
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PRE-TRAINING PURE GNNS AS GRAPH LEARNERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graphs from different datasets exhibit diverse numbers of features and labels, where
each feature or label is associated with different semantic meanings. Such diversity
poses challenges in adapting pre-trained graph neural networks (GNNs) to different
datasets with a single set of input and output (I/O) module parameters. This
raises a fascinating question: Can pure GNNs be pre-trained on diverse datasets,
adapting to various datasets effectively without additional effort? To explore
this, we propose unified I/O modules that enable pre-training with pure GNNs.
Unlike traditional methods that tightly couple parameters to specific datasets,
our approach decouples parameters through a shared relation function for the
input and uniformly sampled points for the output. These designs effectively
resolve the challenges in quantity inconsistency and semantic discrepancies of
dataset features and labels. By integrating our I/O modules with various GNN
architectures, we demonstrate that pure GNNs can be effective graph learners for
direct adaptation to downstream tasks. Pre-training experiments under different
setups show that increasing hidden dimensions and the average number of nodes
per training dataset enhances model performance. Moreover, fine-tuning the I/O
modules with frozen pre-trained graph operators significantly simplifies the model
hyperparameter tuning process, achieving superior or comparable performance to
supervised models on downstream datasets.

1 INTRODUCTION

WIKI

ECOM.

SOCIAL

CITATION

fb100
twitch-gamer

genius
tolokers

pokec

twitch-e

Facebook
arxiv-year

PubMed

snap-patents

amazon-ratings

AmazonComputers
AmazonPhoto

ogbn-products

ogbn-arxiv

CoauthorPhysic

CiteSeer

Cora

NELL

roman-empire

WikiCS

ACTOR

CHAMELEON

Figure 1: Diversity of Features and Labels
across Graph Datasets. Graphs from differ-
ent datasets exhibiting diverse numbers of fea-
tures and labels, while each feature or label is
associated with different semantics.

Pre-trained foundation models have shown ex-
ceptional adaptability across different datasets,
such as large language models (LLMs) (OpenAI
et al., 2024) for MMLU (Hendrycks et al., 2020)
and HumanEval (Chen et al., 2021), large vi-
sion models (LVMs) (Kirillov et al., 2023) for
CityScapes (Cordts et al., 2016) and PIDRay (Zhang
et al., 2023a). A key factor underpinning this ca-
pability lies in the unified feature and label space
across datasets. In the feature space, although the
encoded information varies, the semantic meanings
of features remain consistent. For instance, a land-
scape image and a colored X-ray image can both be
represented as 3D tensors, with features correspond-
ing to their RGB values. In the label space, data can
be assigned to a limited number of labels.

In contrast to data with the unified feature and label space, graph data typically exhibits diverse
numbers of features and labels, with each associated with different semantics (Fig. 1). For instance,
feature and label semantics in tolokers (Platonov et al., 2023) correspond to user profiles and user
status, whereas those in CoauthorCS (Shchur et al., 2019) correspond to publication keywords and
research interest. This inherent diversity presents substantial challenges in developing pre-trained
graph models. First, the inconsistent number of features and labels hinders the unified design of the
input/output modules (I/O). Second, the semantic discrepancies across graphs impede the effective
adaptation of pre-trained models to diverse graph datasets. Traditional I/O fails to tackle these
challenges by tightly coupling the quantity and values of the learnable parameters to specific datasets,
thereby limiting their adaptability.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To address this problem, methods have proposed leveraging language models (LMs) as I/O for graph
neural networks (GNNs) (Liu et al., 2023a; Li et al., 2024b). By transforming graph features and
labels into natural language, GNNs integrated with LMs can effectively handle graphs with diverse
features and labels. Beyond advancements in pre-training GNNs with LMs, researchers have also
explored fine-tuning strategies (Sun et al., 2022; 2023; Huang et al., 2024) to accommodate different
features and labels. However, these methods still rely on few-shot knowledge for effective adaptation.
It remains an open problem that can pure GNNs be pre-trained on diverse datasets and directly
adapted to downstream datasets?

In this paper, we propose unified I/O modules to achieve pre-training with pure GNNs by decoupling
model parameters from specific datasets. Instead of treating the whole mapping matrix as learnable
parameters, unified I/O decomposes the mapping into two successive mapping matrices: one associ-
ated with the datasets and the other associated with the hidden space. Our objective is to model the
dataset-associated mapping in a transferable manner. For input features, unified I/O employs a shared
parametric relation function to learn a predefined number of relations between feature dimensions.
The shared function targets and analyzes the same relation patterns across different datasets, which
can be employed to construct the dataset-associated mapping with the same set of parameters. For
output labels, the module samples uniformly distributed points as pseudo labels, enabling prediction
over diverse label spaces. When label information is available for downstream graphs, these uniform
points can be aligned with the real labels without additional training.

Our unified I/O modules enable graph pre-training with pure GNNs. Empirical results with different
GNN architectures demonstrate that pre-trained pure GNNs can be effective graph learners for direct
adaptation to downstream tasks. Specifically, we evaluate the performance of pre-trained models
with scaling parameters, scaling training data, and varying domain gaps. Results show that increasing
either hidden dimensions or the average number of nodes per graph during pre-training enhances
the performance. Moreover, fine-tuning the I/O modules with frozen pre-trained graph operators on
downstream graphs substantially reduces the need for extensive hyperparameter tuning, achieving
superior or comparable performance with the supervised models. Our contribution can be summarized
as

• We propose a novel method to unify the I/O modules for pre-training with general pure GNNs,
providing graph operators to simplify the extensive hyperparameter tuning process.

• We demonstrate that pre-trained pure GNNs can serve as effective graph learners on eight classic
GNN architectures across diverse real-world datasets.

• We experimentally verify the adaptation performance of pre-trained GNNs with scaling parame-
ters, scaling training data, and different domain gaps.

2 RELATED WORK

Due to space limitations, we provide a brief overview of related work, with a comprehensive
discussion in Appendix B. Existing methods for adapting pre-trained graph models fall into two
categories: I/O unification and fine-tuning. The former mainly leverage LMs to encode textual
attributes for unifying diverse features and labels (Liu et al., 2023a; Wang et al., 2023; Chen et al.,
2024a; Kong et al., 2024; Li et al., 2024b; Tang et al., 2024; Zhu et al., 2025). Except for LM-based
methods, both parametric (Jing et al., 2023; Zhao et al., 2024b) and parameter-free (Sun et al., 2023;
Tang et al., 2024; Sun et al., 2025) unification strategies for pure GNNs have been explored, but they
fail to unify label spaces. GraphAny (Zhao et al., 2024a) extends this direction to label unification
with linear GNNs. Yet these methods remain limited in scope and often require observed labels,
leaving pre-training with general pure GNN architectures an open challenge. The latter fine-tuning
methods adapt pre-trained models through graph adapters (Li et al., 2024a; Gui et al., 2024) or graph
prompts (Sun et al., 2023; Yu et al., 2025). Distinct from both, our method can be applied to general
GNN architectures and enables pre-training for direct adaptation to diverse datasets.

3 UNIFIED I/O FOR GENERAL PURE GNN ARCHITECTURES

To enable training-free adaptation of pure GNNs, we formulate the unification of the I/O modules as
the modeling of the semantics associated with each feature and label (Fig. 2). Specifically, our unified

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

dim2

dim0

dim1

dimβ

dimα

dim2

dim1

dimα

dimβ

dim0

Source Space Target Space

Dimension Semantics Module Mapping

(b-1) Mapping for Traditional I/O

(b-3) Mapping for Unified Output

Learnable

Parameters

Module

Input/Output
Semantics

Matrix

Uniform

Sampling

(a) Unified View for I/O Module (b) Mapping in I/O Module (c) Overall Framework

One for One One for All

Module

Mapping
Input/Output

Matrix

* AVG

=
Graph

Processing

Unified

Input Module

Unified

Output Module

Graph

Datasets
Labels

Traditional

Output Module

Graph

Processing

Traditional

Input Module

(b-2) Mapping for Unified Input

Semantic

Relation

Figure 2: Illustration of the Unified Input/Output Pipeline. (a) A linear mapping projects
source dimensions onto a set of target dimensions. Each dimension corresponds to certain semantic
descriptions that can be embedded in the semantic space. Modeling semantic relations between source
and target dimensions results in module mappings. (b) Instead of treating both semantic matrices
as parameters, unified I/O modules model the feature semantics as parametric relations and sample
label semantics uniformly in the semantic space. (c) The parameter quantity and values in GNNs
with traditional I/O are coupled with specific datasets. Our unified I/O decouples the parameters from
specific datasets, enabling one set of parameters for different datasets.

input module encodes the feature semantics as parametric relations of the input features, while our
output module represents diverse label semantics as uniformly sampled points in the semantic space.

3.1 PROBLEM SETUP

Notations. Given an input graph G = (V, E), V = {v1, · · · , vn} denotes a set of n nodes and
E = {ei,j |vj ∈ N (vi)} denotes a set of m edges. N (·) denotes the set of one-hop neighbors
for a given node. Each node v ∈ V corresponds to a feature vector xv ∈ Rdin where din is the
number of input features. Let X = (xv1 , · · · ,xvn)

⊤ ∈ Rn×din be the node feature matrix composed
of feature vectors. Let A ∈ Rn×n be the adjacency matrix of G. Ai,j = 1 if ei,j ∈ E . Let
C = (cv1 , · · · , cvn)⊤ ∈ Rn×c be the node label matrix composed of label vectors, where c is the
number of labels, Ci,j ∈ {0, 1}. Although we take node classification as an example in this paper,
our method can be applied to general graph learning tasks (Appendix A).

Modules in GNN. Let GNN(G) = (Fout ◦ Fg ◦ Fin)(G) be a GNN model. The target of GNN(G) is to
optimize the sets of learnable parameters Win, Wg, and Wout and form the optimal mapping for Fin,
Fg, and Fout. The input module Fin : Rdin 7→ Rd maps input features to the hidden space, yielding
H(0) = Fin(X;Win), where d denotes the hidden dimensionality and “;” separates module input from
the parameters. The module Fg : Rd × Rn×n 7→ Rd applies general graph processing methods (Kipf
& Welling, 2017; Rampášek et al., 2022), giving H(L) = Fg(H

(0),A;Wg) with L layers. Finally,
the output module Fout : Rd 7→ Rc performs prediction, giving Ĉ = Fout(H

(L);Wout).

Specifically, the focus of this paper is to model the mappings of the I/O modules Fin and Fout, which
can be uniformly formulated as Fi/o : Rdsrc 7→ Rdtgt , yielding Fi/o

(
H;Wi/o

)
. The input and output

of the modules are termed as “source” and “target” to distinguish from the input and output of the
whole model. Fi/o as input modules has dsrc = din, dtgt = d, H = X, Wi/o = Win. Fi/o as output
modules has dsrc= d, dtgt= c, H = H(L), Wi/o = Wout.

3.2 MAPPINGS OF THE I/O MODULES

To decouple the model parameters from specific datasets, we start by formulating the module
mappings as dimension relations. Note that the nonlinearity in module mappings is obtained via

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

element-wise operations, which are independent of the I/O dimensionality. Therefore, we only focus
on the linear part of the module mappings. Specifically, a linear mapping defines a projection from the
source dimensions onto a new set of target dimensions (Fig. 2(a)). Learning the dimension relations
enables the model to infer the optimal mapping from the source space to the target space.

Theorem 3.1 (Mapping with Dimension Relations). Given any linear mapping W ∈ Rdsrc×dtgt and
s ∈ N+, there always exist two representation matrices Ssrc ∈ Rdsrc×s and Stgt ∈ Rdtgt×s, such
that W = ψ(Ssrc,Stgt), where ψ(·, ·) is a bilinear composition function.

This theorem shows that we can model the mappings as relations. A typical choice of ψ(·, ·) is
the inner product form, where ψ(Ssrc,Stgt) = SsrcS

⊤
tgt. Proof of Theorem 3.1 is presented in

Appendix E.1. Without loss of generality, the I/O modules can be formulated as

Fi/o
(
H;Wi/o

)
= σ [HW] = σ

[
Hψ(Ssrc,Stgt)

]
= σ

[
HSsrcS

⊤
tgt

]
, (1)

where σ can be any nonlinear function.

Decomposition as Semantics. Ssrc and Stgt are the decomposition results of the original weight
matrix W, which can be interpreted as the semantic embeddings associated with the dimensions of
the source and target spaces, respectively. Each row of Ssrc and Stgt encodes the specific semantic
meaning of a dimension, typically characterizing graph nodes and their associated labels. For example,
CoauthorCS (Shchur et al., 2019) provides node features representing the frequency of the paper
keywords for each author’s papers. These semantic descriptions can be embedded into a semantic
space Rs, giving rise to semantic embeddings such as Ssrc and Stgt.

Problems in Traditional Solutions. In traditional graph learning solutions (Zhou et al., 2020), Fi/o
is highly sensitive to the source and target spaces. It directly treats the space semantics as parameters
for mapping, where Ssrc,Stgt ∈ Wi/o. For instance, a single-layer perceptron can be formulated as
σ
(
HSsrcS

⊤
tgt;Ssrc,Stgt

)
. Consequently, the learned parameter set Wi/o becomes intrinsically tied

to the specific source and target spaces, with its values tailored to particular spaces and its quantity
scales to the number of dimensions in those spaces. This inherent sensitivity significantly limits the
adaptability of pure GNNs to diverse datasets.

Our Solution. To address this issue, we propose to decouple the parameters Wi/o from the source
and target dimension semantics (Fig. 2), where feature semantics are redefined as parametric relations
and label semantics are sampled uniformly in the semantic space.

3.3 SOURCE-ADAPTIVE INPUT MODULE

* AVG

=

𝐗 𝐖𝐢𝐧 𝐇(𝟎)

𝝈

𝝈

𝐟𝐢𝐧

𝐒𝐬𝐫𝐜
𝐢𝐧 𝐒𝐭𝐠𝐭

𝐢𝐧

Figure 3: Pipeline for the Unified Input
Module. A parametric relation function
is employed to construct the source space
semantics S

(in)
src , i.e., the semantics of in-

put features X. The target space semantics
S
(in)
tgt is a learnable parameter matrix.

A input module Fin maps the input features to the
hidden space. Based on Eq. 1, Fin can be formu-
lated as Fin(X) = σ[XWin] = σ[XS

(in)
src S

(in)⊤
tgt],

where S
(in)
tgt ∈ Rd×s is a learnable parameter ma-

trix. Our focus is modeling the source space seman-
tics S(in)

src ∈ Rdin×s regarding specific inputs, i.e., the
semantics of the input features X. To decouple the pa-
rameters from the number of source dimensions, S(in)

src

can be formulated as a parametric function of X:

fin : Rn×din 7→ Rdin×s, S(in)
src = fin(X;Win),

(2)
where fin(·) is subject to two conditions: (1) Permuta-
tion invariance to the order of input nodes and equivari-
ance to that of source dimensions; (2) Size independence of the parameter set Win to the values of n
and din. Input edges are disregarded in Eq. 2 as our focus lies in unifying the input module across
different node features, while the unification of graph structures is left for future work.

Modeling Features as Sets. Given the absence of graph structures and the permutation conditions for
Eq. 2, the input features can be modeled as a set of channels {X·,j}, where each channel corresponds
to a set of nodes {Xi,j}. As a result, Eq. 2 is transformed into a set-learning problem at both the
channel level and the node level. Based on the universal functions for set learning (Zaheer et al.,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2017), fin(·) can be formulated as follows. See Appendix E.2 for detailed derivation.

fin(X) = σ
[
Θρ(X⊤)1α⊤] , Θ =

dinX
⊤X

X⊤X1
. (3)

Θ ∈ Rdin×din denotes the channel mixer that provides global information. ρ(·) computes the channel
representations. 1 denotes the all-one vector and α ∈ Rs×1 is a learnable vector. The multiplication
of α enables different activations through the nonlinearity of σ(·), giving s row embeddings in S

(in)
src .

Although Zaheer et al. also provides an implementation named Deep Sets based on the universal set
function, our input module differs from this specific implementation regarding problem formulation,
conditions, and operator selections. Please refer to Appendix E.2 for a detailed discussion.

Unification via Relations. A direct implementation for ρ(·) is to take the specific values in X as
channel representations. However, identical numerical values across different source spaces may
correspond to entirely different semantics, making it nontrivial to uniformly map these values into a
common semantic space via fin. To tackle this, we propose modeling the channel relations as a proxy
for feature semantics. By applying a shared relation function on feature channels, ρ(·) measures
the same relation patterns across diverse source spaces. Crucially, the extracted patterns, such as
similarity and co-variation, carry consistent semantic meaning. This consistency makes them naturally
comparable and provides a stable foundation for unified semantic mapping. Among the typical choices
for relation measure, such as Euclidean distance and inner product, we implement ρ(·) with the scaled
product for its computing efficiency and training stability, giving ρ(X⊤) = X⊤X/

√
n.

Source-adaptive Input. Compiling Eq. 1-3 gives rise to the input module as

H(0) = Fin

(
X;S

(in)
tgt , α

)
= σ [XWin] = σ

[
Xfin(X)S

(in)⊤
tgt

]
, (4)

where the mapping changes with specific input features, forming source-adaptive input for different
datasets. Fin is permutation invariant to the order of the source dimensions (see Appendix E.3) and
has the parameter quantity independent of din.

3.4 TARGET-INSENSITIVE OUTPUT MODULE

𝐇(𝑳) 𝐖𝐨𝐮𝐭 ෠𝐂

Uniform

Sampling

𝐟𝐨𝐮𝐭

𝐒𝐬𝐫𝐜
𝐨𝐮𝐭 𝐒𝐭𝐠𝐭

𝐨𝐮𝐭

𝝈

Figure 4: Pipeline for the Unified Out-
put Module. Target space semantics S(out)

tgt ,
i.e., the semantics of pseudo labels, are se-
lected uniformly in the semantic space. The
source space semantics S(out)

src is a learnable
parameter matrix.

An output module Fout maps the hidden representa-
tions to the label space. Based on Eq. 1, Fout can
be formulated as Fout(H

(L)) = σ[H(L)Wout] =

σ[H(L)S
(out)
src S

(out)⊤
tgt], where S(out)

src ∈ Rd×s is a learn-
able parameter matrix. Unifying the output module
requires the modeling of the target space semantics
S
(out)
tgt , i.e., the semantics of the labels. However, the

label knowledge of downstream datasets is typically
unavailable. To tackle this problem, we propose a two-
step approach, including prediction and assignment. In
the prediction step, Fout uniformly samples c points
in Rs as pseudo-label semantics. By learning the re-
lations between the parameter matrix S

(out)
src and the

pseudo-label semantics, the module can make predic-
tions without prior label knowledge. In the assignment step, the module assigns the pseudo labels to
the actual labels of each dataset, enabling precise adaptation to diverse target spaces.

Target-insensitive Prediction. The pseudo labels are independent of specific datasets, so their
relations should remain consistent, without assuming that some labels are inherently closer than
others. To ensure this, we uniformly sample pseudo labels in the semantic space. Note that the
output module implements the relation function ψ as an inner product, quantifying relations by
the angles between vectors. Accordingly, pseudo-label semantics are uniformly sampled on the
unit sphere and mapped into Cartesian coordinates. In the s-dimensional spherical coordinates, a
pseudo-label semantic vector can be denoted as (1, θ1, · · · , θs−1) with θi ∈ [0, π]. To ensure the
coverage of the unit sphere and maintain a uniform density of the semantics across all dimensions,
we sample a number of c1/(s−1) values of equal intervals in [0, π] for each θi and consider all
combinations of these values. This results in a number of c semantic vectors distributed uniformly

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

on the s-dimensional unit sphere. The j-th semantic vector can be converted into the Cartesian
coordinates with S

(out)
tgtj,i

= σ[
∏i−1

k=1 sin
sgn(i>1)(θk)cos

sgn(i<s)(θi)], i ∈ {1, · · · , s} (Blumenson,
1960). sgn denotes the sign function, sgn(True) = 1 and sgn(False) = 0. Compiling the space
division process as S(out)

tgt = fout(c, s), the output module can be formulated as

Ĉ = Fout

(
H(L);S(out)

src

)
= σ

[
H(L)Wout

]
= σ

[
H(L)S(out)

src fout(c, s)
⊤
]
. (5)

The implementation of the nonlinear function σ depends on the specific tasks (Appendix A).

Pseudo Label Assignment. The prediction step enables the output module to make predictions
without prior knowledge of the target labels. When the label knowledge is available, one can further
assign the pseudo labels to the real labels. In this paper, we consider two assignment strategies. (1)
To explore the potential of pre-trained pure GNNs on general downstream tasks, observed target
labels are only included during inference to match pseudo labels with real labels. Given the observed
real labels C, the mapping relations between the pseudo labels and the real labels can be formulated
as ĈP(cI − 11⊤) = clog(cC). The assignment matrix P can be solved as the least-squares
solution of the linear equation without additional training. For detailed derivation, please refer to
Appendix E.4. (2) To ensure fair comparison with LM-based graph models in the zero-shot setting,
we replace observed labels with label knowledge by employing the embedded label semantics SLM

tgt

from language models (Li et al., 2024b) and construct the assignment matrix with fout(c, s)S
LM⊤

tgt .

3.5 PIPELINE AND PRE-TRAINING STRATEGY

GNNs with unified I/O take a mini-batch from a single dataset as input and are optimized on different
datasets sequentially. During pre-training, GNNs only perform the first prediction step in the output
module. Consequently, traditional optimization objectives that require strict alignment between the
ordering of outputs and labels become inapplicable, such as cross-entropy loss and mean squared
error. To address this problem, we draw inspiration from contrastive loss (Qiu et al., 2020) and
propose to optimize the predicted distributions within the same class and across different classes.
Given the node sets of each class {V1, · · · ,Vc}, the loss function is formulated as

L=
1

n


∑

k,i,j,vj∈Vi

∣∣∣C̄i,k − Ĉj,k

∣∣∣
︸ ︷︷ ︸

Linner

+2− 1

c− 1

∑
k,i,j,vj /∈Vi

∣∣∣C̄i,k − Ĉj,k

∣∣∣
︸ ︷︷ ︸

Lintra

 , C̄i,·=
1

|Vi|
∑

j,vj∈Vi

Ĉj,·, (6)

where C̄ ∈ Rc×c denotes the average prediction of each class. The inner-class loss, Linn, minimizes
the prediction variance within the same class by ensuring that they are close to their class average. In
contrast, the intra-class loss, Lint, encourages differences in predictions across classes. To ensure
positivity, Lint employs a constant bias of 2.

4 EXPERIMENT

4.1 UNIFIED I/O ENABLES PRE-TRAINING WITH PURE GNNS

We now evaluate pre-trained GNNs with unified I/O modules, focusing on (1) whether pure GNNs
can be pre-trained on diverse datasets and directly adapted to downstream datasets; (2) how pure
GNNs generalize under different conditions, i.e., the amount of training data and parameters, and the
gap between the training and inference domains. Various real-world datasets of different scales are
adopted from four domains (Tab. S11), including electronic commerce (e-com.), citation, social, and
Wikipedia (wiki) graphs. Eight GNN methods are employed as the backbone, including GCN (Kipf
& Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT (Veličković et al., 2018a), GIN (Xu
et al., 2019), MixHop (Abu-El-Haija et al., 2019), DeepGCN (Li et al., 2019), GraphGPS (Rampášek
et al., 2022), and N2 (Sun et al., 2024). Detailed experimental setup can be found in Appendix C.

Non-textual Datasets. To evaluate the pre-trained graph models on traditional datasets with non-
textual attributes, we conduct a comparison with models that can make inference on downstream

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Evaluation Results on Non-textual Datasets (Measured by accuracy except ROC
AUC for tolokers: %). Bold values denote the best results per test dataset. SUP denotes the
best-performing results among supervised baselines. SSL denotes the best-performing results among
self-supervised baselines. LP, Lap, and Rand denote Label Propagation, Laplacian decomposition,
and random projection, respectively.

AMAZON
COMPUTERS

CORA COAUTHOR
PHYSICS

ARXIV
-YEAR

TWITCH
-GAMER

TOLOKERS
CHA-

MELEON ACTOR AVG.
RANK

ORIGINAL SPLIT
SUP 91.09±0.13 81.80±0.28 95.52±0.20 48.03±0.41 61.09±0.32 80.72±0.26 61.74±0.30 31.34±0.20 1.87
SSL 89.28±0.34 81.50±0.66 92.32±0.08 41.63±0.27 59.19±0.05 75.92±0.18 61.01±0.72 27.61±0.27 5.62
FUG 88.22±0.09 30.70±0.96 91.09±0.72 42.54±0.30 58.16±0.27 75.95±0.34 22.59±0.06 25.53±0.11 7.15
GRAPHANY 82.94±0.82 79.41±0.35 92.43±0.21 38.36±0.53 59.96±0.02 78.16±0.18 61.84±0.81 28.75±0.69 5.25
LABEL PROPAGATION 87.27±− 81.53±− 95.67±− 17.02±− 58.30±− 71.9±− 18.86±− 18.82±− 6.87
SVD 83.89±0.76 79.92±0.56 92.87±0.55 42.54±0.22 59.73±0.06 76.12±0.26 62.04±0.85 30.05±0.13 4.45
LAP 84.98±0.78 78.33±0.84 91.11±0.78 42.18±0.14 59.05±0.12 76.40±0.20 60.66±0.55 24.91±0.02 6.62
RAND 88.85±1.65 81.64±1.48 91.75±2.79 41.37±1.26 59.03±1.85 76.02±1.34 61.22±1.86 34.39±1.08 5.12
UNIFIED I/O 89.85±0.18 82.32±0.97 92.85±0.48 42.58±0.17 59.99±0.05 76.44±0.44 62.13±0.43 35.35±0.26 2.00

1-SHOT FOR TRAINING-FREE INFERENCE
SUP 36.80±0.53 32.00±0.98 53.44±0.99 26.87±0.75 54.83±0.68 66.17±0.73 30.18±0.74 23.44±0.59 6.50
SSL 55.67±0.36 42.80±0.35 77.86±0.12 29.76±0.12 57.11±0.05 67.82±1.02 25.07±2.08 20.72±0.89 4.62
FUG 27.26±0.29 41.83±1.03 67.70±1.35 27.58±0.48 49.93±0.48 56.86±0.93 23.39±0.36 22.83±0.17 7.25
GRAPHANY 62.87±0.31 53.63±0.49 80.81±0.78 25.03±0.58 49.65±0.41 52.59±0.38 28.51±0.43 19.80±0.54 5.50
LABEL PROPAGATION 46.26±2.95 18.81±1.55 22.98±2.88 18.54±0.01 53.00±1.00 66.20±2.92 18.86±0.62 11.45±0.69 8.12
SVD 55.42±0.31 42.22±0.83 76.31±0.12 33.44±0.25 56.94±0.10 67.62±0.49 31.14±0.18 23.61±0.06 4.15
LAP 55.53±1.21 43.73±0.43 78.41±1.26 33.08±0.35 57.00±0.09 67.62±0.58 29.82±0.16 21.89±0.03 4.15
RAND 58.80±1.85 42.34±1.42 76.05±2.27 32.73±1.03 57.72±1.75 67.98±2.07 30.75±0.91 24.71±0.74 3.37
UNIFIED I/O 59.89±0.80 43.94±0.50 85.13±0.68 33.47±0.14 57.90±0.15 68.51±0.13 32.00±0.11 25.69±0.12 1.25

3-SHOT FOR TRAINING-FREE INFERENCE
SUP 65.64±0.30 37.10±0.55 76.44±0.48 27.80±0.51 54.02±0.62 68.89±0.81 33.57±0.41 20.88±0.43 5.62
SSL 64.51±2.68 48.73±1.86 84.22±0.12 26.53±1.11 56.78±0.16 59.24±2.24 31.99±0.37 20.42±0.15 5.25
FUG 50.59±1.43 47.77±1.21 66.52±2.47 24.02±0.34 49.83±0.18 57.93±1.17 25.47±0.56 20.35±0.33 7.75
GRAPHANY 70.04±0.70 66.32±0.61 91.33±0.79 24.74±0.80 54.71±0.81 54.12±0.63 33.69±0.73 18.55±0.72 4.37
LABEL PROPAGATION 60.04±2.64 31.64±2.22 32.82±2.47 18.49±0.06 52.95±2.12 66.36±3.47 16.45±2.18 11.91±0.73 8.12
SVD 59.86±0.57 45.23±0.90 76.88±0.35 33.44±0.30 56.93±0.13 68.47±0.34 33.64±0.18 23.01±0.04 4.81
LAP 56.58±0.31 47.31±0.45 76.88±0.62 34.64±0.38 56.75±0.11 69.34±0.35 32.21±0.16 21.54±0.02 4.93
RAND 66.11±1.00 48.98±1.57 79.31±1.34 35.05±1.07 56.96±1.78 69.09±1.09 33.68±1.00 24.99±0.74 2.75
UNIFIED I/O 68.33±0.28 49.21±0.91 84.68±0.67 35.32±0.29 57.64±0.06 71.77±0.25 33.76±0.11 25.20±0.11 1.37

datasets without additional training efforts, including Label Propagation (Kothari & Jain, 2002),
GraphAny (Zhao et al., 2024a), and parameter-free feature alignment methods SVD-based (Sun et al.,
2023), Laplacian-based (Sun et al., 2025), and random-based (Tang et al., 2024) input combined
with our output module. We also include parameterized feature alignment method FUG (Zhao
et al., 2024b), supervised baselines (GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al.,
2017), GAT (Veličković et al., 2018a)) and self-supervised baselines, including contrastive-based
methods (DGI (Veličković et al., 2018b), GraphCL (You et al., 2020), GraphACL (Xiao et al.,
2023), GRACE (Zhu et al., 2020), SimGRACE (Xia et al., 2022)) and reconstruction-based methods
(MaskGAE (Li et al., 2023) and GraphMAE2 (Hou et al., 2023)). For FUG and self-supervised
baselines, we follow GraphAny to solve the mapping matrix from the learned hidden representations
to the labels in a training-free manner. The models are pre-trained on datasets from four distinct
domains: amazon-ratings, ogbn-arxiv, Facebook, and roman-empire. The best results among the eight
GNN backbones are reported for both our unified I/O and parameter-free feature alignment methods.

Results are summarized in Tab. 1. Compared to supervised baselines, pre-training with unified I/O
achieves comparable or even superior performance on the original split. Under 1-shot and 3-shot
settings, unified I/O consistently outperforms the supervised baselines. These results demonstrate that
model pre-training is necessary for graph learning, particularly in data-scarce settings. Compared to
other baselines, pre-trained GNNs with unified I/O obtain clear advantages on heterophilic datasets,
whereas GraphAny performs better on homophilic datasets in certain cases. This difference reflects
the higher transferability of node-feature knowledge, compared to structural knowledge learned by
GNNs with unified I/O (see Appendix D.4 for details). Nevertheless, pure GNNs with unified I/O
achieve the best average rank across different datasets. This indicates the superior ability of our
unified I/O to support effective pre-training and downstream adaptation.

Textual Datasets. In comparison to the LM-based models, we adopt textual datasets (Chen et al.,
2024c) for pre-training and inference. Models are pre-trained on PubMed, bookhistory, amazon-
ratings, and arxiv with textual features. To ensure fair comparison, pure GNNs employ the second
pseudo label assignment strategy in Sec 3.4. Tab. 2 presents comparison results with methods
employing LM as I/O (OFA (Liu et al., 2023a), ZeroG (Li et al., 2024b), LLaGA (Chen et al., 2024a),
GraphCLIP (Zhu et al., 2025), and RiemannGFM (Sun et al., 2025)), and parameter-free feature

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Evaluation Results on Textual Datasets (Measured by accuracy: %). Bold values
denote the best results per test dataset. LP, Lap, and Rand denote Label Propagation, Laplacian
decomposition, and random projection, respectively.

WIKICS BOOKCHILD COMPUTERS PHOTO SPORTSFIT PRODUCTS DBLP TOLOKERS
LLAGA 2.65±0.07 21.05±0.16 23.00±0.04 5.10±0.04 5.45±0.24 10.40±0.02 11.55±0.07 71.80±0.28

ZEROG 37.13±0.41 12.62±2.25 6.72±0.52 3.84±0.17 30.04±0.20 24.79±1.68 54.86±0.52 78.13±0.01

GRAPHCLIP 3.54±0.51 16.16±0.01 25.43±0.16 4.19±0.01 7.61±0.10 9.31±0.08 34.94±0.37 78.01±0.07

OFA 33.89±0.09 1.98±0.01 5.98±0.10 14.72±0.01 12.65±0.01 2.64±0.02 51.01±0.02 78.16±0.01

RIEMANNGFM 4.26±0.11 1.74±0.06 5.77±0.01 6.93±0.49 3.83±0.02 2.45±0.05 38.68±0.37 77.65±0.01

SVD 30.24±0.37 16.16±0.34 27.65±0.43 49.15±0.98 41.93±1.04 13.04±0.20 46.91±0.60 78.50±0.52

LAP 23.43±0.24 30.47±0.82 27.05±0.38 49.09±0.64 42.05±1.43 13.05±0.28 43.63±0.39 78.47±0.58

RAND 23.41±0.36 30.32±1.01 29.82±0.38 49.04±1.22 41.83±1.13 13.42±0.78 47.06±0.77 78.16±0.83

UNIFIED I/O 32.63±0.21 31.60±0.69 30.82±0.26 49.20±0.31 42.87±1.03 15.93±0.32 52.04±0.86 78.66±0.49

alignment methods. Pure GNNs with our unified I/O achieve superior performance to baselines
except for ZeroG on WikiCS, products, and DBLP. Notably, baseline models with LM introduce
knowledge gained from enormous training data for graph learning. In contrast, pure GNNs with only
the knowledge of PubMed, bookhistory, amazon-ratings, and arxiv during pre-training achieve better
performance. Compared to ZeroG, which is restricted to graphs with rich textual attributes, pure
GNNs can be applied to either textual or non-textual datasets. This demonstrates the potential of
pre-training with pure GNNs in tackling various graph tasks.

4.2 PRE-TRAINING CONDITION STUDY

64 128 256 512 1024
Hidden Dimensionality

30

35

40

45

50

55

60

Pe
rfo

rm
an

ce

GCN
GraphGPS
GAT
GraphSAGE
GIN
MixHop
N2

DeepGCN

(a) Hidden Dimensions

1 2 3 6 8 10 12 16
Number of Layers

35

40

45

50

55

60

Pe
rfo

rm
an

ce

GCN
GraphGPS
GAT
GraphSAGE
GIN
MixHop
N2

DeepGCN

(b) Layers

Figure 5: Pre-training with Scaling Pa-
rameters.

Pre-training with Scaling Parameters. Pure GNNs are
pre-trained on amazon-ratings, ogbn-arxiv, Facebook, and
roman-empire, with scaling parameters. To mitigate the
impact of the domain gap, one dataset is selected from
each domain, encompassing both homophilic and het-
erophilic graphs. Performance results are averaged across
test graphs (Tab. S11). Fig. 5(a) presents the impact of
hidden dimensionality d, showing that larger values of d
consistently improve performance across all GNN archi-
tectures. In contrast, the impact of the number of layers
L varies by architecture. As shown in Fig.5(b), deeper
network configurations consistently enhance performance
for GCN, GAT, GraphSAGE, and MixHop, whereas GIN,
DeepGCN, and GraphGPS experience performance degra-
dation with more layers. For N2, performance initially
improves with more layers but eventually declines when
L exceeds 8. In Appendix D.2, we examine larger pa-
rameter configurations for GCN and GIN. The results
show that increasing the number of layers leads to over-
parameterization, whereas enlarging the hidden dimension
does not. All these results suggest that scaling up hidden dimensionality is the prior strategy for
enhancing pre-trained GNN models, while the configuration of the number of layers depends on the
specific GNN architectures.

Pre-training with Scaling Data. To assess the effect of data scaling in GNN pre-training, we consider
two strategies: (1) increasing the number of training datasets (one, three, and four combined), and
(2) enlarging individual datasets (1k, 10k, and 100k nodes per dataset). Detailed combinations of
the training and test datasets are provided in Appendix Tab. S11, S12. Due to the varying difficulty
of specific downstream tasks, model performance cannot be directly compared across different test
datasets. To address this problem, training datasets are split into three groups with an average number
of nodes around 1k, 10k, and 100k. Model performance is then normalized with the group average
performance. For more analysis on the data scaling strategies, please refer to Appendix D.3. The
averaged results over 1,848 data points across different backbones and test datasets are presented in
Fig. 6. We can see that increasing either the minimum dataset sizes or increasing training datasets
with the same node scale improves the model performance. This suggests that scaling up training
data enhances the adaptation ability of the pre-trained models to test datasets.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

104 105 106

Minimum Number of Nodes

0.990

0.995

1.000

1.005

1.010

1.015

1.020

1.025

Pe
rfo

rm
an

ce

Number of
Training
Datasets

1
3
4
1
3
4

Figure 6: Pre-training with
Scaling Data. Different dot
colors indicate the number of
datasets for pre-training. The
lines denote trending-fitting with
dots under the same number of
dataset combinations.

Cora CoPhysics arxiv-year twitch-gamer tolokers CHAMELEON ACTOR
Test Dataset

2

1

0

1

2

Av
er

ag
e

Pe
rfo

rm
an

ce
 G

ap

(a) Different Domain

Cora CoPhysics arxiv-year twitch-gamer tolokers CHAMELEON ACTOR
Test Dataset

1

0

1

2

Av
er

ag
e

Pe
rfo

rm
an

ce
 G

ap

(b) Different Heterophily

Figure 7: Adaptation Results with Different Domain Gap.
The cross-domain performance gap is calculated as the per-
formance difference between GNNs pre-trained on the same-
domain group as the test datasets and those on the different-
domain group. The heterophily performance gap is computed
by subtracting the same homophily–heterophily training type as
the test datasets with that of the opposite type.

Inference with Different Domain Gap. We further evaluate pre-trained GNNs on adaptation
tasks: (1) pre-training in one domain and adapting to the others, (2) pre-training across three
domains and adapting to the remaining one, and (3) transferring across datasets with varying ho-
mophily–heterophily. Dataset combinations are listed in Tab. S11, S12.

The adaptation results for tasks (1) and (2) are presented in Fig. 7(a). For each test dataset, the
training datasets are categorized into two groups: those collected from the same domain as the test
dataset and those from different domains. The performance gap is computed by subtracting the
performance of GNNs pre-trained on the different-domain group from that of the same-domain group
(Metricsame − Metricdiff). To avoid the influence of the dataset scales, the model performance is
first grouped based on the average number of nodes per training dataset (1k, 10k, and 100k), and
then averaged and compared within each group. As shown in Fig. 7(a), pre-trained GNNs generally
exhibit positive performance gaps between the same-domain and different-domain groups across
diverse test datasets. This observation indicates that aligning the training and test domains tends to
improve model performance during inference.

The adaptation results for task (3) with different homophily-heterophily are presented in Fig. 7(b).
When comparing on the same test dataset, the training datasets are categorized into two groups: those
with the same homophily-heterophily as the test dataset and those with the opposite. The performance
gap is the performance difference between GNNs pre-trained on the same-homophily-heterophily
group and that of the opposite-homophily-heterophily group (Metricsame − Metricoppo). Since
training datasets of certain scales are missing for heterophily/homophily graphs in certain domains,
our experimental analysis for task (3) directly averages results by mixing all training scales together.
Fig. 7(b) shows that models pre-trained on datasets with the same homophily-heterophily as the test
datasets tend to achieve better performance during inference. This suggests that one may construct a
training dataset based on the homophily-heterophily of downstream tasks to gain better results. We
also compared adaptation results with the same pre-training datasets in Appendix D.4. Results in
Fig. 11(a) show that models pre-trained on either homophilic or heterophilic graphs gain better results
on heterophilic graphs than homophilic graphs. This can be attributed to the better transferability of
the node feature knowledge learned by our unified I/O than the structural knowledge (Fig. 11(d)),
where node feature knowledge better benefits the adaptation to heterophilic graphs (Fig. 11(b)) and
structural knowledge benefits homophilic tasks (Fig. 11(c)). Please refer to Appendix D.4 for more
details.

4.3 PRE-TRAINED PURE GNNS PROVIDE COMPETITIVE GRAPH OPERATORS

Our unified I/O modules enable seamless adaptation of pure GNN architectures across diverse datasets.
To further evaluate the effectiveness of the pre-trained GNN operators, we fine-tune the models pre-
trained on amazon-ratings, ogbn-arxiv, Facebook, and roman-empire. The internal GNN module Fg
within the pre-trained models is frozen during the fine-tuning. The unification-oriented I/O function

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 3: Evaluation Results of Fine-tuning the I/O Modules in the Pre-trained GNNs (Measured
by accuracy except ROC AUC for tolokers: %). Bold values denote the best results per test dataset.

CORA PUBMED
AMAZON

COMPUTERS
WIKICS AMAZON

-RATINGS
MINESWEEPER TOLOKERS

SELF-SUPERVISED LEARNING AND SUPERVISED OUTPUT LEARNING
DGI 84.00±0.28 83.73±0.41 82.11±0.16 75.05±0.39 40.80±0.74 88.45±0.38 77.73±0.14

GRACE 84.30±0.57 85.81±0.18 89.67±0.36 75.80±0.56 42.19±0.12 86.15±0.45 75.06±0.14

GRAPHACL 75.00±0.75 82.93±0.17 80.58±0.15 68.00±0.75 40.65±0.14 87.23±0.11 77.68±0.25

GRAPHCL 63.33±1.76 63.53±1.08 84.57±0.34 76.32±0.18 42.35±0.37 79.85±0.12 80.03±0.12

MASKGAE 75.13±1.78 75.27±1.03 92.15±0.05 78.25±0.20 43.54±0.30 84.33±0.16 81.13±0.34

SIMGRACE 67.07±0.82 77.63±0.82 87.44±0.18 78.75±0.28 43.46±0.23 84.23±0.16 80.29±0.30

GRAPHMAE2 79.50±0.51 67.07±0.91 91.03±0.19 76.24±0.11 40.95±0.71 80.16±0.10 80.17±0.07

SUPERVISED LEARNING
GRAPHSAGE 78.83±0.50 88.11±0.05 91.09±0.02 78.13±0.15 45.71±0.38 90.55±0.10 83.06±0.59

GAT 77.51±2.35 85.30±0.15 89.78±0.02 76.35±0.80 44.54±0.52 82.07±1.17 77.37±0.28

GIN 77.36±0.15 85.13±0.55 90.51±0.80 74.02±0.62 46.33±0.11 74.93±0.58 60.93±2.25

GCN 80.35±0.25 85.44±0.50 90.66±0.13 78.55±0.01 46.71±0.25 76.43±1.05 77.79±0.12

GRAPHGPS 58.61±0.05 85.21±0.30 88.87±0.20 75.18±0.04 47.85±0.29 89.64±0.24 79.82±0.06

PRE-TRAINING AND I/O FINE-TUNING
UNIFIED I/O 84.63±0.12 88.91±0.45 92.33±0.25 78.98±0.12 51.59±0.05 91.39±0.15 83.29±0.13

fin(·) in Eq. 4 and fout(·) in Eq. 5 are replaced with learnable parameters. The best fine-tuning
results among different backbones on downstream graphs are summarized in Tab. 3. For full results,
please refer to Appendix D.5. The pre-trained operators achieve superior performance compared
to supervised methods and self-supervised methods (DGI (Veličković et al., 2018b), GRACE (Zhu
et al., 2020), GraphACL (Xiao et al., 2023), GraphCL (You et al., 2020), SimGRACE (Xia et al.,
2022), MaskGAE (Li et al., 2023), GraphMAE2 (Hou et al., 2023)). Notably, the pre-trained
operators require minimal hyperparameter tuning, with only dropout adjusted during fine-tuning. This
significantly simplifies the hyperparameter tuning process, enabling efficient adaptation of pre-trained
GNNs to various graphs with promising performance.

4.4 COST ANALYSIS ON THE UNIFIED I/O

Both the space complexity and time complexity of our unified I/O are O(n), with din, d, s, c ≪ n.
Empirical time consumption and information loss results are provided in Appendix D.6 and D.7.
Results show that unified I/O maintains a reasonable time cost under various scales of graphs and
numbers of input features, and does not cause severe information loss. This demonstrates the
effectiveness of our unified I/O in learning input and output mappings.

5 CONCLUSION

In this paper, we achieved unified input and output for graphs, enabling pre-training with pure GNNs
across diverse datasets. To decouple learnable parameters from the number and semantics of input
features and output labels, our unified I/O modules employ a shared relation function for the feature
semantics and uniformly sampled points for the label semantics. By integrating our unified I/O
modules with various GNN architectures, we demonstrated that pure GNNs can serve as effective
graph learners for direct adaptation to downstream tasks and provide competitive pre-trained graph
operators. For the usage of LLM and the limitation discussion, please refer to Appendix F and G.

REPRODUCIBILITY STATEMENT

We have made efforts to ensure the reproducibility of our work. Specifically, we provide a detailed de-
scription of the experimental setups in Appendix C, including evaluation settings, dataset information,
architecture configurations, and hyperparameter setups. All datasets employed are publicly available.
In addition, the code implementation of our proposed methods is provided in the supplementary
material. The complete source code will be released publicly upon acceptance of the paper.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. MixHop: Higher-Order Graph Convolutional
Architectures via Sparsified Neighborhood Mixing. In International Conference on Machine
Learning, pp. 21–29, Long Beach, USA, 2019. PMLR.

L. E. Blumenson. A Derivation of n-Dimensional Spherical Coordinates. The American Mathematical
Monthly, 67(1):63–66, 1960.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka, and Tom M.
Mitchell. Toward an architecture for never-ending language learning. In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI’10, pp. 1306–1313, Atlanta,
Georgia, July 2010. AAAI Press.

Mark Chen, Jerry Tworek, and Heewoo et al. Jun. Evaluating Large Language Models Trained on
Code, 2021.

Runjin Chen, Tong Zhao, Ajay Kumar Jaiswal, Neil Shah, and Zhangyang Wang. LLaGA: Large
Language and Graph Assistant. In International Conference on Machine Learning, pp. 7809–7823.
PMLR, 2024a.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei
Yin, Wenqi Fan, Hui Liu, and Jiliang Tang. Exploring the Potential of Large Language Models
(LLMs)in Learning on Graphs. SIGKDD Explor. Newsl., 25(2):42–61, 2024b.

Zhikai Chen, Haitao Mao, Jingzhe Liu, Yu Song, Bingheng Li, Wei Jin, Bahare Fatemi, Anton
Tsitsulin, Bryan Perozzi, Hui Liu, and Jiliang Tang. Text-space Graph Foundation Models:
Comprehensive Benchmarks and New Insights. In Advances in Neural Information Processing
Systems, volume 37, pp. 7464–7492, December 2024c.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The Cityscapes Dataset for Semantic
Urban Scene Understanding. In IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3213–3223, 2016.

Taoran Fang, Yunchao Zhang, Yang Yang, Chunping Wang, and Lei Chen. Universal Prompt Tuning
for Graph Neural Networks. Advances in Neural Information Processing Systems, 36:52464–52489,
2023.

Anchun Gui, Jinqiang Ye, and Han Xiao. G-Adapter: Towards structure-aware parameter-efficient
transfer learning for graph transformer networks. In Proceedings of the Thirty-Eighth AAAI
Conference on Artificial Intelligence, volume 38, pp. 12226–12234. AAAI Press, 2024.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In International Conference on Neural Information Processing Systems, pp. 1025–1035, Red Hook,
USA, 2017. Curran Associates Inc.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring Massive Multitask Language Understanding. In International Conference
on Learning Representations, 2020.

Zhenyu Hou, Yufei He, Yukuo Cen, Xiao Liu, Yuxiao Dong, Evgeny Kharlamov, and Jie Tang.
GraphMAE2: A Decoding-Enhanced Masked Self-Supervised Graph Learner. In Proceedings
of the ACM Web Conference 2023, pp. 737–746, New York, NY, USA, 2023. Association for
Computing Machinery. doi: 10.1145/3543507.3583379.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open Graph Benchmark: Datasets for Machine Learning on Graphs. In Ad-
vances in Neural Information Processing Systems, volume 33, pp. 22118–22133. Curran Associates,
Inc., 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qian Huang, Hongyu Ren, Peng Chen, Gregor Kržmanc, Daniel Zeng, Percy Liang, and Jure
Leskovec. PRODIGY: Enabling In-context Learning Over Graphs. In Conference on Neural
Information Processing Systems, 2023.

Renhong Huang, Jiarong Xu, Xin Jiang, Chenglu Pan, Zhiming Yang, Chunping Wang, and Yang
Yang. Measuring Task Similarity and Its Implication in Fine-Tuning Graph Neural Networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38 of 11, pp. 12617–12625,
2024.

Yongcheng Jing, Chongbin Yuan, Li Ju, Yiding Yang, Xinchao Wang, and Dacheng Tao. Deep Graph
Reprogramming. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 24345–24354, 2023.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
RNNs: Fast Autoregressive Transformers with Linear Attention. In Proceedings of the 37th
International Conference on Machine Learning, pp. 5156–5165. PMLR, November 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In International
Conference for Learning Representations, San Diego, USA, 2015.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In International Conference on Learning Representations, Toulon, France, 2017.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment Anything, 2023.

Lecheng Kong, Jiarui Feng, Hao Liu, Chengsong Huang, Jiaxin Huang, Yixin Chen, and Muhan
Zhang. GOFA: A Generative One-For-All Model for Joint Graph Language Modeling. In The
Thirteenth International Conference on Learning Representations, October 2024.

R. Kothari and V. Jain. Learning from labeled and unlabeled data. In Proceedings of the 2002
International Joint Conference on Neural Networks. IJCNN’02 (Cat. No.02CH37290), volume 3,
pp. 2803–2808 vol.3, 2002.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. DeepGCNs: Can GCNs Go As Deep
As CNNs? In IEEE/CVF International Conference on Computer Vision, pp. 9266–9275, Seoul,
South Korea, 2019. IEEE.

Jintang Li, Ruofan Wu, Wangbin Sun, Liang Chen, Sheng Tian, Liang Zhu, Changhua Meng,
Zibin Zheng, and Weiqiang Wang. What’s Behind the Mask: Understanding Masked Graph
Modeling for Graph Autoencoders. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 1268–1279, New York, NY, USA, 2023. Association
for Computing Machinery. doi: 10.1145/3580305.3599546.

Shengrui Li, Xueting Han, and Jing Bai. AdapterGNN: Parameter-Efficient Fine-Tuning Improves
Generalization in GNNs. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 13600–13608, 2024a.

Yuhan Li, Peisong Wang, Zhixun Li, Jeffrey Xu Yu, and Jia Li. ZeroG: Investigating Cross-dataset
Zero-shot Transferability in Graphs. In ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 1725–1735, New York, NY, USA, 2024b. Association for Computing Machinery.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and
Strong Simple Methods. In Advances in Neural Information Processing Systems, volume 34, pp.
20887–20902. Curran Associates, Inc., 2021.

Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan Zhang.
One For All: Towards Training One Graph Model For All Classification Tasks. In International
Conference on Learning Representations, 2023a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. GraphPrompt: Unifying Pre-Training and
Downstream Tasks for Graph Neural Networks. In Proceedings of the ACM Web Conference 2023,
pp. 417–428, New York, NY, USA, 2023b. Association for Computing Machinery.

Péter Mernyei and Cătălina Cangea. Wiki-CS: A Wikipedia-Based Benchmark for Graph Neural
Networks. In International Conference on Machine Learning Workshop on Graph Representation
Learning and Beyond. arXiv, January 2022.

Carl D Meyer. Matrix analysis and applied linear algebra. SIAM, 2023.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. TUDataset: A collection of benchmark datasets for learning with graphs. In Interna-
tional Conference on Machine Learning Workshop on Graph Representation Learning and Beyond,
Virtual Only, 2020. arXiv.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, and Red et al.
Avila. GPT-4 Technical Report, 2024.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-GCN: Geometric
Graph Convolutional Networks. In International Conference on Learning Representations, 2019.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A
critical look at the evaluation of GNNs under heterophily: Are we really making progress? In The
Eleventh International Conference on Learning Representations, Kigali, Rwanda, 2023.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
and Jie Tang. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. In ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1150–1160, New
York, NY, USA, 2020. Association for Computing Machinery.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. In Advances in
Neural Information Processing Systems, volume 35, pp. 14501–14515, New Orleans, USA, 2022.

Benedek Rozemberczki, Carl Allen, Rik Sarkar, and xx Thilo Gross. Multi-Scale attributed node
embedding. Journal of Complex Networks, 9(1):1–22, April 2021. ISSN 2051-1329.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective Classification in Network Data. AI Magazine, 29(3):93, 2008. ISSN 0738-4602,
0738-4602.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of Graph Neural Network Evaluation. arXiv:1811.05868 [cs, stat], 2019.

Junshu Sun, Chenxue Yang, Xiangyang Ji, Qingming Huang, and Shuhui Wang. Towards Dynamic
Message Passing on Graphs. In Conference on Neural Information Processing Systems, December
2024.

Li Sun, Zhenhao Huang, Suyang Zhou, Qiqi Wan, Hao Peng, and Philip S. Yu. RiemannGFM:
Learning a Graph Foundation Model from Structural Geometry. In THE WEB CONFERENCE
2025, January 2025.

Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. GPPT: Graph Pre-training and
Prompt Tuning to Generalize Graph Neural Networks. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 1717–1727, New York, NY, USA,
2022. Association for Computing Machinery.

Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. All in One: Multi-Task Prompting
for Graph Neural Networks. In ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 2120–2131, New York, NY, USA, 2023. Association for Computing Machinery.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhen Tan, Ruocheng Guo, Kaize Ding, and Huan Liu. Virtual Node Tuning for Few-shot Node
Classification. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.
2177–2188, New York, NY, USA, 2023. Association for Computing Machinery.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
GraphGPT: Graph Instruction Tuning for Large Language Models. In Proceedings of the 47th
International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.
491–500, New York, NY, USA, 2024. Association for Computing Machinery.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. In International Conference on Learning Representations,
Vancouver, Canada, 2018a.

Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon
Hjelm. Deep Graph Infomax. In International Conference on Learning Representations, 2018b.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov.
Can language models solve graph problems in natural language? In International Conference on
Neural Information Processing Systems, pp. 30840–30861, Red Hook, NY, USA, 2023. Curran
Associates Inc.

Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,
393(6684):440–442, 1998. ISSN 1476-4687. doi: 10.1038/30918.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying Graph Convolutional Networks. In International Conference on Machine Learning, pp.
6861–6871, Long Beach, USA, 2019. PMLR.

Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z. Li. SimGRACE: A Simple Framework for
Graph Contrastive Learning without Data Augmentation. In Proceedings of the ACM Web Confer-
ence 2022, pp. 1070–1079, New York, NY, USA, 2022. Association for Computing Machinery.
doi: 10.1145/3485447.3512156.

Teng Xiao, Huaisheng Zhu, Zhengyu Chen, and Suhang Wang. Simple and Asymmetric Graph
Contrastive Learning without Augmentations. In Advances in Neural Information Processing
Systems, volume 36, pp. 16129–16152, 2023.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? In International Conference on Learning Representations, New Orleans, LA, USA,
2019.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. In Proceedings of the 34th International Conference
on Neural Information Processing Systems, pp. 5812–5823, Red Hook, NY, USA, 2020. Curran
Associates Inc.

Xingtong Yu, Yuan Fang, Zemin Liu, Yuxia Wu, Zhihao Wen, Jianyuan Bo, Xinming Zhang, and
Steven C. H. Hoi. A Survey of Few-Shot Learning on Graphs: From Meta-Learning to Pre-Training
and Prompt Learning, 2024.

Xingtong Yu, Zechuan Gong, Chang Zhou, Yuan Fang, and Hui Zhang. SAMGPT: Text-free Graph
Foundation Model for Multi-domain Pre-training and Cross-domain Adaptation. In THE WEB
CONFERENCE 2025, 2025.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep Sets. In Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

Libo Zhang, Lutao Jiang, Ruyi Ji, and Heng Fan. PIDray: A Large-Scale X-ray Benchmark for Real-
World Prohibited Item Detection. International Journal of Computer Vision, 131(12):3170–3192,
2023a.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Wen Zhang, Yushan Zhu, Mingyang Chen, Yuxia Geng, Yufeng Huang, Yajing Xu, Wenting Song,
and Huajun Chen. Structure Pretraining and Prompt Tuning for Knowledge Graph Transfer. In
Proceedings of the ACM Web Conference, pp. 2581–2590, New York, NY, USA, 2023b. Association
for Computing Machinery.

Jianan Zhao, Zhaocheng Zhu, Mikhail Galkin, Hesham Mostafa, Michael M. Bronstein, and Jian
Tang. Fully-inductive Node Classification on Arbitrary Graphs. In The Thirteenth International
Conference on Learning Representations, 2024a.

Jitao Zhao, Di Jin, Meng Ge, Lianze Shan, Xin Wang, Dongxiao He, and Zhiyong Feng. FUG:
Feature-Universal Graph Contrastive Pre-training for Graphs with Diverse Node Features. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024b.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI Open, 1:57–81, 2020. ISSN 2666-6510.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep Graph Contrastive
Representation Learning. In International Conference on Machine Learning Workshop on Graph
Representation Learning and Beyond, 2020.

Yun Zhu, Haizhou Shi, Xiaotang Wang, Yongchao Liu, Yaoke Wang, Boci Peng, Chuntao Hong,
and Siliang Tang. GraphCLIP: Enhancing Transferability in Graph Foundation Models for Text-
Attributed Graphs. In THE WEB CONFERENCE 2025, 2025.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A GENERAL TARGET-INSENSITIVE OUTPUT MODULE

Sec. 3.4 takes node classification as an example to formulate our unified output module. In practice,
our method can be applied to general classification and regression tasks. Specifically, the general
output module in Eq. 5 can be formulated as

Ĉ = Fout

(
H(L)

)
= σ

(
g(H(L))S(out)

src fout(c, s)
⊤
)
, (S7)

where g denotes the read-out function for different levels of tasks. For classification tasks, the
nonlinear function σ can be implemented as softmax, sigmoid, or tanh, and the loss function in
Eq. 6 remains a similar form. For regression tasks, σ can be omitted and the loss function only
contains the inner-class loss with node sets of each class constituted with a single node.

B RELATED WORK

B.1 I/O UNIFICATION FOR TRAINING-FREE ADAPTATION

Unified with Language Models. One of the key challenges in developing pre-trained graph
foundation models lies in the diverse features and labels. Inspired by the remarkable success of the
pre-trained LLMs (OpenAI et al., 2024), researchers have proposed to adopt LMs as I/O modules
for graphs (Liu et al., 2023a; Kong et al., 2024; Tang et al., 2024; Zhu et al., 2025). Chen et al.
(2024b) investigates the potential of LMs as enhancers for input and predictors for output, separately.
ZeroG (Li et al., 2024b) further integrates the two approaches by employing an LM to encode textual
descriptions of nodes and classes into unified embeddings. While ZeroG achieves unified input and
output for graph pre-training, its applicability is limited to text-attributed graphs (TAGs, i.e., graphs
with rich textual features). OFA (Liu et al., 2023a) generalizes TAGs by introducing templates to
convert numerical node and edge features into textual descriptions, thus extending its applicability
to general graphs. In addition to integrating LMs with GNNs, researchers have also explored pure
LLMs in addressing graph-related tasks (Wang et al., 2023; Chen et al., 2024a).

Unified with Specific Design. Distinct from the aforementioned approaches, our work aims to
pre-train purely GNN-based models and explore their potential for training-free adaptation. Related
efforts in this area include the use of singular value decomposition (SVD) (Sun et al., 2023), Laplacian
decomposition (Sun et al., 2025), random projection (Tang et al., 2024), adversarial reprogramming
attacks (Jing et al., 2023), and parametric principal component analysis (PCA) (Zhao et al., 2024b)to
align different numbers of features. However, these methods couple the parameter values of the input
module with specific inputs or fail to unify label spaces for GNNs. A recent approach, GraphAny,
attempts to address this challenge by solving the pseudo-inverse of the transformation weight matrix
in a linear GNN (Zhao et al., 2024a). Despite the unified input and output for different datasets,
GraphAny requires observed labels from test datasets to compute the weight matrix, and is constrained
to node-level tasks and linear GNN architectures (Wu et al., 2019). As a result, pre-training graph
models with general pure GNN architectures remains an open problem.

B.2 MODEL FINE-TUNING FOR FEW-SHOT ADAPTATION

In addition to I/O unification, model fine-tuning has been extensively explored to adapt pre-trained
graph models to diverse features and labels (Yu et al., 2024). Approaches like GCC (Qiu et al., 2020)
employ full fine-tuning on pre-trained models, which is resource-intensive and prone to overfitting,
particularly when downstream datasets involve limited labeled data. To address these limitations,
researchers have proposed parameter-efficient graph fine-tuning methods, such as graph adapters (Li
et al., 2024a; Gui et al., 2024) and graph prompts (Sun et al., 2023). Graph adapters incorporate
additional tunable modules for GNNs, effectively bridging the gap between pre-training and inference
domains. Alternatively, graph prompt learning introduces input-specific prompts to modify node
features (Sun et al., 2022; Fang et al., 2023; Liu et al., 2023b) or graph structures (Sun et al., 2023;
Huang et al., 2023; Zhang et al., 2023b; Tan et al., 2023; Yu et al., 2025), enabling better adaptation
to various datasets. Different from model fine-tuning, this paper focuses on directly unifying diverse
graph features and labels at the pre-training stage. By exploring this foundational problem, our
findings show that the pre-trained GNN models can provide competitive graph operators for further
fine-tuning and simplify the hyperparameter tuning process (Sec 4.3).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table S4: Original Dataset Split for Training-free Inference.
TRAIN TEST TOTAL

AMAZONCOMPUTERS 8,252 2,750 13,381
CORA 1,208 1,000 2,708
COAUTHORPHYSICS 20,697 6,898 34,493
ARXIV-YEAR 84,671 42,337 169,343
TWITCH-GAMER 84,057 42,029 168,114
TOLOKERS 5,879 2,940 11,758
CHAMELEON 1,092 456 2,277
ACTOR 3,698 1,520 7,600

Table S5: Dataset Split for Model Fine-tuning.
TRAIN VALID TEST TOTAL

CORA 1,208 500 1,000 2,708
PUBMED 18,217 500 1,000 1,9717
AMAZONCOMPUTERS 8,252 2,379 2,750 1,3381
WIKICS 580 5,274 5,847 1,1701
AMAZON-RATINGS 12,246 6,123 6,123 2,4492
MINESWEEPER 5,000 2,500 2,500 1,0000
TOLOKERS 5,879 2,939 2,940 1,1758

C EXPERIMENTAL SETUP

C.1 SETTINGS

Zero-shot learning with label priors requires test label knowledge. However, label semantics vary
across graph datasets, making full coverage of different semantics during pre-training impractical.
To align with real-world scenarios, we exclude label knowledge from pre-training. Models do not
have access to the label description knowledge during training and target-insensitive prediction. For
further evaluation, the prediction results are permuted by aligning pseudo labels with actual labels.
Specifically, to ensure fair comparison with LM-based graph models in the zero-shot setting, we
employ the embedded label semantics SLM

tgt from language models (Li et al., 2024b) and construct the

assignment matrix with fout(c, s)S
LM⊤

tgt . This scenario does not require any labeled samples from test
datasets. To explore the potential of pre-trained pure GNNs on general downstream tasks, observed
target labels are only included during inference to match pseudo labels with real labels. Given the
observed real labels C, the mapping relations between the pseudo labels and the real labels can
be formulated as ĈP(cI − 11⊤) = clog(cC). The assignment matrix P can be solved as the
least-squares solution of the linear equation without additional training effort.

C.2 DATASETS

Various real-world datasets are adopted for model pre-training and evaluation. These datasets can be
categorized into four domains, including electronic-commerce graphs (e-com.), citation graphs, social
graphs, and Wikipedia graphs (wiki). Three levels of average node number per dataset including 1k,
10k, and 100k are incorporated for each domain. The statistics of these datasets are summarized in
Tab. S11 and Tab. S12. For the test datasets, we follow the standard split as the supervised learning
setting in the original paper.

The e-com. domain consists of one test dataset AmazonComputers (Shchur et al., 2019), and three
train datasets AmazonPhoto (Shchur et al., 2019), amazon-ratings (Platonov et al., 2023), and ogbn-
products (Hu et al., 2020). All these datasets are collected from Amazon. The citation domain
consists of three test datasets Cora (Sen et al., 2008), CoauthorPhysics (Shchur et al., 2019), and
arxiv-year (Lim et al., 2021), and four train datasets CiteSeer (Sen et al., 2008), PubMed (Sen
et al., 2008), ogbn-arxiv (Hu et al., 2020), and snap-patents (Lim et al., 2021). These datasets are
collected from academic graphs, encoding coauthorship and citation relations. The social domain
consists of two test datasets twitch-gamer (Lim et al., 2021), tolokers (Platonov et al., 2023), and
five train datasets twitch-e (Lim et al., 2021), fb100 (Lim et al., 2021), genius (Lim et al., 2021),

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table S6: Textual Dataset Statistics.
DATASET USAGE #NODES #EDGES #LABELS

CITATION
ARXIV TRAIN 169,343 2,315,598 40
PUBMED TRAIN 19,717 88,648 3
DBLP TEST 14,376 431,326 4

E-COM.

AMAZON-RATINGS TRAIN 24,492 186,100 5
BOOKHISTORY TRAIN 41,551 503,180 12
BOOKCHILD TEST 76,875 2,325,044 24
COMPUTERS TEST 87,229 1,256,548 10
PHOTO TEST 48,362 873,782 12
SPORTSFIT TEST 173,055 3,020,134 13
PRODUCTS TEST 316,513 19,337,722 39

WIKI. WIKICS TEST 11,701 431,726 10
SOCIAL TOLOKERS TEST 11,758 1,038,000 2

Facebook (Rozemberczki et al., 2021), and pokec (Lim et al., 2021). These datasets are collected
from online social media, encoding social relationships between different users. Specifically, tolokers
encapsulates crowdsourcing participation data sourced from the Toloka platform. Edges in tolokers
link toloker pairs that have completed the same tasks. This graph indicates certain interests of the
participants. Therefore, we classify it in the social domain. The wiki. domain consists of two
test datasets CHAMELEON (Pei et al., 2019), ACTOR (Pei et al., 2019), and three train datasets
WikiCS (Mernyei & Cangea, 2022), romain-empire (Platonov et al., 2023), and NELL (Carlson et al.,
2010). These datasets are collected from Wikipedia. The splits employed in Tab. 1 and Tab. 3 are
summarized in Tab. S4 and Tab. S5, respectively.

We also employ textual datasets (Chen et al., 2024c) to compare with LM-based models. The datasets
can also be categorized into citation, e-com., social, and Wiki graphs. The citation graphs include
arxiv, PubMed, and DBLP. The e-com. graphs include amazon-ratings, bookhistory, bookchild,
computers, photo, sportsfit, and products. The Wiki. graph refers to WikiCS, and the social graph
refers to tolokers. The statistics of these datasets are summarized in Tab. S6.

C.3 IMPLEMENTATION

Eight GNN methods are employed as the backbone for model pre-training, including GCN (Kipf &
Welling, 2017), GAT (Veličković et al., 2018a), GraphSAGE (Hamilton et al., 2017), GIN (Xu et al.,
2019), MixHop (Abu-El-Haija et al., 2019), GraphGPS (Rampášek et al., 2022), DeepGCN (Li et al.,
2019), and N2 (Sun et al., 2024). The evaluations are conducted on a single NVIDIA GeForce RTX
4090 or a single NVIDIA A100. Models are pre-trained on the TRAIN datasets and evaluated on the
TEST datasets in Tab. S11.

Except for N2, backbones are implemented with the framework of PyTorch Geometric. The pre-
training process is conducted for 5000 epochs with a learning rate fixed at 1e− 5. The supervised
result reproducing is conducted for 500 epochs and will be early stopped if there is no further
reduction in the validation loss during 200 epochs. The total epoch for model fine-tuning is 1000,
with early-stopping for 200 epochs. We adopt Adam (Kingma & Ba, 2015) as optimizer and set
weight decay as 1× 10−6. The supervised results are reproduced under the same architecture, with
grid search performed on the number of layers in {2, 3, 5, 10}, dropout in {0., 0.1, 0.2, 0.3, 0.5}, and
the number of hidden dimensions in {64, 128, 256}. The self-supervised models are first pre-trained
in the self-supervised setting and then frozen with a trainable linear output for supervised learning.
The hyperparameter configuration follows the original implementation. For model fine-tuning,
we perform grid search on dropout in {0., 0.1, 0.2, 0.3, 0.5} based on the validation results. For
the information loss study in Appendix D.7, grid search is performed on the number of layers in
{2, 3, 5, 10}, and the number of hidden dimensions in {64, 128}. Except for performance comparison
with baselines on textual/non-textual datasets and pre-training with scaling parameters, we fix the
number of dimensions at 256 for all backbones. The configuration for the number of layers during
pre-training for data scaling and domain gap is presented in Tab. S7.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table S7: Layer Configuration.
#LAYERS

GCN 6
GAT 6
GRAPHSAGE 6
GIN 2
DEEPGCN 1
N2 6
GRAPHGPS 1
MIXHOP 8

Table S8: Evaluation Results with Graph-level Datasets (Measured by accuracy: %). Bold
values denote the best results per test dataset. LP, Lap, and Rand denote Label Propagation, Laplacian
decomposition, and random projection, respectively.

ENZYMES REDDIT-BINARY PROTEINS AMAZONCOMPUTERS CORA ARXIV-YEAR TWITCH-GAMER
ORIGINAL SPLIT

GCN (SUP) 37.41±0.32 78.40±0.41 71.70±0.39 91.09±0.13 81.80±0.28 48.03±0.41 59.44±0.18

GRAPHCL 19.77±0.41 71.26±0.32 67.23±1.01 88.67±0.48 61.93±1.47 OOM OOM
LAP 52.38±0.37 72.04±0.71 70.07±0.52 78.69±0.76 76.80±0.46 40.86±0.64 56.25±0.50

RAND 18.33±0.37 52.20±0.43 59.67±0.73 34.73±0.68 15.50±0.71 37.00±0.76 52.29±0.44

SVD 53.65±0.54 71.08±0.54 70.89±0.69 75.67±0.49 73.50±0.66 40.57±0.55 56.82±0.52

FUG - - - 88.22±0.09 30.70±0.96 42.54±0.30 58.16±0.27

GRAPHANY - - - 82.94±0.82 79.41±0.35 38.36±0.53 59.96±0.02

UNIFIED I/O (NODE) 52.83±1.06 69.65±0.36 70.73±0.26 89.85±0.18 82.32±0.97 42.58±0.17 59.99±0.05

UNIFIED I/O (GRAPH) 54.88±0.40 73.09±0.43 72.45±0.44 80.29±0.55 80.30±0.70 41.35±0.43 57.73±0.66

1-SHOT FOR TRAINING-FREE INFERENCE
GRAPHCL 16.71±0.69 52.85±1.53 51.89±3.68 41.39±2.64 27.83±1.20 OOM OOM
LAP 17.33±2.46 56.88±1.66 55.62±1.91 45.71±2.18 22.80±2.00 28.57±1.90 53.45±1.88

RAND 17.68±2.06 55.36±1.86 49.56±1.56 15.67±1.78 16.20±2.26 26.61±1.93 52.56±2.16

SVD 17.87±1.37 56.80±1.35 55.47±1.60 43.46±1.27 18.90±2.44 24.78±1.37 53.45±1.17

FUG - - - 27.26±0.36 41.83±0.26 27.58±0.11 49.93±0.01

GRAPHANY - - - 62.87±0.29 53.63±1.03 25.03±0.48 49.65±0.48

UNIFIED I/O (NODE) 17.82±1.27 48.21±1.34 52.27±1.75 59.89±0.80 43.94±0.50 33.47±0.14 57.90±0.15

UNIFIED I/O (GRAPH) 18.08±1.82 58.89±2.40 56.07±0.81 60.33±2.16 25.90±0.92 29.96±0.95 54.60±1.47

3-SHOT FOR TRAINING-FREE INFERENCE
GRAPHCL 18.16±0.88 57.13±1.46 53.73±0.82 55.41±1.41 34.97±0.64 OOM OOM
LAP 20.42±1.29 58.23±1.23 58.60±1.26 45.35±1.10 34.80±1.39 24.62±1.35 54.51±1.26

RAND 18.62±1.28 56.30±1.16 51.38±1.16 19.02±1.31 30.70±1.37 25.64±1.09 53.04±1.43

SVD 20.67±1.10 58.28±1.16 55.95±1.35 50.76±1.36 35.60±1.26 21.62±1.23 53.26±1.13

FUG - - - 50.59±0.29 47.77±0.29 24.02±0.19 49.83±0.09

GRAPHANY - - - 70.04±1.43 66.32±1.21 24.74±0.34 54.71±0.18

UNIFIED I/O (NODE) 19.00±1.93 49.07±1.68 54.46±1.36 68.33±0.28 49.21±0.91 35.32±0.29 57.64±0.06

UNIFIED I/O (GRAPH) 22.05±2.00 59.32±0.93 60.46±1.57 65.78±2.27 38.90±1.17 23.97±1.48 55.56±1.43

D ADDITIONAL RESULTS

D.1 GRAPH-LEVEL TASKS

As noted in Appendix A, except for the node-level evaluation, unified I/O can be employed for more
tasks. To demonstrate this, GNNs are pre-trained on graph-level datasets (COLLAB, IMDB-BINARY,
MUTAG, and D&D) (Morris et al., 2020), and evaluated on graph-level tasks (PROTEINS, REDDIT-
BINARY, ENZYMES) (Morris et al., 2020), and node-level tasks (AmazonComputers (Shchur et al.,
2019), Cora (Watts & Strogatz, 1998), arxiv-year, twitch-gamer (Lim et al., 2021)). Baselines include
supervised method GCN (Kipf & Welling, 2017), self-supervised learning method GraphCL (You
et al., 2020), parameter-free feature alignment methods SVD (Sun et al., 2023), Laplacian projec-
tion (Sun et al., 2025), and random projection (Tang et al., 2024)) combined with our unified output
module. We also adopt FUG (Zhao et al., 2024b) and GraphAny (Zhao et al., 2024a) as baselines for
node-level tasks. Neither methods support graph tasks and are thus pre-trained on (amazon-ratings,
ogbn-arxiv, Facebook, and roman-empire).

Results in Tab. S8 show that pre-training with unified I/O surpasses GraphCL and parameter-free
feature alignment methods on both graph-level and node-level tasks. On graph-level tasks, unified
I/O also delivers performance comparable to, or better than, supervised GCN. However, transferring
between graph-level and node-level tasks introduces a noticeable performance gap in both directions.
In particular, for node-level downstream tasks, models pre-trained on graph-level datasets perform
competitively on the original split but lag behind under the 1-shot and 3-shot settings when compared
with models pre-trained directly on node-level datasets.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

105 106 107

Number of Parameters

25

30

35

40

45

50

55

60

65

Pe
rfo

rm
an

ce

GCN
GraphGPS
GAT
GraphSAGE

GIN
MixHop
N2

DeepGCN

Figure S8: Pre-training with Scaling Parameters. The connected dots denote scaling the number
of parameters by stacking multiple layers. The adjacent line segments denote scaling by expanding
the hidden dimension.

105 106 107 108

Number of Parameters

20

30

40

50

60

Pe
rfo

rm
an

ce

GCN (scaling)
GIN (scaling)
GCN (original)
GIN (original)

(a) Pre-training with More Parameters

105 106 107

Number of Parameters

56

57

58

59

60

61

62

63
Pe

rfo
rm

an
ce

GCN (four combined)
GAT (four combined)
GCN (amazon-ratings)
GAT (amazon-ratings)
GCN (PubMed)
GAT (PubMed)

(b) Impact of Training Data on Parameter Scaling

Figure S9: Over-parameterization in Parameter Scaling. (a) The connected dots denote scaling
the number of parameters by stacking multiple layers. The adjacent line segments denote scaling by
expanding the hidden dimension. (b) “Four combined” denotes employing amazon-ratings, ogbn-
arxiv, Facebook, and roman-empire for pre-training.

D.2 SCALING PARAMETERS

Following the common practice in LLM (OpenAI et al., 2024), model performance is also compared
with different numbers of parameters. The experimental settings are the same as Fig. 5, with models
pre-trained on (amazon-ratings, ogbn-arxiv, Facebook, roman-empire) and performance averaged
across different test graphs. The connected dots denote scaling the number of parameters by stacking
multiple layers. Note that N2 is a recurrent model, where the number of parameters does not change
with different layer depths. Results in Fig. S8 exhibit the clear influence driven by layer depth and
hidden dimension. Notably, increasing parameter count by adding more layers does not consistently
improve performance, while scaling hidden dimensionality is a more stable and beneficial strategy
to improve pre-trained GNN models. These observations indicate that model capacity cannot be
assessed solely through parameter volume. Instead, layer depth must be chosen appropriately for
each architecture, as simply increasing parameters by stacking layers does not always yield better
performance.

We further explore the boundary of parameter scaling with more parameters, i.e., hidden dimensions of
{2048, 4096} and depths of {20, 32} layers. Fig. S9(a) shows that further scaling the number of layers
(connected dots) causes over-parameterization. This can be alleviated by expanding training datasets,
where results in Fig. S9(b) indicate that more training datasets can better support parameter scaling.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

In contrast, increasing the number of hidden dimensions to 4096 does not show over-parameterization.
This observation further supports the conclusion that scaling hidden dimensionality is a more stable
and beneficial strategy for improving pre-trained GNN models.

104 105

Minimum Number of Nodes

0.98

0.99

1.00

1.01

1.02

1.03

Pe
rfo

rm
an

ce

Average
Number of Nodes

100,000.0

1,000,000.0

(a) Fix the Minimum, Increase the Average

104 105 106

Maximum Number of Nodes

0.98

0.99

1.00

1.01

1.02

1.03

Pe
rfo

rm
an

ce

Minimum
Number of Nodes

1,000
10,000.0

(b) Fix the Maximum, Increase the Minimum

104 105 106

Average Number of Nodes

0.98

0.99

1.00

1.01

1.02

1.03

Pe
rfo

rm
an

ce

Minimum
Number of Nodes

1,000
10,000.0

(c) Fix the Average, Increase the Minimum

104 105 106

Average Number of Nodes

0.970

0.975

0.980

0.985

0.990

0.995

1.000

1.005

1.010

Pe
rfo

rm
an

ce

Number of
Training
Datasets

1
3
4
Fit
5% range

(d) Scaling with the Average Number of Nodes

Figure S10: Study on the Data Scaling Strategy. (c) Different dot colors indicate the number of
datasets employed for pre-training. “5%” denotes envelope-fitting with the top and bottom 5% of the
data in each bin.

D.3 DATA SCALING STRATEGY

To explore an effective data scaling strategy, we compare model pre-training with different training
data. Specifically, different combinations of three datasets are employed as training data. Model
performance is normalized by dividing the median result of the same backbone pre-trained with
various datasets on the corresponding test dataset. Fig. S10(a) shows the results of fixing the minimum
dataset size and varying the average number of nodes. When the minimum training dataset size
remains, increasing the average number of nodes does not consistently improve performance. This
indicates that simply adding larger datasets while keeping the smallest size unchanged is not an
effective way to expand the training set.

Moreover, Fig. S10(b) and Fig. S10(c) show the results of fixing the maximum dataset size or the
average number of nodes and increasing the minimum. In both cases, raising the minimum dataset
sizes yields improved performance. Together, these findings suggest that mixing datasets with widely
varying node scales is inefficient; datasets should instead be chosen to maintain a similar node scale.
Therefore, we compare dataset combinations that are aligned in node scale for the data scaling study
in Fig. 6. Additionally, we directly expand the average number of nodes in dataset combinations
without considering the smallest dataset size. Model performance is normalized by dividing the
median result of the same backbone pre-trained with various datasets on the corresponding test
dataset. The averaged results over 1,848 data points across different backbones and test datasets are

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

presented in Fig. S10(d). Results show that increasing the average number of nodes benefits model
performance. In contrast, incorporating more training datasets with various node scales does not
necessarily result in superior performance, which verifies the inefficiency of this strategy.

Training Datasets

0.0

0.1

0.2

0.3

0.4

Pe
rfo

rm
an

ce
 G

ap
 b

et
we

en
 H

et
. a

nd
 H

om
. T

es
t G

ra
ph

s

homophilic

heterophilic

DeepGCN
GCN
GAT
GIN

GPS
GraphSAGE
MixHop
N3

(a)

Training Datasets
0.7

0.8

0.9

1.0

1.1

1.2

1.3

Re
la

tiv
e

Pe
rfo

rm
an

ce

hom.
het.

(b)

Training Datasets

10

0

10

20

30

Pe
rfo

rm
an

ce
 G

ap
 b

et
we

en
 G

NN
 a

nd
 M

LP

homophilic

heterophilic

DeepGCN
GCN
GAT
GIN
GraphSAGE
MixHop

(c)

Training Datasets

0.6

0.4

0.2

0.0

0.2
Pe

rfo
rm

an
ce

 G
ap

 b
et

we
en

 H
et

. a
nd

 H
om

. T
es

t G
ra

ph
s homophilic heterophilic

GENConv
GCN
GAT
GIN

GPS
GraphSAGE
MixHop
N3

(d)

Figure S11: Adaptation Performance Comparison on Heterophilic and Homophilic graphs.
(a) presents the difference between the performance of the same pre-trained model evaluated on
heterophilic graphs and homophilic graphs. (b) presents the normalized performance of MLP by
dividing the state-of-the-art supervised results of classic GNN models on the corresponding test
datasets. (c) presents the difference between the absolute performance of pre-trained GNNs and MLP.
(d) presents the difference between the performance of pre-trained GNNs and MLP normalized by
their supervised counterpart.

D.4 INFERENCE WITH DIFFERENT HOMOPHILY-HETEROPHILY

Comparison with the same pre-training dataset. Sec. 4.2 examines model adaptation using
different pre-training datasets on the same test dataset, showing that training on datasets with the same
homophily–heterophily characteristics as the test dataset generally yields better results. In this section,
we shift the focus to comparing model performance across different test datasets under the same pre-
training setting. However, direct comparison is challenging because the inherent difficulty of each test
dataset varies, resulting in different absolute performance values. To address this issue, we normalize
the results by dividing them by the corresponding reproduced supervised results. A higher normalized
value indicates that the pre-trained model adapts more effectively to the corresponding downstream
task. Fig. S11(a) presents the difference between the averaged performance of the same pre-trained
model on heterophilic test datasets and homophilic test datasets (Metrichet − Metrichom). We can
see that models pre-trained on either homophilic or heterophilic graphs gain a positive performance
gap, indicating better results on heterophilic graphs than homophilic graphs. To further study this
phenomenon, we contrast pre-trained MLPs with pre-trained GNNs to evaluate the requirement of

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

homophilic and heterophilic graphs during model adaptation, and thus derive the root cause of the
phenomenon for Fig. S11(a).

Requirement of heterophilic graphs. We compare the performance of pre-trained MLP with
supervised GNNs. Supervised GNNs are directly optimized to meet task-specific requirements on
downstream datasets. Comparing them with pre-trained models assesses whether the latter also
fulfill these requirements. Fig. S11(b) presents the normalized performance of MLP by dividing the
state-of-the-art supervised results of classic GNN models on the corresponding test datasets. MLP
achieves more comparable performance on heterophilic test graphs compared to supervised results.
This indicates that node features better benefit the adaptation to heterophilic graphs. In contrast, the
requirement of the adaptation to homophilic graphs cannot be well satisfied by MLP and leads to
inferior normalized performance.

Requirement of homophilic graphs. We compare the performance of pre-trained MLPs and
GNNs. MLPs that only employ node features serve as a baseline for adapting to homophilic graphs.
Comparing more complex models with MLP highlights the further requirement of homophilic graphs.
Fig. S11(c) presents the performance gap between pre-trained GNNs and MLPs. We can see that
GNNs gain better performance on homophilic graphs and similar performance on heterophilic graphs
compared to MLP. This indicates that capturing graph structures contributes to the adaptation to
homophilic graphs.

Transferability of the learned knowledge. Given the requirement of capturing node features to
adapt to heterophilic graphs and capturing structures for homophilic graphs, we further analyze the
difficulty of transferring these learned patterns. Specifically, supervised models transfer knowledge
within the same dataset, while pre-trained models transfer across datasets. Therefore, comparing the
performance of pre-trained models with their supervised counterparts shows the transferability of
knowledge learned during pre-training, where GNNs correspond to the structural knowledge and MLP
corresponds to the node feature knowledge. Fig. S11(d) presents the normalized performance gap
between pre-trained GNNs and MLP, where pre-training results are divided by the supervised results
of the same model on the same datasets. Results show that the performance gap between normalized
pre-trained GNNs and MLP is generally negative, where the pre-trained MLP is more comparable to
its supervised counterpart. This suggests that the node feature knowledge is consistently transferable
within and across datasets. Conversely, structural knowledge transfers well within the same dataset
but fails to generalize across different datasets. As a result, pre-trained GNNs with only transferable
node feature knowledge cannot satisfy the requirement of the homophilic graphs and thus achieve
better normalized performance on heterophilic graphs.

Based on the above conclusions, the phenomenon in Fig. S11(a) can be attributed to the inherent
differences between homophilic and heterophilic graphs. Adapting to heterophilic graphs mostly
requires the capturing of node features, while adapting to homophilic graphs requires models to
adhere closely to the input graph structures. However, structural knowledge fails to transfer across
different datasets compared to the better transferability of the node feature knowledge, resulting in
consistently better performance when adapting to heterophilic graphs.

D.5 MODEL FINE-TUNING

Our unified I/O modules enable seamless adaptation of pure GNN architectures across diverse
datasets. To further evaluate the effectiveness of the pre-trained GNN operators, we fine-tune the
models pre-trained on amazon-ratings, ogbn-arxiv, Facebook, and roman-empire. The internal
GNN module Fg within the pre-trained models is frozen during the fine-tuning. The unification-
oriented I/O function fin(·) in Eq. 4 and fout(·) in Eq. 5 are replaced with learnable parameters.
We implemented GCN (Kipf & Welling, 2017), GAT (Veličković et al., 2018a), GIN (Xu et al.,
2019), GraphSAGE (Hamilton et al., 2017), and GraphGPS (Rampášek et al., 2022) in the supervised-
learning setting and DGI (Veličković et al., 2018b), GRACE (Zhu et al., 2020), GraphACL (Xiao
et al., 2023), GraphCL (You et al., 2020), SimGRACE (Xia et al., 2022), MaskGAE (Li et al., 2023),
GraphMAE2 (Hou et al., 2023) in the self-supervised setting. The fine-tuning results with different
backbones on downstream graphs are summarized in Tab. S9. The pre-trained operators achieve
superior performance to supervised methods and self-supervised methods. Notably, the pre-trained
operators require minimal hyperparameter tuning, with only dropout adjusted during fine-tuning. This

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table S9: Evaluation Results of Fine-tuning the I/O Modules in the Pre-trained GNNs (Measured
by accuracy except ROC AUC for tolokers: %). Bold values denote the best results per test dataset.

CORA PUBMED AMAZON
COMPUTERS

WIKICS AMAZON
-RATINGS

MINESWEEPER TOLOKERS

SELF-SUPERVISED
DGI 84.00±0.28 83.73±0.41 82.11±0.16 75.05±0.39 40.80±0.74 88.45±0.38 77.73±0.14

GRACE 84.30±0.57 85.81±0.18 89.67±0.36 75.80±0.56 42.19±0.12 86.15±0.45 75.06±0.14

GRAPHACL 75.00±0.75 82.93±0.17 80.58±0.15 68.00±0.75 40.65±0.14 87.23±0.11 77.68±0.25

GRAPHCL 63.33±1.76 63.53±1.08 84.57±0.34 76.32±0.18 42.35±0.37 79.85±0.12 80.03±0.12

MASKGAE 75.13±1.78 75.27±1.03 92.15±0.05 78.25±0.20 43.54±0.30 84.33±0.16 81.13±0.34

SIMGRACE 67.07±0.82 77.63±0.82 87.44±0.18 78.75±0.28 43.46±0.23 84.23±0.16 80.29±0.30

GRAPHMAE2 79.50±0.51 67.07±0.91 91.03±0.19 76.24±0.11 40.95±0.71 80.16±0.10 80.17±0.07

SUPERVISED
GRAPHSAGE 78.83±0.50 88.11±0.05 91.09±0.02 78.13±0.15 45.71±0.38 90.55±0.10 83.06±0.59

GAT 77.51±2.35 85.30±0.15 89.78±0.02 76.35±0.80 44.54±0.52 82.07±1.17 77.37±0.28

GIN 77.36±0.15 85.13±0.55 90.51±0.80 74.02±0.62 46.33±0.11 74.93±0.58 60.93±2.25

GCN 80.35±0.25 85.44±0.50 90.66±0.13 78.55±0.01 46.71±0.25 76.43±1.05 77.79±0.12

GRAPHGPS 58.61±0.05 85.21±0.30 88.87±0.20 75.18±0.04 47.85±0.29 89.64±0.24 79.82±0.06

PRE-TRAINED AND FINE-TUNED
GCN 84.32±0.09 85.28±0.21 91.02±0.01 78.42±0.07 46.17±0.09 69.10±0.11 69.50±0.69

GAT 78.01±0.87 84.47±0.33 89.74±0.42 77.96±0.13 47.13±0.45 71.03±0.72 75.67±0.73

GIN 79.31±0.82 85.61±0.38 87.89±0.43 73.49±0.14 49.93±0.22 77.62±0.28 66.83±0.56

GRAPHGPS 50.62±0.42 86.79±0.71 85.93±0.23 73.41±0.74 43.74±0.26 88.68±0.29 80.41±0.53

GRAPHSAGE 83.92±0.43 86.37±0.23 91.24±0.17 78.98±0.12 48.85±0.82 91.39±0.15 83.29±0.13

MIXHOP 84.63±0.12 88.91±0.45 90.33±0.30 78.93±0.17 51.59±0.05 90.77±0.18 83.03±0.13

N2 81.50±0.33 88.32±0.32 92.33±0.25 76.60±0.25 49.85±0.31 90.31±0.31 81.51±0.36

DEEPGCN 74.40±0.33 88.50±0.32 91.02±0.25 74.67±0.25 50.76±0.46 88.00±0.28 79.86±0.36

significantly simplifies the hyperparameter tuning process, enabling efficient adaptation of pre-trained
GNNs to various graphs with promising performance.

0 20000 40000 60000 80000 100000
Number of nodes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ti
m

e
Co

ns
um

pt
io

n
(s

)

64
256
512
1024
GAT
GraphGPS

(a) Different graph sizes

0 20000 40000 60000 80000 100000
Number of nodes

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.028

Ti
m

e
Co

ns
um

pt
io

n
(s

)

64
256
512
1024
GAT

(b) Different numbers of input features

Figure S12: Time comparison. (b) zooms in on the red block in (a).

D.6 COMPLEXITY ANALYSIS

The space complexity of the unified I/O is O(n), with din, d, s, c≪ n. To evaluate the time cost of
different modules, We construct synthetic graphs. Nodes in the synthetic graphs have an average
degree of 20. The largest number of edges is 100,000. The number of classes is 10, which is close to
the common configuration of the real-world datasets in Fig. 1. The number of GNN layers is fixed
to 3. The results are presented in Fig. S12. As the number of input features increases, the time cost
of the unified I/O module increases but is constantly less than the cost of the GraphGPS module.
The I/O time cost also scales linearly with the graph size. This demonstrates the efficiency of the
proposed unified I/O modules.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table S10: Information Loss Study. “Ori” and “Uni” denote the supervised learning results with
traditional I/O modules and our unified I/O modules, respectively.

AMAZON-RATINGS ARXIV-YEAR COAUTHORCS COAUTHORPHYSICS
GCN (ORI.) 48.70 46.02 92.92 96.18
GCN (UNI.) 47.12 45.19 92.77 96.38
GAT (ORI.) 52.70 46.05 93.61 96.17
GAT (UNI.) 46.19 46.26 88.38 94.16
GRAPHSAGE (ORI.) 53.63 43.76 93.91 96.49
GRAPHSAGE (UNI.) 45.45 44.76 95.17 97.06

D.7 EFFECTIVENESS OF THE UNIFIED I/O

Information Loss. Unified I/O decouples the learnable parameters from the numbers and semantics
of dimensions for the feature and label space. To evaluate whether this leads to information loss,
we conduct supervised training with our unified I/O on GCN, GAT, and GraphSAGE. As presented
in Tab. S10, our unified I/O modules do not cause severe information loss. They even enable
the backbone GNN methods to achieve better performance than that of their vanilla architectures
for GAT and GraphSAGE on arxiv-year, GraphSAGE on CoauthorCS, GCN and GraphSAGE on
CoauthorPhysics. This demonstrates the effectiveness of our unified I/O in learning input and output
mappings.

(a) Given Semantics (b) Learned Semantics

Figure S13: t-SNE Results for Semantics Alignment Comparison. Each dot represents a different
feature channel, with dot colors representing different datasets.

Feature Semantics. To explore whether our parametric function fin(·) empowers feature semantics
unification across different inputs, we use t-SNE to visualize feature semantics from (Cora, CiteSeer,
Photo, Computers, ogbn-products, and WikiCS) (Chen et al., 2024c). 40 feature channels are sampled
for each dataset. Each dot represents a different feature channel, with dot colors representing different
datasets. Fig. S13(a) shows the t-SNE result of the original feature semantics, where features from
different datasets form clearly separated clusters rather than merging into a shared global structure.
This pronounced dataset separation indicates that the representations are not well aligned within
a common semantic space. Conversely, in Fig. S13(b), feature semantics from different datasets
learned by unified I/O form two major clusters, indicating that the learned representations are unified
into two common semantic subspaces. Within each cluster, channels from different datasets do not
fully mix but show partial segregation, suggesting that the semantic representations still preserve
dataset-specific characteristics. All these results demonstrate the effectiveness of our proposed
method in modeling unified feature semantics.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

E PROOF AND DERIVATION

E.1 MAPPING WITH DIMENSION RELATIONS

Theorem 3.1 (Mapping with Dimension Relations). Given any linear mapping W ∈ Rdsrc×dtgt and
s ∈ N+, there always exist two representation matrices Ssrc ∈ Rdsrc×s and Stgt ∈ Rdtgt×s, such
that W = ψ(Ssrc,Stgt), where ψ(·, ·) is a bilinear composition function.

Definition E.1 (Bilinear Composition Function). Let X ∈ Rm×d1 and Y ∈ Rn×d2 be two input
matrices, and let U ∈ Rd1×d2 be a learnable parameter matrix. A bilinear composition function
ψ : Rm×d1 × Rn×d2 → Rm×n is defined as

ψ(X,Y) = XUY⊤,

which computes the bilinear form between each pair of row vectors from X and Y. This function is
linear with respect to either argument when the other is fixed, but not jointly linear.

We now provide the proof for Theorem 3.1:

Proof. Let r = rank(W) ≤ min(dsrc, dtgt). By the full-rank factorization theorem (Meyer, 2023),
there exist matrices A ∈ Rdsrc×r and B ∈ Rdtgt×r such that

W = AB⊤.

Let s = r, Ssrc := A, Stgt := B, and U be the identity matrix Ir. Then

SsrcUS⊤
tgt = AIrB

⊤ = AB⊤ = W.

Thus, such Ssrc,Stgt,U always exist.

More generally, for any s ≥ r, we can embed A and B into higher-dimensional matrices by padding
zeros and set U as a diagonal matrix with the first r entries as 1 and others as 0. Hence, the bilinear
form ψ(Ssrc,Stgt) = SsrcUS⊤

tgt is expressive enough to represent any linear mapping W.

E.2 SET LEARNING FOR THE UNIFIED INPUT MODULE

To decouple the parameters from the number of source dimensions, feature semantics S
(in)
src is

formulated as a parametric function fin(X;Win). The function fin(·) is subject to two conditions:
(1) Permutation invariance to the order of input nodes and equivariance to that of source dimensions;
(2) Size independence of the parameter set Win to the values of n and din. Given the absence of
topological structures and the permutation condition (Cond 1) for fin(·), the input features can be
modeled as a set of channels {X·,j}, where each channel corresponds to a set of nodes {Xi,j}. As a
result, fin(·) is transformed into a set-learning problem at both the channel level and the node level,
fin = fchain ◦ fnodin .

Channel-level Set Learning. Based on the universal functions on set (Zaheer et al., 2017), fin(·) is
a permutation-equivariant set function at the channel level and can be decomposed as

fin(X) = fchain

(
fnodin (X)

)
= σ

[
Θfnodin (X)

]
, (S8)

where σ can be any nonlinear function, Θ ∈ Rdin×din denotes the channel mixer. To enable the
scalability of the input module for input features with a large number of channels (e.g., NELL
din = 61, 278, CoauthorPhysics din = 8, 415, and CoauthorCS din = 6, 805), we follow the linear
attention (Katharopoulos et al., 2020) to construct Θ as

Θ =
dinX

⊤X

X⊤X1
, (S9)

where 1 denotes the all-one vector.

Node-level Set Learning. Due to the size independence and the permutation invariance conditions
for fin(·), fnodin (·) in Eq. S8 can be formulated as a permutation-invariant set function at the node
level. Given fin : Rn×din 7→ Rdin×s, our ultimate target is to model a number of s representations

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

for each channel. Therefore, we apply s set functions to {Xi,j}. Each function can be decomposed
following the universal set function (Zaheer et al., 2017) as

fnodin (X) =
[
f
nod,1
in (X)|| · · · ||fnod,sin (X)

]
, f

nod,k
in (X) = ϕk

 ∑
i∈[1,n]

ρk(X⊤)·,i

 , (S10)

where the parameters in both ϕk and ρk are shared for each element in X to ensure the size indepen-
dence condition (Cond 2). We share the function ρk for all k ∈ [1, s] as ρ and implement ϕk as a
parameter-weighting function to keep simplicity. As a result, Eq. S8-Eq. S10 can be complied as

fin(X) = σ

[
dinX

⊤X

X⊤X1
ρ(X⊤)1α⊤

]
, (S11)

where α = {αk} ∈ Rs×1 denotes the parameter vector with k ∈ [1, s] to implement ϕk, 1 denotes
the all-one vector to implement the summation in Eq. S10.

Although Zaheer et al. also provides an implementation named Deep Sets based on the universal
set function, our input module differs from this specific implementation in several key aspects.
Specifically, graph learning requires permutation invariance over nodes, which constitute the set
representations in our case. This demands the input module to decouple parameters from the
representation dimensionality. In contrast, Deep Sets are not faced with such a condition. We further
decompose the set-learning task into a bi-level formulation, while Deep Sets addresses the original
single-level formulation. Moreover, our input module employs a linear-attention-like set mixer in
Eq. S9, while Deep Sets applies sum or max pooling to mix sets.

E.3 PERMUTATION INVARIANCE OF THE UNIFIED INPUT MODULE

Theorem E.2 (Permutation Invariance of the Unified Input Module). Let P ∈ Rdin×din be any
permutation matrix. Then the source-adaptive input module Fin is permutation invariant, such that
Fin(XP) = Fin(X).

Proof. Let P ∈ Rdin×din be a permutation matrix. Consider the input module Fin(X) =

σ
[
Xfin(X)S

(in)⊤
tgt

]
, where σ(·) is applied element-wise. Applying the permutation giving rise to

Fin(XP) = σ
[
XPfin(XP)S

(in)⊤
tgt

]
. Specifically, let r = X⊤X1/

√
n, x̄ = X1din/din, fin(XP)

can be formulated as

fin(XP) = σ

(
(XP)⊤XPP⊤rα⊤

(XP)⊤x̄

)

= σ

(
(XP)⊤Xrα⊤

(XP)⊤x̄

)
.

Here, both the division and σ(·) are applied element-wise and invariant to consistent column permu-
tation. Therefore, applying the permutation before or after the element-wise operations yields the
same result, giving

fin(XP) = σ

(
P⊤X⊤Xrα⊤

X⊤x̄

)
= P⊤σ

(
X⊤Xrα⊤

X⊤x̄

)
= P⊤fin(X).

Substituting fin(XP) into Fin(XP), we have

Fin(XP) = σ
[
XPP⊤fin(X)S

(in)⊤
tgt

]
= Fin(X).

which completes the proof.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

E.4 PSEUDO LABEL ASSIGNMENT

Given the observed labels C, the mapping relations between the pseudo labels and the observed
labels can be formulated as

softmax(ĈP) =
exp(ĈP)

exp(ĈP)11⊤ = C, (S12)

where P ∈ Rc×c denotes the assignment matrix, 1 denotes the all-one vector. For a set of values
{xi}, i ∈ [1, c], the first-order Taylor expansion of exp(xi) around x̄ =

∑
i xi/c is

exp(xi) ≈ exp(x̄) · (1 + xi − x̄). (S13)

As a result, the summation of exp(xi) can be approximated as∑
i

exp(xi) ≈ exp(x̄)
∑
i

(1 + xi − x̄) = nexp(x̄). (S14)

Substituting Eq. S14 in Eq. S12 yields

exp(ĈP)

exp(1c ĈP11⊤)
= cC

exp(ĈP− 1

c
ĈP11⊤) = cC

exp[ĈP(I− 1

c
11⊤)] = cC

ĈP(cI− 11⊤) = clog(cC).

(S15)

F LLM USAGE

In preparing this manuscript, we employed a large language model (LLM) exclusively for surface-
level language refinement, such as grammar correction and improving clarity of expression. The
LLM did not contribute to method ideation and experimental study.

G LIMITATION

In this paper, we explore the training-free adapting capability of the pre-trained models with pure
GNNs. However, although the proposed method can be employed for any graph learning task
(Appendix A), the empirical evaluation in this paper is limited to node classification. Further study
on graph-level and edge-level tasks is left for future work.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Ta
bl

e
S1

1:
D

at
as

et
St

at
is

tic
s.

“✓
”

m
ar

ks
th

e
tr

ai
ni

ng
da

ta
se

ts
as

di
ff

er
en

ts
ca

le
s,

w
he

re
“S

”,
“M

”,
“L

”
de

no
te

sm
al

l-
sc

al
e,

m
id

dl
e-

sc
al

e,
an

d
la

rg
e-

sc
al

e
da

ta
se

ts
w

ith
nu

m
be

rs
of

no
de

s
ar

ou
nd

1k
,1

0k
,a

nd
10

0k
,r

es
pe

ct
iv

el
y.

D
A

TA
S

E
T

U
S

A
G

E
T

Y
P

E
#N

O
D

E
S

#F
E

A
T

U
R

E
S

#L
A

B
E

L
S

E
-C

O
M

.
O

N
LY

C
IT

A
T

IO
N

O
N

LY
S

O
C

IA
L

O
N

LY
W

IK
I.

O
N

LY
W

IK
I.

O
N

LY
S

M
L

S
M

L
S

M
L

S
M

L
A

M
A

Z
O

N
C

O
M

P
U

T
E

R
S

T
E

S
T

H
O

M
.

13
,3

81
76

7
10

A
M

A
Z

O
N

P
H

O
T

O
T

R
A

IN
H

O
M

.
7,

48
7

74
5

8
✓

A
M

A
Z

O
N

-R
A

T
IN

G
S

T
R

A
IN

H
E

T.
24

,4
92

30
0

5
✓

E-COM.

O
G

B
N

-P
R

O
D

U
C

T
S

T
R

A
IN

H
O

M
.

2,
44

9,
02

9
10

0
47

✓
C

O
R

A
T

E
S

T
H

O
M

.
2,

70
8

1,
43

3
7

C
O

A
U

T
H

O
R

P
H

Y
S

IC
S

T
E

S
T

H
O

M
.

34
,4

93
8,

41
5

5
A

R
X

IV
-Y

E
A

R
T

E
S

T
H

E
T.

16
9,

34
3

12
8

5
C

IT
E

S
E

E
R

T
R

A
IN

H
O

M
.

3,
32

7
3,

70
3

6
✓

P
U

B
M

E
D

T
R

A
IN

H
O

M
.

19
,7

17
50

0
3

✓
O

G
B

N
-A

R
X

IV
T

R
A

IN
H

O
M

.
16

9,
34

3
12

8
49

✓

CITATION

S
N

A
P
-P

A
T

E
N

T
S

T
R

A
IN

H
E

T.
2,

92
3,

92
2

26
9

5
T

W
IT

C
H

-G
A

M
E

R
T

E
S

T
H

E
T.

16
8,

11
4

7
2

T
O

L
O

K
E

R
S

T
E

S
T

H
E

T.
11

,7
58

10
2

T
W

IT
C

H
-E

T
R

A
IN

H
E

T.
9,

49
8

12
8

2
✓

F
B

10
0

T
R

A
IN

H
E

T.
41

,5
54

5
2

✓
G

E
N

IU
S

T
R

A
IN

H
E

T.
42

1,
96

1
12

2
✓

FA
C

E
B

O
O

K
T

R
A

IN
H

O
M

.
22

,4
70

12
8

4

SOCIAL

P
O

K
E

C
T

R
A

IN
H

E
T.

1,
63

2,
80

3
65

2
C

H
A

M
E

L
E

O
N

T
E

S
T

H
E

T.
2,

27
7

2,
32

5
5

A
C

T
O

R
T

E
S

T
H

E
T.

7,
60

0
93

2
5

W
IK

IC
S

T
R

A
IN

H
O

M
.

11
,7

01
30

0
10

✓
R

O
M

A
N

-E
M

P
IR

E
T

R
A

IN
H

E
T.

22
,6

62
30

0
18

✓

WIKI.

N
E

L
L

T
R

A
IN

H
E

T.
65

,7
55

61
,2

78
18

6
✓

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Ta
bl

e
S1

2:
D

at
as

et
C

om
bi

na
tio

ns
fo

r
Pr

e-
tr

ai
ni

ng
.“

✓
”

m
ar

ks
th

e
se

le
ct

ed
da

ta
se

ts
fo

rd
iff

er
en

ts
et

up
s.

“S
”,

“M
”,

“L
”

de
no

te
sm

al
l-

sc
al

e,
m

id
dl

e-
sc

al
e,

an
d

la
rg

e-
sc

al
e

da
ta

se
ts

w
ith

nu
m

be
rs

of
no

de
s

ar
ou

nd
1k

,1
0k

,a
nd

10
0k

,r
es

pe
ct

iv
el

y.
“N

o
X

X
”

de
no

te
s

pr
e-

tra
in

in
g

on
da

ta
se

ts
fr

om
th

re
e

do
m

ai
ns

an
d

ad
ap

tin
g

to
th

e
re

m
ai

ni
ng

on
e

fo
rt

he
do

m
ai

n
ga

p
ex

pe
ri

m
en

t.

D
A

TA
S

E
T

U
S

A
G

E
T

Y
P

E
#N

O
D

E
S

#F
E

A
T

U
R

E
S

#L
A

B
E

L
S

N
O

E
-C

O
M

.
N

O
C

IT
A

T
IO

N
N

O
S

O
C

IA
L

N
O

W
IK

I.
A

L
L

H
E

T.
H

O
M

.
M

IX
.

S
M

L
S

M
L

S
M

L
S

M
L

S
M

L
A

M
A

Z
O

N
C

O
M

P
U

T
E

R
S

T
E

S
T

H
O

M
.

13
,3

81
76

7
10

A
M

A
Z

O
N

P
H

O
T

O
T

R
A

IN
H

O
M

.
7,

48
7

74
5

8
✓

✓
✓

✓
A

M
A

Z
O

N
-R

A
T

IN
G

S
T

R
A

IN
H

E
T.

24
,4

92
30

0
5

✓
✓

✓
✓

✓
✓

E-COM.

O
G

B
N

-P
R

O
D

U
C

T
S

T
R

A
IN

H
O

M
.

2,
44

9,
02

9
10

0
47

✓
✓

✓
✓

✓
✓

C
O

R
A

T
E

S
T

H
O

M
.

2,
70

8
1,

43
3

7
C

O
A

U
T

H
O

R
P

H
Y

S
IC

S
T

E
S

T
H

O
M

.
34

,4
93

8,
41

5
5

A
R

X
IV

-Y
E

A
R

T
E

S
T

H
E

T.
16

9,
34

3
12

8
5

C
IT

E
S

E
E

R
T

R
A

IN
H

O
M

.
3,

32
7

3,
70

3
6

✓
✓

✓
✓

P
U

B
M

E
D

T
R

A
IN

H
O

M
.

19
,7

17
50

0
3

✓
✓

✓
✓

O
G

B
N

-A
R

X
IV

T
R

A
IN

H
O

M
.

16
9,

34
3

12
8

40
✓

✓
✓

✓
✓

✓

CITATION

S
N

A
P
-P

A
T

E
N

T
S

T
R

A
IN

H
E

T.
2,

92
3,

92
2

26
9

5
✓

✓
T

W
IT

C
H

-G
A

M
E

R
T

E
S

T
H

E
T.

16
8,

11
4

7
2

T
O

L
O

K
E

R
S

T
E

S
T

H
E

T.
11

,7
58

10
2

T
W

IT
C

H
-E

T
R

A
IN

H
E

T.
9,

49
8

12
8

2
✓

✓
✓

✓
F

B
10

0
T

R
A

IN
H

E
T.

41
,5

54
5

2
✓

✓
✓

✓
G

E
N

IU
S

T
R

A
IN

H
E

T.
42

1,
96

1
12

2
✓

✓
✓

✓
FA

C
E

B
O

O
K

T
R

A
IN

H
O

M
.

22
,4

70
12

8
4

✓
✓

SOCIAL

P
O

K
E

C
T

R
A

IN
H

E
T.

1,
63

2,
80

3
65

2
✓

✓
C

H
A

M
E

L
E

O
N

T
E

S
T

H
E

T.
2,

27
7

2,
32

5
5

A
C

T
O

R
T

E
S

T
H

E
T.

7,
60

0
93

2
5

W
IK

IC
S

T
R

A
IN

H
O

M
.

11
,7

01
30

0
10

✓
✓

✓
✓

✓
✓

R
O

M
A

N
-E

M
P

IR
E

T
R

A
IN

H
E

T.
22

,6
62

30
0

18
✓

✓
✓

✓
✓

✓

WIKI.

N
E

L
L

T
R

A
IN

H
E

T.
65

,7
55

61
,2

78
18

6
✓

✓
✓

✓

30

	Introduction
	Related Work
	Unified I/O for General Pure GNN Architectures
	Problem Setup
	Mappings of the I/O Modules
	Source-adaptive Input Module
	Target-insensitive Output Module
	Pipeline and Pre-training Strategy

	Experiment
	Unified I/O enables Pre-training with Pure GNNs
	Pre-training Condition Study
	Pre-trained Pure GNNs provide Competitive Graph Operators
	Cost Analysis on the Unified I/O

	Conclusion
	General Target-insensitive Output Module
	Related Work
	I/O Unification for Training-free Adaptation
	Model Fine-tuning for Few-shot Adaptation

	Experimental Setup
	Settings
	Datasets
	Implementation

	Additional Results
	Graph-level Tasks
	Scaling Parameters
	Data Scaling Strategy
	Inference with Different Homophily-heterophily
	Model Fine-tuning
	Complexity Analysis
	Effectiveness of the Unified I/O

	Proof and Derivation
	Mapping with Dimension Relations
	Set learning for the Unified Input Module
	Permutation Invariance of the Unified Input Module
	Pseudo Label Assignment

	LLM Usage
	Limitation

