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ABSTRACT

Graph super-resolution is an underexplored yet highly relevant research direction
that circumvents the need for costly and time-consuming data collection, prepa-
ration, and storage. This makes it especially desirable for resource-constrained
fields such as the medical domain. Existing work on graph super-resolution lever-
ages graph neural networks (GNNs) and achieves impressive results. However,
we note two major limitations in the current model design: (1) It violates the un-
derlying graph structure when increasing the number of nodes, and (2) it relies
heavily on node representation learning, which has limited capacity to accurately
model edges. To address these limitations, we propose two novel frameworks: (1)
Bi-SR, which performs structure-aware node super-resolution, and (2) DEFEND,
which focuses on edge representation learning for enhanced edge modeling. We
supplement our work with rigorous theoretical analysis and conduct extensive ex-
periments on simulated and real-world datasets covering diverse graph topologies
and low-to-high resolution relationships. The results demonstrate substantial im-
provements across all experiments, highlighting the potential of both frameworks
for graph super-resolution tasks.

1 INTRODUCTION

High-resolution (HR) datasets are crucial for accurate analysis and information processing. How-
ever, acquiring HR datasets is resource-intensive, necessitating the development of super-resolution
techniques to enhance the quality of easily accessible low-resolution (LR) datasets. Consequently,
super-resolution has been extensively studied for images, and numerous traditional and deep learn-
ing methods have been developed to tackle this challenge (Dong et al., [2015} |Greenspan, 2009;
Lu et all [2019; |Wang et al.,|2022). While images form a significant class of datasets, many real-
world problems are naturally and effectively represented using relational structures such as graphs.
Examples include traffic flows, molecular structures, brain connectivity, and social interactions.

Despite the ubiquity of graph-structured datasets, graph super-resolution remains underexplored.
Unlike images, the LR and HR graphs lack a hierarchical or local relationship, which forms a critical
limitation in model design. Considering that the basic building blocks of an image are pixels, locality
of image super-resolution allows the use of the de-convolution operator (Zeiler et al., 2010) to easily
increase the number of pixels or the size of the image. Similarly for graphs, nodes form the basic
building blocks, and an unpooling operation (Gao & Ji, 2019) has been defined to increase the
number of nodes or the overall graph size. However, this operation is overly simplistic, highly
localized, and requires the connectivity information of the HR graph as input, making it unsuitable
for graph super-resolution. Moreover, the lack of hierarchy leads to a significant distributional shift
between LR and HR graphs, further amplifying the complexity of graph super-resolution tasks.

Although challenging, graph super-resolution is a highly relevant task, especially in the field of net-
work neuroscience. The connectivity strength between different regions of the brain can be encoded
as a brain graph, commonly known as a connectome. Various studies show that HR connectomes
lead to better neural fingerprinting and behavior prediction (Tian et al) 2021} Hayasaka & Lauri-
enti, 2010; [Zalesky et al., |2010; [Finn et al., 2015; |Cengiz & Rekikl [2019). However, brain graphs
are typically dense and computationally intensive to collect, process, and store, even small graphs,
sometimes requiring gigabytes per individual (Tian et al.| 2021)). Therefore, deep learning methods
for lightweight, on-the-fly calculation of HR brain graphs are advantageous.
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Recently, graph neural networks (GNNs) have emerged as de facto deep learning methods to process
graph-structured datasets (Zhou et al., |2020; Bronstein et al.l 2017 [Wang et al.l 2021) and have
naturally been extended for graph super-resolution. Even though they achieve impressive results,
we note two major limitations: (1) The operation used to increase the number of nodes relies on a
simple linear algebraic technique that maps LR feature dimensions to HR nodes, ignoring the graph
structure of the problem. (2) Since most GNNs perform node representation learning, the models use
computationally intensive message-passing layers to learn a single node feature capable of encoding
all incident edges. These layers are not only unscalable for larger graphs but, by predominately
operating in the node space, offer limited capacity to learn graph topology. Combined, these form a
significant research gap in graph super-resolution.

The topological limitation presents a serious bottleneck, particularly for applications in network
neuroscience. Numerous studies (Pereira et al., 2015; [2016; [Khazaee et al., 2015 Nigro et al.,
2022; Mijalkov et al.,|2017) have shown that brain graph topology plays a central role in correctly
identifying the onset and existence of various neurodegenerative disorders, including the two most
frequent ones: Alzheimer’s disease (AD) and Parkinson’s disease (PD). Notably, |Pereira et al.|(2016)
observes that different stages of AD show decreasing path length and mean clustering compared to
the control group. Similarly, Pereira et al. (2015) analyzes topological measures like clustering
coefficient, characteristic path length, and small-worldness from 3T MRI data, observing aberrant
values are for early PD patients. Finally, |Nigro et al.[(2022) shows a correlation between the loss of
hubs in certain brain regions and the emergence of more hubs in others for frontotemporal dementia.

Our Contributions: Motivated by above findings, we propose two new frameworks to tackle
both limitations of existing graph super-resolution methods: Bi-SR (Bipartite Graph for Super-
Resolution) and DEFEND (Dual Graphs for Edge Feature Learning and Detection). Bi-SR super-
resolves nodes through bipartite connections between LR and HR nodes in a way that respects the
underlying graph structure of the problem. DEFEND employs a dual graph formulation that maps
edges to dual nodes and directly performs edge representation learning using simple GNN layers.
We provide comprehensive theoretical analysis to justify the design of our frameworks and substan-
tiate claims regarding their utility. We also conduct extensive experimentation across different graph
topologies and LR-HR relationships to showcase performance improvements from both frameworks.

Related Work: While the research on graph super-resolution is scarce, few foundational works
have made notable contributions. |Isallari & Rekik| (2021) introduced a graph U-Net architecture
(Gao & Ji, [2019), incorporating a hierarchical structure and a graph Laplacian operator for up-
sampling LR brain graphs (Tanaka, [2018). [Pala et al.| (2021)) accelerated model training by using
representation template graphs at both low and high resolutions as priors. [Mhiri et al.| (2021) em-
ployed NNConv layers (Simonovsky & Komodakis, [2017) for global graph alignment and a graph-
GAN model (Wang et al.,[2018) to generate HR connectomes. However, this state-of-the-art model
struggles with dense brain graphs, often resulting in out-of-memory (OOM) errors due to the com-
putational complexity of NNConv layers. Finally, Monti et al|(2018)) uses a similar dual graph
formulation to learn attention weights in GAT layers but differs from our work as we are leveraging
the dual graphs for direct edge feature learning in graph super-resolution.

2 PRELIMINARIES

2.1 GRAPH DATA STRUCTURE

Graphs are relational data structures defined by G = (V, €, A, X), where V is the set of nodes, £
represents edges as ordered/unordered pairs (v;,v;) s.t. v;,v; € V, A € R"*" is the adjacency
matrix capturing edge weights, and X € R"*? is the node feature matrix with n = |V| nodes and
d-dimensional features. In this work, we focus on simple undirected graphs, where A is symmetric
with Aij = Aji = e;; denoting the relationship strength between nodes v; and v;. For notational
convenience, we use X; to represent feature vector for node v;.

2.2 GRAPH SUPER-RESOLUTION

LetG, = Vi, &, A, X)) and G, = Vi, En, A, X3 represent the LR and HR graphs, respectively,
with G, obtained from Gy, via a degradation operator Deg with parameter § as G; = Deg(Gp;9).
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The goal of graph super-resolution is to approximate the HR graph Gn = (f)h, En, Ay, Xh) using a
super-resolution operator S with parameters 6 as:

Gn = S(G1;9) (D

Optimal parameters 6 are learned by minimizing some loss function E(Qh, Gr). Since there can
be multiple mappings S : G; — G minimizing £, having prior knowledge of Deg is beneficial.
However, unlike image super-resolution, where Deg operates locally and convolutional layers can
be used, graph super-resolution lacks locality, requiring a more complex S.

2.3 MESSAGE PASSING GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) (Zhou et al., |2020) are designed for graph-structured data, which,
unlike images, are irregular with no fixed node order or neighborhood size. Message Passing
Neural Networks (MPNNs) (Gilmer et al., 2017), a common GNN subclass, handle this irregu-
larity by iteratively updating node features based on messages from neighbors. Theoretically, let
G = (V,&,A,X0) be the input graph, where A is the adjacency matrix and X" the initial node
features. An L layer MPNN updates node features at layer [ via two key operations:

1. Neighborhood aggregation: z! = 5'x.™* + (1 3) > en al;x!7", where x| " and x " are
node features from the previous layer, A is the set of neighboring nodes for node 7, o} ; 1s the

importance of node j for node 7 and typically depends on xi_l and xé_l , and /3! balances the

node’s own features against the aggregated neighborhood message.

2. Node feature update: xﬁ» = fn(zé), where f,, is a universal function approximator.

This process, succinctly represented as: X = GNN,,,, (X%, A) is agnostic to the number of nodes,
neighborhood size, and node ordering, making GN N,,,,, equivariant to node permutations i.e X =
GNN,,,(PX°, PAPT) = PGNN,,,(X° A) = PX for permutation matrix P.

2.4 PROBLEM STATEMENT 1: STRUCTURE-AWARE SUPER-RESOLUTION

However, this method disrupts structural integrity by arbitrarily mapping LR feature dimensions
to HR nodes, akin to mapping image channels to pixels, thus losing data structure and failing to
support permutation-invariant applications. To address this, our work investigates structure-aware
alternatives that preserve the graph’s underlying structure, replacing the linear algebraic operator
Transpose(GN N, (X, A;)), aiming for a more faithful pixel-to-pixel-like mapping in graph pro-
cessing.

While numerous methods exist for learning node feature matrix X and structure A for graphs with
fixed number of nodes, graph super-resolution requires an operator that expands the number of

nodes from n; to ny. Existing work use a linear algebraic trick to predict Xh from X; € R™x*4,
First, a GNN maps X to nj-dimensional feature space as Xl = GNN,, (X;,A;), where GNN,,, :
R7™ %4 R™ 7% Then, its transpose initializes HR node feature matrix as X;, = X7, where X, €
R™» ™ “and could be used with any downstream task like predicting Ah or HR node classification.

Although effective, this method loses structural integrity by mapping LR feature dimensions to
HR nodes—analogous to arbitrarily mapping image channels to pixels, which violets data struc-
ture. It is also incompatible with downstream applications requiring node permutation invariance.
Therefore, we explore graph structure-aware alternatives to replace this linear algebraic operator
Transpose(GN N, (X;, A;)) s.t. its akin to mapping pixels to pixels in image processing.

2.5 PROBLEM STATEMENT 2: EDGE REPRESENTATION LEARNING

Traditional GNNs focus on node representation learning, encoding node feature matrix X =
GNN(X,A) into a feature space suitable for given task. For example, the learned feature space
for node clustering encodes similar nodes together while maximizes the distance between dissim-

ilar nodes. Edge weights in A are often derived by taking a dot product A = X - X7, under the
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assumption that a powerful enough GNN would capture all pairwise interactions with its neighbors
in a single node representation. However, even complex GNNs may fail to achieve this in practice.

Therefore, we hypothesize and later prove that an alternative approach based on edge representation
learning shows higher modeling capacity, allowing the use of simpler GNNs to achieve similar

or better performance. Formally, we aim to expand A = DotProduct(GNN(X,A)) to A =
fe(X, A), where f. is an arbitrary composition of other operators, including GNNs, edge space
transformations, etc., and has higher edge learning capacity than the dot product operator.

3 PROPOSED BI-SR FRAMEWORK

To tackle the structural limitation of the linear algebraic method from section [2.4] we introduce a
bipartite graph formulation which creates direct connections between low and high resolution nodes:

Bipartite Graph Formulation

Let G, = (V,&,4A)) and G, = (V3,,Er, Ap) be low and high resolution graphs. Let
n; = |Vi| and ny, = |V,|. We create a complete bipartite graph G, = (Vs, &, Ap) between
nodes in the low resolution and high resolution s.t.:

1. V, =V, UV, with |Vb| =n; + np
2. & = {(w,v)|w € Vi,v € V. } with || = ny X ny,

3. The adjacency matrix Ay is given as the block matrix:

A= (Pf’T 13’) @

where, 0 refers to zero matrices and B € R™ %" g t. all entries are 1.

\. J

Below are two ways to use this bipartite structure to learn HR node features X, from LR node
features X, where X; = GNN (X, A;) projects LR node features to a suitable space:

Linear Combination: This method flexibly initializes each HR node as a linear combination of LR
node features: X;, = W?X,. Here, W? € R"»*"™ are learnable parameters with qu indicating
the contribution of LR node ¢ to HR node p. This effectively learns unique values for each edge in
&y. Moreover, the node feature dimensions remain unchanged; if Xl € R™>di_then Xh € R xdr,

Message Passing: While linear combination offers flexibility, message passing intuitively leverages
graph structure. However, it requires initial node features for all nodes in V,. These are easily
initialized for LR nodes as X; € R™*% but no prior information is available for HR nodes. Let
these unknown HR features be X9 € R"» *di and let’s analyze the message passing update to devise
an initialization strategy: %, = f(x), + > ¢ N, OpgXqi), Where xp;, and x, are the pth and gth
row of X9 and X, respectively. Since Gy, is a complete bipartite graph, all HR nodes share the same
neighborhood NV, making xg ,, the sole differentiating term for oy, and the message passing update.
Therefore, any initialization of X must ensure unique embeddings for HR nodes to avoid feature
collapse and performance degradation on downstream tasks requiring individual node identification.

To this end, we randomly initialize X with values sampled from 2/(0,1). In high dimensional
feature space, by the law of large numbers (Hsu & Robbins, [1947), concentration of measure phe-
nomena 2001), and the Johnson-Lindenstrauss Lemma (Frankl & Macharal [1988), these
vectors are likely to be unique, have constant norm, and be almost equidistant. We use the same
X9 across all graphs and keep it fixed during training, effectively creating unique and consistent
positional encodings for HR nodes. Combining it all together, we get the following message passing
update:

Xy = (X)) = GNNy(X0, Ay) st X0 = (X 3)
Xy, Xh

where, GN N, : R(utnn)xdi _y Rutnn)xd’ ynplike linear combination, message passing allows
the node feature dimension to change.
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Node permutation invariance: In section[A.T] we prove that the linear algebraic and bipartite linear
combination techniques are not invariant to LR node permutation, while bipartitie message passing
is invariant.

3.1 REFINING HR NODE FEATURES

Our bipartite graph formulation initializes HR nodes directly from LR nodes but lacks interaction
among the HR nodes themselves. To address this, we refine X, by incorporating intra-graph in-
teractions using X, = GNNTefme(Xh,AZef), where GN N, pine @ R™*% s R™ %4 and
requires an adjacency matrix Azef € R X" ag input. Azef defines the HR computational do-
main, determining which nodes influence others during refinement. It differs from the predicted HR

connectivity A}, which is derived from X}, as a downstream task. Below, we explore two ways to
define this computational domain:

Fixed Computation Domain: A straightforward way is to assume a fully connected computational
domain, allowing each HR node to interact with all others. Therefore, Af‘f is defined as Azef =

1 —1I, where 1 € R™»*"» ig an all-ones matrix and I € R™»*"» is the identity matrix.
Learnable Computation Domain: Inspired by Zaripova et al.[(2023), we propose learning Ach by
generating additional HR node features X;ef . For bipartite linear combination: Xzef = er‘ff(l.

ref

1

ref
Xh
R™»*dres Using these features, we compute A}ff as:

For bipartite message passing: ( ) = GNNbJef(X&Ab) st. GNNpyes : Ruxd

At = (Xl x5 @
A = AT = AT o HA —0.5)

where, o is the sigmoid function and H () is the Heaviside step (1 if 2z > 0, 0 otherwise).

3.2 GNN ARCHITECTURE

In this section, we present our GNN architecture for graph super resolution, combining the above
techniques. Our super-resolution operator S predicts HR adjacency matrix A}, from the LR features
X and adjacency matrix A; as: A, =S8 (Xy, Ay; 0), where 0 represents learnable parameters. S
can be decomposed into four main components:

Part 1: Low resolution node representation learning

We first embed X into a feature space more conducive to our task using a Graph Transformer Block
(GTB), which consists of a Graph Transformer Layer followed by Graph Normalization (see section

B.2): X; = p(GTB;(X;, A;)), where p is the ReLU non-linearity.
Part 2: Super-resolving the number of nodes

We create HR node features from learned LR node features using one of three techniques:

1. Linear Algebraic method: X, = XlT

2. Bipartite Linear Combination: Xh = Wle

3. Bipartite Message Passing: X = p(GTBy( X(l) JAp))
Xp X,

where, W is a learnable weight matrix, X9 is the randomly initialized embedding for HR nodes,
and A, is the bipartite adjacency matrix.

Part 3: (Optional) High resolution node representation learning

To further refine the HR node features, we perform message passing on the HR graph using either
the fixed or learnable computational domain from section Xy, = p(GTB3(X), AFF))
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Part 4: Downstream application

Our primary application is predicting the HR connectivity matrix A, which is obtained by taking the
dot product of learned HR node features Xy, and scaling values to [0, 1] using 8: A, = B(X;, - XT)

Overall, this architecture flexibly combines various techniques to create a graph super-resolution
framework suitable for different problems and computational requirements.

4 PROPOSED DEFEND FRAMEWORK

To enhance the edge modeling capacity of S, we introduce a dual graph formulation which creates
an invertible mapping between edges of our HR graph and nodes of a newly created dual graph:

Dual Graph Formulation

Given a simple undirected graph G = (V, £, A), known as the primal graph, its dual graph
G = (V',&,A’)is given as follows:

1. Each edge (4, ) € £ in G corresponds to a node (4,j) € V' in G'.

2. Two dual nodes (4, j) and (k,1) in V'’ are connected by an edge in G’ if and only if the

corresponding edges in G share a common node i.e. the condition ¢ = k or ¢ = [ or
j =k or j = l1is satisfied.

3. Let p and ¢ be the indices of the dual nodes (i, 7) and (k,[) in V', respectively. Then,
the adjacency matrix A’ of the dual graph G’ is defined as A’,, = A’,, = 1 if and only
if (4, 7) and (k, 1) are connected as defined in 2. above; otherwise A’,, = A’,, = 0.

\. J

Above formulation retains all structural information of the primal graph. By treating edges as nodes,
it permits direct application of node-based GNN layers for edge representation learning. This for-
mulation can be extended to simple directed graphs by letting (¢,j) € &£ be an ordered set and
connecting dual nodes (%, j) and (k, ) if they share a common node and a common direction. The

resulting dual graphs are known as line (di)graphs or adjoint graphs in graph theory (Gross et al.,
[2018). For detailed computational analysis, please refer to section

4.1 THEORETICAL ANALYSIS

We present below for edge representation learning (see section[A.3.2)and [A.3.3for their proof):

Proposition 1: Message passing in the edge space is more effective at modeling edge features
compared to traditional message passing in the node space.

Corollary 1: Message passing in the edge space is more effective at learning graph topology com-
pared to traditional message passing in the node space.

4.2 GNN ARCHITECTURE

We introduce a dual graph operator D that complements the super-resolution operator S by refining
the connectivity matrix in the edge space via message passing on the HR dual graphs as A, =
D(S(Xi, Ay, 0),w), where w are parameters of D. D is decomposed into following parts:

Part 1: Primal to Dual Conversion

Let A, = S (X, Ay; 0) be the initial HR adjacency matrix predicted by S. Since the actual HR
graph is unknown, we initialize the dual graph using a fully connected HR graph § ,’: = (V,Jlc € }:, Ai)
to account for all possible edges. We then construct the corresponding dual graph g;zfual =
(Vilual | giual Adual) where each edge (i,7) € & maps to a node k € Vo via an invertible

mapping ¢. We initialize the dual graph’s feature matrix X§“% from A, as (X§!);, = (A},)ij.

Part 2: Edge Representation learning
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Using the GTB from section we perform message passing on the dual graph as: Xﬁ"“l =
B(p(GTB5(X{ual, Adual))) where p is the ReLU non-linearity and 3 is a scaling function.

Part 3: Dual to Primal Conversion

Finally, we convert the refined dual features Xflual back to the HR adjacency matrix A}, as follows:

A A {(Xi““l)k i#]

(An)ij = (An)ji = 3, il (5)

5 EXPERIMENTS

5.1 PHYSICS-INSPIRED DUMMY DATASET

To compare node v/s edge representation learning and empirically verify Proposition 1, we create
datasets based on interacting particle systems, where each particle represents a node and have some
mass and 2D position: DI (grid graph with random masses), D2 (random graph with uniform mass),
and D3 (random graph with random masses). Edge values are derived using different functions: E1
(inverse square law), E2 (asymmetric rational), E3 (symmetric quadratic), E4 (symmetric polyno-
mial), and E5 (asymmetric quadratic). Combined, they cover a broad spectrum of scenarios where
each representation learning framework succeeds/ struggles (see section [C.I). We evaluate them
using four models, two each for node and edge representation learning (see section and [ET]
for model description and experimental set-up, respectively). Table|l|and [2| summarizes our results
which are in line with expectations. For example, for EI1, node-based models outperform edge-
based ones on DI where edge value becomes dot product between masses, edge-based excel on D2
as inverse square term dominates, and both perform comparably on D3 where the dot product term
compensates inverse square (see section |F. 1| for detailed performance analysis).

Table 1: Test MAE between true and predicted edge value for E1 (inverse square law).

Dataset | Node Node Large Edge Edge Dual
D1 0.869 £ 0.032 1.136 £ 0.899 2.371 £ 2.087 1.565 £ 1.317
D2 41.176 £ 25.567 39.525 + 28.190 33.266 4+ 16.387 38.221 + 23.984
D3 13.499+9.805 9.012 £ 5.058 8.696 £+ 5.444 10.873 +5.928

Table 2: Test MAE between true and predicted edge value for D3 (random graph w/ random masses).

Edge Function | Node Node Large Edge Edge Dual
El 13.499+9.805  9.012+£5.058  8.696 +5.444  10.873 £5.928
E2 26.611 £9.176 26.304 +5.800 24.702 +6.480 26.991 + 10.280
E3 0.305 £ 0.014 0.325£0.037 0.196 £0.182 0.249 +0.073
E4 0.485 + 0.039 0.663 £ 0.391 0.640 £0.710 0.639 £0.275
E5 0.637 +0.036 0.898 £ 0.500 0.8214+0.934 0.779 £0.419

5.2 TRADITIONAL GRAPH GENERATION DATASET

To evaluate our GNN architectures across diverse graph topologies and LR-HR relationships, we
generate twelve simulated datasets using three traditional models: Stochastic Block Model (SBM)
for community structures, Barabdsi-Albert (BA) for scale-free networks, and Watts-Strogatz (WS)
for small-world graphs. These models simulate HR graphs while the corresponding LR graphs
are created using TopK pooling based on four node metrics metric;,px: Node Degree Centrality,
Betweenness Centrality, Clustering Coefficient, and Participation Coefficient (see section[C.2)).

We benchmark fourteen ablated versions (section [D.2) of our frameworks. Table [3| presents results
for the WS datasets, grouping models into six categories with top-performing results for each: LA
(Linear Algebraic Method), Bi-SR ¢ (Bipartite Linear Combination), Bi-SR 5; p (Bipartite Message
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Passing), and their variations with the dual graph operator D. See section [F.2] for detailed analysis
on all datasets. Despite deceptively simple scenarios (e.g., LR graphs missing clusters present in
HR graphs), our bipartite graph formulation consistently outperforms the linear algebraic method.
Specifically, Bi-SR s p outperforms Bi-SR;~ on BA and WS datasets, with both performing com-
parably on SBM. The dual graph operator D offers no additional improvement, possibly due to edge
representation learning’s limited advantage for small graphs where node based models may suffice.

Table 3: Test MAE on E;, for the WS datasets. Each columns gives a metric,o,k dataset.

Model \ Degree Betweenness Clustering Participation
LA 2.179 £0.132 2.070 £ 0.061 2.128 £ 0.053 2.104 £0.100
Bi-SR¢ 1.989 +0.006 2.007+0.012 2.002=+0.031 2.022+0.027
Bi-SRysp 1.998 +£0.020 2.002+0.005 1.994+0.030 2.010 +0.025
Dual LA 2.149 £0.011 2.879+£1.197  2.156 £0.027 2.206 £ 0.085
Dual Bi-SR ¢ 2.027 £ 0.040 2.007 £0.016 2.009 £ 0.024 2.303 £0.199
Dual Bi-SRy,p 2.022 +0.048 2.039 +£0.038 2.083 +0.122 2.041 4+ 0.049

5.3 BRAIN GRAPH DATASET

Using the publicly available SLIM dataset (Liu et al., 2017, we generate the LR-HR brain graph
pairs using Dosenbach parcellated and Shen parcellated functional connectomes, respectively (sec-
tion|C.3). We compare sixteen models: fourteen ablated versions of our frameworks, an adapted ver-
sion of the current state-of-the-art IMANGraphNet (Mhiri et al [2021) (modified to address OOM
error), and a new autoencoder baseline inspired by image super-resolution methods (section [D.3)).

Table 4: Performance on Brain Graph Dataset. Columns give test MAE across evaluation measures.

A, Betweenness Closeness Eigenvector

Model (10%) (10%) (10%) (10%)

IMAN dapted 1.725 +0.074 7.695 + 0.159 1.590 + 0.028 7.507 £ 0.096
AutoEncoder 1.381 £ 0.062 7.608 4+ 0.204 1.520 £ 0.025 7.179 + 0.083
LA 1.350 + 0.066 7.562 + 0.152 1.513 +0.033 7.155 +0.124
Bi-SR; ¢ 1.507 +0.051 7.693 +0.159 1.590 + 0.028 7.506 + 0.096
Bi-SRp 1.428 4+ 0.052 7.588 +0.156 1.551 +0.039 7.325 £ 0.127
Dual LA 1.458 +0.153 5.888 +£1.914 1.133 +0.442 7.360 £ 0.957
Dual Bi-SR ;¢ 1.5154+0.293 5.567 + 2.235 0.8124+0.123 6.736 +1.172
Dual Bi-SR;p 1.373 +£0.039 5.742+0.913 1.046 £0.128 6.379 +0.276
Model Degree Participation Clustering Small Worldness

(10%) (101 (10%) (10%)

IMAN dapted 54.778 +1.170 6.850 £+ 0.091 14.006 £+ 0.318 8.360 £+ 0.243
AutoEncoder 51.697 + 1.038 5.552 + 1.450 14.193 £ 0.437 8.260 £ 0.336
LA 51.555 + 1.458 5.255 £ 0.883 14.128 £ 0.286 8.126 £+ 0.289
Bi-SR;¢ 54.771 £ 1.170 6.836 £ 0.096 14.003 £ 0.318 8.350 £ 0.244
Bi-SRp 53.324 + 1.650 5.090 £ 0.837 13.916 £ 0.272 8.254 +0.243
Dual LA 38.991 + 13.900 3.401 £3.172 11.953 £5.235 5.873 £ 3.221
Dual Bi-SR;~ | 31.948 +5.635 1.330+0.159 7.779 +2.068 3.886 +1.847
Dual Bi-SR;p | 37.298 +2.567 1.440+0.233 10.714+2.245 5.322 +1.068

We evaluate performance across eight measures: the MAE between the true and predicted A, and
the MAE of seven topological metrics capturing different aspects of brain connectivity. As shown in
table[d} our dual graph formulation outperforms other methods across all topological metrics while
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being competitive on A; MAE. In the bipartite graph formulation, message passing outperforms
linear combination, but this performance difference diminishes on supplementing with D, possibly
because D provides a powerful and robust edge learning approach that uplifts the performance of lin-
ear combination models. Our bipartite graph formulation does not improve over the linear algebraic
method for this specific dataset. Finally, extensive sensitivity analysis (see section[F.4) indicates that
bipartite message passing is robust to variations in HR node initialization.

6 CONCLUSION

In this paper, we formalize graph super-resolution and tackle key limitations of existing work by
introducing two novel frameworks, Bi-SR and DEFEND. Bi-SR is the first known framework to
perform node super-resolution in a structurally consistent manner, while DEFEND provides a simple
graph reformulation to perform edge representation learning using traditional node-based GNNss.
Through extensive theoretical and empirical analysis, we demonstrate the superior performance and
versatility of these frameworks, especially to ensure topological fidelity in generated graphs. We
posit our work as general graph super-resolution frameworks. Therefore, as a future work, it would
be worthwhile to explore how these can be adopted and optimized for domain-specific applications.
Moreover, we observe that the relative performance of each framework depends on the scale of the
graph. Therefore, it would be interesting to perform scaling analysis to understand this trade-off.

7 REPRODUCIBILITY STATEMENT

The code for running all experiments is attached under supplementary material to facilitate repro-
ducibility. The appendix provides detailed proofs and derivations for all theoretical results, a com-
prehensive description of the data generation procedures for each dataset, the experimental setup,
and an in-depth analysis of the results.
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A THEORETICAL ANALYSIS

A.1 NODE PERMUTATION-INVARIANCE OF BI-SR

In this section, we compare the behavior of different super-resolution methods under the action of
node permutation on the LR graph G;. Recall from Section that the Graph Neural Networks
(GNNs5) considered in this work are node permutation equivariant, i.e.:

GNN(PX,PAPT) = P(GNN(X,A)) (6)

where, P is the node permutation matrix. When applying P € R™*™ to the LR nodes in G, it
changes the node feature matrix as follows:

X, = GNN(X;,A;) : prior to application of P @)
XP = GNN(PX;,PA;PT) =PX; : after applying P (8)

For brevity, let us denote the super-resolution process as:
X, = SRMethod(X;) )

Our aim is to analyze whether the SRM ethod is invariant to P i.e., whether the following condition
is satisfied: ) R R
XP = SRMethod(PX;) = X}, (10)

Now, let’s analyze different super-resolution techniques:

13
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Figure 3: Bipartite Graph Formulation

1. Linear Algebraic Method
Prior to application of P:

X, = X7F (1)
After applying P:
XP = (PX)" =XTPT £X, (12)
2. Bipartite Linear Combination
Prior to application of P:
X, = WX, (13)
After applying P:
XP = W'PX, £ X, (14)
3. Bipartite Message Passing
Prior to application of P:
X, = (Xl> = GNNy(XY,Ap) st X)= (Xé) (15)
Xh Xh

To analyze the effect of permutation, we first define the permutation matrix for the combined
bipartite graph G, as the block diagonal matrix:

(5 9) (16)

where O are zero matrices of appropriate dimensions and I € R™»*"» ig the identity matrix.
This is equivalent to permuting the LR nodes in G, according to P while keeping the HR nodes
in G, unchanged. Therefore, after applying P:

X} = GNN(P,XY,P,A,P!) = P, X, (17)

p_ (XP\ X\ (P o0\ /X;\ _[(PX,
() om ) -6 D) (K)o

From above, we can conclude that the linear algebraic and bipartite linear combination techniques
are not invariant to LR node permutation, while the bipartite message passing method is invariant.
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(a) Primal Graph

2

(b) Dual Graph

Figure 4: Example of a primal graph and its corresponding dual graph.
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A.2 COMPUTATIONAL PROPERTIES OF DUAL GRAPH FORMULATION

Sparsity: Let n = |V|. In the worst case, our primal graph G is fully connected and the number of
dual nodes grows quadratically: [V'| = |£] = n(n — 1)/2. Since there are a maximum of (n — 1)
edges originating from each node ¢ € V, each edge (¢, j) € £ has at most m = 2(n — 2) neighbors
in the dual graph G’. This results in a maximum of || = |E|m/2 = n(n — 1)(n — 2)/2 dual
edges, where the factor of 2 corrects double counting. Using this, we calculate the sparsity for dual
adjacency matrix A’ as:

) 2 x |&' 4(n — 2)
>1- =1- 1
sparsity > e n(n—1) (19)

As seen in ﬁgure this results in highly sparse dual graphs G’ with worst case sparsity > 90% for
n > 39. This allows us to leverage the in-built sparse matrix optimization in many deep learning
libraries and significantly limit computational requirements.

100 4

90 A

80 A

70 A

60 A

Sparcity of the dual graph (%)

50 A

40 A

0 50 100 150 200 250 300
Number of nodes in the primal graph

Figure 5: Worst case sparsity for dual graphs

Receptive field: As shown in figure[6] dual graphs have the same receptive field as primal graphs.
However, they require half as many message passing operations as primal graphs to learn edge
values. This results in a further reduction in computational requirement as message passing is an
expensive operation.

Dual node feature vectors: Let x; and x; be node feature vectors for ¢, j € V. We initialize the
node feature vector for dual node (i,7) € V' as ef; = h(x;,X;), where h is an arbitrary function
acting on vectors. The most common form of A is the concatenation operator ||. As it is asymmetric,
it is more suitable for directed graphs. For undirected graphs, a symmetric h could be used such as
vector summation, element wise product, dot product, etc.

A.3 EDGE REPRESENTATION LEARNING

A.3.1 UNIVERSAL FUNCTION APPROXIMATOR

A universal function approximator is a mathematical model capable of representing any continuous
function to arbitrary accuracy, given sufficient resources. |Hornik et al. (1989) demonstrated that

multilayer feedforward networks possess this universal approximation property. We note the below
lemma for universal function approximators:

16
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1-hop node
neighborhood

2-hop node
neighborhood

(a) Receptive field for node-based message passing

1-hop edge
neighborhood

2-hop edge
neighborhood

(b) Receptive field for edge-based message passing

Figure 6: Receptive fields for message passing in the node and edge space.
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A universal function approximator can be decomposed into a composition of multiple uni-
versal function approximators:

From this lemma, we derive the following corollary:

Corollary 2

The concatenation of outputs from universal function approximators applied to separate in-
puts forms a subset of the output produced by applying a universal function approximator to
the concatenated inputs:

Funi (Y1) = Fui (i (Y1) 2 [fidni GO foni ()] 21

where || represents the concatenation operator.

Proof of Corollary 2: Let x € R% and y € R% be two input vectors. Consider universal function
approximators f. . and f2 . acting on R%*+dv while f7 . acts on R% and f2 . acts on R%.
Restricting f2,, to functions that apply f3 . to the first d, dimensions gives:

i (XIY]) 2 [fins (OIly) (22)
Restricting f,,; to functions that apply f2 , to the last d,, dimensions gives:
wni (WD) 2 (W1 i (3)] (23)
Finally, combining these results:
ani (Fani (XKYD)) 2 [fini (O fimi (7)) (24)

A.3.2 PROPOSITION

We propose the following for our edge representation learning framework:

Proposition 1

Message passing in the edge space is more effective at modeling edge features compared to
traditional message passing in the node space.

Proof of Proposition 1:
Traditional Message Passing in the node space: Recall from section [2.3] that traditional message-
passing in the node space consists of two key components:

1. Neighborhood aggregation:
i =p'x "+ (1= 61 Y alxi = gn({x ) (25)
JEN;

2. Node feature update:
X; = fo(2t) = fr o gn({x; Iw) (26)

By letting f,, be a universal function approximator, we achieve a maximally powerful MPNN that
generalizes to a wide range of GNN architectures, including GIN 2018), GAT
i

2017), and Graph Transformers (Shi et al.,2020). For brevity, let x; = x/ ™, %; = x}, {x;}n
be the set containing the feature vectors for node ¢ and all its neighbors, and f;"? = f,, o g2. Then,

the message passing update can be re-written as:

Xi = i ({xitwn) 27)

18
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To learn edge features, we usually encode node features in a dot product space where the dot product
corresponds to the edge feature value. Therefore:

€ij = Xi - X; = [ ({xijw) - £ ({%5 ) (28)
Message Passing in the edge space: For edge representation learning, let’s initialize edge feature
vectors as egj = [x;]|x;], as is common practice. The message passing formulation for edges is then
given as:

1. Neighborhood aggregation:
2y = By + (1= B)[ D apamelh + D ageiel

kEN; LEN;
o . (29)
+ Z Qi) (i) €5 T Z O‘(ij)(jr)ejr)]
seEN; TGNJ'
2. Edge feature update:
&j = fe(zij) (30)

where f. is a universal function approximator.

Relationship between node space and edge space message passing: Expanding e - and simplifying
equation 29

&ij = fe(BIxillx;]+ (1= B D awymXillxe] + Y i xillx]

kEN; lEN;; 31)

+ > e sl kil + D agen [xillxD)))

sEN; reN;
& = fo([(crx; + cjlxj + Z chX) + Z c1x;)
keN; lEN;
2 2 2 2 . (32)
l(eFxi + cix; + > cixp + Y cix)))
keN; ZE./\/'J'

i = fe(lgt (=i, x5, {xi b, {x5 301195 (x5, x5, {xi}v, {x; 1)) (33)

Letbgf“b C g¢ and g3"* C g9 be subsets of aggregation functions that zero out some inputs s.t.
Su

g3 (w, 2y, 2) = gi®(y) and g5* (w, z,y, z) = g5"(2). Then:
&ij = fel[g7 (xi, x5, {xi fars {x; Ia0)l |92 (%15 x5, {xi b, {x530)])
&i; 2 fellgr™ ({xitar)llgs™ ({x, 1))
Applying Lemma 1:
Fe(lg7 " (=i lgs* ({x 1)) = £l o 20 F2 (g8 (it llgs ™ ({x53a)])  (35)

(34)

Applying Corollary 1:
feo 2o f2Igr ({xida)llgs" ({2 ha)]) 2 2 ([Fe 0 i ({xidm)IIfE 0 95" ({x30)]) - (36)
Let fPL = f% 0 g5 and f7'7% = f5 0 g, then:
FE(FE o g™ (xidn)IFE 0 g5™ (i 3an)]) = Lo (TP ({2 ({x3a)))) - (BD)

As fl is a universal function approximator, it can represent the function f([x||y]) = z-y. Therefore:

Fe (U {2 ({30 2 S ({xidn)) - FEP2({x530) (38)

If we restrict f7*P! and fP? s.t. fPL = fP2 = f7P we get:

P {xadn) - FIPP (x5 30)) 2 P ({xad ) - £ ({x53w)) (39)
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The right hand side is similar to the node space message passing equation 28] Combining it all
together, we get:

fe(zig) 2 L (UF P ({xnDIFEP2 ({3 3a))]) 2 FrP({xid) - S (xdn) - (40)

Thus, we have shown that message passing in the edge space is at least as powerful as, and potentially
more powerful than, traditional message passing in the node space for the task of learning edge
features.

A.3.3 COROLLARY

We derive below corollary for our edge representation learning framework:

Message passing in the edge space is more effective at learning graph topology compared to
traditional message passing in the node space.

Proof of Corollary 1: Graph topology can be succinctly represented by the adjacency matrix A.
Let A;; = é;;. Then, our corollary follows directly from Proposition 1.

B GNN ARCHITECTURE

B.1 GRAPH TRANSFORMER LAYER

Graph transformer layer extends the self-attention mechanism to graph data structure. Assuming H
attention heads, the representation for node ¢ is updated as:

xt = Wolzt [|]7]]...I| "]
Zi h l 1 4 Z 1J Wh l 1 4 WQA”)
JEN: (41)
N (Wh - 1) (Wh -1 WgAzj)
a;; = softmax \/E

where, || is the concatenation operator, d is the dimension of xé_l, and {Wh|k € {1,2,...,6},h €
{1,2, ..., H}} UW| are learnable parameters. We chose graph transformer as our primary message
passing layer since the learned node features are more expressive than GCNConv (Kipf & Welling}
while being more computationally efficient than NNConv (Simonovsky & Komodakis, 2017),
two widely used layers in graph super-resolution.

B.2 GRAPH TRANSFORMER BLOCK

Our architecture utilizes the Graph Transformer Layer (GTL) defined in section [B.1] as the primary
message passing mechanism. Each GTL is followed by Graph Normalization (GraphNorm) to sta-
bilize and accelerate training. We define this combined operation as the Graph Transformer Block
(GTB):

GTB = GraphNorm(GTL(-)) 42)

The GTB serves as the foundation for all GNNSs in this work.

C DATA GENERATION

C.1 PHYSICS-INSPIRED DUMMY DATASET

In this work, we presented our edge representation learning framework and proposed theoretical
justification for why edge space computations are more effective than node space computations to
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Figure 7: Overview of Part 2 (Super-resolving the number of nodes) and Part 3 (HR node represen-
tation learning) for the super-resolution operator S.

21



Under review as a conference paper at ICLR 2025

predict edge features. To empirically evaluate this claim, we simulate a dataset inspired by interact-
ing particle systems in Physics. Specifically, we initialize a set of particles in 2D space and assign
them masses. We then assume each particle to be a node in a graph and initialize the node feature
vector as a combination of mass and position i.e. for the i*" particle, its node feature vector x; is
[ms, z;,y;]. We then create edges between these nodes based on some heuristic. Finally, we assign
each edge a value which follows the inverse square law:

E1: Inverse square law

Gmimj
€ij = 2
Tij (43)
5 = (@i — x5)? + (i — y;)°
We hypothesize that node representation learning models may be able to easily model the dot prod-
uct term m;m,; while struggling to model the inverse distance term 1/ rfj which varies a lot and
necessitates encoding the relative distance to each neighbor individually.

There are two variables for each particle: the mass m,; and the position (z;, y;). This gives us three
non-trivial datasets:

* D1: Grid graph with random masses

Particles are laid out uniformly on a square grid with the masses drawn randomly from the
uniform distribution m; ~ U(0,1). As its a grid graph, we keep r;; = 1.0 for all edges.
Therefore, e;; o< m;m;, and we expect the node representation learning model to perform well
as they essentially perform dot product between learned node features to predict e;;.

* D2: Random geometric graph with uniform mass
Particle positions are sampled uniformly from a unit square, and two nodes are connected if the
distance between them is less than a given threshold ¢. Moreover, we keep m; = 1.0 for all
nodes to isolate the impact of distances. We expect the edge representation learning model to
perform better as the edge values only depend on the relative distance between the nodes.

* D3: Random geometric graph with random mass

This provides a general case of the random geometric graphs in D2 with m; ~ 4(0,1). This
represents a more realistic graph setting with multiple competing components s.t. the edge value
depends both on the dot product of the masses and the relative distance.

While inverse square law provides an edge function that is difficult to model, we supplement our
analysis with additional edge functions that highlight different aspects of node v/s edge representa-
tion learning:
* E2: Asymmetric rational function
Am; + Bm;
€ij = —5 5 (44)

The denominator depends on an asymmetric combination of absolute node positions, making it
difficult to encode within a single node feature. In contrast, the numerator, while also asymmet-
ric, should be easier to encode as it denotes a simple linear combination.

» E3: Symmetric quadratic function
eij = (i — x5)% + (i — y)° + (ms —my)? (45)

This represents the squared Euclidean distance between the two node features. Unlike the ratio-
nal functions E1 and E2, we expect node based models to struggle since there are no compen-
sating numerator terms to bring down the total loss.

* E4: Symmetric polynomial function
€ij = TiYim; + Ty;m; + Ty; + Ty, (46)

It may be possible to approximate this equation as a dot product between individual node features
by projecting the node features to a higher dimensional sparse feature space. Therefore, we do
not expect the node based models to struggle.
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» E5: Asymmetric quadratic function
€ = m? + yf + m? “mn

Even though this is asymmetric, it may possible to learn this function similar to E4 by projecting
the node features to non-linear higher dimensional space. Therefore, we do not expect the node
based models to struggle.

C.2 TRADITIONAL GRAPH SIMULATION DATASET
C.2.1 HR GRAPH GENERATION

We employ three widely recognized graph generation models to create our HR graphs: (1) Stochas-
tic Block Model (SBM) (Lee & Wilkinson, [2019) that generates community or clustered graphs;
(2)Barabési-Albert (BA) Model (Barabasi & Albert, [1999) that produces scale-free graphs; (3)
Watts-Strogatz (WS) Model (Watts & Strogatz, [1998) that creates small-world graphs. Below, we
discuss each of these models in detail:

* Stochastic Block Model (SBM): The SBM generates graphs by partitioning nodes into multiple
clusters and probabilistically connecting them. The generation process requires two key inputs:

1. The number of nodes in each cluster: ¢ = [n1, no, ..., n.], where c is the number of clusters
c
and ) ;_n; = V| =n.
2. The connection probability matrix: P**™ € R¢*¢, where P3?™ defines the probability
of connecting nodes in cluster ¢ with nodes in cluster j. The intra cluster probabilities
Pfjl-’m li=; are usually higher than inter cluster probabilities Pfjl-’m i to create clusters.

While the generated graphs are already stochastic, we further randomize above inputs to ensure a
topologicglly diverse dataset. For this, we samplg c from [¢min, Cmaz], initialize Pfjl-’m |i=; from
[pi,’jf;;a, pif}flg"] and initialize pym Ji; from [pinter pinter] Moreover, we use the multinomial
distribution to partition the n nodes into c clusters to ensure that no cluster ends up with very few
nodes. Algorithm[2]provides the pseudocode for our simulation process and Figure[8a]shows the

variation of generated graphs with P0

* Barabdsi-Albert (BA) Model: The BA model generates scale-free graphs by introducing prefer-
ential attachment during network growth. This means that each incoming node connects to an
existing node with a probability based on its current degree. Therefore, nodes created early on
are more likely to be connected to new nodes and continue growing into hubs. The simulated
graphs show power-law degree distribution and mimic many real-world datasets such as social
interactions, internet connectivity, etc. The generation process requires two user inputs:

1. The total number of nodes in the graph n

2. The number of edges m to attach from each new node to existing nodes while growing the
network

Similar to the SBM model, this process is also stochastic and leads to different graphs. However,
to ensure a higher topological diversity, we randomly sample m from the range [17,in,, Mmaq]-
Algorithm [3|provides the pseudocode for our simulation process and Figure [8b]shows the varia-
tion in graph structure with m.

* Watts-Strogatz (WS) Model: The WS model generates small-world graphs that possess high
clustering and short average path lengths. This is done by initializing the graphs as a regular
ring lattice where every node is connected to its k nearest neighbors. Thereafter, it rewires
each edge with a probability p to introduce randomness. Small-world graphs provide a good
mathematical model for numerous natural graphs such as neural networks and power grids where
high clustering reflects high activity regions while short path lengths correspond to rapid signal
transmission. The generation process requires three inputs:

1. The total number of nodes in the graph n
2. The number of nearest neighbor connections k for the regular ring lattice
3. The rewiring probability p

As before, we supplement topological diversity of our graphs by randomizing above inputs. This
involves sampling k from [ky,ip, Kmaz] to control initial lattice structure and sampling p from
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[Pmin, Pmaz] to control rewiring strength. Algorithm ] gives the pseudocode for our simulation
process and Figure [8c|shows the variation with p.

Algorithm 1 Generate LR graph and compute node and edge features

1: Input: V}“ gh, A}“ metrictopK
2: Output: (G, Gp) > (LR, HR) attributed graph pair
3: X, = Node2Vec(Ay,) > Generate node feature matrix for HR graph
4: Ej, = PearsonCorr(Xp,) > Generate edge feature tensor for HR graph
5: Gh = (Vh: Eny Ap, Xi, Ep)
6: Vi, &, Ay = TopK (G, metriciopr) > Create LR graph using TopK pooling
7: X; = Node2Vec(A;) > Generate node feature matrix for LR graph
8: E; = PearsonCorr(X;) > Generate edge feature tensor for LR graph
9: G =WV,&, AL XL E)

10: return (G;, Gp,)

Algorithm 2 Data simulation using Stochastic Block Model (SBM)

. o X inter inter ,intra ,intra -
1: Illpllt. Na Ty Cmins Cmavamin apmam 7pmin 7pmax ,m@t?”ZCtopK

2: Output: data > List of (LR, HR) graph pairs
3: data + |] > Initialize an empty list to store graph pairs
4: for [ < 1to N do
5 ¢ ~U(Cmins Cmaz) > Initialize the number of clusters in this graph
6: ¢ ~ Multinomial(n —¢,1/c) + 1 > Distribute n nodes into ¢ clusters
7 Psm < 0 € Rex¢ > Initialize the connection probability matrix
8: for i < 1tocdo
9: for j < 1tocdo
10: if i = j then
11: P~ U(pinine, pintne) > Assign intra cluster probability
12: else
13: Pl ~ U(pinter, pinier) > Assign inter cluster probability
14: end if
15: end for
16: end for
17: Vi, En, A, = SBM(c,P) > Create HR graph structure
18: (G, Gn) = Algorithm1(Vy,, Ex, Ap, metriciopk) > Generate LR-HR graph pair
19: data.append((G;, Gr))
20: end for

21: return data

Algorithm 3 Data simulation using Barabasi-Albert (BA) Model

1: Input: N, n, Mupin, Mmaz, MEITiCropk

2: QOutput: data > List of (LR, HR) graph pairs
3: data + ] > Initialize an empty list to store graph pairs
4: for [ < 1to N do

5: m ~ U Mumin, Mimaz) > Initialize the number of edges from new nodes
6: Gn = BA(n,m) > Create HR graph
7: (G, Gn) = Algorithm1(Vy,, &y, Ap, metriciopk) > Generate LR-HR graph pair
8: end for

9: return data

C.2.2 LR GRAPH GENERATION

To create LR graphs from the HR graphs, we use the TopK pooling technique (Cangea et al.,[2018]).
For this, we calculate a node metric metricopx for our HR nodes and sort them in decreasing order
of this metric. After this, we retain the top K nodes and the connections between to generate the cor-
responding LR graph. In our experiments, we use four different topological metrics as metriciopi :
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Figure 8: Sample graphs from different data generation processes and their variation with input
parameters
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Algorithm 4 Data simulation using Watts Strogatz (WS) Model

1: Input: Na n, kmina kmaxv Pmin, Pmaz metTiCtOpK
2: Output: data > List of (LR, HR) graph pairs
3: data + [ > Initialize an empty list to store graph pairs
4: for[ < 1to N do
5: k ~U(kmin, kmaz) > Initialize the number of nearest neighbors
6: p ~ U(Pmin, Pmaz) > Initialize the rewiring probability
7: Gn =WS(n,k,p) > Create HR graph
8: Vi, Eny Ap = Gp = WS(n, k,p) > Create HR graph structure
9: (Gi, Grn) = Algorithm1(Vy, &y, Ay, metriciopi) > Generate LR-HR graph pair
10: data.append((G;, Gr))
11: end for

: return data

—_
N

(1) Node Degree Centrality (Degree), (2) Betweenness Centrality (Betweenness), (3) Clustering Co-
efficient (Clustering), (4) Participation Coefficient (Participation). These metrics were selected as
they give rise to different HR-LR graph relationships (see Figure ), allowing us to cover a diverse
set of real-world scenarios.

C.2.3 NODE FEATURE GENERATION

To generate the initial node feature matrix X for our graphs, we use the Node2Vec model (Grover
& Leskovec, [2016). The Node2Vec model combines random walks with the Word2Vec algorithm
(Mikolov, [2013) to generate node embeddings. Specifically, it generates a set of random walks
following both the breadth first search (BFS) approach (Bundy & Wallen| [1984) and the depth first
search (DFS) approach (Tarjan, [1972). BFS explore nodes closer to the current node, capturing
local properties while DFS generates walks exploring nodes further away, capturing global graph
properties. Then, it treats each walk as a sentence and applies the Word2Vec model to generate our
final node feature vectors.

C.2.4 EDGE WEIGHT GENERATION

To facilitate edge weight prediction, we also generate the edge weighted matrix E € R™*™ for our
graphs. Each edge weight is computed as the Pearson correlation coefficient between incident node

feature vectors: Cou(X,. X,
ov(X;, X

E, = ——2 (48)
T a(Xi)a(X;)

where X; and X; are the feature vectors of incident nodes 7 and j, respectively.

C.3 BRAIN GRAPH DATASET

We use the publicly available Southwest University Longitudinal Imaging Multimodal (SLIM)
dataset (Liu et al., 2017), which provides a collection of structural, diffusion, and resting-state func-
tional magnetic resonance imaging (fMRI) data for 167 subjects. In addition to neuroimaging data,
the dataset also contains behavioral data, offering a multifaceted view of brain structure and func-
tion. This dataset is used to generate different brain connectivity matrices for each subject using
multi-step, complex, and computationally expensive pre-processing pipelines. The brain connectiv-
ity matrices vary widely in resolution and each represents a specific type of brain connectome, such
as the structural connectome which models anatomical connectivity or the functional connectome
which models neural activity between brain regions. Depending on how we parcellate the brain
into regions of interests (ROIs) or nodes, we obtain functional connectomes of different resolution.
Moreover, the brain connectivity matrices for these connectomes encode neural activity correlation
between different ROIs.

For our experiments, we generate LR-HR brain graph pairs using two such functional connectomes:
Dosenbach parcellated connectomes (Dosenbach et al.| 2010) with 160 ROIs as the LR graphs and
Shen parcellated connectomes (Shen et al.| [2013) with 268 ROIs as the HR graphs. Figure@]illus—
trate some sample LR-HR connectivity matrices for these connectomes, highlighting the topological
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Original Degree Betweeneness Clustering Participation

(a) Stochastic Block Model (SBM)

Original Degree Betweeneness Clustering

(b) Barabasi-Albert (BA) Model

Betweeneness Clustering Participation

LS}
P

(c) Watts-Strogatz (WS) Model

Figure 9: Variation of LR-HR graph pairs across different metric,opx: (1)Degree, (2)Betweenness,
(3)Clustering, (4)Participation. Column ’Original’ refers to a sample HR graph while others repre-
sent the corresponding LR graph. Also, top row in each subfigure show the graph structures while
bottom row show the adjacency matrices.
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diversity of our dataset. These connectivity matrices form the weighted adjacency matrices for our
for LR and HR graphs, denoted by A; and A}, respectively. Following the convention from previ-
ous work (Mhiri et all 2021)), we initialize our LR and HR node feature matrices as X; = A; and
Xp = Ayp.

LR Connectivity Matrices

HR Connectivity Matrices

Figure 10: Representative samples of connectivity matrices for our LR-HR brain graphs

D COMPARISON MODELS

D.1 PHYSICS-INSPIRED DUMMY DATASET

To evaluate our proposition, we create four simple models, two each for node and edge representa-
tion learning:

* Node Model: Inspired by the GIN layer (2018), we create a single layer MPNN that
updates node representation and predicts the edges as:

X = fnode(xi + Z Xj)
JjEN; (49)

where, f,04e s a universal function approximator modeled as a two-layer feed forward network
(FFN) Hornik et al.[(1989) s.t. froqe : R3 — R16 s R16,

* Node Large Model: Same as the above model but with a larger three-layer FEN as the universal
function approximator fyode iarge R3 i R'6 s R16 s R!. Although frode_large has larger
capacity, it projects node features to a single value in the last layer and thus may struggle for
equations that require dot product between larger feature vectors.

» Edge Model: Uses simple edge based computations that only depend on adjacent node features
as:
0
e, = [x]|x;
5 = [xll J}O (50)
€ij = fedge (eij)

where, || is the concatenation operator and feqg. is a three-layer FEN feq5. : R6 — R —
R!6 — R
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* Dual Edge Model: Involves message passing between the edges using our dual graph formula-
tion. Formally:

egj = [xil[x;]

€ij = fedge,dual(e?j + Z €, + Z € + Z €5 + Z ejr) Sy

keN; lGNj seEN; TGNj
where, fedge_duar 18 a three-layer FEN network feqge duar @ R® — R1® — R16 — R1

D.2 TRADITIONAL GRAPH SIMULATION DATASET

To benchmark our frameworks against the simulated datasets, we create two sets of ablated models:
(1) Seven models for the super-resolution operator S; (2) Seven models supplementing our models
from set one with the dual graph operator D. Below, we discuss the nomenclature used for the
models in the first set:

* LA: S with the linear algebraic method
* Bi-LC: S with the bipartite linear combination method

* Bi-LCyi;cq: S with the bipartite linear combination method and node refinement using fixed
computation domain

* Bi-LCjcqrneq: S with the bipartite linear combination method and node refinement using learned
computation domain

* Bi-MP: S with the bipartite message passing method

* Bi-MPy;,.q: S with the bipartite message passing method and node refinement using fixed
computation domain

* Bi-MP.;;ncq: S with the bipartite message passing method and node refinement using learned
computation domain

As the models in the second set simply use the dual graph operator D as an additional component, we
define the corresponding models as: Dual LA, Dual Bi-LC, Dual Bi-LC;ycq, Dual Bi-LCicorped,
Dual Bi-MP, Dual Bi-MP;,.q, and Dual Bi-MPcqrneq.

D.3 BRAIN GRAPH DATASET

To thoroughly evaluate our frameworks, we use the fourteen ablated models from section and
benchmark them against an adapted version of the current state of the art GNN model for graph
super-resolution and a newly created baseline:

* IMAN ,qqpteq: IMANGraphNet (Mhiri et al., 2021)) is the current state of the art GNN model
for graph super-resolution. However, it uses computationally expensive NNConv layers (Si-
monovsky & Komodakis,2017) and results in ‘Out-of-Memory’ error on our dataset. Therefore,
we create an adapted version of this model which linearly projects the node feature matrix X;
to a lower dimensional space before feeding it to the NNConv layers. Moreover, to maintain
dimensional consistency with the original model, we apply another linear projection to map the
outputs back to the higher dimensional space.

* Autoencoder: Inspired by the iterative up-and-down sampling methods in image super-
resolution (Haris et al., |2018), we propose an autoencoder model to capture the mutual de-
pendency of LR and HR graphs. Both encoder and decoder use the same GNN architecture as
our LA model but with the mappings reversed s.t. the encoder predicts HR graph from the LR
graph while the decoder maps the predicted HR graph back to the original LR graph. Finally,
the model is trained using the sum of reconstruction loss for both HR and LR graphs.

E EXPERIMENTAL SET-UP

E.1 PHYSICS-INSPIRED DUMMY DATASET

We conduct two sets of experiments, covering eight different scenarios: (1) three experiments with
fixed edge function EI and varying datasets D1, D2, and D3 (2) five experiments for fixed dataset
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D3 and varying edge functions E1, E2, E3, E4, and E5. For the first set of experiments with E1,
we fix G = 100.0, G = 1.0, and G = 1.0 for D1, D2, and D3 datasets, respectively. These G
values were selected empirically to ensure that the resulting edge values are not vanishingly small
or explodingly large. For the second set of experiments with D3, we fix G = 1.0 for EI and A = 10
and B = —7 for E2.

For each experiment, we randomly generate three datasets: train, val, and test. We use the train
dataset to train the models, val dataset to check for early stopping, and test dataset to report final
performance on the best model. All models are trained at least until a given number of warm up
epochs. Thereafter, we monitor validation loss and cease training early if it doesn’t improve for a
given number of epochs, called patience. Moreover, we repeat each experiment 15 times to account
for variation in the data generation process. All models are trained with MSE loss as it provides
a smoother loss landscape which is preferable for our simplistic setting. Finally, Table [5| provides
common hyper-parameters used across all experiments.

Table 5: Hyper-parameters for experiments with physics-inspired dummy dataset

Hyper-parameter type \ Hyper-parameter \ Value
Number of nodes 16
Number of train samples 128
Data Generation Number of val samples 32
Number of test samples 32
Connection threshold, t 0.3
Batch size 16
Learning rate 0.001
Model training Maximum number of epochs 300
Number of warmup epochs 10
Patience 15

E.2 TRADITIONAL GRAPH SIMULATION DATASET

Our objective is to predict the HR edge features E;, from the LR edge features E; under twelve
different scenarios covering three graph topology and four metrics for TopK pooling. We evaluate
each scenario using 3-fold cross validation. For each fold, we split the dataset into train, val, and
test. Similar to section [E.T] we use train dataset for model training, val dataset to determine early
stopping, and test dataset to report performance for that fold. We average this performance across all
folds to report final model performance. All models are trained with MAE loss between predicted
and true Ej,. Table[f| gives the hyper-parameters used for our experiments.

E.3 BRAIN GRAPH DATASET

Our objective is to predict the HR adjacency matrix Aj from the LR adjacency matrix A; and
analyze the performance across sixteen different models. We use the same experimental setting as
section but with some minor changes: (1) We perform categorical search on learning rate and
select the learning rate with the best performance for each model from [0.01, 0.005, 0.001]. (2) We
use the hyper-parameters given in Table[/|for model training and Graph Transformer Block (GTB).

Along with the MAE between the true and predicted Ay, we also measure the MAE between seven
topological measures: Betweenness Centrality (Betweenness), Closenness Centrality (Closenness),
Eigenvector Centrality (Eigenvector), Node Degree Centrality (Degree), Participation Centrality
(Participation), Clustering Coefficient (Clustering), and Small Worldness (Small Worldness). Each
one of these measures capture a different topological aspect of the connectome.

Node degree centrality measures the number of incident connections to a given node and serves as
an indirect measure of network resilience (Achard et al., 2006). Betweenness centrality measures
the fraction of shortest paths between all node pairs that pass through a given node and is useful for
detecting bridge nodes between disparate regions (Rubinov & Sporns} [2010). Closeness centrality
quantifies the mean distance between a given node and the rest of the network, indicating the speed
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Table 6: Hyper-parameters for experiments with simulated datasets

Hyper-parameter type | Hyper-parameter | Value
Batch size 16
Learning rate 0.001
Model training Maximum number of epochs 150
Number of warmup epochs 15
Patience 5
Number of hidden dims 16
GTB parameters Number of attention heads 4
Dropout 0.2
Number of samples 128
Data Generation Number of HR nodes, n 64
Number of LR nodes, K 32
Minimum number of clusters, cmin 2
Maximum number of clusters, Cpaz 5
Minimum intra connection probability, piir® 0.50

SBM t min
parameters Maximum intra connection probability, pfﬁég“ 0.60
Minimum inter connection probability, pjgfﬂ 0.01
Maximum inter connection probability, p!"ter 0.10
Minimum number of edges, Min 4
BA parameters Maximum number of edges, My qz 8
Minimum number of nearest neighbors, kin 4
Maximum number of nearest neighbors , kqz 8
WS parameters Minimum rewiring probability, Pmin 0.2
Maximum rewiring probability, Dyax 0.5
Node feature dimension 8
Length of HR random walks 51
Node2Vec parameters Length of LR random walks 26
Number of random walks 100

Table 7: Hyper-parameters for experiments with the brain graph dataset.

Hyper-parameter type \ Hyper-parameter \ Value
Batch size 16

Maximum number of epochs 300

Model training Number of warmup epochs 30
Patience 7

Number of hidden dims 32

GTB parameters Number of attention heads 4
Dropout 0.2

Dataset barameters Number of LR nodes 160
P Number of HR nodes 268
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of communication within the network. Eigenvector centrality assess the number of connections
to a given node, weighted by the centrality of its neighbors, and evaluates hierarchical influence
(Lorenzini et al., 2023)). Participation Coefficient and Clustering Coefficient measures modularity in
the network. The Participation Coefficient measures the diversity of intermodular interconnections
of individual nodes, while the Clustering Coefficient assesses the presence of cliques or clusters.
These metrics are important for evaluating brain network segregation and information processing
within specialized brain subsystems (Gamboa et al.,[2014). Finally, Small-worldness is defined by
the ratio between the characteristic path length and mean clustering coefficient (normalized by the
corresponding values calculated on random graphs). It supports both segregated/specialized and
distributed/integrated information processing (Watts & Strogatz, |1998).

F RESULTS

F.1 PHYSICS-INSPIRED DUMMY DATASET

From table[8|and[9] we observe that the performances are in line with expectation. In the first set of
experiments, we fix the edge function to EI and vary the datasets. EI represents the inverse square
law and should be easy to model using node based models when 7;; is constant. Consequently, both
node based models outperform edge based models on DI. However, EI is challenging to model
using dot product when it solely relies on 1/ rfj. As a result, both edge based models outperform the
node based ones on D2. For D3, the numerator seems to compensate for the error from denominator,
allowing node based models to achieve performance that is comparable to the edge based models.

Table 8: Test MAE between true and predicted edge value for EI (inverse square law) across D1
(grid graph with random masses), D2 (random graph with uniform mass), and D3 (random graph
with random masses) datasets. Bold underline and bold represent the best and second best model
across each row or dataset.

Dataset | Node Node Large Edge Edge Dual
D1 0.869 £0.032 1.136 +0.899 2.371 + 2.087 1.565 + 1.317
D2 41.176 £ 25.567 39.525 +28.190 33.266 +16.387 38.221 + 23.984
D3 13.499+9.805 9.012 £ 5.058 8.696 + 5.444 10.873 +5.928

In the second set of experiments, we use D3 as our dataset and vary the edge function. For both
E1 and E2, the compensatory effect between numerator and denominator terms takes place and the
node based models perform on par with their edge based counterparts. However, this compensatory
effect is absent in E3 leading to both node based models struggling and performing poorly. For E4
and E5, we anticipates the models to utilize higher dimensional sparse representations. Therefore,
models with the FFN projecting to a single value in the last layer tend to suffer. However, our
dual edge model is able to outperform the other edge model possibly due to its larger capacity and
corrections to the final edge value via message passing from other edges. For the other edge types,
this larger capacity and message passing operation seemed unhelpful and even counterproductive
possibly due to small dataset size and relatively simpler edge functions.

Finally, we would like to highlight some caveats in our experiment design. First, we observe a high
variance between runs and significant outliers (see Figure[TT). This may occur since our data gen-
eration is not controlled and could lead to a very large edge value when two particles are generated
closely. As our training objective is to minimize the MSE loss, this creates a bias in the model and
may lead to incorrect estimation of model performance. We tried to correct for this phenomena
by averaging performance across a larger number of runs. Second, the individual models have not
been tuned for best performance and the experiments only act as a proof of concept to highlight the
general trend.
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Figure 11: Performance variation across 15 runs for the D3 dataset. Random and uncontrolled data
generation causes high variance and outliers. However, as the experiments are run a large number of
times, the average performance (represented by A) is expected to be representative of the true model
performance.
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Table 9: Test MAE between true and predicted edge value for D3 (random graph with random
masses) dataset across E1 (inverse square law), E2 (asymmetric rational), E3 (symmetric quadratic),
E4 (symmetric polynomial), and ES (asymmetric quadratic) edge functions. Bold underline and
bold represent the best and second best models across each edge function.

Edge Function | Node Node Large Edge Edge Dual
El 13.499+9.805 9.012+£5.058  8.696 +5.444  10.873 £5.928
E2 26.611 £9.176 26.304 +5.800 24.702 +6.480 26.991 + 10.280
E3 0.305 £ 0.014 0.325£0.037 0.196 £0.182 0.249 +0.073
E4 0.485 + 0.039 0.663 £ 0.391 0.640 £0.710  0.639 £0.275
E5 0.637 +0.036 0.898 £ 0.500 0.8214+0.934 0.779 £0.419

F.2 TRADITIONAL GRAPH SIMULATION DATASET

We observe that the simulation scenarios are deceptively simple. For example, from figure Da]
notice that that there are 4 clusters in the HR graph yet only 3 in the LR graph for Degree. Such a
scenario would be challenging for our models to learn since this requires predicting HR edges for
the missing cluster with barely any nodes from that cluster in the LR graph. Still, we observe that
our bipartite graph formulation outperforms the linear algebraic method across all experiments.

From Table and[I2] we observe that bipartite message passing performs better than bipartite
linear combination across most of the scenarios. Bi-MP models clearly outperforms Bi-LC models
for BA and WS dataset while the performance is very close for the SBM dataset. This could be
possibly because linear combination provides a highly flexible approach that is useful for predicting
edges from the missing clusters while message passing doesn’t add much utility if no nodes from
the missing cluster are present. For WS and BA datasets, observe from figure [Ob] and Oc| that the
HR graph looks like an extrapolated version of each LR graph and thus, message passing may be
helpful to learn the underlying relationship between nodes. We also do not observe performance
gain from using our dual graph operator D. We suspect this to follow from the previous section
where we observed that edge based message passing does not provide additional utility for small
graphs where node based models may suffice.

Table 10: Test MAE for E;, on four SBM datasets. Columns refer to metricy,px datasets parti-
tioned between models with and without D. In each column, colors give the top 3 models while
bold + underline and bold gives the best and second best model for each partition.

Model \ Degree Betweenness Clustering Participation
LA | 2.84140.123 2.712 +0.204 2.591 £0.087  2.784 +0.062
Bi-LC 2.495 +0.109 2.603+0.021 2.463+0.061 2.570-+0.061
Bi-LC/ized 2.518 £0.119 2.626 +0.015 2.574 +0.091 2.578 £0.076
Bi-LCieqrned 2.595 +0.139 2.678 +0.049 2.574 +0.051 2.592 + 0.072
Bi-MP 2.548 +0.103 2.685 +0.030 2.494 +0.067  2.592 + 0.083
Bi-MP¢zcq 2.511+0.117 2.594+0.009 2.463+0.039 2.572+0.103
Bi-MP;cqrned 2.523 £0.123 2.659 4+ 0.066 2.553 £0.084 2.691 £ 0.090
Dual LA | 3.384£0.962 3.350 + 1.059 2.600 + 0.044 3.437+1.214
Dual Bi-LC 2558+ 0.136 2.637+0.028 2.511+0.063 2.994 + 0.721
Dual Bi-LC;zcq 3.286 £ 0.565 2.887 £ 0.307 2.615 +0.166 2.916 +0.132
Dual Bi-LCjeqrned 2.589 +0.150 3.404 £ 0.977 3.066 £ 0.600 2.750 £0.129
Dual Bi-MP 2.562 4+ 0.160 2.660 £+ 0.069 2.524+0.016 | 2.539 £+ 0.044
Dual Bi-MP f;3cq 2.601 +0.119 2.668 +0.032 2.676 +0.143 2.625 +0.019
Dual Bi-MPjegrneq | 2.543 £0.093 2.629 £0.017 2.493 £+ 0.088 2.694 £ 0.220
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Table 11: Test MAE for Ej;, on four BA datasets. Columns refer to metric,px datasets parti-
tioned between models with and without D. In each column, colors give the top 3 models while
bold + underline and bold gives the best and second best model for each partition.

Model \ Degree Betweenness Clustering Participation
LA | 1.761+0.107  2.16240.364  1.813+£0.075 1.747 £ 0.055
Bi-LC 1.749 +0.033 1.789 £ 0.038 1.787 + 0.054 1.752 £ 0.028
Bi-LC¢ized 1.738 £ 0.018 1.767 + 0.022 1.814+0.054 1.728 £ 0.037
Bi-LCiearned 1.745 +0.018 1.775 £+ 0.058 1.833 £ 0.028 1.743 £ 0.044
Bi-MP 1.721 £0.026 1.750+0.038 1.753 £0.065 1.726 + 0.080
Bi-MP;zeq 1.705 £ 0.019 1.795+0.040 = 1.748 £ 0.093 1.758 £ 0.029
Bi-MPcqrned 1.789 4+ 0.041 1.780 £ 0.039 1.763 £ 0.052 1.761 + 0.007
Dual LA | 1.84540.047  1.894 £ 0.050 1.861 £ 0.096 1.800 £ 0.031
Dual Bi-LC 1.775 + 0.035 1.802+0.051 1.775+0.083 1.732-+ 0.028
Dual Bi-LCyjzeq 1.984 £0.222  2.446 + 0.891 1.966 £0.084  2.659 +1.209
Dual Bi-LCjeqarned 2459+ 0.880  2.604 £0.712  2.416+0.905  3.030 +0.924
Dual Bi-MP 1.824 +£0.018 1.974 +0.091 1.869 £ 0.024 1.863 £ 0.130
Dual Bi-MP ;¢4 1.931 +0.087 1.797 +0.073 1.888 £ 0.098 1.803 £ 0.088
Dual Bi-MPjcgrneqs | 1.721 £0.041 1.784 £0.009 1.809+0.092 1.790+0.144

Table 12: Test MAE for E;, on four WS datasets. Columns refer to metric,opx datasets parti-
tioned between models with and without D. In each column, colors give the top 3 models while
bold + underline and bold gives the best and second best model for each partition.

Model \ Degree Betweenness Clustering Participation
LA | 2.17940.132 2.070 +0.061 2.128 +0.053 2.104 + 0.100
Bi-LC 1.989 + 0.006 2.007 +£0.012 2.002 £+ 0.031 2.022 +0.027
Bi-LCfized 2.035 +0.035 2.058 +0.022 2.034 £0.015 2.075 £ 0.066
Bi-LCieqrned 2.012 £ 0.020 2.043 £+ 0.043 2.027+0.067  2.090 £ 0.046
Bi-MP 1.998 + 0.020 2.002 £ 0.005 2.016 £0.056 = 2.013+0.017
Bi-MP¢izcq 2.003+0.014 1.996 +£0.010 1.998 +£0.027  2.019 +0.028
Bi-MPjcarned 2.060 4+ 0.083 2.028 £0.035 = 1.994 +0.030 2.010 £ 0.025
Dual LA | 2.149+0.011 2.879 +1.197 2.156 £0.027  2.206 £ 0.085
Dual Bi-LC 2.027+0.040 2.007+0.016 2.009 +0.024 2.422 4+ 0.698
Dual Bi-LCy;zcq 2.615 4+ 0.894 3.025 + 1.602 2.466 4+ 0.649 2.320 + 0.284
Dual Bi-LCjeqrned 2.679 +1.055 2.942 4+ 0.802 2.140 4+ 1.846 2.303 £0.199
Dual Bi-MP 2.4504+0.598 2.039+0.038 2.083+0.122 2.097+0.049
Dual Bi-MP ;¢4 2.270 £ 0.381 2.394 +0.414 2.432 +0.683 2.417 +0.622
Dual Bi-MPjegrneq | 2.022 £ 0.048 2.970 4+ 1.666 2.4274+0.710 2.041 +0.049
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Finally, we highlight some experimental caveats. First, we perform our experiments on small graphs
and small data regime. While small graphs are found plenty in the graph learning tasks, neural
networks generally struggle with small datasets and are prone to overfitting. This could be cir-
cumvented by performing scaling analysis for our frameworks but this is beyond the scope of this
work. Second, topK pooling uses traditional metric to create a relationship between LR and HR
nodes. This may not be reflective of real-world graphs that encode more complex non-hierarchial
relationships.

F.3 BRAIN GRAPH DATASET

We report the performance across all eight evaluation measures in Table We observe that our
dual graph formulation outperforms other methods, especially across the topological measures. It
beats the IMANg44pteqa and Autoencoder by a wide margin on these measures. For our bipartite
graph formulation, we observe that message passing performs better than linear combination in the
absence of the dual graph operator D but the performance difference diminishes on supplmenting the
models with D. This could be possibly because our dual graph formulation provides a powerful and
robust framework to refine the initially learned edge features from S, uplifting the performance of
the the linear combination method. Unfortunately, the bipartite graph formulation does not improve
over the linear algebraic method for this specific brain graph dataset.

F.4 SENSITIVITY ANALYSIS

Finally, we also perform an in-depth sensitivity analysis for the random initialization strategy intro-
duced for our bipartite message passing framework in section 3] Recall that this strategy involves
initializing an HR node feature matrix with values randomly sampled from /(0, 1). To analyze how
sensitive our model performance is to this initialization, we re-run our experiments 15 times for the
six models based on bipartite message passing: Bi-MP, Bi-MPf;;cq, Bi-MPcqrncq, Dual Bi-MP,
Dual Bi-MP ¢;;cq, and Dual Bi-MP;.q,ncq. These 15 runs measure performance across 5 different
random seeds and 3 length scales viz ¢(0, 1), 2(0, 10), and 2/ (0, 100). To measure the sensitivity of
our formulation w.r.t. the other models, we introduce a quantitative metric called relative sensitivity
Srel AS:

s = max({osm|s € scales,m € modelsp;—pp}) (52)

Oall_models

where, 0, is the standard deviation of the mean MAE loss (averaged across five random seeds)
for Bi-MP model m and scale s and 04 models 1S the standard deviation of the MAE losses for all
sixteen models from section [D.3

Finally, we report the output of our sensitivity analysis in Table [I4] and [I5] While all bipartite
message passing models seem robust against variations in the initialization strategy, we observe that
the models without dual graph formulation show a lot more robustness compared to the models with
dual graph formulation. This is expected since the dual graph models possess higher capacity and
high capacity neural networks generally show less robustness against randomization, especially for
small data regime such as ours.
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Table 13: Model Performance on Brain Graph Dataset. Each column represents MAE on given
evaluation measure. The best and second best models are highlighted by bold + underline and bold
and the colors give relative ordering.

Ay Betweenness Closeness Eigenvector

Model (10%) (10%) (10%) (10%)

IMAN g dapted 1.725 £ 0.074 7.695 £+ 0.159 1.590 £ 0.028 7.507 £ 0.096
AutoEncoder 1.381 £ 0.062 7.608 £ 0.204 1.520 £ 0.025 7.179 £ 0.083
LA 1.350 £ 0.066 7.562 £ 0.152 1.513 £ 0.033 7.155 £ 0.124
Bi-LC 1.528 £0.021 7.693 £ 0.159 1.590 £ 0.028 7.507 £ 0.096
Bi-LCfizeq 1.507 £ 0.051 7.693 +0.159 1.590 4 0.028 7.506 £ 0.096
Bi-LCearned 1.523 £ 0.055 7.693 £ 0.159 1.590 £ 0.028 7.506 £ 0.096
Bi-MP 1.455 £ 0.031 7.658 £ 0.208 1.578 £ 0.043 7.453 £0.182
Bi-MPy;zcq 1.428 £ 0.052 7.588 £ 0.156 1.551 £ 0.039 7.325 £0.127
Bi-MPjcorned 1.443 4+ 0.048 7.586 £ 0.192 1.554 4+ 0.040 7.342 £ 0.169
Dual LA | 1.458 £0.153 5.888 £1.914 1.133 4+ 0.442 7.360 £ 0.957
Dual Bi-LC 1.515 £ 0.293 5.567 £2.235 0.812+0.123 6.736 £ 1.172
Dual Bi-LCy;zeq 1.609 £0.176 | 5.376 £ 0.071 1.030 £ 0.012 6.560 = 0.172
Dual Bi-LCiegrned 1.646 £ 0.086 7.318 £0.713 1.249 £ 0.366 7.504 £ 0.556
Dual Bi-MP 1.488 £0.143 5.446 +0.927 0.939 £ 0.059 6.469 £ 0.370
Dual Bi-MPy;zcq 1.554 £ 0.185 5.747 £ 0.848 1.031 +£0.147 6.373 £0.411
Dual Bi-MPj¢grned 1.373 £0.039 5.742 £ 0.913 1.046 £0.128  6.379 £0.276
Model Degree Participation Clustering Small Worldness

(10°) (10) (10%) (10%)

IMAN g dapted 54.778 £1.170 6.850 £ 0.091  14.006 £+ 0.318 8.360 + 0.243
AutoEncoder 51.697 £ 1.038 5.562 £1.450 14.193 +£0.437 8.260 £ 0.336
LA | 51.555+1.458 5.2565 £0.883 14.128 +0.286 8.126 = 0.289
Bi-LC 54.771 £1.170 6.858 £0.173  14.003 £ 0.318 8.362 + 0.240
Bi-LCfizeq 54.771 £1.170 6.836 £0.096 14.103 £ 0.318 8.350 £ 0.244
Bi-LCearned 54.771 £1.170 6.822 +0.106 14.103 +£0.318 8.358 +0.243
Bi-MP 54.341 £1.730 6.410 £0.849 13.956 £ 0.369 8.331 £ 0.287
Bi-MPy;zcq 53.324 £ 1.650 5.090 £0.837 13.916 £ 0.272 8.254 +£0.243
Bi-MPjcorned 53.521 £ 1.651 5.576 £0.766  13.866 £ 0.353 8.270 £ 0.268
Dual LA | 38.991 & 13.900 3.401 £3.172 11.953 £5.235 5.873 £ 3.221
Dual Bi-LC 31.948 £5.635 1.330+0.159 7.779+2.068 3.886 + 1.847
Dual Bi-LCy;zeq 37.556 £0.806 1.382+0.080 9.718-+0.358 4.086 £ 1.036
Dual Bi-LCjeqrned | 45.300 £ 10.049 3.615+£2.714 11.874 £+ 2.623 7.188 +£1.320
Dual Bi-MP 34.298 £ 2.567 1.461 £0.204 10.064 +1.623  3.451 £ 0.696
Dual Bi-MPy;zcq 37.568 £ 4.705 1.497£0.161 10.397 £ 1.362 4.076 £ 1.648
Dual Bi-MPj¢rned 37.527 £ 3.782 1.440 £ 0.233 10.714 £ 2.245 5.322 £ 1.068
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Table 14: Result of sensitivity analysis for bipartite message passing without D.

Metric | Scale | Bi-MP Bi-MP/;zcq Bi-MPjcorned Srel
A, 1| 148840025 141740018 1.420 +0.024
o 10 | 1.537+0.012 1.448+0.020 1.459+0.013 0.060
(10%) 100 | 1.6144+0.026 1.564+0.021  1.566 + 0.014
1| 7.693+0.000 7.59640.028  7.598 + 0.045
B et‘zvfgf)ness 10| 7.61140.013 7.589+0.034  7.599 4+ 0.007 0.018
100 | 7.665+0.022  7.604+0.027  7.617 + 0.037
Closencss 1| 1.590+0.000 1.555+0.013  1.555 + 0.021
aoh) 10 | 1.5584+0.007 1.548+0.014 1.551+0.010 0.044
100 | 1.580+0.008 1.558+0.008  1.563 + 0.011
Eigenvector 1| 7.506+0.000 7.3504+0.061  7.346 % 0.095
10 10 | 7.357+0.032 7.314+0.064 7.327+0.044 0.039
( 100 | 7.460+0.038  7.362+0.037  7.383 + 0.052
Degree 1| 54771+ 0.000 53.511 + 0.523 53.467 + 0.829
100 10 | 53.557 +£0.209 53.170 +0.569 53.279 + 0.456 0.101
(10%) 100 | 54.414 +0.304 53.562 + 0.353  53.780 =+ 0.430
Participation 1| 6.838+0023 5489 +0.642 5435+ 0.881
ot 10 | 592040423 5.155+0.717  5.613+0.356 0.449
(10%) 100 | 6.6924+0.185 5759+ 0.698  6.166 + 0.804
Clustering 1| 14.003 +0.000 13.907 + 0.035 13.911 + 0.030
L7 10 | 13.938 +0.003 13.941 +0.020 13.954+0.059 0.015
(10%) 100 | 13.974+0.002 13.934 +0.053 13.924 + 0.071
Small Worldness 1| 836040000 827040032 8.278+0.037
10%) 10 | 828240018 82534+0.041 8264+0012 0015
100 | 8.333+0.020 8.267+0.042  8.280 + 0.037
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Table 15: Result of sensitivity analysis for bipartite message passing with D.

Dual Dual Dual
Metric Scale Bi-MP Bi-MP;zcq Bi-MPcorned Srel
A, 1| 1.517+0054 1.569+0.036 1.585+ 0.029
o 10 | 1.569+0.036  1.607 +0.021 1.438+0.045 0.133
(10%) 100 | 1.585+0.029 1.651+0.053  1.567 = 0.064
1| 6.099+ 0474 50965+ 0401 5964 + 0.273
Bet”(vfg%ness 10 | 5.90940.261 6.208+0.125 6.418+0.275 0.187
100 | 6.01840.257 554040277  6.692 + 0.420
Closencss 1| 1.117+0105 0.9384+0.061  1.052 % 0.043
00 10 | 1.028+0.054 0.982+0.036 1.036+0.051 0.260
100 | 1.1524+0.123  1.0814+0.056  1.201 + 0.059
Eigenvector 1| 6.580+0256 6.580 +0.088  6.589 + 0.305
109 10| 660840114 6.938+0240 6.468+0.117 0.126
( 100 | 6.668+0.099 6.735+0.108  6.835+ 0.076
Degree 1 | 40.017 +3.009 35.079 +1.874 38.011 + 1.209
e 10 | 38.000 +1.510 36.868 + 0.871 37.138+1.382 0.419
(10%) 100 | 41.664 +3.440 39.831 +1.498 43.085 + 1.939
Participation 1| 1.685+0143 153340123  1.549 + 0.120
o 10| 1.613+1.067 1.623+0134 1.471+0.166 0.114
( 100 | 1.646+0.162 1.647+0.224  1.709 + 0.063
Clustering 1| 11.343+1.067  9.844 4+ 0.603 10.945 + 0.360
2 10 | 10.436 +0.694 10.2034+0.296 10.458 +0.846 0.231
(10%) 100 | 10.978 £0.645 11.216+0.495 11.952 & 0.591
Small Worldness 1| 4915+1.144 4.265+1.009 4.914 + 0.607
10%) 10 | 420040696 4.500 0402 5.129+0.704 0.503
100 | 5.608+1.370 3.909+1.022  5.275 + 0.569

39



	Introduction
	Preliminaries
	Graph Data Structure
	Graph Super-Resolution
	Message Passing Graph Neural Networks
	Problem Statement 1: Structure-aware Super-resolution
	Problem Statement 2: Edge Representation Learning

	Proposed Bi-SR Framework
	Refining HR Node Features
	GNN Architecture

	Proposed DEFEND Framework
	Theoretical Analysis
	GNN Architecture

	Experiments
	Physics-Inspired Dummy Dataset
	Traditional Graph Generation Dataset
	Brain Graph Dataset

	Conclusion
	Reproducibility Statement
	Theoretical Analysis
	Node Permutation-invariance of Bi-SR
	Computational Properties of Dual Graph Formulation
	Edge Representation Learning
	Universal Function Approximator
	Proposition
	Corollary


	GNN Architecture
	Graph Transformer Layer
	Graph Transformer Block

	Data Generation
	Physics-Inspired Dummy Dataset
	Traditional Graph Simulation Dataset
	HR graph generation
	LR graph generation
	Node Feature Generation
	Edge Weight Generation

	Brain Graph Dataset

	Comparison Models
	Physics-Inspired Dummy Dataset
	Traditional Graph Simulation Dataset
	Brain Graph Dataset

	Experimental Set-up
	Physics-Inspired Dummy Dataset
	Traditional Graph Simulation Dataset
	Brain graph Dataset

	Results
	Physics-Inspired Dummy Dataset
	Traditional Graph Simulation Dataset
	Brain Graph Dataset
	Sensitivity Analysis


