recovery strategy. Moreover, we demonstrate089

the utility of Schema-Driven IE by evaluating per-090

formance on the downstream task of leaderboard091

extraction from machine learning papers (Kardas092

et al., 2020).093

2 Schema-Driven Information Extraction094

We now describe Schema-Driven IE, a new task095

that extracts structured records from tables with096

minimal supervision. As shown in Figure 1, the097

2JSON is chosen as the output format for two main rea-
sons: 1) its widespread use ensures a significant representation
in the LLM’s pre-training corpus, which is crucial for optimiz-
ing model performance; and 2) its simplicity in parsing and
processing, especially its support for one-line output, makes it
advantageous for outputs spanning multiple cells, offering a
clear benefit over indent-based formats like YAML.

task input contains two elements: 1) a table with nu- 098

merous cells, optionally supplemented with contex- 099

tual text, e.g., retrieved paragraphs from the same 100

document; and 2) an extraction schema that out- 101

lines target attributes and their data types for vari- 102

ous record types (implemented as JSON templates). 103

Given the input, the model generates a sequence 104

of JSON objects, where each object corresponds to 105

a cell in the table and contains key-value pairs for 106

the pre-defined attributes of a specific record type. 107

Consider a table in an ML paper that displays var- 108

ious models’ results. Our proposed task enables the 109

extraction of result records from each cell in the ta- 110

ble. These records include relevant attributes such 111

as the evaluation metric, task, etc, which are struc- 112

tured in corresponding JSON objects and could 113

facilitate meta-analysis of experiments or support 114

research on reproducibility. 115

To demonstrate the feasibility of Schema-Driven 116

IE on tables, we introduce INSTRUCTE, a method 117

to extract structured records from a broad range 118

of semi-structured data, using only task-specific 119

instructions. INSTRUCTE uses a template-based 120

approach to information extraction (Chambers and 121

Jurafsky, 2011; Chen et al., 2023), where the extrac- 122

tion schema is represented as a series of JSON tem- 123

plates. The underlying LLM is instructed to select 124

the appropriate template and populate it with ex- 125

tracted values for each cell in an input table, follow- 126

ing a specified cell traversal order. As illustrated 127

in Figure 2 (left), the prompt used by INSTRUCTE 128

consists of four key components: an input table 129

(optionally) supplemented with contextual text, an 130

extraction schema, task-specific instructions, and 131

an initial record for starting the process. 132

Despite explicit instructions, we found that mod- 133

els often fail to generate JSON records for all the 134

cells in a single inference pass. Instead, models 135

often deviate from the instructed cell traversal or- 136

der, leading to partial extraction of the input table’s 137

cells. To mitigate this, we use an iterative error 138

recovery strategy. As shown on the right side of 139

Figure 2, we detect deviations from the instructed 140

left-right, top-down order by comparing predicted 141

cell values with those from a rule-based cell de- 142

tector. Then, we truncate the LLM’s output to the 143

point of deviation, and re-prompt the model with 144

the truncated sequence, adding the value of the 145

next target cell. This process is repeated until all 146

records are generated. Using identified cells as a 147

scaffold, this strategy helps the model adhere to 148

the instructed order, significantly improving per- 149
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Prompt Formulation

In this work, we explore the task of intent classification …


\begin{table}[!htbp]

\begin{tabular}{@{}lllllll@{}}

Mode            & \multicolumn{3}{l}{Bus Booking} \\ 
\midrule

  & 345M & 1.3B & 5B \\ 

Zero Shot & 0.755 & 0.762 & 0.787 \\ …  

\end{tabular}

\caption{Zero-shot and Few Shot (FS) performance…

\end{table}

Input Table (w/ supp. text)

Here are JSON templates for four types of numeric cells: 
"Other", "Result", "Data Stat.", and "Hyper-param.":

{"value": "xx", "type": "Result", "task": "xx", …

{"value": "xx", "type":"Hyper-param.", "model": ...

 ...

Extraction Schema 

Please describe all numeric cells in the above latex table 
following the JSON templates (proceeding by row in a 
left-right, top-down direction). For each cell, output one 
JSON description ...

Task-specific Instruction

Cell Description:

{"value": “345M”, "type":

Initial Record

 1. Raw Record Output

 2. Record Order Checking

 3. Record Error Recovery

c

{"value": "345M", "type": "Hyper-params.", ...}

{"value": "1.3B", "type": "Hyper-params.", ...}

{"value": "5B", "type": "Hyper-params.", ...}

{"value": "0.755", "type": "Result", ...}

{"value": "0.907", "type": "Result", ...}

{"value": "0.953", "type": "Result", ...} 


c

{"value": "345M", "type": "Hyper-params.", ...}

{"value": "1.3B", "type": "Hyper-params.", ...}

{"value": "5B", "type": "Hyper-params.", ...}
{"value": "0.755", "type": "Result", ...}

{"value": "0.907", "type": "Result", ...}

{"value": "0.953", "type": "Result", ...} 


c

{"value": "345M", "type": "Hyper-params.", ...}

{"value": "1.3B", "type": "Hyper-params.", ...}

{"value": "5B", "type": "Hyper-params.", ...}
{"value": "0.755", "type": "Result", ...}

{"value": "0.762", "type":


Error Recovery

Does not follow the instructed order (truncated)

Append the next cell (following the instructed order) and re-prompt the model

Follows the instructed "left-right, top-down" order

Figure 2: Left: Prompt formulation of our proposed method INSTRUCTE. Right: Illustration of our error-recovery
strategy, which ensures the model compliance of the instructed cell traversal order and reduces inference costs.

formance despite potential propagated errors in150

cell identification. In Section 4.4, we show that151

our approach is much more cost-efficient than cell-152

by-cell prompting while achieving similar perfor-153

mance. For more details on INSTRUCTE, including154

prompt formulation and cell detectors, please refer155

to Appendix A.156

3 The SCHEMA-TO-JSON Benchmark157

We now present the details of our benchmark,158

SCHEMA-TO-JSON, which is designed to assess159

the capabilities of LLMs to extract data from ta-160

bles, adhering to a predefined schema. This bench-161

mark contains tables from four domains: machine162

learning papers, chemistry literature, materials sci-163

ence journals, and webpages. Each domain fea-164

tures a unique textual format, namely, LATEX, XML,165

CSV, and HTML, requiring models to generalize166

across domains and formats. For ML tables, we167

add relevant paragraphs from the same documents168

to provide additional context, testing the models’169

capacity to jointly understand tabular and textual170

data. We manually annotate datasets for the first171

two domains and adapt pre-existing datasets into172

our unified format for the latter two. Statistics of173

the four datasets are summarized in Table 1.174

arXiv Machine Learning Tables We create a175

manually annotated dataset focused on tables from176

arXiv ML papers, emphasizing numeric cells that177

are classified into four categories: Results, Hyper-178

parameters, Data Statistics, or Other. Extraction 179

attributes are pre-defined for the first three cate- 180

gories; for instance, result records incorporate tex- 181

tual attributes such as evaluation metric (e.g., F1) 182

and dataset (e.g., SQuAD), as shown in Figure 1. 183

To avoid data contamination with top models like 184

GPT-4 (0613),3 we collected papers published af- 185

ter the knowledge cutoff (between October and 186

November 2022) from three subfields: Machine 187

Learning, Computer Vision, and Natural Language 188

Processing. Five tables were randomly selected 189

from each paper, including appendices. We employ 190

computer scientists with ML backgrounds for an- 191

notation, and evaluate inter-annotator agreement 192

(IAA) score by calculating F1 (see Section 4.1 for 193

details) on double-annotated tables, treating one 194

set of annotations as gold labels and the other as 195

predictions. This method yields an F1 score of 96.6 196

when applying thresholded token-level F1 for at- 197

tribute matching. For additional information on 198

ML tables, including predefined attributes and the 199

annotation process, please refer to Appendix B. 200

PubMed Chemistry Tables We also annotate a 201

new dataset of PubMed tables describing the physi- 202

cal properties of chemical compounds. The auto- 203

mated extraction of physical properties from such 204

tables could provide substantial real-world benefits, 205

for example collecting much-needed data for train- 206

3According to OpenAI website, GPT-4 (0613) was trained
on data until Sep. 2021.

3

https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4


ML Chemistry DISCOMAT SWDE
(ours) (ours) (2022) (2011)

Textual format LATEX XML CSV HTML
# cell types 4 6 2 8
# attr. types 11 4 4 32
# papers (web.) 25 16 656 80
# tables (pages) 122 26 1,031 1,600
# anno. records 3,792 1,498 9,036 1,600
# records / table 31.1 57.6 8.8 1

Table 1: Dataset statistics of four datasets in our
SCHEMA-TO-JSON benchmark.

ing ML models that can support inverse molecular207

design (Kim et al., 2018) and thus accelerating the208

drug design process (Fields, 2019; Stokes et al.,209

2020). Here, we focus on cells concerning five im-210

portant physical properties identified by chemists:211

IC50, EC50, GI50, CC50, and MIC.4 Three com-212

mon attributes are manually extracted from tables213

for all properties: unit, treatment (experimental214

compound), and target (measured biological entity,215

e.g., a gene expression). Similar to the ML tables,216

domain experts annotate JSON records for relevant217

cells, and Table-F1 calculated on double-annotated218

tables is used as the IAA score. A Table-F1 score219

of 91.0 underscores the reliability of the dataset.220

DISCOMAT (Gupta et al., 2022) We experi-221

ment with DISCOMAT, a dataset focusing on glass222

composition tables from Elsevier material science223

journals. The task is to extract tuples comprising224

(material, constituent, percentage, unit) from given225

tables. We adapt DISCOMAT to fit our Schema-226

Driven IE framework by grounding the percentage227

element to numeric cells in the table and consider-228

ing the other elements as attributes. The model is229

tasked to identify numeric cells representing con-230

stituent percentages and predict the associated three231

attributes. We refer readers to Gupta et al. (2022)232

for more details of DISCOMAT.5233

SWDE (Hao et al., 2011) Finally, we add234

SWDE (Structured Web Data Extraction) as a235

fourth dataset, aimed at extracting pre-defined at-236

tributes from HTML webpages. This dataset com-237

prises roughly 124K pages gathered from eight238

distinct verticals, such as Auto, Book, and Movie.239

Each vertical includes ten unique websites and is240

associated with a set of 3 to 5 target attributes.241

4https://www.sciencedirect.com/topics/
pharmacology-toxicology-and-pharmaceutical-science/
ic50

5In the released corpus, tables are represented as matrices;
we, therefore, transform them into CSV tables (using the pipe
symbol "|" as the delimiter) prior to feeding them into LLMs.

For instance, the Movie vertical seeks to extract 242

attributes such as title, director, and genre. 243

4 Experiments 244

We evaluate the capability of various LLMs to per- 245

form Schema-Driven IE, in addition to full fine- 246

tuning using our benchmark. For ML and chem- 247

istry tables, we use a subset of 10 and 7 randomly 248

sampled papers separately for model development, 249

which facilitates the training of supervised base- 250

lines. For the two pre-existing datasets, we follow 251

the data splits used in the original experiments. 252

4.1 Evaluation 253

To evaluate predicted JSON records we report F1 254

score against gold cell attributes that are exhaus- 255

tively labeled by human annotators for each table. 256

We report results both using exact match (EM), in 257

addition to a threshold based on token-level similar- 258

ity. The token similarity threshold is tuned on dev 259

data to maximize alignment between our estimated 260

model performance and performance measured us- 261

ing human judgments (see Appendix C for more 262

details). We report F1 macro-averaged over tables, 263

due to the wide variance in table sizes. 264

For DISCOMAT and SWDE, we use similar met- 265

rics specified in their original papers to support 266

comparison with prior work. We report Tuple-F1 267

(Gupta et al., 2022) for DISCOMAT, where a pre- 268

dicted 4-element tuple is considered correct only 269

if it exactly matches the gold tuple. For SWDE, 270

we report Page-F1 (Hao et al., 2011), which mea- 271

sures the number of pages where the attributes are 272

accurately predicted.6 273

To further validate our conclusions, we also 274

present the results of full human evaluation of 275

model outputs in §4.5. 276

4.2 Baselines & Implementation Details 277

We evaluate the capability of multiple LLMs to 278

perform Schema-Driven IE, including API-based 279

GPT-4 and GPT-3.5 models and open-source mod- 280

els, such as Llama2-Chat-13B (Touvron et al., 281

2023b), CodeLlama-instruct-13B (Rozière et al., 282

2023), StarCoder-15.5B (Li et al., 2023), LLaMA- 283

7B (Touvron et al., 2023a), and Alpaca-7B (Taori 284

et al., 2023). We also frame Schema-Driven IE 285

as a TableQA problem, applying multi-choice and 286

6Notably, SWDE primarily focuses on identifying textual
HTML nodes containing attribute values rather than exact text
spans, so we use token-level F1 to identify the most relevant
HTML node for each extracted attribute.

4
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Figure 3: Capability of various LLMs to perform Schema-Driven IE, measured using the SCHEMA-TO-JSON
benchmark. We employ Table-F1 for our two newly annotated datasets and provide a measure of human performance.
For DISCOMAT (Gupta et al., 2022) and SWDE (Hao et al., 2011), we adhere to their original evaluation metrics,
i.e., Tuple-F1 and Page-F1 respectively, to support comparisons with established methods. In SWDE experiments, k
represents the number of trained websites from each vertical. Due to API cost constraints, *INSTRUCTE’s results
are computed on a 1,600 webpage sample, with bootstrap confidence intervals calculated to validate the reliability
of these performance estimates (margin of error for 95% confidence interval with 1000 samples is 0.00995.)

extractive QA prompts for template selection and287

cell attribute prediction, respectively. Furthermore,288

we also evaluate T5-11B (Raffel et al., 2020) and289

TaPas (Herzig et al., 2020), a table-specialized LM.290

For implementation details of INSTRUCTE and291

other methods, see Appendix D.7292

For DISCOMAT and SWDE, we compare IN-293

STRUCTE with established baselines, which either294

design task-specific architectures, such as Free-295

Dom (Lin et al., 2020) and LANTERN (Zhou et al.,296

2022), or use LMs pretrained on tables or web297

pages, like TaPas (Herzig et al., 2020), TaBERT298

(Yin et al., 2020), and MarkupLM (Li et al., 2022).299

4.3 Main Results300

Figure 3 presents the main results from the com-301

parison between INSTRUCTE and other methods302

on our SCHEMA-TO-JSON benchmark. We ob-303

serve that INSTRUCTE, in conjunction with API-304

based models, achieves strong performance across305

domains and input formats, without any domain-306

specific labels. With GPT-4, INSTRUCTE can out-307

7We developed a rule-based method for chemistry tables
based on the training set, which only achieved a Table-F1
score of 51.3, significantly lower than our proposed InstrucTE.
Due to the substantial effort required to create specialized
rule-based systems for each domain and the performance gap,
we decided not to pursue this approach further.

perform fine-tuned models on ML and chemistry 308

tables. However, a substantial disparity remains 309

compared to human performance, e.g., the Table- 310

F1 on double-annotated examples for ML tables 311

stands at 96.6 when applying thresholded token- 312

level F1 for attribute matching, which is 22.4 F1 313

points higher than GPT-4. 314

For DISCOMAT and SWDE, GPT-4 performs 315

on par or slightly trails behind the fully supervised 316

state-of-the-art methods, signifying the potential 317

of LLMs to act as flexible, powerful tools for ex- 318

tracting information from tables across diverse data 319

formats and domains. 320

Despite a noticeable gap when compared to API- 321

based LLMs, open-source models, like CodeLlama- 322

instruct-13B, show promising results in ML and 323

web domains, achieving 60.0 Table-F1 and 91.7 324

Page-F1 on ML tables and SWDE, respectively. 325

4.4 Ablation Studies 326

We assess the impact of different components of 327

INSTRUCTE, including task formulation and error 328

recovery, using ML tables. 329

LLMs & Task Formulation In Table 2, we com- 330

pare different LLMs, leading to two principal ob- 331

servations. First, code models show strong perfor- 332
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Figure 4: Ablation studies on various components of our INSTRUCTE (w/ code-davinci-002) on the ML tables.
Interestingly, excluding the table caption improves performance. Our detailed analysis in Appendix E reveals that
low-quality captions (e.g., lack of specificity) may confuse the model, leading to inaccurate predictions.

mance on Schema-Driven IE. This is evident from333

several key comparisons, such as the performance334

similarity between code-davinci-002 and GPT-335

4, the superior performance of code-davinci-002336

compared to other GPT-3.5 models, and the fact337

that CodeLlama-instruct-13B significantly outper-338

forms Llama2-chat-13B, approaching the perfor-339

mance of gpt-3.5-turbo. This superiority of340

code models might be attributed to their alignment341

with Schema-Driven IE, which involves converting342

table source code into JSON records. Second, non-343

code open-source models with similar sizes (for344

instance, those in the 6-7B range) tend to achieve345

comparable fine-tuning performance, though they346

might exhibit variations in prompting performance.347

Subsequently, we compare three task formula-348

tions: SCHEMA-TO-JSON, TableQA, and Function349

Calling, which is a feature provided by the OpenAI350

API.8 In Function Calling, the schema is formatted351

as function definitions with attributes serving as352

arguments. The LM is then tasked with selecting353

the function and generating JSON objects for ex-354

tracted arguments on a cell-by-cell basis. From the355

T5-11B fine-tuning experiments, we observe that356

SCHEMA-TO-JSON attains better performance than357

TableQA, demonstrating the value of integrating358

task-specific instructions and extraction schema in359

the input. Function Calling with gpt-3.5-turbo360

shows limited effectiveness, and error analysis sug-361

gests that this shortfall primarily stems from the362

model’s struggle in selecting the correct function.9363

8https://platform.openai.com/docs/guides/
function-calling

9This finding is supported by a marked performance in-
crease to 63.8 Table-F1 when the gold function is pre-specified.
As each function call yields only one JSON object, this method

Exp. Setup Formulation Model Token-F1 EM

Fine-tuning
(# Train=1169)

TableQA
TaPas (large) 27.7 21.6
T5 (11B) 61.2 46.2

SCHE2JSON

GPT-J (6B) 49.6 38.4
LLaMA (7B) 51.3 38.0
Alpaca (7B) 50.2 39.4
T5 (11B) 64.1 50.2

No Fine-tuning

TableQA Flan-T5 (11B) 36.9 27.7

Func. Calling gpt-3.5-turbo (0613) 22.4 18.4

SCHE2JSON

GPT-J (6B) 18.6 16.2
LLaMA (7B) 13.5 11.5
Alpaca (7B) 26.8 21.1
Llama2-chat (13B) 31.5 23.0
StarCoder (15.5B) 41.2 32.3
CodeLlama-instruct (13B) 60.0 44.0
gpt-3.5-turbo (0613) 64.1 47.9
text-davinci-003 67.4 50.4
code-davinci-002 72.3 57.6
gpt-4 (0613) 74.2 58.1

Table 2: TEST set performance on ML tables with dif-
ferent LLMs and task formulations.

Prompt Components & Error Recovery Figure 364

4 shows INSTRUCTE’s performance subject to the 365

exclusion of varying prompt components. We use 366

code-davinci-002 for these experiments consid- 367

ering API budget limitations and its resemblance to 368

GPT-4 in terms of performance and context length. 369

We observe that removing supplementary text de- 370

grades performance. Table headers contribute posi- 371

tively as expected, while captions surprisingly do 372

not. Further analysis on table captions is provided 373

in Appendix E, which suggests that unclear cap- 374

tions can sometimes mislead the model, resulting 375

in inaccurate predictions. Notably, discarding the 376

extraction schema, specifically JSON templates, 377

causes a substantial performance decline, primarily 378

due to attribute name mismatches in the evaluation. 379

Lastly, we show that INSTRUCTE’s performance 380

requires cell-by-cell prompting, which is cost-intensive with
GPT-4. Due to API budget constraints, our experiments are
limited to gpt-3.5-turbo.
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drops significantly without error recovery. Com-381

pared to cell-by-cell prompting, error recovery of-382

fers similar performance at a fraction of the API383

cost ($100 v.s. $670 on Azure).10384

4.5 Performance Analysis385

To further verify our main conclusions from au-386

tomatic evaluation and gain deeper insights into387

INSTRUCTE’s performance, we conduct a human388

evaluation and discuss a set of key questions.389

What errors are made by INSTRUCTE? To390

understand where INSTRUCTE struggles, we con-391

duct error analysis on GPT-4 predictions for ML392

tables. We sample 10 tables from the test set and393

10 records for each table, comparing each attribute394

with the gold value. In total, we find 154 errors out395

of 591 attributes. We group errors into one of eight396

categories, listed in Table 3. For example, one type397

of false positive error is when the gold attribute398

value is present in the table caption, but the model399

is distracted by a table header. Table 3 provides400

a detailed breakdown and includes the top three401

affected attributes within each error category. We402

find that the most common error occurs when the403

model fails to identify attributes present in the ta-404

ble (31.2%), particularly for experimental settings405

like 5-shot in Result records. Another major er-406

ror is when attributes present in the accompanying407

text lead to either null predictions (14.9%) or in-408

correctly predicting a table header (19.5%). These409

errors highlight the challenges of Schema-Driven410

IE, where the model must understand nuances of411

table layouts and also effectively integrate informa-412

tion from surrounding text.413

How does the data format impact INSTRUCTE’s414

performance? The variation in model perfor-415

mance across datasets from different domains with416

unique formats raises questions about the influ-417

ence of format differences. To address this, we418

conducted experiments converting ML tables from419

LATEX to HTML and chemistry tables from XML to420

CSV, utilizing both commercial (tableconvert11)421

and open-source (TeX4ht12) tools, and selecting422

the one with the highest conversion accuracy. De-423

spite tableconvert showing superior conversion424

quality, residual code from the original formats425

in the converted tables, e.g., LATEX commands in426

10The pricing for code-davinci-002 on Azure is $0.1 per
1,000 tokens as of June 23rd, 2023.

11https://tableconvert.com/api/
12https://tug.org/tex4ht/

HTML tables, presents a novel "code-switching" 427

challenge for INSTRUCTE. Performance evalua- 428

tion with GPT-4 reveals a minimal drop for ML 429

tables (from 74.2 to 74.1 in Table-F1) and a more 430

significant decrease for chemistry tables (from 83.4 431

to 78.1 in Table-F1). Both conversion noise and 432

the model’s format-specific processing capabilities 433

could contribute to these differences. The optimal 434

performance on original formats underlines the ne- 435

cessity of developing models adept at handling di- 436

verse data formats directly, rather than relying on 437

format conversion tools. 438

Human Evaluation Similar to our error analysis 439

on ML tables, we manually inspect attribute pre- 440

dictions for 100 cell records for chemistry tables 441

and DisCoMat, as well as 160 pages for SWDE, 442

and report the prediction precision. Half of the 443

sampled data are double-annotated, with the inter- 444

annotator agreement score calculated as the F1 445

score between the two annotations. The statistics 446

and results are provided in Table 9 in the appendix. 447

The results show that INSTRUCTE achieves high 448

precision across different datasets, ranging from 449

73.9 to 96.4, aligning with the performance under 450

automatic metrics. Additionally, the high inter- 451

annotator agreement scores (all above 90) indicate 452

that the human evaluation is reliable and consistent. 453

4.6 Knowledge Distillation 454

Considering the strong performance of API-based 455

models on Schema-Driven IE, we now show that it 456

is possible to use knowledge distillation (Le et al., 457

2022; Kang et al., 2023) to build a cost-efficient 458

compact model, using ML tables as a demonstra- 459

tion. Specifically, this process first generates syn- 460

thetic data by performing inference on unlabeled 461

tables using code-davinci-002, followed by fine- 462

tuning a smaller model (e.g., 7B parameters) us- 463

ing the synthetic data. We compile a collection 464

of 979 arXiv ML papers, submitted between 2008 465

and 2019, yielding 3,434 tables (containing a to- 466

tal of 100K cells). In Table 4, we can see that 467

LLaMA-7B and Alpaca-7B demonstrate similar 468

performance as seen in the fine-tuning results (Ta- 469

ble 2). While fine-tuning LLaMA with LoRA 470

(Hu et al., 2022) presents noticeable computational 471

efficiency, full-parameter fine-tuning of T5-11B 472

matches the teacher model’s performance.13 473

13The improvement over the teacher model is not signifi-
cant (p-value is 42.3%, Berg-Kirkpatrick et al., 2012).
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Category % (#) Fine-grained Error Types Top 3 Affected Attributes

31.2 (48) gold answer in table, not predicted "Result:experimental settings" (39.6%), "Result:training data"
(39.6%), "Result:model settings" (20.8%)

False Negative 14.9 (23) gold answer in main text, not predicted "Result:training data" (39.1%), "Hyper-parameter:model" (26.1%),
"Hyper-parameter:dataset" (26.1%),

6.5 (10) gold answer predicted, wrong attribute "Result:experimental settings" (100%)

19.5 (30) gold answer in main text, table header predicted "Result:training data" (33.3%), "Result:task" (33.3%), "Re-
sult:model" (33.3%),

False Positive 11.7 (18) partial match, but misses important details "Result:test data" (100%)
6.5 (10) gold answer in table caption, table header predicted "Result:metric" (100%)
6.5 (10) complete mismatch "Result:experimental settings" (100%)

Propagated Errors 3.2 (5) select wrong record template "Other:type" (100%)

Table 3: Error analysis of INSTRUCTE (w/ GPT-4) for ML tables, inspecting 591 attribute predictions from 100 cell
records sampled from 10 tables. For each fine-grained error type, we provide the error percentage, detailed error
sources, and the top three affected attributes.

Model (GPU hours) Token-Level F1 EM

P R F1 P R F1

Teacher code-davinci-002 74.1 71.8 72.3 59.4 56.9 57.6

Student
LLaMA-7B (50h) 74.1 67.6 69.1 56.8 53.4 54.3
Alpaca-7B (50h) 72.7 64.8 67.5 56.1 50.0 52.0
T5-11B (380h) 75.8 71.4 73.2 60.3 56.7 58.1

Table 4: Experimental results for knowledge distillation
on the ML tables. Student models are trained on 3,434
tables labeled by the teacher model. GPU hours refers
to the training time (× number of GPUs) of student
models for one epoch.

4.7 Leaderboards and Image Extraction474

To further validate INSTRUCTE’s practicality, we475

integrate it with multi-modal models, like GPT4-V,476

for extracting data from table images. In an ini-477

tial study with ML tables, it yields a Table-F1 of478

70.2, approaching the 74.2 Table-F1 achieved with479

the original text inputs. Additionally, we explore480

INSTRUCTE’s application to the task of Leader-481

board Extraction, where it shows competitive per-482

formance against leading supervised systems. Due483

to space constraints, details on these explorations484

are provided in Appendix F.485

5 Related Work486

Table Understanding in NLP Research Re-487

cently there have been many research efforts in-488

volving tables, particularly, table-to-text generation489

(Parikh et al., 2020; Wang et al., 2022; Hu et al.,490

2023). For example, ToTTo (Parikh et al., 2020)491

introduced the task of open-domain table-to-text492

generation. In contrast, our work transforms tables493

into structured JSON records, where a data schema494

is the only supervision provided.495

Pre-training on Semi-structured Data TaPas496

(Herzig et al., 2020) and TaBERT (Yin et al., 2020)497

pre-train on linearized tables with a specialized498

cell index embedding. TABBIE (Iida et al., 2021)499

employs dual transformers for separate row and col- 500

umn encoding. Similarly, TabLLM (Hegselmann 501

et al., 2023) uses general-purpose LLMs to process 502

tables, but we focus on schema-driven IE rather 503

than table classification or question answering. 504

IE from Semi-structured Data Information ex- 505

traction from semi-structured data has gained 506

increasing interest (Carlson and Schafer, 2008; 507

Dong et al., 2020; Gupta et al., 2022; Lou et al., 508

2023). OpenCeres (Lockard et al., 2019) and Ze- 509

roShotCeres (Lockard et al., 2020) highlight open- 510

domain extraction from web data, while AxCell 511

(Kardas et al., 2020) and TDMS-IE (Hou et al., 512

2019) focus on leaderboard extraction from ML ta- 513

bles. DisCoMat (Gupta et al., 2022) showcases ma- 514

terial composition extraction from scientific tables. 515

Unlike most existing methods requiring supervised 516

datasets for fine-tuning, our approach stands out 517

by using LLMs to accurately extract data across 518

various domains using an extraction schema. 519

6 Conclusion 520

This paper explores the capabilities of LLMs for 521

extracting structured data from heterogeneous ta- 522

bles. We introduce a new task, Schema-Driven 523

Information Extraction, which converts tables into 524

structured records guided by a human-authored 525

data schema. To facilitate this task, we present a 526

benchmark, comprised of tables from four diverse 527

domains, and evaluate various LLMs through our 528

proposed method INSTRUCTE. The experiments 529

reveal that while API-based models excel across 530

domains and formats, open-source models display 531

significant potential in specific areas. Moreover, 532

we conduct detailed ablation studies and analyses 533

to investigate the factors for model success, and 534

validate the feasibility of building compact models 535

through distillation to reduce dependency on APIs. 536
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Limitations537

While INSTRUCTE showcases strong performance538

as an instruction-based prompting approach, it en-539

counters specific challenges. Firstly, similar to540

other prompting methods, its performance could be541

sensitive to the phrasing of the prompt. Despite of-542

fering guidelines for crafting prompts in Appendix543

A, such as emphasizing clear attribute names, devel-544

oping robust extraction schemas for new domains545

often relies on iterative experimentation. Future546

work could explore automatic prompt optimization547

(Zhou et al., 2023; Wang et al., 2024) to reduce the548

need for human trial-and-error. Additionally, the549

model’s varying performance across different do-550

mains and formats is difficult to interpret, possibly551

due to biases in the pretraining corpus, a factor we552

cannot fully analyze due to the opaque nature of553

the pre-training process. InstrucTE also faces diffi-554

culties with dataset-specific nuances, as it operates555

on general task descriptions without detailed exam-556

ples, making it challenging to navigate boundary557

cases effectively.558

Beyond the model’s inherent limitations, the559

availability of specific API-based backbones like560

GPT-4 and code-davinci-002 may change, im-561

pacting reliance on these resources. To reduce562

this dependency, we include results from open-563

source models and investigate knowledge distil-564

lation as a viable alternative, showing promising565

results. Our benchmark aims to facilitate future re-566

search focused on enhancing smaller, openly acces-567

sible models, recognizing the importance of such568

developments for practical application and broader569

accessibility.570

Ethical Considerations571

Our use of OpenAI’s API-based models to distill572

open-source table extractors complies with Ope-573

nAI’s terms of service, as we do not “use the output574

from the Services to develop models that compete575

with OpenAI”. Regarding licenses of four datasets576

in our SCHEMA-TO-JSON benchmark, the arXiv577

ML tables align with the licenses of their original578

papers. The PubMed Chemistry tables, sourced579

from the PMC Open Access Subset, conform to580

Creative Commons or equivalent licenses. For the581

other two datasets, we adapt pre-existing datasets582

released by the NLP research community, abiding583

by their respective original licenses.584
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A INSTRUCTE860

Prompt Formulation Our proposed prompt con-861

sists of four components: 1) “Input Table (w/ supp.862

text)” includes the table source code paired with863

supplementary text from the document; 2) “Ex-864

traction Schema” defines the JSON formats for865

extracted records, encompassing the record type, at-866

tribute names, and associated data types; 3) “Task-867

specific Instructions” outline the task execution pro-868

cess, addressing both the extraction process from869

individual cells and the traversal strategy across870

cells, such as “left-right, top-down”; 4) “Initial871

Record” is used to jump-start the prompting pro-872

cess, including the partial record of the first cell.873

For “Input Table (w/ supp. text)”, we employ the874

BM25 algorithm to retrieve the most relevant para-875

graphs for each table. For “Extraction Schema”, we876

propose two guidelines for schema design: 1) At-877

tribute names should be specific, which decreases878

the probability of the model generating incorrect879

attributes, or hallucinations. For instance, when880

extracting relevant attributes about a movie from881

a movie webpage, it’s advisable to use specific882

terms such as “movie name” or “director name”,883

rather than the generic “name”; 2) Attributes should884

be strategically ordered, placing simpler attributes885

ahead of more complex ones as errors in preced-886

ing attributes can adversely affect the prediction of887

subsequent ones due to the autoaggressive nature888

of LMs. The exact INSTRUCTE prompts used in889

our experiments are shown in Table 6 and Table 7.890

Cell Detector We develop a rule-based method891

to identify numeric cells for both the ML and chem-892

istry tables. Specifically, for the ML tables, we use893

the row separator “\\” and the column separator “&”894

to divide the table into cells. We then loop over895

each cell, checking for numeric values after strip-896

ping away any stylized text. In cases, where a cell897

contains multiple numeric values, such as “0± 0”,898

we consistently choose the first numeric value. For899

the chemistry tables, the parsing process is more900

straightforward, owing to the structured XML for-901

mat of the table. Here, we iterate over each cell,902

verifying if it contains a numeric value once styl-903

ized text has been removed. The performance of904

our rule-based cell detector on two datasets is pre-905

sented in Table 5. In the case of DISCOMAT, we906

use the cell detector provided by the original paper907

Gupta et al. (2022).908

Dataset Split P R F1

ML Tables Dev 100.0 97.0 98.0
Test 99.9 99.6 99.7

Chem. Tables Dev 100.0 100.0 100.0
Test 100.0 98.3 99.2

Table 5: Results of (numeric) cell detection on ML and
chemistry tables.

B arXiv Machine Learning Tables 909

Extraction Attributes We design a set of extrac- 910

tion attributes for each of the three primary types 911

of numeric cells in ML tables: “Result”, “Hyper- 912

parameter”, and “Data Statistics”. These attributes 913

are outlined in detail below. 914

• “Result” includes seven attributes: training 915

data, test data, task, metric, model, model 916

settings and experimental settings. The 917

first five attributes are fixed, with answers be- 918

ing text spans in the paper. The last two at- 919

tributes, model settings and experimental 920

settings, are free-form attributes, with an- 921

swers being JSON objects. For example, the 922

experimental settings attribute may be 923

{“number of training examples”: “0”} for a 924

zero-shot setting. This scheme is more detailed 925

than previous approaches (Hou et al., 2019; Kar- 926

das et al., 2020) and can accommodate a broader 927

range of ML paradigms and provide more gran- 928

ular information. 929

• “Hyper-parameter” includes optimization pa- 930

rameters like learning rate and batch size, 931

as well as numeric descriptions of model ar- 932

chitectures such as layer count. The three 933

fixed attributes for this category are: model, 934

parameter/architecture, and dataset. 935

• “Data Stat.” covers four attributes: dataset, 936

dataset attribute, sub-set/group, and 937

dataset features. The sub-set/group spec- 938

ifies a dataset subset (e.g., “train” or “test”), 939

while dataset features, a free-form attribute, 940

captures various dataset characteristics like the 941

language or domain. 942

Annotation Process We sample 10 papers from 943

each of three pertinent arXiv fields: Machine Learn- 944

ing, Computer Vision, and Natural Language Pro- 945

cessing. After removing papers without LATEX 946

source code or any tables, a total of 25 papers 947
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Dataset Full Prompt

ML Tables [Retrieve paragraphs]

[Input table]

Here are JSON templates for four types of numeric cells: “Other”, “Result”, “Data
Stat.”, and “Hyper-parameter/Architecture”:
{“value”: “xx”, “type”: “Other”}
{“value”: “xx”, “type”: “Result”, “task”: “xx”, “metric”: “xx”, “training data/set”: “xx”,
“test data/set”: “xx”, “model/method”: “xx”, “model/method settings”: {“xx”: “yy”},
“experimental settings”: {“xx”: “yy”}}
{“value”: “xx”, “type”: “Data Stat.”, “dataset”: “xx”, “attribute name”: “xx”,
“sub-set/group name”: “xx”, “dataset features”: {“xx”: “yy”}}
{“value”: “xx”, “type”: “Hyper-parameter/Architecture”, “model”: “xx”,
“parameter/architecture name”: “xx”, “dataset”: “xx”}

Please describe all numeric cells in the above latex table following the JSON templates
(proceeding by row in a left-right, top-down direction). For each cell, output one JSON
description per line. For any unanswerable attributes in the templates, set their value to
the placeholder “xx” if it is of string type and {“xx”: “yy”} if it is of dictionary type.

Cell Description:
{“value”: “[Query cell]”, “type”:

Chem. Tables [Input table]

Here are JSON templates for six types of numeric cells: “Other”, “IC50”, “EC50”,
“CC50”, “MIC”, and “GI50”:
{“value”: “xx”, “type”: “Other”}
{“value”: “xx”, “type”: “IC50”, “unit”: “xx”, “treatment compound”: “xx”, “target
compound”: “xx”}
{“value”: “xx”, “type”: “EC50”, “unit”: “xx”, “treatment compound”: “xx”, “target
compound”: “xx”}
{“value”: “xx”, “type”: “CC50”, “unit”: “xx”, “treatment compound”: “xx”, “target
compound”: “xx”}
{“value”: “xx”, “type”: “MIC”, “unit”: “xx”, “treatment compound”: “xx”, “target
compound”: “xx”}
{“value”: “xx”, “type”: “GI50”, “unit”: “xx”, “treatment compound”: “xx”, “target
compound”: “xx”}

Please describe all numeric cells in the above XML table following the JSON templates
(proceeding by row in a left-right, top-down direction). For each cell, output one JSON
description per line. For any unanswerable attributes in the templates, set their value to
the placeholder “xx”.

Cell Description:
{“value”: “[Query cell]”, “type”:

Table 6: INSTRUCTE prompts used for ML and chemistry tables.

are covered in our dataset. To optimize the an-948

notation budget and the dataset diversity, we cap949

the number of annotated tables to five per paper.950

Recognizing the domain-specific expertise needed,951

we employ expert annotators with backgrounds in952

ML research, who are provided with tables in both953

LATEX and PDF formats and encouraged to thor-954

oughly read the paper before annotation. The anno-955

tation process comprises two steps: 1) identifying956

the numeric cells and their record types, and 2) fill-957

ing in the slots of pre-determined attributes, form-958

ing a JSON record with keys as attribute names and959

values as extracted content, in a text editor. Conse-960

quently, the dataset contains 122 tables, with 3,792 961

cells and 21K attributes annotated. 962

C Evaluation Metrics 963

Comparing an LLM-predicted JSON object with 964

a gold JSON object is a non-trivial task, as those 965

generative LLMs may produce text spans that do 966

not exactly exist in the input table. Consequently, 967

we devote substantial effort to examining various 968

metrics to determine the one best suited for our 969

task using ML tables. Here, we consider three 970

metrics: the standard token-level F1 to capture the 971

level of lexical overlap between the predicted and 972
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Dataset Full Prompt

DISCOMAT [Input table]

Here are JSON templates for two types of numeric cells: “Other” and
“Glass_Compound_Amount”:
{“value”: “xx”, “type”: “Other”}
{“value”: “xx”, “type”: “Glass_Compound_Amount”, “constituent compound name”:
“xx”, “unit”: “xx”, “glass material/sample name/id/code”: “xx”}

Please describe all numeric cells in the above table following the JSON templates
(proceeding by row in a left-right, top-down direction). For each cell, output one JSON
description per line. For any unanswerable attributes in the templates, set their value to
the placeholder “xx”.

Cell Description:
{“value”: “[Query cell]”, “type”:

SWDE-auto [Input webpage]

Here is the JSON template for automobile attribute extraction:
{“webpage title”: “xx”, “automobile model (year)”: “xx”, “price”: “xx”, “engine type”:
“xx”, “fuel economy”: “xx”}

Please extract the automobile’s attributes from the HTML code above following the
JSON template. For any unanswerable attributes in the template, set their value to the
placeholder “<NULL>”.
{“webpage title”: “[webpage title]”, “automobile model (year)”:

Table 7: INSTRUCTE prompts used for DISCOMAT and SWDE. For SWDE, we use the “Auto” vertical as an
illustrative example, and the prompts for other verticals differ only in attribute names (refer to Table 8 for the
attributes of each vertical).

Vertical # Sites # Pages Attributes

Auto 10 17,923 model, price, engine, fuel-economy

Book 10 20,000
title, author, ISBN-13,
publisher, publish-date

Camera 10 5,258 model, price, manufacturer

Job 10 20,000 title, company, location, date

Movie 10 20,000 title, director, genre, rating

NBA Player 10 4,405 name, team, height, weight

Restaurant 10 20,000 name, address, phone, cuisine

University 10 16,705 name, phone, website, type

Table 8: SWDE statistics.

Dataset # Records # Attr. Precision IAA

ML Tables 100 591 73.9 95.7
Chem. Tables 100 380 95.3 100
DISCOMAT 100 201 92.5 99.4
SWDE 160 640 96.4 98.2

Table 9: Statistics and results of attribute-level human
evaluation on four datasets. The inter-annotator agree-
ment score (IAA) is calculated as the F1 score between
the two annotations

gold attributes, and two semantic similarity met-973

rics, SBERT (Reimers and Gurevych, 2019) and974

BERTScore (Zhang et al., 2020), to identify seman-975

tically similar expressions (e.g., # params vs. the976

number of parameters).977

0.86

0.88

0.9

0.92

0.94

0.96

0.98

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F1

Threshold

Token Overlap SBERT BERTScore

Figure 5: Results of comparing various metrics, includ-
ing token-level F1, SBERT, and BERTScore, to human
judgment over different thresholds on ML tables. Num-
bers are computed over 677 sampled attributes that are
paired with respective gold references.

Meta Evaluation To assess how accurate each 978

metric is compared to human evaluation, we manu- 979

ally annotated predicted-gold attribute pairs as to 980

whether or not each pair matches. We consider 981

a given pair to “match” if they are semantically 982

equivalent, meaning they can be used interchange- 983

ably. For attributes that encapsulated multiple sub- 984

attributes, we consider a pair to match if at least 985

half of the sub-attributes are matched (i.e., F1 score 986
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In this section, we present four methods, which we call strategies, 
that aim to improve zero-shot hate speech detection …

{"value": "+100", "type":

\begin{table}[ht]
\begin{tabular}{lrr} \hline
strategy & F20 & overall \\ \hdashline
FCS & +100 & +4.6 \\
FCS$_{p_1}$ & +0.0 & +0.0 \\
FCS$_{p_1 FBT}$ & +6.9 & +0.3 \\
…
\end{tabular}
\caption{Evaluation of FCS variants. …}
\end{table}
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Edge cases F1: 92.3
Total F1: 76.4

Manually specifed caption

Figure 6: An error analysis of edge cases in which the predictions made by INSTRUCTE with captions default
to “Other” (resulting in an 0 F1). Our hypothesis that this issue may stem from the caption’s lack of specificity
is tested by manually expanding the caption (displayed on the right). This amendment significantly improves the
performance on these edge cases, increasing the F1 score to 92.3.

{"value": "95.7", "type": "Result", "task": "Named Entity 
Recognition", "model": "Elmo","metric": "F1", "training 
data": "CoNLL 2003", "test data": "CoNLL 2003"} 
   {"value": "96.4", "type": "Result", "task": "Named Entity 
Recognition", "model": "BERT base","metric": "F1", 

"training data": "CoNLL 2003", "test data": "CoNLL 

Gold

{"value": "95.7", "type": "Result", "task": "Entity 
Recognition", "model": "Elmo","metric": "Accuracy", 
"training data": "CoNLL", "test data": "CoNLL"} 
   {"value": "96.4", "type": "Result", "task": "Entity 
Recognition", "model": "BERT base","metric": "Accuracy", 

"training data": "CoNLL 03", "test data": "CoNLL 03"} 

Predicted

JSON Records

Eval

Table-F1

Gold: Result, Predicted: Result 
        Token-Level F1: 1.0, Exact Match (EM): 1 
    Gold: Named Entity Recognition, Predicted: Entity Recognition 
        Token-Level F1: 0.90, Exact Match (EM): 0 
    Gold: Elmo, Predicted: Elmo 
        Token-Level F1: 1.0, Exact Match (EM): 1 
    Gold: F1, Predicted: Accuracy 
        Token-Level F1: 0.0, Exact Match (EM): 0 
    Gold: CoNLL 2003, Predicted: CoNLL 03 
        Token-Level F1: 0.5, Exact Match (EM): 0 
        ......

Attribute-level

 Token-F1 (w/ threshold 0.25): 
True Positive Attributes: 10, True Negative Attributes: 0, 
False Positive Attributes: 2, False Negative Attributes: 2,  
Table-F1: 0.83 

     Exact Match (EM): 
True Positive Attributes: 4, True Negative Attributes: 0, 
False Positive Attributes: 8, False Negative Attributes: 8 
Table-F1: 0.33 

Table-level

Figure 7: An example of Table-F1 calculation, where two predicted records are compared against the two gold
records.

≥ 0.5), with the decision for each sub-attribute be-987

ing based on the same as in the text-span attributes.988

For the set of pairs to annotate and use as a test989

set, we sample a total of 100 cell pairs (i.e., 677990

attribute pairs) according to the following process:991

1) we first uniformly sample a table from the devel-992

opment set (containing 10 papers); and 2) we then 993

sample a random cell from the table, ensuring there 994

were no duplicate cells. For each pair of predicted- 995

gold attributes, each metric’s decision (1 or 0) is 996

made using a specific threshold. For example, if 997

the token-level F1’s score for paired attributes is 0.4 998
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token-level F1 SBERT BERTScore

Meta Eval. F1 97.0 95.6 96.7
Threshold 0.25 0.55 0.85

Table 10: Results of comparing various metrics, includ-
ing token-level F1, SBERT, and BERTScore, to human
judgment on ML tables. Numbers are computed over
677 sampled attributes that are paired with gold refer-
ences. The highest achieved F1 scores are displayed
alongside the thresholds. A complete illustration of re-
sults, sorted by thresholds, can be found in Figure 5 in
Appendix.

and the threshold is 0.5, then the decision would be999

0, indicating no match. The decisions over the test1000

set containing 677 attribute pairs are then compared1001

to human evaluation. In this binary classification1002

problem, F1 is used to evaluate the performance of1003

the metrics.1004

In Table 10, we present the performances of each1005

metric with the optimal threshold for each. Surpris-1006

ingly, we find that the token-level F1 (with a thresh-1007

old of 0.25) decision aligns nearly perfectly with1008

human judgment, and performs the best among1009

all metrics for our task. This might suggest that1010

discerning subtle differences is more crucial than1011

identifying different phrases with the same mean-1012

ing for this task. Based on these empirical findings,1013

we opt for the token-level F1 for automatic evalu-1014

ation at the attribute level. This choice is highly1015

desirable not only because of its high accuracy but1016

also due to its simplicity.1017

D Implementation Details1018

Considering the lengthy source code for tables,1019

we employ different strategies to encode the in-1020

put table and perform Schema-Driven IE, based1021

on the context length of the chosen LLM. For1022

LLMs with a larger context length, such as GPT-1023

4, code-davinci-002, and CodeLlama, we input1024

the full table and conduct the proposed error re-1025

covery process. For LLMs with a more limited1026

context length, such as LLaMA and T5-11B, we1027

query each target cell individually. The input table1028

is condensed by rows, retaining the first two rows,1029

typically containing headers, and the row with the1030

query cell, with the token <select> pinpointing1031

the position of the query cell. We use greedy decod-1032

ing to maximize the reproducibility of our results.1033

For the TableQA setting, we divide the prob-1034

lem into two steps: selecting the record type and1035

predicting the relevant attributes. For T5 and Flan-1036

T5 (11B) TaPas

learning rate 1e-4 5e-5
batch size 8 32
# epoches 5 10

Table 11: Hyper-parameters used for fine-tuning T5 and
TaPas.

T5, the first step is modeled as a multi-choice QA 1037

problem, where the model chooses the type of the 1038

query cell from a list of provided options. The 1039

second step is modeled as an extractive QA task, 1040

asking the model to pinpoint the answer spans for 1041

the attributes associated with the selected type. For 1042

TaPas, the initial step is treated as a classification 1043

problem, whereas the latter one is handled as a cell 1044

selection problem. The hyper-parameters used for 1045

fine-tuning T5 and TaPas are presented in Table 11. 1046

E Error Analysis of Caption 1047

In Section 4.4, we observe an unexpected finding 1048

that table captions do not enhance performance, but 1049

rather seem to detract from it, which is counterin- 1050

tuitive. To delve deeper into this observation, we 1051

conduct an error analysis. This involves comparing 1052

the performances of our INSTRUCTE system with 1053

and without captions at the table level. This anal- 1054

ysis uncovers a few outliers (3 out of 68) where 1055

including a caption leads to a 0 F1 score, whereas 1056

the score is near perfect when the caption is ex- 1057

cluded. For instance, as depicted in Figure 6, the 1058

predictions all fall into the “Other” category when a 1059

caption is included, leading to a 0 F1 score in these 1060

outlier instances. Conversely, removing the caption 1061

results in an F1 score of 89.3. This high score is 1062

due to the fact that retrieved paragraphs provide 1063

ample contextual information (e.g., “hate speech 1064

detection”) without the presence of a caption. 1065

We hypothesize that the model’s inclination to 1066

predict “Other” in the presence of a caption may 1067

be a consequence of the captions’ lack of speci- 1068

ficity with respect to the attributes relevant to the 1069

table cells (for example, “hate speech detection”). 1070

This lack of explicit, relevant details could create 1071

confusion in associating the caption with the re- 1072

trieved paragraphs, thereby misleading the model. 1073

To test our hypothesis, we manually adjust the cap- 1074

tions to include more specific attributes, such as 1075

“hate speech detection” and “T5-Base.” As a result, 1076

we observe an improvement in the model’s perfor- 1077

mance with the revised caption, with the total F1 1078

score even exceeding that achieved without a cap- 1079
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tion. This outcome partially supports our hypoth-1080

esis and suggests that carefully crafted captions1081

could indeed be beneficial, aligning with our ini-1082

tial expectations. However, this investigation also1083

points to the fact that the model currently lacks1084

robustness in handling these outlier scenarios.1085

F Extracting Leaderboards from Table1086

Images1087

F.1 Extraction from Table Images1088

One practical challenge with INSTRUCTE is the1089

need for tables in a textual format, while many1090

tables are available only as PDFs or images. To1091

address this, we integrate INSTRUCTE with multi-1092

modal models to extract structured data from ta-1093

ble images. Specifically, we experiment with two1094

strategies: 1) direct extraction from table images,1095

and 2) a pipeline that first employs multi-modal1096

models to transform table images into text, and1097

then run INSTRUCTE on the textual tables.1098

In a preliminary study with ML tables, we use1099

GPT-4V as the backbone for INSTRUCTE. We find1100

that the pipeline method yields a Table-F1 score1101

of 70.2 from image inputs, approaching the 74.21102

Table-F1 achieved with the original text inputs. It1103

outperforms direct extraction using GPT-4V, which1104

attains only a Table-F1 score of 46.4, as the pipeline1105

can capitalize on INSTRUCTE’s error recovery ca-1106

pabilities, resulting in more thorough and accurate1107

extractions.1108

Additionally, we test IDEFICS-80b-instruct1109

(Laurençon et al., 2023), a leading open-source1110

multi-modal model, which unfortunately could not1111

perform the table-text conversion or direct extrac-1112

tion.14 This suggests a clear avenue for future re-1113

search to enhance multi-modal models’ ability to1114

accurately process image-based tables.1115

F.2 Leaderboard Extraction from ML Papers1116

Task Definition & SOTA Methods The task of1117

leaderboard extraction (Hou et al., 2019; Kardas1118

et al., 2020) entails extracting leaderboard tuples1119

(task, dataset, metric, score) from tables in1120

ML papers. Unlike our proposed Schema-Driven1121

IE, which requires open-domain span identifica-1122

tion, leaderboard extraction presumes prior knowl-1123

edge of all leaderboards, represented as pre-defined1124

14The IDEFICS-80b-instruct model either produces un-
related content or simply output "I am sorry, but I cannot
generate LaTeX code from the table."

(task, dataset, metric) tuples, and centers on 1125

linking numeric cells to these leaderboards. 1126

The state-of-the-art leaderboard extraction 1127

method, AXCELL (Kardas et al., 2020), is a com- 1128

prehensive pipeline system comprising four com- 1129

ponents: Table Type Classification, Table Segmen- 1130

tation, Cell Linking, and Filtering. For each com- 1131

ponent, except the last one, AXCELL employs a 1132

supervised model. It starts with table type classi- 1133

fication to identify result-related tables, which are 1134

then passed to the table segmenter responsible for 1135

annotating the header cells of the table. Following 1136

this step, a retrieval model links numeric cells in 1137

the table to pre-defined leaderboards using human- 1138

engineered features. Lastly, AXCELL filters and 1139

selects the best record based on the leaderboard 1140

taxonomy criteria, such as retaining higher values 1141

for "Accuracy" and lower ones for "error rate". 1142

Application of INSTRUCTE To extract leader- 1143

boards from an ML paper, we consider all tables 1144

that contain numeric cells, instead of selecting ta- 1145

bles via a trained classifier as in AXCELL. For 1146

each table, we run INSTRUCTE using a customized 1147

leaderboard extraction JSON template. This tem- 1148

plate resembles the ML-table template with two 1149

additional fixed attributes: eval split and eval 1150

class in the “Result” cell template. We add the 1151

eval split attribute because the evaluated split 1152

is essential information for this task; for instance, 1153

“dev F1” and “test F1” are treated as different met- 1154

rics in the leaderboard taxonomy. The eval class 1155

attribute is used to exclude sub-set or sub-class re- 1156

sults that are typically present in analysis tables. 1157

After generating all predicted cell descriptions, we 1158

filter them based on three criteria: 1) the type 1159

attribute must be “Result”; 2) the eval class at- 1160

tribute must be “all” or “Null” as observed on the 1161

development set; and 3) the cell must be bolded in 1162

the table, as this usually indicates its superior per- 1163

formance and possible relevance to the leaderboard. 1164

For papers without any bolded cells, we experiment 1165

with two strategies: 1) include all the remaining 1166

cells in the table that meet the first two criteria; 2) 1167

use cells selected by AXCELL, as its engineered 1168

features for cell selection may be useful. This hy- 1169

brid system is referred to as INSTRUCTE+. We 1170

then use the predicted task, dataset, and metric 1171

attributes in each JSON record to match with the 1172

pre-defined leaderboards using token-level F1, and 1173

we select the leaderboard with the highest aver- 1174

age score over three attributes. Finally, follow- 1175
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Output

\begin{table}[h] 
\centering 
\begin{tabular}{lccc|ccc} 
\hline 
\textbf{Mode} & \multicolumn{3}{c|}{\textbf{Bus Booking}} & 
\multicolumn{3}{c}{\textbf{Hotel Reservation}} \\ 
& \textbf{345M} & \textbf{1.3B} & \textbf{5B} & \textbf{345M} & 
\textbf{1.3B} & \textbf{5B} \\ 
\hline 
Zero Shot & 0.755 & 0.762 & 0.787 & 0.379 & 0.448 & 0.467 \\ 
FS - 10 samples & 0.907 & 0.789 & 0.942 & 0.793 & 0.720 & 0.939 \\ 
FS - 50 samples & 0.953 & 0.965 & 0.975 & 0.957 & 0.968 & 0.970 \\ 
\hline 
\end{tabular} 
\end{table}

LaTex Code

c

     

Image Table

Prompt

Input

"Please generate LaTex code for the 
uploaded image table."

GPT-4V

Figure 8: Generate LATEX code for image tables using GPT-4V.

Method Micro-Average Macro-Average

P R F1 P R F1

AXCELL 25.4 18.4 21.3 21.5 21.5 20.0
INSTRUCTE 20.1 20.8 20.5 20.3 23.1 19.6
INSTRUCTE+ 23.9 21.2 22.4 21.2 23.7 20.5

Table 12: Leaderboard extraction results on the PWC
LEADERBOARDS dataset.

ing AXCELL, we choose the best record based on1176

the leaderboard taxonomy criteria, e.g., retaining1177

higher values for "Accuracy" and lower ones for1178

"error rate".1179

Results We compare INSTRUCTE with AXCELL1180

on PWC LEADERBOARDS (Kardas et al., 2020),1181

the largest dataset for leaderboard extraction. For1182

INSTRUCTE, we use code-davinci-002 given its1183

excellent performance on SCHEMA-TO-JSON. Ta-1184

ble 12 presents the results of both methods. We1185

can see that INSTRUCTE achieves competitive per-1186

formance compared to the supervised AXCELL,1187

highlighting the efficacy of our proposed approach.1188

When we enhance INSTRUCTE with AXCELL’s1189

cell selection capabilities to create INSTRUCTE+,1190

it outperforms AXCELL, demonstrating the promis-1191

ing potential of combining these two approaches.1192
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