
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RETHINKING GRAPH SUPER-RESOLUTION: DUAL
FRAMEWORKS FOR TOPOLOGICAL FIDELITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph super-resolution is an underexplored yet highly relevant research direction
that circumvents the need for costly and time-consuming data collection, prepa-
ration, and storage. This makes it especially desirable for resource-constrained
fields such as the medical domain. Existing work on graph super-resolution lever-
ages graph neural networks (GNNs) and achieves impressive results. However,
we note two major limitations in the current model design: (1) It violates the un-
derlying graph structure when increasing the number of nodes, and (2) it relies
heavily on node representation learning, which has limited capacity to accurately
model edges. To address these limitations, we propose two novel frameworks: (1)
Bi-SR, which performs structure-aware node super-resolution, and (2) DEFEND,
which focuses on edge representation learning for enhanced edge modeling. We
supplement our work with rigorous theoretical analysis and conduct extensive ex-
periments on simulated and real-world datasets covering diverse graph topologies
and low-to-high resolution relationships. The results demonstrate substantial im-
provements across all experiments, highlighting the potential of both frameworks
for graph super-resolution tasks.

1 INTRODUCTION

High-resolution (HR) datasets are crucial for accurate analysis and information processing. How-
ever, acquiring HR datasets is resource-intensive, necessitating the development of super-resolution
techniques to enhance the quality of easily accessible low-resolution (LR) datasets. Consequently,
super-resolution has been extensively studied for images, and numerous traditional and deep learn-
ing methods have been developed to tackle this challenge (Dong et al., 2015; Greenspan, 2009;
Lu et al., 2019; Wang et al., 2022). While images form a significant class of datasets, many real-
world problems are naturally and effectively represented using relational structures such as graphs.
Examples include traffic flows, molecular structures, brain connectivity, and social interactions.

Despite the ubiquity of graph-structured datasets, graph super-resolution remains underexplored.
Unlike images, the LR and HR graphs lack a hierarchical or local relationship, which forms a critical
limitation in model design. Considering that the basic building blocks of an image are pixels, locality
of image super-resolution allows the use of the de-convolution operator (Zeiler et al., 2010) to easily
increase the number of pixels or the size of the image. Similarly for graphs, nodes form the basic
building blocks, and an unpooling operation (Gao & Ji, 2019) has been defined to increase the
number of nodes or the overall graph size. However, this operation is overly simplistic, highly
localized, and requires the connectivity information of the HR graph as input, making it unsuitable
for graph super-resolution. Moreover, the lack of hierarchy leads to a significant distributional shift
between LR and HR graphs, further amplifying the complexity of graph super-resolution tasks.

Although challenging, graph super-resolution is a highly relevant task, especially in the field of net-
work neuroscience. The connectivity strength between different regions of the brain can be encoded
as a brain graph, commonly known as a connectome. Various studies show that HR connectomes
lead to better neural fingerprinting and behavior prediction (Tian et al., 2021; Hayasaka & Lauri-
enti, 2010; Zalesky et al., 2010; Finn et al., 2015; Cengiz & Rekik, 2019). However, brain graphs
are typically dense and computationally intensive to collect, process, and store, even small graphs,
sometimes requiring gigabytes per individual (Tian et al., 2021). Therefore, deep learning methods
for lightweight, on-the-fly calculation of HR brain graphs are advantageous.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Recently, graph neural networks (GNNs) have emerged as de facto deep learning methods to process
graph-structured datasets (Zhou et al., 2020; Bronstein et al., 2017; Wang et al., 2021) and have
naturally been extended for graph super-resolution. Even though they achieve impressive results,
we note two major limitations: (1) The operation used to increase the number of nodes relies on a
simple linear algebraic technique that maps LR feature dimensions to HR nodes, ignoring the graph
structure of the problem. (2) Since most GNNs perform node representation learning, the models use
computationally intensive message-passing layers to learn a single node feature capable of encoding
all incident edges. These layers are not only unscalable for larger graphs but, by predominately
operating in the node space, offer limited capacity to learn graph topology. Combined, these form a
significant research gap in graph super-resolution.

The topological limitation presents a serious bottleneck, particularly for applications in network
neuroscience. Numerous studies (Pereira et al., 2015; 2016; Khazaee et al., 2015; Nigro et al.,
2022; Mijalkov et al., 2017) have shown that brain graph topology plays a central role in correctly
identifying the onset and existence of various neurodegenerative disorders, including the two most
frequent ones: Alzheimer’s disease (AD) and Parkinson’s disease (PD). Notably, Pereira et al. (2016)
observes that different stages of AD show decreasing path length and mean clustering compared to
the control group. Similarly, Pereira et al. (2015) analyzes topological measures like clustering
coefficient, characteristic path length, and small-worldness from 3T MRI data, observing aberrant
values are for early PD patients. Finally, Nigro et al. (2022) shows a correlation between the loss of
hubs in certain brain regions and the emergence of more hubs in others for frontotemporal dementia.

Our Contributions: Motivated by above findings, we propose two new frameworks to tackle
both limitations of existing graph super-resolution methods: Bi-SR (Bipartite Graph for Super-
Resolution) and DEFEND (Dual Graphs for Edge Feature Learning and Detection). Bi-SR super-
resolves nodes through bipartite connections between LR and HR nodes in a way that respects the
underlying graph structure of the problem. DEFEND employs a dual graph formulation that maps
edges to dual nodes and directly performs edge representation learning using simple GNN layers.
We provide comprehensive theoretical analysis to justify the design of our frameworks and substan-
tiate claims regarding their utility. We also conduct extensive experimentation across different graph
topologies and LR-HR relationships to showcase performance improvements from both frameworks.

Related Work: While the research on graph super-resolution is scarce, few foundational works
have made notable contributions. Isallari & Rekik (2021) introduced a graph U-Net architecture
(Gao & Ji, 2019), incorporating a hierarchical structure and a graph Laplacian operator for up-
sampling LR brain graphs (Tanaka, 2018). Pala et al. (2021) accelerated model training by using
representation template graphs at both low and high resolutions as priors. Mhiri et al. (2021) em-
ployed NNConv layers (Simonovsky & Komodakis, 2017) for global graph alignment and a graph-
GAN model (Wang et al., 2018) to generate HR connectomes. However, this state-of-the-art model
struggles with dense brain graphs, often resulting in out-of-memory (OOM) errors due to the com-
putational complexity of NNConv layers. Finally, Monti et al. (2018) uses a similar dual graph
formulation to learn attention weights in GAT layers but differs from our work as we are leveraging
the dual graphs for direct edge feature learning in graph super-resolution.

2 PRELIMINARIES

2.1 GRAPH DATA STRUCTURE

Graphs are relational data structures defined by G = (V, E ,A,X), where V is the set of nodes, E
represents edges as ordered/unordered pairs (vi, vj) s.t. vi, vj ∈ V , A ∈ Rn×n is the adjacency
matrix capturing edge weights, and X ∈ Rn×d is the node feature matrix with n = |V| nodes and
d-dimensional features. In this work, we focus on simple undirected graphs, where A is symmetric
with Aij = Aji = eij denoting the relationship strength between nodes vi and vj . For notational
convenience, we use xi to represent feature vector for node vi.

2.2 GRAPH SUPER-RESOLUTION

Let Gl = (Vl, El,Al,Xl) and Gh = (Vh, Eh,Ah,Xh) represent the LR and HR graphs, respectively,
with Gl obtained from Gh via a degradation operator Deg with parameter δ as Gl = Deg(Gh; δ).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The goal of graph super-resolution is to approximate the HR graph Ĝh = (V̂h, Êh, Âh, X̂h) using a
super-resolution operator S with parameters θ as:

Ĝh = S(Gl; θ) (1)

Optimal parameters θ̂ are learned by minimizing some loss function L(Ĝh,Gh). Since there can
be multiple mappings S : Gl 7→ Ĝh minimizing L, having prior knowledge of Deg is beneficial.
However, unlike image super-resolution, where Deg operates locally and convolutional layers can
be used, graph super-resolution lacks locality, requiring a more complex S.

2.3 MESSAGE PASSING GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) (Zhou et al., 2020) are designed for graph-structured data, which,
unlike images, are irregular with no fixed node order or neighborhood size. Message Passing
Neural Networks (MPNNs) (Gilmer et al., 2017), a common GNN subclass, handle this irregu-
larity by iteratively updating node features based on messages from neighbors. Theoretically, let
G = (V, E ,A,X0) be the input graph, where A is the adjacency matrix and X0 the initial node
features. An L layer MPNN updates node features at layer l via two key operations:

1. Neighborhood aggregation: zli = βlxl−1
i +(1−βl)

∑
j∈Ni

αl
ijx

l−1
j , where xl−1

i and xl−1
j are

node features from the previous layer, Ni is the set of neighboring nodes for node i, αl
ij is the

importance of node j for node i and typically depends on xl−1
i and xl−1

j , and βl balances the
node’s own features against the aggregated neighborhood message.

2. Node feature update: xl
i = fn(z

l
i), where fn is a universal function approximator.

This process, succinctly represented as: X = GNNmp(X
0,A) is agnostic to the number of nodes,

neighborhood size, and node ordering, making GNNmp equivariant to node permutations i.e XP =
GNNmp(PX0,PAPT) = PGNNmp(X

0,A) = PX for permutation matrix P.

2.4 PROBLEM STATEMENT 1: STRUCTURE-AWARE SUPER-RESOLUTION

However, this method disrupts structural integrity by arbitrarily mapping LR feature dimensions
to HR nodes, akin to mapping image channels to pixels, thus losing data structure and failing to
support permutation-invariant applications. To address this, our work investigates structure-aware
alternatives that preserve the graph’s underlying structure, replacing the linear algebraic operator
Transpose(GNNnh

(Xl,Al)), aiming for a more faithful pixel-to-pixel-like mapping in graph pro-
cessing.

While numerous methods exist for learning node feature matrix X̂ and structure Â for graphs with
fixed number of nodes, graph super-resolution requires an operator that expands the number of
nodes from nl to nh. Existing work use a linear algebraic trick to predict X̂h from Xl ∈ Rnl×d.
First, a GNN maps Xl to nh-dimensional feature space as X̂l = GNNnh

(Xl,Al), where GNNnh
:

Rnl×d 7→ Rnl×nh . Then, its transpose initializes HR node feature matrix as X̂h = X̂T
l , where X̂h ∈

Rnh×nl , and could be used with any downstream task like predicting Âh or HR node classification.

Although effective, this method loses structural integrity by mapping LR feature dimensions to
HR nodes—analogous to arbitrarily mapping image channels to pixels, which violets data struc-
ture. It is also incompatible with downstream applications requiring node permutation invariance.
Therefore, we explore graph structure-aware alternatives to replace this linear algebraic operator
Transpose(GNNnh

(Xl,Al)) s.t. its akin to mapping pixels to pixels in image processing.

2.5 PROBLEM STATEMENT 2: EDGE REPRESENTATION LEARNING

Traditional GNNs focus on node representation learning, encoding node feature matrix X̂ =
GNN(X,A) into a feature space suitable for given task. For example, the learned feature space
for node clustering encodes similar nodes together while maximizes the distance between dissim-
ilar nodes. Edge weights in Â are often derived by taking a dot product Â = X · XT , under the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

assumption that a powerful enough GNN would capture all pairwise interactions with its neighbors
in a single node representation. However, even complex GNNs may fail to achieve this in practice.

Therefore, we hypothesize and later prove that an alternative approach based on edge representation
learning shows higher modeling capacity, allowing the use of simpler GNNs to achieve similar
or better performance. Formally, we aim to expand Â = DotProduct(GNN(X,A)) to Â =
fe(X,A), where fe is an arbitrary composition of other operators, including GNNs, edge space
transformations, etc., and has higher edge learning capacity than the dot product operator.

3 PROPOSED BI-SR FRAMEWORK

To tackle the structural limitation of the linear algebraic method from section 2.4, we introduce a
bipartite graph formulation which creates direct connections between low and high resolution nodes:

Bipartite Graph Formulation

Let Gl = (Vl, El,Al) and Gh = (Vh, Eh,Ah) be low and high resolution graphs. Let
nl = |Vl| and nh = |Vh|. We create a complete bipartite graph Gb = (Vb, Eb,Ab) between
nodes in the low resolution and high resolution s.t.:
1. Vb = Vl ∪ Vh with |Vb| = nl + nh

2. Eb = {(w, v)|w ∈ Vl, v ∈ Vh} with |Eb| = nl × nh

3. The adjacency matrix Ab is given as the block matrix:

Ab =

(
0 B
BT 0

)
(2)

where, 0 refers to zero matrices and B ∈ Rnl×nh s.t. all entries are 1.

Below are two ways to use this bipartite structure to learn HR node features X̂h from LR node
features X̂l, where X̂l = GNN(Xl,Al) projects LR node features to a suitable space:

Linear Combination: This method flexibly initializes each HR node as a linear combination of LR
node features: X̂h = WbX̂l. Here, Wb ∈ Rnh×nl are learnable parameters with Wb

pq indicating
the contribution of LR node q to HR node p. This effectively learns unique values for each edge in
Eb. Moreover, the node feature dimensions remain unchanged; if X̂l ∈ Rnl×dl , then X̂h ∈ Rnh×dl .

Message Passing: While linear combination offers flexibility, message passing intuitively leverages
graph structure. However, it requires initial node features for all nodes in Vb. These are easily
initialized for LR nodes as X̂l ∈ Rnl×dl but no prior information is available for HR nodes. Let
these unknown HR features be X0

h ∈ Rnh×dl and let’s analyze the message passing update to devise
an initialization strategy: x̂ph = f(x0

ph +
∑

q∈Np
αpqxql), where x0

ph and xql are the pth and qth
row of X0

h and Xl, respectively. Since Gb is a complete bipartite graph, all HR nodes share the same
neighborhoodNp, making x0

ph the sole differentiating term for αpq and the message passing update.
Therefore, any initialization of X0

h must ensure unique embeddings for HR nodes to avoid feature
collapse and performance degradation on downstream tasks requiring individual node identification.

To this end, we randomly initialize X0
h with values sampled from U(0, 1). In high dimensional

feature space, by the law of large numbers (Hsu & Robbins, 1947), concentration of measure phe-
nomena (Ledoux, 2001), and the Johnson-Lindenstrauss Lemma (Frankl & Maehara, 1988), these
vectors are likely to be unique, have constant norm, and be almost equidistant. We use the same
X0

h across all graphs and keep it fixed during training, effectively creating unique and consistent
positional encodings for HR nodes. Combining it all together, we get the following message passing
update:

Xb =

(
X̃l

X̂h

)
= GNNb(X

0
b ,Ab) s.t. X0

b =

(
X̂l

X0
h

)
(3)

where, GNNb : R(nl+nh)×dl 7→ R(nl+nh)×d′
. Unlike linear combination, message passing allows

the node feature dimension to change.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Node permutation invariance: In section A.1, we prove that the linear algebraic and bipartite linear
combination techniques are not invariant to LR node permutation, while bipartitie message passing
is invariant.

3.1 REFINING HR NODE FEATURES

Our bipartite graph formulation initializes HR nodes directly from LR nodes but lacks interaction
among the HR nodes themselves. To address this, we refine X̂h by incorporating intra-graph in-
teractions using X̂h = GNNrefine(X̂h,A

ref
h), where GNNrefine : Rnh×d′ 7→ Rnh×d′′

and
requires an adjacency matrix Aref

h ∈ Rnh×nh as input. Aref
h defines the HR computational do-

main, determining which nodes influence others during refinement. It differs from the predicted HR
connectivity Âh, which is derived from X̂h as a downstream task. Below, we explore two ways to
define this computational domain:

Fixed Computation Domain: A straightforward way is to assume a fully connected computational
domain, allowing each HR node to interact with all others. Therefore, Aref

h is defined as Aref
h =

1− I, where 1 ∈ Rnh×nh is an all-ones matrix and I ∈ Rnh×nh is the identity matrix.

Learnable Computation Domain: Inspired by Zaripova et al. (2023), we propose learning Aref
h by

generating additional HR node features Xref
h . For bipartite linear combination: Xref

h = Wb
refX̂l.

For bipartite message passing:
(
Xref

l

Xref
h

)
= GNNb ref (X

0
b ,Ab) s.t. GNNb ref : Rnl×d 7→

Rnh×dref . Using these features, we compute Aref
h as:

Âref
h = σ(Xref

h ·Xref
h

T
)

Aref
h = Aref

h = Âref
h ⊙H(Âref

h − 0.5)
(4)

where, σ is the sigmoid function and H(x) is the Heaviside step (1 if x ≥ 0, 0 otherwise).

3.2 GNN ARCHITECTURE

In this section, we present our GNN architecture for graph super resolution, combining the above
techniques. Our super-resolution operator S predicts HR adjacency matrix Âh from the LR features
Xl and adjacency matrix Al as: Âh = S(Xl,Al; θ), where θ represents learnable parameters. S
can be decomposed into four main components:

Part 1: Low resolution node representation learning

We first embed Xl into a feature space more conducive to our task using a Graph Transformer Block
(GTB), which consists of a Graph Transformer Layer followed by Graph Normalization (see section
B.2): X̂l = ρ(GTB1(Xl,Al)), where ρ is the ReLU non-linearity.

Part 2: Super-resolving the number of nodes

We create HR node features from learned LR node features using one of three techniques:

1. Linear Algebraic method: X̂h = X̂T
l

2. Bipartite Linear Combination: X̂h = WbX̂l

3. Bipartite Message Passing:
(
X̃l

X̂h

)
= ρ(GTB2(

(
X̂l

X0
h

)
,Ab))

where, Wb is a learnable weight matrix, X0
h is the randomly initialized embedding for HR nodes,

and Ab is the bipartite adjacency matrix.

Part 3: (Optional) High resolution node representation learning

To further refine the HR node features, we perform message passing on the HR graph using either
the fixed or learnable computational domain from section 3.1: X̂h = ρ(GTB3(X̂h,A

ref
h))

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 1: Overview for our super-resolution operator S. Please refer to figure 7 for Part 2 and Part
3.

Figure 2: Overview of graph super-resolution framework using our Dual Graph Operator D.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Part 4: Downstream application

Our primary application is predicting the HR connectivity matrix Âh which is obtained by taking the
dot product of learned HR node features X̂h and scaling values to [0, 1] using β: Âh = β(X̂h · X̂T

h)

Overall, this architecture flexibly combines various techniques to create a graph super-resolution
framework suitable for different problems and computational requirements.

4 PROPOSED DEFEND FRAMEWORK

To enhance the edge modeling capacity of S, we introduce a dual graph formulation which creates
an invertible mapping between edges of our HR graph and nodes of a newly created dual graph:

Dual Graph Formulation

Given a simple undirected graph G = (V, E ,A), known as the primal graph, its dual graph
G′ = (V ′, E ′,A′) is given as follows:
1. Each edge (i, j) ∈ E in G corresponds to a node (i, j) ∈ V ′ in G′.
2. Two dual nodes (i, j) and (k, l) in V ′ are connected by an edge in G′ if and only if the

corresponding edges in G share a common node i.e. the condition i = k or i = l or
j = k or j = l is satisfied.

3. Let p and q be the indices of the dual nodes (i, j) and (k, l) in V ′, respectively. Then,
the adjacency matrix A′ of the dual graph G′ is defined as A′

pq = A′
qp = 1 if and only

if (i, j) and (k, l) are connected as defined in 2. above; otherwise A′
pq = A′

qp = 0.

Above formulation retains all structural information of the primal graph. By treating edges as nodes,
it permits direct application of node-based GNN layers for edge representation learning. This for-
mulation can be extended to simple directed graphs by letting (i, j) ∈ E be an ordered set and
connecting dual nodes (i, j) and (k, l) if they share a common node and a common direction. The
resulting dual graphs are known as line (di)graphs or adjoint graphs in graph theory (Gross et al.,
2018). For detailed computational analysis, please refer to section A.2.

4.1 THEORETICAL ANALYSIS

We present below for edge representation learning (see section A.3.2 and A.3.3 for their proof):

Proposition 1: Message passing in the edge space is more effective at modeling edge features
compared to traditional message passing in the node space.

Corollary 1: Message passing in the edge space is more effective at learning graph topology com-
pared to traditional message passing in the node space.

4.2 GNN ARCHITECTURE

We introduce a dual graph operator D that complements the super-resolution operator S by refining
the connectivity matrix in the edge space via message passing on the HR dual graphs as Âh =
D(S(Xl,Al, θ), ω), where ω are parameters of D. D is decomposed into following parts:

Part 1: Primal to Dual Conversion

Let Ãh = S(Xl,Al; θ) be the initial HR adjacency matrix predicted by S. Since the actual HR
graph is unknown, we initialize the dual graph using a fully connected HR graph Gfh = (Vf

h , E
f
h ,A

f
h)

to account for all possible edges. We then construct the corresponding dual graph Gdualh =

(Vdual
h , Edualh ,Adual

h), where each edge (i, j) ∈ Efh maps to a node k ∈ Vdual
h via an invertible

mapping ϕ. We initialize the dual graph’s feature matrix Xdual
h from Ãh as (Xdual

h)k = (Ãh)ij.

Part 2: Edge Representation learning

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Using the GTB from section B.2, we perform message passing on the dual graph as: X̂dual
h =

β(ρ(GTB5(X
dual
h ,Adual

h))), where ρ is the ReLU non-linearity and β is a scaling function.

Part 3: Dual to Primal Conversion

Finally, we convert the refined dual features X̂dual
h back to the HR adjacency matrix Âh as follows:

(Âh)ij = (Âh)ji =

{
(X̂dual

h)k i ̸= j

0 i = j
(5)

5 EXPERIMENTS

5.1 PHYSICS-INSPIRED DUMMY DATASET

To compare node v/s edge representation learning and empirically verify Proposition 1, we create
datasets based on interacting particle systems, where each particle represents a node and have some
mass and 2D position: D1 (grid graph with random masses), D2 (random graph with uniform mass),
and D3 (random graph with random masses). Edge values are derived using different functions: E1
(inverse square law), E2 (asymmetric rational), E3 (symmetric quadratic), E4 (symmetric polyno-
mial), and E5 (asymmetric quadratic). Combined, they cover a broad spectrum of scenarios where
each representation learning framework succeeds/ struggles (see section C.1). We evaluate them
using four models, two each for node and edge representation learning (see section D.1 and E.1
for model description and experimental set-up, respectively). Table 1 and 2 summarizes our results
which are in line with expectations. For example, for E1, node-based models outperform edge-
based ones on D1 where edge value becomes dot product between masses, edge-based excel on D2
as inverse square term dominates, and both perform comparably on D3 where the dot product term
compensates inverse square (see section F.1 for detailed performance analysis).

Table 1: Test MAE between true and predicted edge value for E1 (inverse square law).

Dataset Node Node Large Edge Edge Dual

D1 0.869± 0.032 1.136± 0.899 2.371± 2.087 1.565± 1.317
D2 41.176± 25.567 39.525± 28.190 33.266± 16.387 38.221± 23.984
D3 13.499± 9.805 9.012± 5.058 8.696± 5.444 10.873± 5.928

Table 2: Test MAE between true and predicted edge value for D3 (random graph w/ random masses).

Edge Function Node Node Large Edge Edge Dual

E1 13.499± 9.805 9.012± 5.058 8.696± 5.444 10.873± 5.928
E2 26.611± 9.176 26.304± 5.800 24.702± 6.480 26.991± 10.280
E3 0.305± 0.014 0.325± 0.037 0.196± 0.182 0.249± 0.073
E4 0.485± 0.039 0.663± 0.391 0.640± 0.710 0.639± 0.275
E5 0.637± 0.036 0.898± 0.500 0.821± 0.934 0.779± 0.419

5.2 TRADITIONAL GRAPH GENERATION DATASET

To evaluate our GNN architectures across diverse graph topologies and LR-HR relationships, we
generate twelve simulated datasets using three traditional models: Stochastic Block Model (SBM)
for community structures, Barabási-Albert (BA) for scale-free networks, and Watts-Strogatz (WS)
for small-world graphs. These models simulate HR graphs while the corresponding LR graphs
are created using TopK pooling based on four node metrics metrictopK : Node Degree Centrality,
Betweenness Centrality, Clustering Coefficient, and Participation Coefficient (see section C.2).

We benchmark fourteen ablated versions (section D.2) of our frameworks. Table 3 presents results
for the WS datasets, grouping models into six categories with top-performing results for each: LA
(Linear Algebraic Method), Bi-SRLC (Bipartite Linear Combination), Bi-SRMP (Bipartite Message

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Passing), and their variations with the dual graph operator D. See section F.2 for detailed analysis
on all datasets. Despite deceptively simple scenarios (e.g., LR graphs missing clusters present in
HR graphs), our bipartite graph formulation consistently outperforms the linear algebraic method.
Specifically, Bi-SRMP outperforms Bi-SRLC on BA and WS datasets, with both performing com-
parably on SBM. The dual graph operatorD offers no additional improvement, possibly due to edge
representation learning’s limited advantage for small graphs where node based models may suffice.

Table 3: Test MAE on Eh for the WS datasets. Each columns gives a metrictopK dataset.

Model Degree Betweenness Clustering Participation

LA 2.179± 0.132 2.070± 0.061 2.128± 0.053 2.104± 0.100
Bi-SRLC 1.989± 0.006 2.007± 0.012 2.002± 0.031 2.022± 0.027
Bi-SRMP 1.998± 0.020 2.002± 0.005 1.994± 0.030 2.010± 0.025

Dual LA 2.149± 0.011 2.879± 1.197 2.156± 0.027 2.206± 0.085
Dual Bi-SRLC 2.027± 0.040 2.007± 0.016 2.009± 0.024 2.303± 0.199
Dual Bi-SRMP 2.022± 0.048 2.039± 0.038 2.083± 0.122 2.041± 0.049

5.3 BRAIN GRAPH DATASET

Using the publicly available SLIM dataset (Liu et al., 2017), we generate the LR-HR brain graph
pairs using Dosenbach parcellated and Shen parcellated functional connectomes, respectively (sec-
tion C.3). We compare sixteen models: fourteen ablated versions of our frameworks, an adapted ver-
sion of the current state-of-the-art IMANGraphNet (Mhiri et al., 2021) (modified to address OOM
error), and a new autoencoder baseline inspired by image super-resolution methods (section D.3).

Table 4: Performance on Brain Graph Dataset. Columns give test MAE across evaluation measures.

Model Ah Betweenness Closeness Eigenvector
(101) (104) (101) (103)

IMANadapted 1.725± 0.074 7.695± 0.159 1.590± 0.028 7.507± 0.096
AutoEncoder 1.381± 0.062 7.608± 0.204 1.520± 0.025 7.179± 0.083

LA 1.350± 0.066 7.562± 0.152 1.513± 0.033 7.155± 0.124
Bi-SRLC 1.507± 0.051 7.693± 0.159 1.590± 0.028 7.506± 0.096
Bi-SRMP 1.428± 0.052 7.588± 0.156 1.551± 0.039 7.325± 0.127

Dual LA 1.458± 0.153 5.888± 1.914 1.133± 0.442 7.360± 0.957
Dual Bi-SRLC 1.515± 0.293 5.567± 2.235 0.812± 0.123 6.736± 1.172
Dual Bi-SRMP 1.373± 0.039 5.742± 0.913 1.046± 0.128 6.379± 0.276

Model Degree Participation Clustering Small Worldness
(100) (101) (102) (102)

IMANadapted 54.778± 1.170 6.850± 0.091 14.006± 0.318 8.360± 0.243
AutoEncoder 51.697± 1.038 5.552± 1.450 14.193± 0.437 8.260± 0.336

LA 51.555± 1.458 5.255± 0.883 14.128± 0.286 8.126± 0.289
Bi-SRLC 54.771± 1.170 6.836± 0.096 14.003± 0.318 8.350± 0.244
Bi-SRMP 53.324± 1.650 5.090± 0.837 13.916± 0.272 8.254± 0.243

Dual LA 38.991± 13.900 3.401± 3.172 11.953± 5.235 5.873± 3.221
Dual Bi-SRLC 31.948± 5.635 1.330± 0.159 7.779± 2.068 3.886± 1.847
Dual Bi-SRMP 37.298± 2.567 1.440± 0.233 10.714± 2.245 5.322± 1.068

We evaluate performance across eight measures: the MAE between the true and predicted Ah, and
the MAE of seven topological metrics capturing different aspects of brain connectivity. As shown in
table 4, our dual graph formulation outperforms other methods across all topological metrics while

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

being competitive on Ah MAE. In the bipartite graph formulation, message passing outperforms
linear combination, but this performance difference diminishes on supplementing with D, possibly
becauseD provides a powerful and robust edge learning approach that uplifts the performance of lin-
ear combination models. Our bipartite graph formulation does not improve over the linear algebraic
method for this specific dataset. Finally, extensive sensitivity analysis (see section F.4) indicates that
bipartite message passing is robust to variations in HR node initialization.

6 CONCLUSION

In this paper, we formalize graph super-resolution and tackle key limitations of existing work by
introducing two novel frameworks, Bi-SR and DEFEND. Bi-SR is the first known framework to
perform node super-resolution in a structurally consistent manner, while DEFEND provides a simple
graph reformulation to perform edge representation learning using traditional node-based GNNs.
Through extensive theoretical and empirical analysis, we demonstrate the superior performance and
versatility of these frameworks, especially to ensure topological fidelity in generated graphs. We
posit our work as general graph super-resolution frameworks. Therefore, as a future work, it would
be worthwhile to explore how these can be adopted and optimized for domain-specific applications.
Moreover, we observe that the relative performance of each framework depends on the scale of the
graph. Therefore, it would be interesting to perform scaling analysis to understand this trade-off.

7 REPRODUCIBILITY STATEMENT

The code for running all experiments is attached under supplementary material to facilitate repro-
ducibility. The appendix provides detailed proofs and derivations for all theoretical results, a com-
prehensive description of the data generation procedures for each dataset, the experimental setup,
and an in-depth analysis of the results.

REFERENCES

Sophie Achard, Raymond Salvador, Brandon Whitcher, John Suckling, and ED Bullmore. A re-
silient, low-frequency, small-world human brain functional network with highly connected asso-
ciation cortical hubs. Journal of Neuroscience, 26(1):63–72, 2006.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286
(5439):509–512, 1999.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geomet-
ric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017.

Alan Bundy and Lincoln Wallen. Breadth-first search. Catalogue of artificial intelligence tools, pp.
13–13, 1984.

Cătălina Cangea, Petar Veličković, Nikola Jovanović, Thomas Kipf, and Pietro Liò. Towards sparse
hierarchical graph classifiers. arXiv preprint arXiv:1811.01287, 2018.

Kübra Cengiz and Islem Rekik. Predicting high-resolution brain networks using hierarchically em-
bedded and aligned multi-resolution neighborhoods. In Predictive Intelligence in Medicine: Sec-
ond International Workshop, PRIME 2019, Held in Conjunction with MICCAI 2019, Shenzhen,
China, October 13, 2019, Proceedings 2, pp. 115–124. Springer, 2019.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution using deep
convolutional networks. IEEE transactions on pattern analysis and machine intelligence, 38(2):
295–307, 2015.

Nico UF Dosenbach, Binyam Nardos, Alexander L Cohen, Damien A Fair, Jonathan D Power,
Jessica A Church, Steven M Nelson, Gagan S Wig, Alecia C Vogel, Christina N Lessov-Schlaggar,
et al. Prediction of individual brain maturity using fmri. Science, 329(5997):1358–1361, 2010.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Emily S Finn, Xilin Shen, Dustin Scheinost, Monica D Rosenberg, Jessica Huang, Marvin M Chun,
Xenophon Papademetris, and R Todd Constable. Functional connectome fingerprinting: identi-
fying individuals using patterns of brain connectivity. Nature neuroscience, 18(11):1664–1671,
2015.

Peter Frankl and Hiroshi Maehara. The johnson-lindenstrauss lemma and the sphericity of some
graphs. Journal of Combinatorial Theory, Series B, 44(3):355–362, 1988.

Olga L Gamboa, Enzo Tagliazucchi, Frederic von Wegner, Alina Jurcoane, Mathias Wahl, Helmut
Laufs, and Ulf Ziemann. Working memory performance of early ms patients correlates inversely
with modularity increases in resting state functional connectivity networks. Neuroimage, 94:
385–395, 2014.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning,
pp. 2083–2092. PMLR, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Hayit Greenspan. Super-resolution in medical imaging. The computer journal, 52(1):43–63, 2009.

Jonathan L Gross, Jay Yellen, and Mark Anderson. Graph theory and its applications. Chapman
and Hall/CRC, 2018.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855–864, 2016.

Muhammad Haris, Gregory Shakhnarovich, and Norimichi Ukita. Deep back-projection networks
for super-resolution. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1664–1673, 2018.

Satoru Hayasaka and Paul J Laurienti. Comparison of characteristics between region-and voxel-
based network analyses in resting-state fmri data. Neuroimage, 50(2):499–508, 2010.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Pao-Lu Hsu and Herbert Robbins. Complete convergence and the law of large numbers. Proceedings
of the national academy of sciences, 33(2):25–31, 1947.

Megi Isallari and Islem Rekik. Brain graph super-resolution using adversarial graph neural network
with application to functional brain connectivity. Medical Image Analysis, 71:102084, 2021.

Ali Khazaee, Ata Ebrahimzadeh, and Abbas Babajani-Feremi. Identifying patients with alzheimer’s
disease using resting-state fmri and graph theory. Clinical Neurophysiology, 126(11):2132–2141,
2015.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Michel Ledoux. The concentration of measure phenomenon. Number 89. American Mathematical
Soc., 2001.

Clement Lee and Darren J Wilkinson. A review of stochastic block models and extensions for graph
clustering. Applied Network Science, 4(1):1–50, 2019.

Wei Liu, Dongtao Wei, Qunlin Chen, Wenjing Yang, Jie Meng, Guorong Wu, Taiyong Bi, Qinglin
Zhang, Xi-Nian Zuo, and Jiang Qiu. Longitudinal test-retest neuroimaging data from healthy
young adults in southwest china. Scientific data, 4(1):1–9, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Luigi Lorenzini, Silvia Ingala, Lyduine E Collij, Viktor Wottschel, Sven Haller, Kaj Blennow, Gio-
vanni Frisoni, Gaël Chételat, Pierre Payoux, Pablo Lage-Martinez, et al. Eigenvector centrality
dynamics are related to alzheimer’s disease pathological changes in non-demented individuals.
Brain communications, 5(3):fcad088, 2023.

Tao Lu, Jiaming Wang, Yanduo Zhang, Zhongyuan Wang, and Junjun Jiang. Satellite image super-
resolution via multi-scale residual deep neural network. Remote Sensing, 11(13):1588, 2019.

Islem Mhiri, Ahmed Nebli, Mohamed Ali Mahjoub, and Islem Rekik. Non-isomorphic inter-
modality graph alignment and synthesis for holistic brain mapping. In International Conference
on Information Processing in Medical Imaging, pp. 203–215. Springer, 2021.

Mite Mijalkov, Ehsan Kakaei, Joana B Pereira, Eric Westman, Giovanni Volpe, and Alzheimer’s
Disease Neuroimaging Initiative. Braph: a graph theory software for the analysis of brain con-
nectivity. PloS one, 12(8):e0178798, 2017.

Tomas Mikolov. Efficient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

Federico Monti, Oleksandr Shchur, Aleksandar Bojchevski, Or Litany, Stephan Günnemann,
and Michael M Bronstein. Dual-primal graph convolutional networks. arXiv preprint
arXiv:1806.00770, 2018.

Salvatore Nigro, Marco Filardi, Benedetta Tafuri, Roberto De Blasi, Alessia Cedola, Giuseppe Gigli,
and Giancarlo Logroscino. The role of graph theory in evaluating brain network alterations in
frontotemporal dementia. Frontiers in neurology, 13:910054, 2022.

Furkan Pala, Islem Mhiri, and Islem Rekik. Template-based inter-modality super-resolution of brain
connectivity. In Predictive Intelligence in Medicine: 4th International Workshop, PRIME 2021,
Held in Conjunction with MICCAI 2021, Strasbourg, France, October 1, 2021, Proceedings 4,
pp. 70–82. Springer, 2021.

Joana B Pereira, Dag Aarsland, Cedric E Ginestet, Alexander V Lebedev, Lars-Olof Wahlund, An-
drew Simmons, Giovanni Volpe, and Eric Westman. Aberrant cerebral network topology and
mild cognitive impairment in early parkinson’s disease. Human brain mapping, 36(8):2980–
2995, 2015.

Joana B Pereira, Mite Mijalkov, Ehsan Kakaei, Patricia Mecocci, Bruno Vellas, Magda Tsolaki,
Iwona Kłoszewska, Hilka Soininen, Christian Spenger, Simmon Lovestone, et al. Disrupted net-
work topology in patients with stable and progressive mild cognitive impairment and alzheimer’s
disease. Cerebral Cortex, 26(8):3476–3493, 2016.

Mikail Rubinov and Olaf Sporns. Complex network measures of brain connectivity: uses and inter-
pretations. Neuroimage, 52(3):1059–1069, 2010.

Xilin Shen, Fuyuze Tokoglu, Xenios Papademetris, and R Todd Constable. Groupwise whole-brain
parcellation from resting-state fmri data for network node identification. Neuroimage, 82:403–
415, 2013.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. arXiv preprint
arXiv:2009.03509, 2020.

Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional neu-
ral networks on graphs. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3693–3702, 2017.

Yuichi Tanaka. Spectral domain sampling of graph signals. IEEE Transactions on Signal Processing,
66(14):3752–3767, 2018.

Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing, 1(2):
146–160, 1972.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ye Tian, BT Thomas Yeo, Vanessa Cropley, Andrew Zalesky, et al. High-resolution connectomic
fingerprints: Mapping neural identity and behavior. NeuroImage, 229:117695, 2021.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Ben-
gio, et al. Graph attention networks. stat, 1050(20):10–48550, 2017.

Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang, Xing Xie,
and Minyi Guo. Graphgan: Graph representation learning with generative adversarial nets. In
Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Juexin Wang, Anjun Ma, Yuzhou Chang, Jianting Gong, Yuexu Jiang, Ren Qi, Cankun Wang,
Hongjun Fu, Qin Ma, and Dong Xu. scgnn is a novel graph neural network framework for single-
cell rna-seq analyses. Nature communications, 12(1):1882, 2021.

Peijuan Wang, Bulent Bayram, and Elif Sertel. A comprehensive review on deep learning based
remote sensing image super-resolution methods. Earth-Science Reviews, 232:104110, 2022.

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature, 393
(6684):440–442, 1998.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Andrew Zalesky, Alex Fornito, Ian H Harding, Luca Cocchi, Murat Yücel, Christos Pantelis, and
Edward T Bullmore. Whole-brain anatomical networks: does the choice of nodes matter? Neu-
roimage, 50(3):970–983, 2010.

Kamilia Zaripova, Luca Cosmo, Anees Kazi, Seyed-Ahmad Ahmadi, Michael M Bronstein, and
Nassir Navab. Graph-in-graph (gig): Learning interpretable latent graphs in non-euclidean do-
main for biological and healthcare applications. Medical Image Analysis, 88:102839, 2023.

Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. Deconvolutional networks.
In 2010 IEEE Computer Society Conference on computer vision and pattern recognition, pp.
2528–2535. IEEE, 2010.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applica-
tions. AI open, 1:57–81, 2020.

A THEORETICAL ANALYSIS

A.1 NODE PERMUTATION-INVARIANCE OF BI-SR

In this section, we compare the behavior of different super-resolution methods under the action of
node permutation on the LR graph Gl. Recall from Section 2.3 that the Graph Neural Networks
(GNNs) considered in this work are node permutation equivariant, i.e.:

GNN(PX,PAPT) = P(GNN(X,A)) (6)

where, P is the node permutation matrix. When applying P ∈ Rnl×nl to the LR nodes in Gl, it
changes the node feature matrix as follows:

X̂l = GNN(Xl,Al) : prior to application of P (7)

X̂P
l = GNN(PXl,PAlP

T) = PX̂l : after applying P (8)
For brevity, let us denote the super-resolution process as:

X̂h = SRMethod(X̂l) (9)

Our aim is to analyze whether the SRMethod is invariant to P i.e., whether the following condition
is satisfied:

X̂P
h = SRMethod(PX̂l) = X̂h (10)

Now, let’s analyze different super-resolution techniques:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 3: Bipartite Graph Formulation

1. Linear Algebraic Method
Prior to application of P:

X̂h = X̂T
l (11)

After applying P:
X̂P

h = (PX̂l)
T = X̂T

l P
T ̸= X̂h (12)

2. Bipartite Linear Combination
Prior to application of P:

X̂h = WbX̂l (13)

After applying P:
X̂P

h = WbPX̂l ̸= X̂h (14)

3. Bipartite Message Passing
Prior to application of P:

Xb =

(
X̃l

X̂h

)
= GNNb(X

0
b ,Ab) s.t. X0

b =

(
X̂l

X0
h

)
(15)

To analyze the effect of permutation, we first define the permutation matrix for the combined
bipartite graph Gb as the block diagonal matrix:

Pb =

(
P 0
0 I

)
(16)

where 0 are zero matrices of appropriate dimensions and I ∈ Rnh×nh is the identity matrix.
This is equivalent to permuting the LR nodes in Gb according to P while keeping the HR nodes
in Gb unchanged. Therefore, after applying Pb:

XP
b = GNN(PbX

0
b ,PbAbP

T
b) = PbXb (17)

XP
b =

(
X̃P

l

X̂P
h

)
= Pb

(
X̃l

X̂h

)
=

(
P 0
0 I

)(
X̃l

X̂h

)
=

(
PX̃l

X̂h

)
(18)

From above, we can conclude that the linear algebraic and bipartite linear combination techniques
are not invariant to LR node permutation, while the bipartite message passing method is invariant.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

(a) Primal Graph

(b) Dual Graph

Figure 4: Example of a primal graph and its corresponding dual graph.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 COMPUTATIONAL PROPERTIES OF DUAL GRAPH FORMULATION

Sparsity: Let n = |V|. In the worst case, our primal graph G is fully connected and the number of
dual nodes grows quadratically: |V ′| = |E| = n(n − 1)/2. Since there are a maximum of (n − 1)
edges originating from each node i ∈ V , each edge (i, j) ∈ E has at most m = 2(n− 2) neighbors
in the dual graph G′. This results in a maximum of |E ′| = |E|m/2 = n(n − 1)(n − 2)/2 dual
edges, where the factor of 2 corrects double counting. Using this, we calculate the sparsity for dual
adjacency matrix A′ as:

sparsity ≥ 1− 2× |E ′|
|V ′|2

= 1− 4(n− 2)

n(n− 1)
(19)

As seen in figure 5, this results in highly sparse dual graphs G′ with worst case sparsity > 90% for
n ≥ 39. This allows us to leverage the in-built sparse matrix optimization in many deep learning
libraries and significantly limit computational requirements.

Figure 5: Worst case sparsity for dual graphs

Receptive field: As shown in figure 6, dual graphs have the same receptive field as primal graphs.
However, they require half as many message passing operations as primal graphs to learn edge
values. This results in a further reduction in computational requirement as message passing is an
expensive operation.

Dual node feature vectors: Let xi and xj be node feature vectors for i, j ∈ V . We initialize the
node feature vector for dual node (i, j) ∈ V ′ as e0ij = h(xi,xj), where h is an arbitrary function
acting on vectors. The most common form of h is the concatenation operator ||. As it is asymmetric,
it is more suitable for directed graphs. For undirected graphs, a symmetric h could be used such as
vector summation, element wise product, dot product, etc.

A.3 EDGE REPRESENTATION LEARNING

A.3.1 UNIVERSAL FUNCTION APPROXIMATOR

A universal function approximator is a mathematical model capable of representing any continuous
function to arbitrary accuracy, given sufficient resources. Hornik et al. (1989) demonstrated that
multilayer feedforward networks possess this universal approximation property. We note the below
lemma for universal function approximators:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) Receptive field for node-based message passing

(b) Receptive field for edge-based message passing

Figure 6: Receptive fields for message passing in the node and edge space.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Lemma 1

A universal function approximator can be decomposed into a composition of multiple uni-
versal function approximators:

funi(x) = f1
uni(f

2
uni(...(f

P
uni(x)))) = f1

uni ◦ f2
uni ◦ ... ◦ fP

uni(x) (20)

From this lemma, we derive the following corollary:

Corollary 2

The concatenation of outputs from universal function approximators applied to separate in-
puts forms a subset of the output produced by applying a universal function approximator to
the concatenated inputs:

funi([x||y]) = f1
uni(f

2
uni([x||y]))) ⊇ [f3

uni(x)||f4
uni(y)] (21)

where || represents the concatenation operator.

Proof of Corollary 2: Let x ∈ Rdx and y ∈ Rdy be two input vectors. Consider universal function
approximators f1

uni and f2
uni acting on Rdx+dy , while f3

uni acts on Rdx and f4
uni acts on Rdy .

Restricting f2
uni to functions that apply f3

uni to the first dx dimensions gives:

f2
uni([x||y]) ⊇ [f3

uni(x)||y] (22)

Restricting f1
uni to functions that apply f4

uni to the last dy dimensions gives:

f1
uni([w||y]) ⊇ [w||f4

uni(y)] (23)

Finally, combining these results:

f1
uni(f

2
uni([x||y]))) ⊇ [f3

uni(x)||f4
uni(y)] (24)

A.3.2 PROPOSITION

We propose the following for our edge representation learning framework:

Proposition 1

Message passing in the edge space is more effective at modeling edge features compared to
traditional message passing in the node space.

Proof of Proposition 1:

Traditional Message Passing in the node space: Recall from section 2.3 that traditional message-
passing in the node space consists of two key components:

1. Neighborhood aggregation:

zli = βlxl−1
i + (1− βl)

∑
j∈Ni

αl
ijx

l−1
j = gan({xl−1

i }N) (25)

2. Node feature update:
xl
i = fn(z

l
i) = fn ◦ gan({xl−1

i }N) (26)

By letting fn be a universal function approximator, we achieve a maximally powerful MPNN that
generalizes to a wide range of GNN architectures, including GIN (Xu et al., 2018), GAT (Velickovic
et al., 2017), and Graph Transformers (Shi et al., 2020). For brevity, let xi = xl−1

i , x̂i = xl
i, {xi}N

be the set containing the feature vectors for node i and all its neighbors, and fmp
n = fn ◦ gan. Then,

the message passing update can be re-written as:

x̂i = fmp
n ({xi}N) (27)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

To learn edge features, we usually encode node features in a dot product space where the dot product
corresponds to the edge feature value. Therefore:

êij = x̂i · x̂j = fmp
n ({xi}N) · fmp

n ({xj}N) (28)

Message Passing in the edge space: For edge representation learning, let’s initialize edge feature
vectors as e0ij = [xi||xj], as is common practice. The message passing formulation for edges is then
given as:

1. Neighborhood aggregation:

zij = βe0ij + (1− β)[
∑
k∈Ni

α(ij)(ik)e
0
ik +

∑
l∈Nj

α(ij)(lj)e
0
lj

+
∑
s∈Ni

α(ij)(si)e
0
si +

∑
r∈Nj

α(ij)(jr)e
0
jr)]

(29)

2. Edge feature update:
êij = fe(zij) (30)

where fe is a universal function approximator.

Relationship between node space and edge space message passing: Expanding e0ij and simplifying
equation 29:

êij = fe(β[xi||xj] + (1− β)[
∑
k∈Ni

α(ij)(ik)[xi||xk] +
∑
l∈Nj

α(ij)(lj)[xl||xj]

+
∑
s∈Ni

α(ij)(si)[xs||xi] +
∑
r∈Nj

α(ij)(jr)[xj ||xr])])
(31)

êij = fe([(c
1
ixi + c1jxj +

∑
k∈Ni

c1kxk +
∑
l∈Nj

c1l xl)

||(c2ixi + c2jxj +
∑
k∈Ni

c2kxk +
∑
l∈Nj

c2l xl)])
(32)

êij = fe([g
a
1 (xi,xj, {xi}N , {xj}N)||ga2 (xi,xj, {xi}N , {xj}N)]) (33)

Let gsub1 ⊆ ga1 and gsub2 ⊆ ga2 be subsets of aggregation functions that zero out some inputs s.t.
gsub1 (w, x, y, z) = gsub1 (y) and gsub2 (w, x, y, z) = gsub2 (z). Then:

êij = fe([g
a
1 (xi,xj, {xi}N , {xj}N)||ga2 (xi,xj, {xi}N , {xj}N)])

êij ⊇ fe([g
sub
1 ({xi}N)||gsub2 ({xj}N)])

(34)

Applying Lemma 1:

fe([g
sub
1 ({xi}N)||gsub2 ({xj}N)]) = f1

e ◦ f2
e ◦ f3

e ([g
sub
1 ({xi}N)||gsub2 ({xj}N)]) (35)

Applying Corollary 1:

f1
e ◦ f2

e ◦ f3
e ([g

sub
1 ({xi}N)||gsub2 ({xj}N)]) ⊇ f1

e ([f
4
e ◦ gsub1 ({xi}N)||f5

e ◦ gsub2 ({xj}N)]) (36)

Let fmp1
e = f4

e ◦ gsub1 and fmp2
e = f5

e ◦ gsub2 , then:

f1
e ([f

4
e ◦ gsub1 ({xi}N)||f5

e ◦ gsub2 ({xj}N)]) = f1
e ([f

mp1
e ({xi}N))||fmp2

e ({xj}N))]) (37)

As f1
e is a universal function approximator, it can represent the function f([x||y]) = x·y. Therefore:

f1
e ([f

mp1
e ({xi}N))||fmp2

e ({xj}N))]) ⊇ fmp1
e ({xi}N)) · fmp2

e ({xj}N)) (38)

If we restrict fmp1
e and fmp2

e s.t. fmp1
e = fmp2

e = fmp
e , we get:

fmp1
e ({xi}N)) · fmp2

e ({xj}N)) ⊇ fmp
e ({xi}N)) · fmp

e ({xj}N)) (39)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The right hand side is similar to the node space message passing equation 28. Combining it all
together, we get:

fe(zij) ⊇ f1
e ([f

mp1
e ({xi}N))||fmp2

e ({xj}N))]) ⊇ fmp
n ({xi}N) · fmp

n ({xj}N) (40)

Thus, we have shown that message passing in the edge space is at least as powerful as, and potentially
more powerful than, traditional message passing in the node space for the task of learning edge
features.

A.3.3 COROLLARY

We derive below corollary for our edge representation learning framework:

Corollary 1

Message passing in the edge space is more effective at learning graph topology compared to
traditional message passing in the node space.

Proof of Corollary 1: Graph topology can be succinctly represented by the adjacency matrix Â.
Let Âij = êij . Then, our corollary follows directly from Proposition 1.

B GNN ARCHITECTURE

B.1 GRAPH TRANSFORMER LAYER

Graph transformer layer extends the self-attention mechanism to graph data structure. Assuming H
attention heads, the representation for node i is updated as:

xl
i = W0[z

l
i

1||zli
2||...||zli

H
]

zli
h
= Wh

1x
l−1
i +

∑
j∈Ni

αh
ij(W

h
2x

l−1
j +Wh

6Aij)

αh
ij = softmax

(
(Wh

3x
l−1
i)T (Wh

4x
l−1
j +Wh

5Aij)√
d

) (41)

where, || is the concatenation operator, d is the dimension of xl−1
i , and {Wh

k |k ∈ {1, 2, ..., 6}, h ∈
{1, 2, ...,H}} ∪W0 are learnable parameters. We chose graph transformer as our primary message
passing layer since the learned node features are more expressive than GCNConv (Kipf & Welling,
2016) while being more computationally efficient than NNConv (Simonovsky & Komodakis, 2017),
two widely used layers in graph super-resolution.

B.2 GRAPH TRANSFORMER BLOCK

Our architecture utilizes the Graph Transformer Layer (GTL) defined in section B.1 as the primary
message passing mechanism. Each GTL is followed by Graph Normalization (GraphNorm) to sta-
bilize and accelerate training. We define this combined operation as the Graph Transformer Block
(GTB):

GTB = GraphNorm(GTL(·)) (42)

The GTB serves as the foundation for all GNNs in this work.

C DATA GENERATION

C.1 PHYSICS-INSPIRED DUMMY DATASET

In this work, we presented our edge representation learning framework and proposed theoretical
justification for why edge space computations are more effective than node space computations to

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 7: Overview of Part 2 (Super-resolving the number of nodes) and Part 3 (HR node represen-
tation learning) for the super-resolution operator S.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

predict edge features. To empirically evaluate this claim, we simulate a dataset inspired by interact-
ing particle systems in Physics. Specifically, we initialize a set of particles in 2D space and assign
them masses. We then assume each particle to be a node in a graph and initialize the node feature
vector as a combination of mass and position i.e. for the ith particle, its node feature vector xi is
[mi, xi, yi]. We then create edges between these nodes based on some heuristic. Finally, we assign
each edge a value which follows the inverse square law:

E1: Inverse square law

eij =
Gmimj

r2ij

r2ij = (xi − xj)
2 + (yi − yj)

2

(43)

We hypothesize that node representation learning models may be able to easily model the dot prod-
uct term mimj while struggling to model the inverse distance term 1/r2ij which varies a lot and
necessitates encoding the relative distance to each neighbor individually.

There are two variables for each particle: the mass mi and the position (xi, yi). This gives us three
non-trivial datasets:

• D1: Grid graph with random masses
Particles are laid out uniformly on a square grid with the masses drawn randomly from the
uniform distribution mi ∼ U(0, 1). As its a grid graph, we keep rij = 1.0 for all edges.
Therefore, eij ∝ mimj , and we expect the node representation learning model to perform well
as they essentially perform dot product between learned node features to predict eij .

• D2: Random geometric graph with uniform mass
Particle positions are sampled uniformly from a unit square, and two nodes are connected if the
distance between them is less than a given threshold t. Moreover, we keep mi = 1.0 for all
nodes to isolate the impact of distances. We expect the edge representation learning model to
perform better as the edge values only depend on the relative distance between the nodes.

• D3: Random geometric graph with random mass
This provides a general case of the random geometric graphs in D2 with mi ∼ U(0, 1). This
represents a more realistic graph setting with multiple competing components s.t. the edge value
depends both on the dot product of the masses and the relative distance.

While inverse square law provides an edge function that is difficult to model, we supplement our
analysis with additional edge functions that highlight different aspects of node v/s edge representa-
tion learning:

• E2: Asymmetric rational function

eij =
Ami +Bmj

x2
i + y2j

(44)

The denominator depends on an asymmetric combination of absolute node positions, making it
difficult to encode within a single node feature. In contrast, the numerator, while also asymmet-
ric, should be easier to encode as it denotes a simple linear combination.

• E3: Symmetric quadratic function

eij = (xi − xj)
2 + (yi − yj)

2 + (mi −mj)
2 (45)

This represents the squared Euclidean distance between the two node features. Unlike the ratio-
nal functions E1 and E2, we expect node based models to struggle since there are no compen-
sating numerator terms to bring down the total loss.

• E4: Symmetric polynomial function

eij = xiyimi + xjyjmj + xiyj + xjyi (46)

It may be possible to approximate this equation as a dot product between individual node features
by projecting the node features to a higher dimensional sparse feature space. Therefore, we do
not expect the node based models to struggle.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

• E5: Asymmetric quadratic function

eij = x2
i + y2i +m2

j (47)

Even though this is asymmetric, it may possible to learn this function similar to E4 by projecting
the node features to non-linear higher dimensional space. Therefore, we do not expect the node
based models to struggle.

C.2 TRADITIONAL GRAPH SIMULATION DATASET

C.2.1 HR GRAPH GENERATION

We employ three widely recognized graph generation models to create our HR graphs: (1) Stochas-
tic Block Model (SBM) (Lee & Wilkinson, 2019) that generates community or clustered graphs;
(2)Barabási-Albert (BA) Model (Barabási & Albert, 1999) that produces scale-free graphs; (3)
Watts-Strogatz (WS) Model (Watts & Strogatz, 1998) that creates small-world graphs. Below, we
discuss each of these models in detail:

• Stochastic Block Model (SBM): The SBM generates graphs by partitioning nodes into multiple
clusters and probabilistically connecting them. The generation process requires two key inputs:

1. The number of nodes in each cluster: c = [n1, n2, ..., nc], where c is the number of clusters
and

∑c
i=1 ni = |V| = n.

2. The connection probability matrix: Psbm ∈ Rc×c, where Psbm
ij defines the probability

of connecting nodes in cluster i with nodes in cluster j. The intra cluster probabilities
Psbm

ij |i=j are usually higher than inter cluster probabilities Psbm
ij |i ̸=j to create clusters.

While the generated graphs are already stochastic, we further randomize above inputs to ensure a
topologically diverse dataset. For this, we sample c from [cmin, cmax], initialize Psbm

ij |i=j from
[pintramin , pintramax], and initialize Psbm

ij |i̸=j from [pintermin , pintermax]. Moreover, we use the multinomial
distribution to partition the n nodes into c clusters to ensure that no cluster ends up with very few
nodes. Algorithm 2 provides the pseudocode for our simulation process and Figure 8a shows the
variation of generated graphs with Psbm.

• Barabási-Albert (BA) Model: The BA model generates scale-free graphs by introducing prefer-
ential attachment during network growth. This means that each incoming node connects to an
existing node with a probability based on its current degree. Therefore, nodes created early on
are more likely to be connected to new nodes and continue growing into hubs. The simulated
graphs show power-law degree distribution and mimic many real-world datasets such as social
interactions, internet connectivity, etc. The generation process requires two user inputs:

1. The total number of nodes in the graph n

2. The number of edges m to attach from each new node to existing nodes while growing the
network

Similar to the SBM model, this process is also stochastic and leads to different graphs. However,
to ensure a higher topological diversity, we randomly sample m from the range [mmin,mmax].
Algorithm 3 provides the pseudocode for our simulation process and Figure 8b shows the varia-
tion in graph structure with m.

• Watts-Strogatz (WS) Model: The WS model generates small-world graphs that possess high
clustering and short average path lengths. This is done by initializing the graphs as a regular
ring lattice where every node is connected to its k nearest neighbors. Thereafter, it rewires
each edge with a probability p to introduce randomness. Small-world graphs provide a good
mathematical model for numerous natural graphs such as neural networks and power grids where
high clustering reflects high activity regions while short path lengths correspond to rapid signal
transmission. The generation process requires three inputs:

1. The total number of nodes in the graph n

2. The number of nearest neighbor connections k for the regular ring lattice
3. The rewiring probability p

As before, we supplement topological diversity of our graphs by randomizing above inputs. This
involves sampling k from [kmin, kmax] to control initial lattice structure and sampling p from

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

[pmin, pmax] to control rewiring strength. Algorithm 4 gives the pseudocode for our simulation
process and Figure 8c shows the variation with p.

Algorithm 1 Generate LR graph and compute node and edge features

1: Input: Vh, Eh,Ah,metrictopK
2: Output: (Gl,Gh) ▷ (LR, HR) attributed graph pair
3: Xh = Node2V ec(Ah) ▷ Generate node feature matrix for HR graph
4: Eh = PearsonCorr(Xh) ▷ Generate edge feature tensor for HR graph
5: Gh = (Vh, Eh,Ah,Xh,Eh)
6: Vl, El,Al = TopK(Gh,metrictopK) ▷ Create LR graph using TopK pooling
7: Xl = Node2V ec(Al) ▷ Generate node feature matrix for LR graph
8: El = PearsonCorr(Xl) ▷ Generate edge feature tensor for LR graph
9: Gl = (Vl, El,Al,Xl,El)

10: return (Gl,Gh)

Algorithm 2 Data simulation using Stochastic Block Model (SBM)

1: Input: N,n, cmin, cmax, p
inter
min , pintermax , pintramin , pintramax ,metrictopK

2: Output: data ▷ List of (LR, HR) graph pairs
3: data← [] ▷ Initialize an empty list to store graph pairs
4: for l← 1 to N do
5: c ∼ U(cmin, cmax) ▷ Initialize the number of clusters in this graph
6: c ∼Multinomial(n− c, 1/c) + 1 ▷ Distribute n nodes into c clusters
7: Psbm ← 0 ∈ Rc×c ▷ Initialize the connection probability matrix
8: for i← 1 to c do
9: for j ← 1 to c do

10: if i = j then
11: Psbm

ij ∼ U(pintramin , pintramax) ▷ Assign intra cluster probability
12: else
13: Psbm

ij ∼ U(pintermin , pintermax) ▷ Assign inter cluster probability
14: end if
15: end for
16: end for
17: Vh, Eh,Ah = SBM(c,P) ▷ Create HR graph structure
18: (Gl,Gh) = Algorithm1(Vh, Eh,Ah,metrictopK) ▷ Generate LR-HR graph pair
19: data.append((Gl,Gh))
20: end for
21: return data

Algorithm 3 Data simulation using Barabási-Albert (BA) Model

1: Input: N,n,mmin,mmax,metrictopK
2: Output: data ▷ List of (LR, HR) graph pairs
3: data← [] ▷ Initialize an empty list to store graph pairs
4: for l← 1 to N do
5: m ∼ U(mmin,mmax) ▷ Initialize the number of edges from new nodes
6: Gh = BA(n,m) ▷ Create HR graph
7: (Gl,Gh) = Algorithm1(Vh, Eh,Ah,metrictopK) ▷ Generate LR-HR graph pair
8: end for
9: return data

C.2.2 LR GRAPH GENERATION

To create LR graphs from the HR graphs, we use the TopK pooling technique (Cangea et al., 2018).
For this, we calculate a node metric metrictopK for our HR nodes and sort them in decreasing order
of this metric. After this, we retain the top K nodes and the connections between to generate the cor-
responding LR graph. In our experiments, we use four different topological metrics as metrictopK :

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(a) Variation of SBM graphs with pinter and pintra

(b) Variation of BA graphs with m

(c) Variation of WS graphs with p

Figure 8: Sample graphs from different data generation processes and their variation with input
parameters

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Algorithm 4 Data simulation using Watts Strogatz (WS) Model

1: Input: N,n, kmin, kmax, pmin, pmax,metrictopK
2: Output: data ▷ List of (LR, HR) graph pairs
3: data← [] ▷ Initialize an empty list to store graph pairs
4: for l← 1 to N do
5: k ∼ U(kmin, kmax) ▷ Initialize the number of nearest neighbors
6: p ∼ U(pmin, pmax) ▷ Initialize the rewiring probability
7: Gh = WS(n, k, p) ▷ Create HR graph
8: Vh, Eh,Ah = Gh = WS(n, k, p) ▷ Create HR graph structure
9: (Gl,Gh) = Algorithm1(Vh, Eh,Ah,metrictopK) ▷ Generate LR-HR graph pair

10: data.append((Gl,Gh))
11: end for
12: return data

(1) Node Degree Centrality (Degree), (2) Betweenness Centrality (Betweenness), (3) Clustering Co-
efficient (Clustering), (4) Participation Coefficient (Participation). These metrics were selected as
they give rise to different HR-LR graph relationships (see Figure 9), allowing us to cover a diverse
set of real-world scenarios.

C.2.3 NODE FEATURE GENERATION

To generate the initial node feature matrix X for our graphs, we use the Node2Vec model (Grover
& Leskovec, 2016). The Node2Vec model combines random walks with the Word2Vec algorithm
(Mikolov, 2013) to generate node embeddings. Specifically, it generates a set of random walks
following both the breadth first search (BFS) approach (Bundy & Wallen, 1984) and the depth first
search (DFS) approach (Tarjan, 1972). BFS explore nodes closer to the current node, capturing
local properties while DFS generates walks exploring nodes further away, capturing global graph
properties. Then, it treats each walk as a sentence and applies the Word2Vec model to generate our
final node feature vectors.

C.2.4 EDGE WEIGHT GENERATION

To facilitate edge weight prediction, we also generate the edge weighted matrix E ∈ Rn×n for our
graphs. Each edge weight is computed as the Pearson correlation coefficient between incident node
feature vectors:

Eij =
Cov(Xi,Xj)

σ(Xi)σ(Xj)
(48)

where Xi and Xj are the feature vectors of incident nodes i and j, respectively.

C.3 BRAIN GRAPH DATASET

We use the publicly available Southwest University Longitudinal Imaging Multimodal (SLIM)
dataset (Liu et al., 2017), which provides a collection of structural, diffusion, and resting-state func-
tional magnetic resonance imaging (fMRI) data for 167 subjects. In addition to neuroimaging data,
the dataset also contains behavioral data, offering a multifaceted view of brain structure and func-
tion. This dataset is used to generate different brain connectivity matrices for each subject using
multi-step, complex, and computationally expensive pre-processing pipelines. The brain connectiv-
ity matrices vary widely in resolution and each represents a specific type of brain connectome, such
as the structural connectome which models anatomical connectivity or the functional connectome
which models neural activity between brain regions. Depending on how we parcellate the brain
into regions of interests (ROIs) or nodes, we obtain functional connectomes of different resolution.
Moreover, the brain connectivity matrices for these connectomes encode neural activity correlation
between different ROIs.

For our experiments, we generate LR-HR brain graph pairs using two such functional connectomes:
Dosenbach parcellated connectomes (Dosenbach et al., 2010) with 160 ROIs as the LR graphs and
Shen parcellated connectomes (Shen et al., 2013) with 268 ROIs as the HR graphs. Figure 10 illus-
trate some sample LR-HR connectivity matrices for these connectomes, highlighting the topological

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

(a) Stochastic Block Model (SBM)

(b) Barabási-Albert (BA) Model

(c) Watts-Strogatz (WS) Model

Figure 9: Variation of LR-HR graph pairs across different metrictopK : (1)Degree, (2)Betweenness,
(3)Clustering, (4)Participation. Column ’Original’ refers to a sample HR graph while others repre-
sent the corresponding LR graph. Also, top row in each subfigure show the graph structures while
bottom row show the adjacency matrices.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

diversity of our dataset. These connectivity matrices form the weighted adjacency matrices for our
for LR and HR graphs, denoted by Al and Ah, respectively. Following the convention from previ-
ous work (Mhiri et al., 2021), we initialize our LR and HR node feature matrices as Xl = Al and
Xh = Ah.

Figure 10: Representative samples of connectivity matrices for our LR-HR brain graphs

D COMPARISON MODELS

D.1 PHYSICS-INSPIRED DUMMY DATASET

To evaluate our proposition, we create four simple models, two each for node and edge representa-
tion learning:

• Node Model: Inspired by the GIN layer Xu et al. (2018), we create a single layer MPNN that
updates node representation and predicts the edges as:

x̂i = fnode(xi +
∑
j∈Ni

xj)

eij = x̂i · x̂j

(49)

where, fnode is a universal function approximator modeled as a two-layer feed forward network
(FFN) Hornik et al. (1989) s.t. fnode : R3 7→ R16 7→ R16.

• Node Large Model: Same as the above model but with a larger three-layer FFN as the universal
function approximator fnode large : R3 7→ R16 7→ R16 7→ R1. Although fnode large has larger
capacity, it projects node features to a single value in the last layer and thus may struggle for
equations that require dot product between larger feature vectors.

• Edge Model: Uses simple edge based computations that only depend on adjacent node features
as:

e0ij = [xi||xj]

eij = fedge(e
0
ij)

(50)

where, || is the concatenation operator and fedge is a three-layer FFN fedge : R6 7→ R16 7→
R16 7→ R1.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

• Dual Edge Model: Involves message passing between the edges using our dual graph formula-
tion. Formally:

e0ij = [xi||xj]

eij = fedge dual(e
0
ij +

∑
k∈Ni

eik +
∑
l∈Nj

elj +
∑
s∈Ni

esi +
∑
r∈Nj

ejr) (51)

where, fedge dual is a three-layer FFN network fedge dual : R6 7→ R16 7→ R16 7→ R1.

D.2 TRADITIONAL GRAPH SIMULATION DATASET

To benchmark our frameworks against the simulated datasets, we create two sets of ablated models:
(1) Seven models for the super-resolution operator S; (2) Seven models supplementing our models
from set one with the dual graph operator D. Below, we discuss the nomenclature used for the
models in the first set:

• LA: S with the linear algebraic method
• Bi-LC: S with the bipartite linear combination method
• Bi-LCfixed: S with the bipartite linear combination method and node refinement using fixed

computation domain
• Bi-LClearned: S with the bipartite linear combination method and node refinement using learned

computation domain
• Bi-MP: S with the bipartite message passing method
• Bi-MPfixed: S with the bipartite message passing method and node refinement using fixed

computation domain
• Bi-MPlearned: S with the bipartite message passing method and node refinement using learned

computation domain

As the models in the second set simply use the dual graph operatorD as an additional component, we
define the corresponding models as: Dual LA, Dual Bi-LC, Dual Bi-LCfixed, Dual Bi-LClearned,
Dual Bi-MP, Dual Bi-MPfixed, and Dual Bi-MPlearned.

D.3 BRAIN GRAPH DATASET

To thoroughly evaluate our frameworks, we use the fourteen ablated models from section D.2 and
benchmark them against an adapted version of the current state of the art GNN model for graph
super-resolution and a newly created baseline:

• IMANadapted: IMANGraphNet (Mhiri et al., 2021) is the current state of the art GNN model
for graph super-resolution. However, it uses computationally expensive NNConv layers (Si-
monovsky & Komodakis, 2017) and results in ‘Out-of-Memory’ error on our dataset. Therefore,
we create an adapted version of this model which linearly projects the node feature matrix Xl

to a lower dimensional space before feeding it to the NNConv layers. Moreover, to maintain
dimensional consistency with the original model, we apply another linear projection to map the
outputs back to the higher dimensional space.

• Autoencoder: Inspired by the iterative up-and-down sampling methods in image super-
resolution (Haris et al., 2018), we propose an autoencoder model to capture the mutual de-
pendency of LR and HR graphs. Both encoder and decoder use the same GNN architecture as
our LA model but with the mappings reversed s.t. the encoder predicts HR graph from the LR
graph while the decoder maps the predicted HR graph back to the original LR graph. Finally,
the model is trained using the sum of reconstruction loss for both HR and LR graphs.

E EXPERIMENTAL SET-UP

E.1 PHYSICS-INSPIRED DUMMY DATASET

We conduct two sets of experiments, covering eight different scenarios: (1) three experiments with
fixed edge function E1 and varying datasets D1, D2, and D3 (2) five experiments for fixed dataset

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

D3 and varying edge functions E1, E2, E3, E4, and E5. For the first set of experiments with E1,
we fix G = 100.0, G = 1.0, and G = 1.0 for D1, D2, and D3 datasets, respectively. These G
values were selected empirically to ensure that the resulting edge values are not vanishingly small
or explodingly large. For the second set of experiments with D3, we fix G = 1.0 for E1 and A = 10
and B = −7 for E2.

For each experiment, we randomly generate three datasets: train, val, and test. We use the train
dataset to train the models, val dataset to check for early stopping, and test dataset to report final
performance on the best model. All models are trained at least until a given number of warm up
epochs. Thereafter, we monitor validation loss and cease training early if it doesn’t improve for a
given number of epochs, called patience. Moreover, we repeat each experiment 15 times to account
for variation in the data generation process. All models are trained with MSE loss as it provides
a smoother loss landscape which is preferable for our simplistic setting. Finally, Table 5 provides
common hyper-parameters used across all experiments.

Table 5: Hyper-parameters for experiments with physics-inspired dummy dataset

Hyper-parameter type Hyper-parameter Value

Data Generation

Number of nodes 16
Number of train samples 128
Number of val samples 32
Number of test samples 32
Connection threshold, t 0.3

Model training

Batch size 16
Learning rate 0.001
Maximum number of epochs 300
Number of warmup epochs 10
Patience 15

E.2 TRADITIONAL GRAPH SIMULATION DATASET

Our objective is to predict the HR edge features Eh from the LR edge features El under twelve
different scenarios covering three graph topology and four metrics for TopK pooling. We evaluate
each scenario using 3-fold cross validation. For each fold, we split the dataset into train, val, and
test. Similar to section E.1, we use train dataset for model training, val dataset to determine early
stopping, and test dataset to report performance for that fold. We average this performance across all
folds to report final model performance. All models are trained with MAE loss between predicted
and true Eh. Table 6 gives the hyper-parameters used for our experiments.

E.3 BRAIN GRAPH DATASET

Our objective is to predict the HR adjacency matrix Ah from the LR adjacency matrix Al and
analyze the performance across sixteen different models. We use the same experimental setting as
section E.2 but with some minor changes: (1) We perform categorical search on learning rate and
select the learning rate with the best performance for each model from [0.01, 0.005, 0.001]. (2) We
use the hyper-parameters given in Table 7 for model training and Graph Transformer Block (GTB).

Along with the MAE between the true and predicted Ah, we also measure the MAE between seven
topological measures: Betweenness Centrality (Betweenness), Closenness Centrality (Closenness),
Eigenvector Centrality (Eigenvector), Node Degree Centrality (Degree), Participation Centrality
(Participation), Clustering Coefficient (Clustering), and Small Worldness (Small Worldness). Each
one of these measures capture a different topological aspect of the connectome.

Node degree centrality measures the number of incident connections to a given node and serves as
an indirect measure of network resilience (Achard et al., 2006). Betweenness centrality measures
the fraction of shortest paths between all node pairs that pass through a given node and is useful for
detecting bridge nodes between disparate regions (Rubinov & Sporns, 2010). Closeness centrality
quantifies the mean distance between a given node and the rest of the network, indicating the speed

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 6: Hyper-parameters for experiments with simulated datasets

Hyper-parameter type Hyper-parameter Value

Model training

Batch size 16
Learning rate 0.001
Maximum number of epochs 150
Number of warmup epochs 15
Patience 5

GTB parameters
Number of hidden dims 16
Number of attention heads 4
Dropout 0.2

Data Generation
Number of samples 128
Number of HR nodes, n 64
Number of LR nodes, K 32

SBM parameters

Minimum number of clusters, cmin 2
Maximum number of clusters, cmax 5
Minimum intra connection probability, pintramin 0.50
Maximum intra connection probability, pintramax 0.60
Minimum inter connection probability, pintermin 0.01
Maximum inter connection probability, pintermax 0.10

BA parameters Minimum number of edges, mmin 4
Maximum number of edges, mmax 8

WS parameters

Minimum number of nearest neighbors, kmin 4
Maximum number of nearest neighbors , kmax 8
Minimum rewiring probability, pmin 0.2
Maximum rewiring probability, pmax 0.5

Node2Vec parameters

Node feature dimension 8
Length of HR random walks 51
Length of LR random walks 26
Number of random walks 100

Table 7: Hyper-parameters for experiments with the brain graph dataset.

Hyper-parameter type Hyper-parameter Value

Model training

Batch size 16
Maximum number of epochs 300
Number of warmup epochs 30
Patience 7

GTB parameters
Number of hidden dims 32
Number of attention heads 4
Dropout 0.2

Dataset parameters Number of LR nodes 160
Number of HR nodes 268

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

of communication within the network. Eigenvector centrality assess the number of connections
to a given node, weighted by the centrality of its neighbors, and evaluates hierarchical influence
(Lorenzini et al., 2023). Participation Coefficient and Clustering Coefficient measures modularity in
the network. The Participation Coefficient measures the diversity of intermodular interconnections
of individual nodes, while the Clustering Coefficient assesses the presence of cliques or clusters.
These metrics are important for evaluating brain network segregation and information processing
within specialized brain subsystems (Gamboa et al., 2014). Finally, Small-worldness is defined by
the ratio between the characteristic path length and mean clustering coefficient (normalized by the
corresponding values calculated on random graphs). It supports both segregated/specialized and
distributed/integrated information processing (Watts & Strogatz, 1998).

F RESULTS

F.1 PHYSICS-INSPIRED DUMMY DATASET

From table 8 and 9, we observe that the performances are in line with expectation. In the first set of
experiments, we fix the edge function to E1 and vary the datasets. E1 represents the inverse square
law and should be easy to model using node based models when rij is constant. Consequently, both
node based models outperform edge based models on D1. However, E1 is challenging to model
using dot product when it solely relies on 1/r2ij . As a result, both edge based models outperform the
node based ones on D2. For D3, the numerator seems to compensate for the error from denominator,
allowing node based models to achieve performance that is comparable to the edge based models.

Table 8: Test MAE between true and predicted edge value for E1 (inverse square law) across D1
(grid graph with random masses), D2 (random graph with uniform mass), and D3 (random graph
with random masses) datasets. Bold underline and bold represent the best and second best model
across each row or dataset.

Dataset Node Node Large Edge Edge Dual

D1 0.869± 0.032 1.136± 0.899 2.371± 2.087 1.565± 1.317
D2 41.176± 25.567 39.525± 28.190 33.266± 16.387 38.221± 23.984
D3 13.499± 9.805 9.012± 5.058 8.696± 5.444 10.873± 5.928

In the second set of experiments, we use D3 as our dataset and vary the edge function. For both
E1 and E2, the compensatory effect between numerator and denominator terms takes place and the
node based models perform on par with their edge based counterparts. However, this compensatory
effect is absent in E3 leading to both node based models struggling and performing poorly. For E4
and E5, we anticipates the models to utilize higher dimensional sparse representations. Therefore,
models with the FFN projecting to a single value in the last layer tend to suffer. However, our
dual edge model is able to outperform the other edge model possibly due to its larger capacity and
corrections to the final edge value via message passing from other edges. For the other edge types,
this larger capacity and message passing operation seemed unhelpful and even counterproductive
possibly due to small dataset size and relatively simpler edge functions.

Finally, we would like to highlight some caveats in our experiment design. First, we observe a high
variance between runs and significant outliers (see Figure 11). This may occur since our data gen-
eration is not controlled and could lead to a very large edge value when two particles are generated
closely. As our training objective is to minimize the MSE loss, this creates a bias in the model and
may lead to incorrect estimation of model performance. We tried to correct for this phenomena
by averaging performance across a larger number of runs. Second, the individual models have not
been tuned for best performance and the experiments only act as a proof of concept to highlight the
general trend.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

(a) E1

(b) E2

(c) E3

(d) E4

(e) E5

Figure 11: Performance variation across 15 runs for the D3 dataset. Random and uncontrolled data
generation causes high variance and outliers. However, as the experiments are run a large number of
times, the average performance (represented by) is expected to be representative of the true model
performance.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table 9: Test MAE between true and predicted edge value for D3 (random graph with random
masses) dataset across E1 (inverse square law), E2 (asymmetric rational), E3 (symmetric quadratic),
E4 (symmetric polynomial), and E5 (asymmetric quadratic) edge functions. Bold underline and
bold represent the best and second best models across each edge function.

Edge Function Node Node Large Edge Edge Dual

E1 13.499± 9.805 9.012± 5.058 8.696± 5.444 10.873± 5.928
E2 26.611± 9.176 26.304± 5.800 24.702± 6.480 26.991± 10.280
E3 0.305± 0.014 0.325± 0.037 0.196± 0.182 0.249± 0.073
E4 0.485± 0.039 0.663± 0.391 0.640± 0.710 0.639± 0.275
E5 0.637± 0.036 0.898± 0.500 0.821± 0.934 0.779± 0.419

F.2 TRADITIONAL GRAPH SIMULATION DATASET

We observe that the simulation scenarios are deceptively simple. For example, from figure 9a,
notice that that there are 4 clusters in the HR graph yet only 3 in the LR graph for Degree. Such a
scenario would be challenging for our models to learn since this requires predicting HR edges for
the missing cluster with barely any nodes from that cluster in the LR graph. Still, we observe that
our bipartite graph formulation outperforms the linear algebraic method across all experiments.

From Table 10, 11, and 12, we observe that bipartite message passing performs better than bipartite
linear combination across most of the scenarios. Bi-MP models clearly outperforms Bi-LC models
for BA and WS dataset while the performance is very close for the SBM dataset. This could be
possibly because linear combination provides a highly flexible approach that is useful for predicting
edges from the missing clusters while message passing doesn’t add much utility if no nodes from
the missing cluster are present. For WS and BA datasets, observe from figure 9b and 9c that the
HR graph looks like an extrapolated version of each LR graph and thus, message passing may be
helpful to learn the underlying relationship between nodes. We also do not observe performance
gain from using our dual graph operator D. We suspect this to follow from the previous section
where we observed that edge based message passing does not provide additional utility for small
graphs where node based models may suffice.

Table 10: Test MAE for Eh on four SBM datasets. Columns refer to metrictopK datasets parti-
tioned between models with and without D. In each column, colors give the top 3 models while
bold + underline and bold gives the best and second best model for each partition.

Model Degree Betweenness Clustering Participation

LA 2.841± 0.123 2.712± 0.204 2.591± 0.087 2.784± 0.062

Bi-LC 2.495± 0.109 2.603± 0.021 2.463± 0.061 2.570± 0.061
Bi-LCfixed 2.518± 0.119 2.626± 0.015 2.574± 0.091 2.578± 0.076
Bi-LClearned 2.595± 0.139 2.678± 0.049 2.574± 0.051 2.592± 0.072

Bi-MP 2.548± 0.103 2.685± 0.030 2.494± 0.057 2.592± 0.083
Bi-MPfixed 2.511± 0.117 2.594± 0.009 2.463± 0.039 2.572± 0.103
Bi-MPlearned 2.523± 0.123 2.659± 0.066 2.553± 0.084 2.691± 0.090

Dual LA 3.384± 0.962 3.350± 1.059 2.600± 0.044 3.437± 1.214

Dual Bi-LC 2.558± 0.136 2.637± 0.028 2.511± 0.063 2.994± 0.721
Dual Bi-LCfixed 3.286± 0.565 2.887± 0.307 2.615± 0.166 2.916± 0.132
Dual Bi-LClearned 2.589± 0.150 3.404± 0.977 3.066± 0.600 2.750± 0.129

Dual Bi-MP 2.562± 0.160 2.660± 0.069 2.524± 0.016 2.539± 0.044
Dual Bi-MPfixed 2.601± 0.119 2.668± 0.032 2.676± 0.143 2.625± 0.019
Dual Bi-MPlearned 2.543± 0.093 2.629± 0.017 2.493± 0.088 2.694± 0.220

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Table 11: Test MAE for Eh on four BA datasets. Columns refer to metrictopK datasets parti-
tioned between models with and without D. In each column, colors give the top 3 models while
bold + underline and bold gives the best and second best model for each partition.

Model Degree Betweenness Clustering Participation

LA 1.761± 0.107 2.162± 0.364 1.813± 0.075 1.747± 0.055

Bi-LC 1.749± 0.033 1.789± 0.038 1.787± 0.054 1.752± 0.028
Bi-LCfixed 1.738± 0.018 1.767± 0.022 1.814± 0.054 1.728± 0.037
Bi-LClearned 1.745± 0.018 1.775± 0.058 1.833± 0.028 1.743± 0.044

Bi-MP 1.721± 0.026 1.750± 0.038 1.753± 0.065 1.726± 0.080
Bi-MPfixed 1.705± 0.019 1.795± 0.040 1.748± 0.093 1.758± 0.029
Bi-MPlearned 1.789± 0.041 1.780± 0.039 1.763± 0.052 1.761± 0.007

Dual LA 1.845± 0.047 1.894± 0.050 1.861± 0.096 1.800± 0.031

Dual Bi-LC 1.775± 0.035 1.802± 0.051 1.775± 0.083 1.732± 0.028
Dual Bi-LCfixed 1.984± 0.222 2.446± 0.891 1.966± 0.084 2.659± 1.209
Dual Bi-LClearned 2.459± 0.880 2.604± 0.712 2.416± 0.905 3.030± 0.924

Dual Bi-MP 1.824± 0.018 1.974± 0.091 1.869± 0.024 1.863± 0.130
Dual Bi-MPfixed 1.931± 0.087 1.797± 0.073 1.888± 0.098 1.803± 0.088
Dual Bi-MPlearned 1.721± 0.041 1.784± 0.009 1.809± 0.092 1.790± 0.144

Table 12: Test MAE for Eh on four WS datasets. Columns refer to metrictopK datasets parti-
tioned between models with and without D. In each column, colors give the top 3 models while
bold + underline and bold gives the best and second best model for each partition.

Model Degree Betweenness Clustering Participation

LA 2.179± 0.132 2.070± 0.061 2.128± 0.053 2.104± 0.100

Bi-LC 1.989± 0.006 2.007± 0.012 2.002± 0.031 2.022± 0.027
Bi-LCfixed 2.035± 0.035 2.058± 0.022 2.034± 0.015 2.075± 0.066
Bi-LClearned 2.012± 0.020 2.043± 0.043 2.027± 0.067 2.090± 0.046

Bi-MP 1.998± 0.020 2.002± 0.005 2.016± 0.056 2.013± 0.017
Bi-MPfixed 2.003± 0.014 1.996± 0.010 1.998± 0.027 2.019± 0.028
Bi-MPlearned 2.060± 0.083 2.028± 0.035 1.994± 0.030 2.010± 0.025

Dual LA 2.149± 0.011 2.879± 1.197 2.156± 0.027 2.206± 0.085

Dual Bi-LC 2.027± 0.040 2.007± 0.016 2.009± 0.024 2.422± 0.698
Dual Bi-LCfixed 2.615± 0.894 3.025± 1.602 2.466± 0.649 2.320± 0.284
Dual Bi-LClearned 2.679± 1.055 2.942± 0.802 2.140± 1.846 2.303± 0.199

Dual Bi-MP 2.450± 0.598 2.039± 0.038 2.083± 0.122 2.097± 0.049
Dual Bi-MPfixed 2.270± 0.381 2.394± 0.414 2.432± 0.683 2.417± 0.622
Dual Bi-MPlearned 2.022± 0.048 2.970± 1.666 2.427± 0.710 2.041± 0.049

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Finally, we highlight some experimental caveats. First, we perform our experiments on small graphs
and small data regime. While small graphs are found plenty in the graph learning tasks, neural
networks generally struggle with small datasets and are prone to overfitting. This could be cir-
cumvented by performing scaling analysis for our frameworks but this is beyond the scope of this
work. Second, topK pooling uses traditional metric to create a relationship between LR and HR
nodes. This may not be reflective of real-world graphs that encode more complex non-hierarchial
relationships.

F.3 BRAIN GRAPH DATASET

We report the performance across all eight evaluation measures in Table 13. We observe that our
dual graph formulation outperforms other methods, especially across the topological measures. It
beats the IMANadapted and Autoencoder by a wide margin on these measures. For our bipartite
graph formulation, we observe that message passing performs better than linear combination in the
absence of the dual graph operatorD but the performance difference diminishes on supplmenting the
models with D. This could be possibly because our dual graph formulation provides a powerful and
robust framework to refine the initially learned edge features from S, uplifting the performance of
the the linear combination method. Unfortunately, the bipartite graph formulation does not improve
over the linear algebraic method for this specific brain graph dataset.

F.4 SENSITIVITY ANALYSIS

Finally, we also perform an in-depth sensitivity analysis for the random initialization strategy intro-
duced for our bipartite message passing framework in section 3. Recall that this strategy involves
initializing an HR node feature matrix with values randomly sampled from U(0, 1). To analyze how
sensitive our model performance is to this initialization, we re-run our experiments 15 times for the
six models based on bipartite message passing: Bi-MP, Bi-MPfixed, Bi-MPlearned, Dual Bi-MP,
Dual Bi-MPfixed, and Dual Bi-MPlearned. These 15 runs measure performance across 5 different
random seeds and 3 length scales viz U(0, 1), U(0, 10), and U(0, 100). To measure the sensitivity of
our formulation w.r.t. the other models, we introduce a quantitative metric called relative sensitivity
srel as:

srel =
max({σsm|s ∈ scales,m ∈ modelsBi−MP })

σall models
(52)

where, σsm is the standard deviation of the mean MAE loss (averaged across five random seeds)
for Bi-MP model m and scale s and σall models is the standard deviation of the MAE losses for all
sixteen models from section D.3.

Finally, we report the output of our sensitivity analysis in Table 14 and 15. While all bipartite
message passing models seem robust against variations in the initialization strategy, we observe that
the models without dual graph formulation show a lot more robustness compared to the models with
dual graph formulation. This is expected since the dual graph models possess higher capacity and
high capacity neural networks generally show less robustness against randomization, especially for
small data regime such as ours.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Table 13: Model Performance on Brain Graph Dataset. Each column represents MAE on given
evaluation measure. The best and second best models are highlighted by bold + underline and bold
and the colors give relative ordering.

Model Ah Betweenness Closeness Eigenvector
(101) (104) (101) (103)

IMANadapted 1.725± 0.074 7.695± 0.159 1.590± 0.028 7.507± 0.096
AutoEncoder 1.381± 0.062 7.608± 0.204 1.520± 0.025 7.179± 0.083

LA 1.350± 0.066 7.562± 0.152 1.513± 0.033 7.155± 0.124

Bi-LC 1.528± 0.021 7.693± 0.159 1.590± 0.028 7.507± 0.096
Bi-LCfixed 1.507± 0.051 7.693± 0.159 1.590± 0.028 7.506± 0.096
Bi-LClearned 1.523± 0.055 7.693± 0.159 1.590± 0.028 7.506± 0.096

Bi-MP 1.455± 0.031 7.658± 0.208 1.578± 0.043 7.453± 0.182
Bi-MPfixed 1.428± 0.052 7.588± 0.156 1.551± 0.039 7.325± 0.127
Bi-MPlearned 1.443± 0.048 7.586± 0.192 1.554± 0.040 7.342± 0.169

Dual LA 1.458± 0.153 5.888± 1.914 1.133± 0.442 7.360± 0.957

Dual Bi-LC 1.515± 0.293 5.567± 2.235 0.812± 0.123 6.736± 1.172
Dual Bi-LCfixed 1.609± 0.176 5.376± 0.071 1.030± 0.012 6.560± 0.172
Dual Bi-LClearned 1.646± 0.086 7.318± 0.713 1.249± 0.366 7.504± 0.556

Dual Bi-MP 1.488± 0.143 5.446± 0.927 0.939± 0.059 6.469± 0.370
Dual Bi-MPfixed 1.554± 0.185 5.747± 0.848 1.031± 0.147 6.373± 0.411
Dual Bi-MPlearned 1.373± 0.039 5.742± 0.913 1.046± 0.128 6.379± 0.276

Model Degree Participation Clustering Small Worldness
(100) (101) (102) (102)

IMANadapted 54.778± 1.170 6.850± 0.091 14.006± 0.318 8.360± 0.243
AutoEncoder 51.697± 1.038 5.552± 1.450 14.193± 0.437 8.260± 0.336

LA 51.555± 1.458 5.255± 0.883 14.128± 0.286 8.126± 0.289

Bi-LC 54.771± 1.170 6.858± 0.173 14.003± 0.318 8.362± 0.240
Bi-LCfixed 54.771± 1.170 6.836± 0.096 14.103± 0.318 8.350± 0.244
Bi-LClearned 54.771± 1.170 6.822± 0.106 14.103± 0.318 8.358± 0.243

Bi-MP 54.341± 1.730 6.410± 0.849 13.956± 0.369 8.331± 0.287
Bi-MPfixed 53.324± 1.650 5.090± 0.837 13.916± 0.272 8.254± 0.243
Bi-MPlearned 53.521± 1.651 5.576± 0.766 13.866± 0.353 8.270± 0.268

Dual LA 38.991± 13.900 3.401± 3.172 11.953± 5.235 5.873± 3.221

Dual Bi-LC 31.948± 5.635 1.330± 0.159 7.779± 2.068 3.886± 1.847
Dual Bi-LCfixed 37.555± 0.806 1.382± 0.080 9.718± 0.358 4.086± 1.036
Dual Bi-LClearned 45.300± 10.049 3.615± 2.714 11.874± 2.623 7.188± 1.320

Dual Bi-MP 34.298± 2.567 1.461± 0.204 10.064± 1.623 3.451± 0.696
Dual Bi-MPfixed 37.568± 4.705 1.497± 0.161 10.397± 1.362 4.076± 1.648
Dual Bi-MPlearned 37.527± 3.782 1.440± 0.233 10.714± 2.245 5.322± 1.068

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Table 14: Result of sensitivity analysis for bipartite message passing without D.

Metric Scale Bi-MP Bi-MPfixed Bi-MPlearned srel

Ah

(101)

1 1.488± 0.025 1.417± 0.018 1.420± 0.024
0.06010 1.537± 0.012 1.448± 0.029 1.459± 0.013

100 1.614± 0.026 1.564± 0.021 1.566± 0.014

Betweenness
(104)

1 7.693± 0.000 7.596± 0.028 7.598± 0.045
0.01810 7.611± 0.013 7.589± 0.034 7.599± 0.007

100 7.665± 0.022 7.604± 0.027 7.617± 0.037

Closeness
(101)

1 1.590± 0.000 1.555± 0.013 1.555± 0.021
0.04410 1.558± 0.007 1.548± 0.014 1.551± 0.010

100 1.580± 0.008 1.558± 0.008 1.563± 0.011

Eigenvector
(103)

1 7.506± 0.000 7.350± 0.061 7.346± 0.095
0.03910 7.357± 0.032 7.314± 0.064 7.327± 0.044

100 7.460± 0.038 7.362± 0.037 7.383± 0.052

Degree
(100)

1 54.771± 0.000 53.511± 0.523 53.467± 0.829
0.10110 53.557± 0.299 53.170± 0.569 53.279± 0.456

100 54.414± 0.304 53.562± 0.353 53.780± 0.430

Participation
(101)

1 6.838± 0.023 5.489± 0.642 5.435± 0.881
0.44910 5.920± 0.423 5.155± 0.717 5.613± 0.356

100 6.692± 0.185 5.759± 0.698 6.166± 0.804

Clustering
(102)

1 14.003± 0.000 13.907± 0.035 13.911± 0.030
0.01510 13.938± 0.003 13.941± 0.020 13.954± 0.059

100 13.974± 0.002 13.934± 0.053 13.924± 0.071

Small Worldness
(102)

1 8.360± 0.000 8.270± 0.032 8.278± 0.037
0.01510 8.282± 0.018 8.253± 0.041 8.264± 0.012

100 8.333± 0.020 8.267± 0.042 8.289± 0.037

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Table 15: Result of sensitivity analysis for bipartite message passing with D.

Metric Scale
Dual

Bi-MP
Dual

Bi-MPfixed

Dual
Bi-MPlearned srel

Ah

(101)

1 1.517± 0.054 1.569± 0.036 1.585± 0.029
0.13310 1.569± 0.036 1.607± 0.021 1.438± 0.045

100 1.585± 0.029 1.651± 0.053 1.567± 0.064

Betweenness
(104)

1 6.099± 0.474 5.965± 0.401 5.964± 0.273
0.18710 5.909± 0.261 6.298± 0.125 6.418± 0.275

100 6.018± 0.257 5.540± 0.277 6.692± 0.420

Closeness
(101)

1 1.117± 0.105 0.938± 0.061 1.052± 0.043
0.26010 1.028± 0.054 0.982± 0.036 1.036± 0.051

100 1.152± 0.123 1.081± 0.056 1.201± 0.059

Eigenvector
(103)

1 6.589± 0.256 6.580± 0.088 6.589± 0.305
0.12610 6.608± 0.114 6.938± 0.240 6.468± 0.117

100 6.668± 0.099 6.735± 0.108 6.835± 0.076

Degree
(100)

1 40.017± 3.009 35.079± 1.874 38.011± 1.209
0.41910 38.000± 1.510 36.868± 0.871 37.138± 1.382

100 41.664± 3.440 39.831± 1.498 43.085± 1.939

Participation
(101)

1 1.685± 0.143 1.533± 0.123 1.549± 0.120
0.11410 1.613± 1.067 1.623± 0.134 1.471± 0.166

100 1.646± 0.162 1.647± 0.224 1.709± 0.063

Clustering
(102)

1 11.343± 1.067 9.844± 0.603 10.945± 0.360
0.23110 10.436± 0.694 10.203± 0.296 10.458± 0.846

100 10.978± 0.645 11.216± 0.495 11.952± 0.591

Small Worldness
(102)

1 4.915± 1.144 4.265± 1.009 4.914± 0.607
0.50310 4.200± 0.696 4.500± 0.402 5.129± 0.704

100 5.608± 1.370 3.909± 1.022 5.275± 0.569

39

	Introduction
	Preliminaries
	Graph Data Structure
	Graph Super-Resolution
	Message Passing Graph Neural Networks
	Problem Statement 1: Structure-aware Super-resolution
	Problem Statement 2: Edge Representation Learning

	Proposed Bi-SR Framework
	Refining HR Node Features
	GNN Architecture

	Proposed DEFEND Framework
	Theoretical Analysis
	GNN Architecture

	Experiments
	Physics-Inspired Dummy Dataset
	Traditional Graph Generation Dataset
	Brain Graph Dataset

	Conclusion
	Reproducibility Statement
	Theoretical Analysis
	Node Permutation-invariance of Bi-SR
	Computational Properties of Dual Graph Formulation
	Edge Representation Learning
	Universal Function Approximator
	Proposition
	Corollary

	GNN Architecture
	Graph Transformer Layer
	Graph Transformer Block

	Data Generation
	Physics-Inspired Dummy Dataset
	Traditional Graph Simulation Dataset
	HR graph generation
	LR graph generation
	Node Feature Generation
	Edge Weight Generation

	Brain Graph Dataset

	Comparison Models
	Physics-Inspired Dummy Dataset
	Traditional Graph Simulation Dataset
	Brain Graph Dataset

	Experimental Set-up
	Physics-Inspired Dummy Dataset
	Traditional Graph Simulation Dataset
	Brain graph Dataset

	Results
	Physics-Inspired Dummy Dataset
	Traditional Graph Simulation Dataset
	Brain Graph Dataset
	Sensitivity Analysis

