Under review as a conference paper at ICLR 2026

PRE-TRAINING PURE GNNS AS GRAPH LEARNERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graphs from different datasets exhibit diverse numbers of features and labels, where
each feature or label is associated with different semantic meanings. Such diversity
poses challenges in adapting pre-trained graph neural networks (GNNs) to different
datasets with a single set of input and output (I/O) module parameters. This
raises a fascinating question: Can pure GNNs be pre-trained on diverse datasets,
adapting to various datasets effectively without additional effort? To explore

this, we propose unified I/O modules that enable pre-training with pure GNNs.

Unlike traditional methods that tightly couple parameters to specific datasets,
our approach decouples parameters through a shared relation function for the
input and uniformly sampled points for the output. These designs effectively
resolve the challenges in quantity inconsistency and semantic discrepancies of
dataset features and labels. By integrating our I/O modules with various GNN
architectures, we demonstrate that pure GNNs can be effective graph learners for
direct adaptation to downstream tasks. Pre-training experiments under different
setups show that increasing hidden dimensions and the average number of nodes
per training dataset enhances model performance. Moreover, fine-tuning the I/O
modules with frozen pre-trained graph operators significantly simplifies the model
hyperparameter tuning process, achieving superior or comparable performance to

supervised models on downstream datasets.

1 INTRODUCTION

Pre-trained foundation models have shown ex-
ceptional adaptability across different datasets,
such as large language models (LLMs) (OpenAl
et al., 2024) for MMLU (Hendrycks et al., 2020)
and HumanEval (Chen et al., 2021), large vi-
sion models (LVMs) (Kirillov et al., 2023) for
CityScapes (Cordts et al., 2016) and PIDRay (Zhang
et al., 2023a). A key factor underpinning this ca-
pability lies in the unified feature and label space
across datasets. In the feature space, although the
encoded information varies, the semantic meanings
of features remain consistent. For instance, a land-
scape image and a colored X-ray image can both be
represented as 3D tensors, with features correspond-
ing to their RGB values. In the label space, data can
be assigned to a limited number of labels.

10¢

10°

twitch-e WikiCS
)
Facebook
pokec

Number of Features

genius
10! Iolok’ers

twitcl N-gamer.
& 100

NELL

10*
Number of Labels

10?

Figure 1: Diversity of Features and Labels
across Graph Datasets. Graphs from differ-
ent datasets exhibiting diverse numbers of fea-
tures and labels, while each feature or label is

associated with different semantics.

In contrast to data with the unified feature and label space, graph data typically exhibits diverse
numbers of features and labels, with each associated with different semantics (Fig. 1). For instance,
feature and label semantics in tolokers (Platonov et al., 2023) correspond to user profiles and user
status, whereas those in CoauthorCS (Shchur et al., 2019) correspond to publication keywords and
research interest. This inherent diversity presents substantial challenges in developing pre-trained
graph models. First, the inconsistent number of features and labels hinders the unified design of the
input/output modules (I/O). Second, the semantic discrepancies across graphs impede the effective
adaptation of pre-trained models to diverse graph datasets. Traditional I/O fails to tackle these
challenges by tightly coupling the quantity and values of the learnable parameters to specific datasets,

thereby limiting their adaptability.

Under review as a conference paper at ICLR 2026

To address this problem, methods have proposed leveraging language models (LMs) as I/O for graph
neural networks (GNNSs) (Liu et al., 2023a; Li et al., 2024b). By transforming graph features and
labels into natural language, GNNs integrated with LMs can effectively handle graphs with diverse
features and labels. Beyond advancements in pre-training GNNs with LMs, researchers have also
explored fine-tuning strategies (Sun et al., 2022; 2023; Huang et al., 2024) to accommodate different
features and labels. However, these methods still rely on few-shot knowledge for effective adaptation.
It remains an open problem that can pure GNNs be pre-trained on diverse datasets and directly
adapted to downstream datasets?

In this paper, we propose unified I[/O modules to achieve pre-training with pure GNNs by decoupling
model parameters from specific datasets. Instead of treating the whole mapping matrix as learnable
parameters, unified I/O decomposes the mapping into two successive mapping matrices: one associ-
ated with the datasets and the other associated with the hidden space. Our objective is to model the
dataset-associated mapping in a transferable manner. For input features, unified I/O employs a shared
parametric relation function to learn a predefined number of relations between feature dimensions.
The shared function targets and analyzes the same relation patterns across different datasets, which
can be employed to construct the dataset-associated mapping with the same set of parameters. For
output labels, the module samples uniformly distributed points as pseudo labels, enabling prediction
over diverse label spaces. When label information is available for downstream graphs, these uniform
points can be aligned with the real labels without additional training.

Our unified I/O modules enable graph pre-training with pure GNNs. Empirical results with different
GNN architectures demonstrate that pre-trained pure GNNs can be effective graph learners for direct
adaptation to downstream tasks. Specifically, we evaluate the performance of pre-trained models
with scaling parameters, scaling training data, and varying domain gaps. Results show that increasing
either hidden dimensions or the average number of nodes per graph during pre-training enhances
the performance. Moreover, fine-tuning the I/O modules with frozen pre-trained graph operators on
downstream graphs substantially reduces the need for extensive hyperparameter tuning, achieving
superior or comparable performance with the supervised models. Our contribution can be summarized
as

* We propose a novel method to unify the I/O modules for pre-training with general pure GNN,
providing graph operators to simplify the extensive hyperparameter tuning process.

* We demonstrate that pre-trained pure GNNs can serve as effective graph learners on eight classic
GNN architectures across diverse real-world datasets.

* We experimentally verify the adaptation performance of pre-trained GNNs with scaling parame-
ters, scaling training data, and different domain gaps.

2 RELATED WORK

Due to space limitations, we provide a brief overview of related work, with a comprehensive
discussion in Appendix B. Existing methods for adapting pre-trained graph models fall into two
categories: I/O unification and fine-tuning. The former mainly leverage LMs to encode textual
attributes for unifying diverse features and labels (Liu et al., 2023a; Wang et al., 2023; Chen et al.,
2024a; Kong et al., 2024; Li et al., 2024b; Tang et al., 2024; Zhu et al., 2025). Except for LM-based
methods, both parametric (Jing et al., 2023; Zhao et al., 2024b) and parameter-free (Sun et al., 2023;
Tang et al., 2024; Sun et al., 2025) unification strategies for pure GNNs have been explored, but they
fail to unify label spaces. GraphAny (Zhao et al., 2024a) extends this direction to label unification
with linear GNNs. Yet these methods remain limited in scope and often require observed labels,
leaving pre-training with general pure GNN architectures an open challenge. The latter fine-tuning
methods adapt pre-trained models through graph adapters (Li et al., 2024a; Gui et al., 2024) or graph
prompts (Sun et al., 2023; Yu et al., 2025). Distinct from both, our method can be applied to general
GNN architectures and enables pre-training for direct adaptation to diverse datasets.

3 UNIFIED I/O FOR GENERAL PURE GNN ARCHITECTURES

To enable training-free adaptation of pure GNNs, we formulate the unification of the I/O modules as
the modeling of the semantics associated with each feature and label (Fig. 2). Specifically, our unified

Under review as a conference paper at ICLR 2026

O . (b-2) Mapping for Unified Input
2

(a) Unified View for I/O Module > (b) Mapping in I/O Module (¢) Overall Framework
.. (b-1) Mapping for Traditional I/O .
Source Space Target Space H) One for One One for All
amn . Q= § T
| O O
Traditional Unified
Input Module Input Module

dima f ’
|

Graph Graph
Processing /| Processing

Unified
Output Module

Traditional
Output Module

. (b-3) Mapping for Unified Qutput oo, ..
T =

i /| \ dim0 "\ + i
P dim1Ng /

-\ Uniform

il

) Sampling pX
y Relation g
_— = \ J
Dimension Semantics Module Mapping E .—
** Module Input/Output Module Semantics {(RS33] Learnable] Graph s eﬁ Labels
Input/Output Matrix Mapping Matrix VY parameters Datasets 4 s

Figure 2: Illustration of the Unified Input/Output Pipeline. (a) A linear mapping projects
source dimensions onto a set of target dimensions. Each dimension corresponds to certain semantic
descriptions that can be embedded in the semantic space. Modeling semantic relations between source
and target dimensions results in module mappings. (b) Instead of treating both semantic matrices
as parameters, unified I/O modules model the feature semantics as parametric relations and sample
label uniformly in the semantic space. (c) The parameter quantity and values in GNNs
with traditional I/O are coupled with specific datasets. Our unified I/O decouples the parameters from
specific datasets, enabling one set of parameters for different datasets.

input module encodes the feature semantics as parametric relations of the input features, while our
output module represents diverse label semantics as uniformly sampled points in the semantic space.

3.1 PROBLEM SETUP

Notations. Given an input graph G = (V, &), V = {v1, - ,v,} denotes a set of n nodes and
& = {e;jlv; € N(v;)} denotes a set of m edges. N(-) denotes the set of one-hop neighbors
for a given node. Each node v € V corresponds to a feature vector x,, € R%n where d;,, is the
number of input features. Let X = (x,,,"* ,X,,) € R"*%n be the node feature matrix composed
of feature vectors. Let A € R"*" be the adjacency matrix of G. A;; = 1ife;; € £ Let
C = (Cyy, " ,Cy,) " € R™¥C be the node label matrix composed of label vectors, where ¢ is the
number of labels, C; ; € {0,1}. Although we take node classification as an example in this paper,
our method can be applied to general graph learning tasks (Appendix A).

Modules in GNN. Let GNN(G) = (Fout © Fg 0 Fin)(G) be a GNN model. The target of GNN(G) is to
optimize the sets of learnable parameters Wi,, W, and W,y and form the optimal mapping for Fi,,

Fg, and Foy.. The input module Fy, : R%7 — R maps input features to the hidden space, yielding
HO = Fin(X; Win), where d denotes the hidden dimensionality and “;” separates module input from
the parameters. The module Fy : R? x R™*" s R applies general graph processing methods (Kipf
& Welling, 2017; Rampasek et al., 2022), giving H(Y) = F,(H(®, A; W,) with L layers. Finally,
the output module Foye : R? = R performs prediction, giving C= Fout(H(L); Wout)-
Specifically, the focus of this paper is to model the mappings of the I/O modules F;, and F,, which
can be uniformly formulated as F; /,, R%re s Rt yielding F; /o (H; Wi /0). The input and output
of the modules are termed as “source” and “target” to distinguish from the input and output of the
whole model. F; /, as input modules has dsre = din, degy = d, H =X, Wi /o = Win. Fi/, as output
modules has dgyc = d, dege = ¢, H = H®), Wi jo = Wous.

3.2 MAPPINGS OF THE I/0 MODULES

To decouple the model parameters from specific datasets, we start by formulating the module
mappings as dimension relations. Note that the nonlinearity in module mappings is obtained via

Under review as a conference paper at ICLR 2026

element-wise operations, which are independent of the I/O dimensionality. Therefore, we only focus
on the linear part of the module mappings. Specifically, a linear mapping defines a projection from the
source dimensions onto a new set of target dimensions (Fig. 2(a)). Learning the dimension relations
enables the model to infer the optimal mapping from the source space to the target space.

Theorem 3.1 (Mapping with Dimension Relations). Given any linear mapping W € R%x<*dw qnd
s € N1, there always exist two representation matrices Sgrc € Ré=reXs gpd Stet € R X5 such
that W = 1)(Sszc, Stgt), where (-, -) is a bilinear composition function.

This theorem shows that we can model the mappings as relations. A typical choice of ¥(,-) is
the inner product form, where ¢ (Sg,c, Stgt) = Sarc S,jgt. Proof of Theorem 3.1 is presented in
Appendix E.1. Without loss of generality, the I/O modules can be formulated as

Fi/o (HiWijo) = 0 [HW] = 0 [Ht)(Serc, Sege)| = 0 [HSsrcS{pe] (1)
where o can be any nonlinear function.

Decomposition as Semantics. S, and Sz are the decomposition results of the original weight
matrix W, which can be interpreted as the semantic embeddings associated with the dimensions of
the source and target spaces, respectively. Each row of S, and S, encodes the specific semantic
meaning of a dimension, typically characterizing graph nodes and their associated labels. For example,
CoauthorCS (Shchur et al., 2019) provides node features representing the frequency of the paper
keywords for each author’s papers. These semantic descriptions can be embedded into a semantic
space R?, giving rise to semantic embeddings such as Sg;c and Sg.

Problems in Traditional Solutions. In traditional graph learning solutions (Zhou et al., 2020), F; /,
is highly sensitive to the source and target spaces. It directly treats the space semantics as parameters
for mapping, where Sg;c, Stgr € Wi /o- For instance, a single-layer perceptron can be formulated as
0 (HSercS gt ; Serc, Stge). Consequently, the learned parameter set W; , becomes intrinsically tied
to the specific source and target spaces, with its values tailored to particular spaces and its quantity
scales to the number of dimensions in those spaces. This inherent sensitivity significantly limits the
adaptability of pure GNNss to diverse datasets.

Our Solution. To address this issue, we propose to decouple the parameters W/, from the source
and target dimension semantics (Fig. 2), where feature semantics are redefined as parametric relations
and label semantics are sampled uniformly in the semantic space.

3.3 SOURCE-ADAPTIVE INPUT MODULE \
A input module F;, maps the input features to the W .
hidden space. Based on Eq. 1, F;, can be formu- A s

) i) (i) T

lated as Fin(X) = o[XWi,] = o[XSGYSEY],
(in) N _

where Si;y € R is a learnable parameter ma- \

trix. Our focus is modeling the source space seman-

HO

tics S(;rﬁ) € R9=*¢ regarding specific inputs, ie., the
semantics of the input features X. To decouple the pa-

. . i Figure 3: Pipeline for the Unified Input
rameters from the number of source dimensions, sﬁ.,;‘;) /g P o T l
Module. A parametric relation function

can be formulated as a parametric function of X: - . o e
is employed to construct the source space

fin: R™*din Rdinxs7 Sgirlé) = £3,(X; Win), semantics S;Ié), i.e., the semantics of in-
(2) put features X. The target space semantics
where £3,(+) is subject to two conditions: (1) Permuta- Siig? is a learnable parameter matrix.
tion invariance to the order of input nodes and equivari-
ance to that of source dimensions; (2) Size independence of the parameter set Wi, to the values of n
and d;,. Input edges are disregarded in Eq. 2 as our focus lies in unifying the input module across
different node features, while the unification of graph structures is left for future work.

Modeling Features as Sets. Given the absence of graph structures and the permutation conditions for
Eq. 2, the input features can be modeled as a set of channels {X. ;}, where each channel corresponds
to a set of nodes {X; ;}. As aresult, Eq. 2 is transformed into a set-learning problem at both the
channel level and the node level. Based on the universal functions for set learning (Zaheer et al.,

Under review as a conference paper at ICLR 2026

2017), £in(+) can be formulated as follows. See Appendix E.2 for detailed derivation.
din X X
XTX1

O € R%a*dn denotes the channel mixer that provides global information. p(-) computes the channel
representations. 1 denotes the all-one vector and o € R**! is a learnable vector. The multiplication

f(X)=0[0pXN1a'], ©= 3)

of « enables different activations through the nonlinearity of o(+), giving s row embeddings in Sgiﬁ).
Although Zaheer et al. also provides an implementation named Deep Sets based on the universal set
function, our input module differs from this specific implementation regarding problem formulation,
conditions, and operator selections. Please refer to Appendix E.2 for a detailed discussion.

Unification via Relations. A direct implementation for p(-) is to take the specific values in X as
channel representations. However, identical numerical values across different source spaces may
correspond to entirely different semantics, making it nontrivial to uniformly map these values into a
common semantic space via £;,. To tackle this, we propose modeling the channel relations as a proxy
for feature semantics. By applying a shared relation function on feature channels, p(-) measures
the same relation patterns across diverse source spaces. Crucially, the extracted patterns, such as
similarity and co-variation, carry consistent semantic meaning. This consistency makes them naturally
comparable and provides a stable foundation for unified semantic mapping. Among the typical choices
for relation measure, such as Euclidean distance and inner product, we implement p(-) with the scaled
product for its computing efficiency and training stability, giving p(XT) = XX /\/n.

Source-adaptive Input. Compiling Eq. 1-3 gives rise to the input module as
HO —F,_ (X; st a) — o [XWil=0 [Xfin(x)sﬁigi”] , &)

where the mapping changes with specific input features, forming source-adaptive input for different
datasets. Fij, is permutation invariant to the order of the source dimensions (see Appendix E.3) and
has the parameter quantity independent of d;,.

3.4 TARGET-INSENSITIVE OUTPUT MODULE 6 pr—————a

X\ \ Uniform | £

¢) Sampling | }

An output module F,,; maps the hidden representa-
tions to the label space. Based on Eq. 1, Foy can
be formulated as Fou (HP)) = o[HDW,] =
U[H(I‘)Séiuct)s(t‘;tﬁ}. where S22 € R?% is a learn-
able parameter matrix. Unifying the output module
requires the modeling of the target space semantics Lo W
S,(:g;t), i.e., the semantics of the labels. However, the
label knowledge of downstream datasets is typically Figure 4: Pipeline for the Unified Out-
unavailable. To tackle this problem, we propose a two- put Module. Target space semantics S.5;
step appr.oa'ch, including preQICtlon and assignment. In ¢ the semantics of pseudo labels, are se-
Fhe prediction step, Fout unlf(?rmly sample.s ¢ poInts Jected uniformly in the semantic space. The
in R® as pseudo-label semantics. By learning the re- -~ . §(ou) 5 o Joarn:

i ’ (out) source space semantics Sgsrc ~ 1S a learnable
lations between the parameter matrix Serc* and the ,qrameter matrix.
pseudo-label semantics, the module can make predic-
tions without prior label knowledge. In the assignment step, the module assigns the pseudo labels to

the actual labels of each dataset, enabling precise adaptation to diverse target spaces.

(out) (out) ;
Sre Stgt :

Target-insensitive Prediction. The pseudo labels are independent of specific datasets, so their
relations should remain consistent, without assuming that some labels are inherently closer than
others. To ensure this, we uniformly sample pseudo labels in the semantic space. Note that the
output module implements the relation function ¢ as an inner product, quantifying relations by
the angles between vectors. Accordingly, pseudo-label semantics are uniformly sampled on the
unit sphere and mapped into Cartesian coordinates. In the s-dimensional spherical coordinates, a
pseudo-label semantic vector can be denoted as (1,6, - ,65_1) with 6; € [0,]. To ensure the
coverage of the unit sphere and maintain a uniform density of the semantics across all dimensions,
we sample a number of ¢!/*~1) values of equal intervals in [0,] for each 6; and consider all
combinations of these values. This results in a number of ¢ semantic vectors distributed uniformly

Under review as a conference paper at ICLR 2026

on the s-dimensional unit sphere. The j-th semantic vector can be converted into the Cartesian

coordinates with Sg‘é:)i = o[[Ti) sin®o"(>D)(6;)cos5 (<) ()], i € {1,--- , s} (Blumenson,

1960). sgn denotes the sign function, sgn(True) = 1 and sgn(False) = 0. Compiling the space
division process as Sﬁgtlt) = fout(c,), the output module can be formulated as

src src

€ = Fou (H<L>; s<°“t)) —q [H‘«'L“Wm} —0o [H(L)S(“t)fout(c, $)T]. (5)

The implementation of the nonlinear function o depends on the specific tasks (Appendix A).

Pseudo Label Assignment. The prediction step enables the output module to make predictions
without prior knowledge of the target labels. When the label knowledge is available, one can further
assign the pseudo labels to the real labels. In this paper, we consider two assignment strategies. (1)
To explore the potential of pre-trained pure GNNs on general downstream tasks, observed target
labels are only included during inference to match pseudo labels with real labels. Given the observed
real labels C, the mapping relations between the pseudo labels and the real labels can be formulated
as CP(CI —117) = clog(cC). The assignment matrix P can be solved as the least-squares
solution of the linear equation without additional training. For detailed derivation, please refer to
Appendix E.4. (2) To ensure fair comparison with LM-based graph models in the zero-shot setting,
we replace observed labels with label knowledge by employing the embedded label semantics Slggt

SLMT

from language models (Li et al., 2024b) and construct the assignment matrix with £, (c,) tgt -

3.5 PIPELINE AND PRE-TRAINING STRATEGY

GNNss with unified I/O take a mini-batch from a single dataset as input and are optimized on different
datasets sequentially. During pre-training, GNNs only perform the first prediction step in the output
module. Consequently, traditional optimization objectives that require strict alignment between the
ordering of outputs and labels become inapplicable, such as cross-entropy loss and mean squared
error. To address this problem, we draw inspiration from contrastive loss (Qiu et al., 2020) and
propose to optimize the predicted distributions within the same class and across different classes.

Given the node sets of each class {V1,--- ,V.}, the loss function is formulated as
D D e e Wi TRy | IR i c N’
= p i,k J,k c—1 < i,k J,k y Uy T |V1| ‘ g (6)
kisjvi €V kyisjvi Vi JviEVi
Liner Lintra

where C € R°*¢ denotes the average prediction of each class. The inner-class loss, £y, minimizes
the prediction variance within the same class by ensuring that they are close to their class average. In
contrast, the intra-class loss, L, encourages differences in predictions across classes. To ensure
positivity, L£;,; employs a constant bias of 2.

4 EXPERIMENT

4.1 UNIFIED I/O ENABLES PRE-TRAINING WITH PURE GNNS

We now evaluate pre-trained GNNs with unified I/O modules, focusing on (1) whether pure GNN’s
can be pre-trained on diverse datasets and directly adapted to downstream datasets; (2) how pure
GNNs generalize under different conditions, i.e., the amount of training data and parameters, and the
gap between the training and inference domains. Various real-world datasets of different scales are
adopted from four domains (Tab. S11), including electronic commerce (e-com.), citation, social, and
Wikipedia (wiki) graphs. Eight GNN methods are employed as the backbone, including GCN (Kipf
& Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT (Velickovic et al., 2018a), GIN (Xu
et al., 2019), MixHop (Abu-El-Haija et al., 2019), DeepGCN (Li et al., 2019), GraphGPS (Rampasek
et al., 2022), and N? (Sun et al., 2024). Detailed experimental setup can be found in Appendix C.

Non-textual Datasets. To evaluate the pre-trained graph models on traditional datasets with non-
textual attributes, we conduct a comparison with models that can make inference on downstream

Under review as a conference paper at ICLR 2026

Table 1: Evaluation Results on Non-textual Datasets (Measured by accuracy except ROC
AUC for tolokers: %). Bold values denote the best results per test dataset. SUP denotes the
best-performing results among supervised baselines. SSL denotes the best-performing results among
self-supervised baselines. LP, Lap, and Rand denote Label Propagation, Laplacian decomposition,
and random projection, respectively.

AMAZON COAUTHOR ARXIV TWITCH CHA- AVG.
COMPUTERS CORA PHYSICS -YEAR -GAMER TOLOKERS \{ELEON ACTOR g ank
ORIGINAL SPLIT
SUP 91.09 .15 81.80:028 95521020 48.03.0.41 61.09.03 80.72. 05 61.74.030 31.34.020 1.87
SSL 89.28.0.34 81.504066 92.32.008 41.632027 59.19-005 75921008 61.014072 27.6140027 5.62
FUG 88.22.10.00 30.7040.06 91.094072 4254030 58.16:027 75.95:031 22591006 25.5310.11 7.15
GRAPHANY 82.94. .50 79414035 9243021 38.36+053 59.96:0.02 78.1640.15 61.84410:1 28.75+060 5.25
LABEL PROPAGATION 87.27+ 81.53+ 95.67 - 17.02 58.30+ 71.94 18.86+ 18.82. 6.87
SVD 83.89.0.76 79921056 92.87 1055 4254000 59731006 T76.120006 62.041055 30.0510.13 4.45
Lap 84.98.0.75 78331081 9l 0lio7e 42.18-014 59.05:0.12 76.401020 60.665055 24.9140.02 6.62
RAND 88.8511.65 81.6411.48 91.75:070 41372156 59.03:185 76.0201310 61.224056 34394008 5.12
UNIFIED I/O 89.85.0.18 8232007 92.85.0.4¢ 4258017 59.99.005 76.44. 0.1 6213045 35.35.096 2.00
1-SHOT FOR TRAINING-FREE INFERENCE
SUP 36.80+0.53 32.004008 5344000 2687075 54.83.06: 66.171073 30.181071 23441059 6.50
SSL 55.67 1036 42801035 77.8610.12 29.76.10.12 57.11ip0s 67.8241102 25.074208 20.7240.50 4.62
FUG 27.26.0.29 41.831103 67.701135 27.58:04s 49.93.04s 56.861003 23.39:036 22.8310.17 7.25
GRAPHANY 62.87 103 53.63.0.49 80.81107s 25.031055 49.65.041 52.59.03s 28.51i04s 19.8040.54 5.50
LABEL PROPAGATION 46.2615 95 18811155 22.98.0ss 18.54.001 53.001100 6620150 18.861062 11.45:060 8.12
SVD 55421031 422241055 763141002 3344025 5694010 67.62:10.0 31.144015 23.61+0.06 4.15
LapP 55.53.01.21 437341045 78414106 33.08:035 57.0010.00 67.621058 29.8240.16 21.8940.03 4.15
RAND 58.80.1 55 42344145 T76.0541007 327341103 577240175 67.984007 30.7541001 24714074 3.37
UNIFIED I/0 59.89 050 43941050 8513065 3347000 57.90-0,5 68.51.:01:5 32.00.0,1 25.69..> 1.25
3-SHOT FOR TRAINING-FREE INFERENCE

SUP 65.64 150 37101055 76.44.045 27.80.05 54.02.0¢> 6889051 33.571041 20.88.10.43 5.62
SSL 64.51 1062 48.73 1186 84221010 265311010 56.78:0.16 59.24.004 31.99:037 20.4240.15 5.25
FUG 50.59+1 43 47774121 66520547 24.02.031 4983015 5793111 25471056 20.35.033 7.75
GRAPHANY 70.04 .7 66.32 061 91.33.070 2474050 5471051 54124065 33.694073 18.55.072 4.37
LABEL PROPAGATION 60.04-5 ¢4 31.64.590 32824047 1849005 52.95:00> 66.36:347 1645:0:c 11911073 8.12
SVD 59.86.10.57 4523000 76.881035 33.44.030 56931015 68.47.031 33.64101s 23.01i0.04 4.81
Lap 56.58.10.51 47310045 76.881060 34.64:03: 56.75:011 6934035 32214006 21.5440.02 4.93
RAND 66.11+1.00 4898157 79311134 35.05:107 56.96-17: 69.09:100 33.68:11.00 24.99:0.74 2.75
UNIFIED I/O 68.33 108 49.21 0.0 84.68 067 3532.000 57.64. 005 T1.77. 055 33.76.011 25.20.011 1.37

datasets without additional training efforts, including Label Propagation (Kothari & Jain, 2002),
GraphAny (Zhao et al., 2024a), and parameter-free feature alignment methods SVD-based (Sun et al.,
2023), Laplacian-based (Sun et al., 2025), and random-based (Tang et al., 2024) input combined
with our output module. We also include parameterized feature alignment method FUG (Zhao
et al., 2024b), supervised baselines (GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al.,
2017), GAT (Velickovi¢ et al., 2018a)) and self-supervised baselines, including contrastive-based
methods (DGI (Velickovic¢ et al., 2018b), GraphCL (You et al., 2020), GraphACL (Xiao et al.,
2023), GRACE (Zhu et al., 2020), SimGRACE (Xia et al., 2022)) and reconstruction-based methods
(MaskGAE (Li et al., 2023) and GraphMAE2 (Hou et al., 2023)). For FUG and self-supervised
baselines, we follow GraphAny to solve the mapping matrix from the learned hidden representations
to the labels in a training-free manner. The models are pre-trained on datasets from four distinct
domains: amazon-ratings, ogbn-arxiv, Facebook, and roman-empire. The best results among the eight
GNN backbones are reported for both our unified I/O and parameter-free feature alignment methods.

Results are summarized in Tab. 1. Compared to supervised baselines, pre-training with unified I/O
achieves comparable or even superior performance on the original split. Under 1-shot and 3-shot
settings, unified I/O consistently outperforms the supervised baselines. These results demonstrate that
model pre-training is necessary for graph learning, particularly in data-scarce settings. Compared to
other baselines, pre-trained GNNs with unified I/O obtain clear advantages on heterophilic datasets,
whereas GraphAny performs better on homophilic datasets in certain cases. This difference reflects
the higher transferability of node-feature knowledge, compared to structural knowledge learned by
GNNss with unified I/O (see Appendix D.4 for details). Nevertheless, pure GNNs with unified I/O
achieve the best average rank across different datasets. This indicates the superior ability of our
unified I/O to support effective pre-training and downstream adaptation.

Textual Datasets. In comparison to the LM-based models, we adopt textual datasets (Chen et al.,
2024c) for pre-training and inference. Models are pre-trained on PubMed, bookhistory, amazon-
ratings, and arxiv with textual features. To ensure fair comparison, pure GNNs employ the second
pseudo label assignment strategy in Sec 3.4. Tab. 2 presents comparison results with methods
employing LM as I/O (OFA (Liu et al., 2023a), ZeroG (Li et al., 2024b), LLaGA (Chen et al., 2024a),
GraphCLIP (Zhu et al., 2025), and RiemannGFM (Sun et al., 2025)), and parameter-free feature

Under review as a conference paper at ICLR 2026

Table 2: Evaluation Results on Textual Datasets (Measured by accuracy: %). Bold values
denote the best results per test dataset. LP, Lap, and Rand denote Label Propagation, Laplacian
decomposition, and random projection, respectively.

WIKICS BOOKCHILD COMPUTERS PHOTO SPORTSFIT PRODUCTS DBLP TOLOKERS
LLAGA 2.65 007 21.0540.16 23.000 04 5.100.04 5451004 10.40.10 0> 11.55: 007 71.801¢.2s
ZEROG 371304 12.6215 05 6.7240.52 3841017 30.04:020 2479165 54.86.0:52 78.1310.01
GRAPHCLIP 3.54.0.51 16.160.01 2543016 4.1940.01 7.6140.10 93141008 3494037 78.0110.07
OFA 33.89.10.00 1.9810.01 5.9840.10 14.72 001 12.6510.01 2.641002 51.01:002 78.1610.01
RIEMANNGFM 4.26.0.11 1.74 0,06 5.7710.01 6.93.10.40 3.8310.00 2451005 38.68:037 77.6510.01
SVD 30.24.0.37 16.160.34 27.65:043 49151008 4193100 13.04:020 4691060 78.5040.52
LAp 2343001 30.47.0.52 27.05:038 49.09:061 42.05:143 13.05:028 43.63:0390 78.47. 058
RAND 23411036 30.32.4.01 29821035 49.04.100 41.83:115 1342407 47.06.077 78.161053
UNIFIED 1/0 32.6310.91 31.60 .69 308206 49.20:031 42.87 103 1593:032 52.04:0:5 78.6610. .19

alignment methods. Pure GNNs with our unified I/O achieve superior performance to baselines
except for ZeroG on WikiCS, products, and DBLP. Notably, baseline models with LM introduce
knowledge gained from enormous training data for graph learning. In contrast, pure GNNs with only
the knowledge of PubMed, bookhistory, amazon-ratings, and arxiv during pre-training achieve better
performance. Compared to ZeroG, which is restricted to graphs with rich textual attributes, pure
GNNSs can be applied to either textual or non-textual datasets. This demonstrates the potential of
pre-training with pure GNNs in tackling various graph tasks.

4.2 PRE-TRAINING CONDITION STUDY © /—_

Pre-training with Scaling Parameters. Pure GNNs are
pre-trained on amazon-ratings, ogbn-arxiv, Facebook, and
roman-empire, with scaling parameters. To mitigate the
impact of the domain gap, one dataset is selected from

—GCN
GraphGPS.
GAT
GraphSAGE
GIN

Performance

— DeepGCN

each domain, encompassing both homophilic and het- P
erophilic graphs. Performance results are averaged across | mem——

test graphs (Tab. S11). Fig. 5(a) presents the impact of (a) Hidden Dimensions
hidden dimensionality d, showing that larger values of d

consistently improve performance across all GNN archi- S ——

tectures. In contrast, the impact of the number of layers
L varies by architecture. As shown in Fig.5(b), deeper
network configurations consistently enhance performance

Performance

for GCN, GAT, GraphSAGE, and MixHop, whereas GIN, ”
DeepGCN, and GraphGPS experience performance degra- ©
dation with more layers. For N2, performance initially »
improves with more layers but eventually declines when P s R

L exceeds 8. In Appendix D.2, we examine larger pa- (b) Layers
rameter configurations for GCN and GIN. The results
show that increasing the number of layers leads to over-
parameterization, whereas enlarging the hidden dimension
does not. All these results suggest that scaling up hidden dimensionality is the prior strategy for
enhancing pre-trained GNN models, while the configuration of the number of layers depends on the
specific GNN architectures.

Figure 5: Pre-training with Scaling Pa-
rameters.

Pre-training with Scaling Data. To assess the effect of data scaling in GNN pre-training, we consider
two strategies: (1) increasing the number of training datasets (one, three, and four combined), and
(2) enlarging individual datasets (1k, 10k, and 100k nodes per dataset). Detailed combinations of
the training and test datasets are provided in Appendix Tab. S11, S12. Due to the varying difficulty
of specific downstream tasks, model performance cannot be directly compared across different test
datasets. To address this problem, training datasets are split into three groups with an average number
of nodes around 1k, 10k, and 100k. Model performance is then normalized with the group average
performance. For more analysis on the data scaling strategies, please refer to Appendix D.3. The
averaged results over 1,848 data points across different backbones and test datasets are presented in
Fig. 6. We can see that increasing either the minimum dataset sizes or increasing training datasets
with the same node scale improves the model performance. This suggests that scaling up training
data enhances the adaptation ability of the pre-trained models to test datasets.

Under review as a conference paper at ICLR 2026

s
. .
| T
$100 E L I Ll o ~
g 1 : T = 1 £ _ _
1. o : 5 = = =
: et 1
pr i 1 : 1 i
3 -1
0.995 : -2
3 it
oo 2 e e
10t 10° 10°
e (a) Different Domain (b) Different Heterophily

Figure 6: Pre-training with
Scaling Data. Different dot
colors indicate the number of
datasets for pre-training. The
lines denote trending-fitting with
dots under the same number of
dataset combinations.

Figure 7: Adaptation Results with Different Domain Gap.
The cross-domain performance gap is calculated as the per-
formance difference between GNNs pre-trained on the same-
domain group as the test datasets and those on the different-
domain group. The heterophily performance gap is computed
by subtracting the same homophily—heterophily training type as
the test datasets with that of the opposite type.

Inference with Different Domain Gap. We further evaluate pre-trained GNNs on adaptation
tasks: (1) pre-training in one domain and adapting to the others, (2) pre-training across three
domains and adapting to the remaining one, and (3) transferring across datasets with varying ho-
mophily—heterophily. Dataset combinations are listed in Tab. S11, S12.

The adaptation results for tasks (1) and (2) are presented in Fig. 7(a). For each test dataset, the
training datasets are categorized into two groups: those collected from the same domain as the test
dataset and those from different domains. The performance gap is computed by subtracting the
performance of GNNs pre-trained on the different-domain group from that of the same-domain group
(Metricgsame — Metricgiss). To avoid the influence of the dataset scales, the model performance is
first grouped based on the average number of nodes per training dataset (1k, 10k, and 100k), and
then averaged and compared within each group. As shown in Fig. 7(a), pre-trained GNNs generally
exhibit positive performance gaps between the same-domain and different-domain groups across
diverse test datasets. This observation indicates that aligning the training and test domains tends to
improve model performance during inference.

The adaptation results for task (3) with different homophily-heterophily are presented in Fig. 7(b).
When comparing on the same test dataset, the training datasets are categorized into two groups: those
with the same homophily-heterophily as the test dataset and those with the opposite. The performance
gap is the performance difference between GNNs pre-trained on the same-homophily-heterophily
group and that of the opposite-homophily-heterophily group (Metricgane — Metricepp,). Since
training datasets of certain scales are missing for heterophily/homophily graphs in certain domains,
our experimental analysis for task (3) directly averages results by mixing all training scales together.
Fig. 7(b) shows that models pre-trained on datasets with the same homophily-heterophily as the test
datasets tend to achieve better performance during inference. This suggests that one may construct a
training dataset based on the homophily-heterophily of downstream tasks to gain better results. We
also compared adaptation results with the same pre-training datasets in Appendix D.4. Results in
Fig. 11(a) show that models pre-trained on either homophilic or heterophilic graphs gain better results
on heterophilic graphs than homophilic graphs. This can be attributed to the better transferability of
the node feature knowledge learned by our unified I/O than the structural knowledge (Fig. 11(d)),
where node feature knowledge better benefits the adaptation to heterophilic graphs (Fig. 11(b)) and
structural knowledge benefits homophilic tasks (Fig. 11(c)). Please refer to Appendix D.4 for more
details.

4.3 PRE-TRAINED PURE GNNS PROVIDE COMPETITIVE GRAPH OPERATORS

Our unified I/O modules enable seamless adaptation of pure GNN architectures across diverse datasets.
To further evaluate the effectiveness of the pre-trained GNN operators, we fine-tune the models pre-
trained on amazon-ratings, ogbn-arxiv, Facebook, and roman-empire. The internal GNN module F,
within the pre-trained models is frozen during the fine-tuning. The unification-oriented I/O function

Under review as a conference paper at ICLR 2026

Table 3: Evaluation Results of Fine-tuning the I/O Modules in the Pre-trained GNNs (Measured
by accuracy except ROC AUC for tolokers: %). Bold values denote the best results per test dataset.

CORA PUBMED ngﬁf&is WIKICS il\:?lZNOGI\; MINESWEEPER ~ TOLOKERS
SELF-SUPERVISED LEARNING AND SUPERVISED OUTPUT LEARNING
DGI 84.00 025 83.73.:10.41 82.11:0.16 75.05:030 40.80:0.74 88.45. (35 77.73 1014
GRACE 84.30.057 85.81.0.1s 89.67+0.36 75.8041056 42.1940.12 86.15.0.45 75.0610 14
GRAPHACL 75.0040.75 82.93.0.17 80.58:0.15 68.0040.75 40.6510.14 87.2340.11 77.68.10.25
GRAPHCL 63.33—\ 76 63.53—\ 08 84.577() 34 76.32Au 18 42.35—(; 37 79.85+ 12 80.03+n 12
MASKGAE 75134178 75274103 92.15+0.05 78.25: 00 43.54.10.30 84.33.0.16 81.13.10.34
SIMGRACE 67.07+052 77.63+0.52 87.44 015 78.7510.08 4346023 84.23 0,16 80.29 1030
GRAPHMAE?2 79‘507“’,1 67‘077”(“ 91.037()_1(; 76.247(._11 40.957(._71 80‘167&“) 80~17LU 07
SUPERVISED LEARNING
GRAPHSAGE 78.83.:0.50 88.11:0.05 91.09:0.02 7813015 4571038 90.5510.10 83.06.10.59
GAT 77511555 8530015 89.78 :0.02 76.35. 050 44.54. 05> 82.07 117 77.37 1008
GIN 7736 0.15 85.13 0.55 9051 0.80 74.02 0.62 4633 0.11 7493 0.58 6093 £2.25
GCN 80.351025 85.44.050 90.660.13 78.55+0.01 46.7140.25 76.43.1 .05 77.79+0.12
GRAPHGPS 58.61.:0.05 8521030 88.870.20 75181001 47.85+10.29 89.64 .24 79.8210.06
PRE-TRAINING AND I/O FINE-TUNING

UNIFIED 1/0 84.63.,.> 88.91. (.5 92.33 .55 78.98:0.1> 51.59.005 91.39 5 83.29 . 13

fin(-) in Eq. 4 and £, () in Eq. 5 are replaced with learnable parameters. The best fine-tuning
results among different backbones on downstream graphs are summarized in Tab. 3. For full results,
please refer to Appendix D.5. The pre-trained operators achieve superior performance compared
to supervised methods and self-supervised methods (DGI (Velickovic et al., 2018b), GRACE (Zhu
et al., 2020), GraphACL (Xiao et al., 2023), GraphCL (You et al., 2020), SimGRACE (Xia et al.,
2022), MaskGAE (Li et al., 2023), GraphMAE2 (Hou et al., 2023)). Notably, the pre-trained
operators require minimal hyperparameter tuning, with only dropout adjusted during fine-tuning. This
significantly simplifies the hyperparameter tuning process, enabling efficient adaptation of pre-trained
GNNss to various graphs with promising performance.

4.4 COST ANALYSIS ON THE UNIFIED I/O

Both the space complexity and time complexity of our unified I/O are O(n), with d;,, d, s, ¢ < n.
Empirical time consumption and information loss results are provided in Appendix D.6 and D.7.
Results show that unified I[/O maintains a reasonable time cost under various scales of graphs and
numbers of input features, and does not cause severe information loss. This demonstrates the
effectiveness of our unified I/O in learning input and output mappings.

5 CONCLUSION

In this paper, we achieved unified input and output for graphs, enabling pre-training with pure GNNs
across diverse datasets. To decouple learnable parameters from the number and semantics of input
features and output labels, our unified I/O modules employ a shared relation function for the feature
semantics and uniformly sampled points for the label semantics. By integrating our unified I/O
modules with various GNN architectures, we demonstrated that pure GNNSs can serve as effective
graph learners for direct adaptation to downstream tasks and provide competitive pre-trained graph
operators. For the usage of LLM and the limitation discussion, please refer to Appendix F and G.

REPRODUCIBILITY STATEMENT

We have made efforts to ensure the reproducibility of our work. Specifically, we provide a detailed de-
scription of the experimental setups in Appendix C, including evaluation settings, dataset information,
architecture configurations, and hyperparameter setups. All datasets employed are publicly available.
In addition, the code implementation of our proposed methods is provided in the supplementary
material. The complete source code will be released publicly upon acceptance of the paper.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. MixHop: Higher-Order Graph Convolutional
Architectures via Sparsified Neighborhood Mixing. In International Conference on Machine
Learning, pp. 21-29, Long Beach, USA, 2019. PMLR.

L. E. Blumenson. A Derivation of n-Dimensional Spherical Coordinates. The American Mathematical
Monthly, 67(1):63-66, 1960.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka, and Tom M.
Mitchell. Toward an architecture for never-ending language learning. In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAT’ 10, pp. 13061313, Atlanta,
Georgia, July 2010. AAAI Press.

Mark Chen, Jerry Tworek, and Heewoo et al. Jun. Evaluating Large Language Models Trained on
Code, 2021.

Runjin Chen, Tong Zhao, Ajay Kumar Jaiswal, Neil Shah, and Zhangyang Wang. LLaGA: Large
Language and Graph Assistant. In International Conference on Machine Learning, pp. 7809-7823.
PMLR, 2024a.

Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei
Yin, Wengqi Fan, Hui Liu, and Jiliang Tang. Exploring the Potential of Large Language Models
(LLMs)in Learning on Graphs. SIGKDD Explor. Newsl., 25(2):42-61, 2024b.

Zhikai Chen, Haitao Mao, Jingzhe Liu, Yu Song, Bingheng Li, Wei Jin, Bahare Fatemi, Anton
Tsitsulin, Bryan Perozzi, Hui Liu, and Jiliang Tang. Text-space Graph Foundation Models:
Comprehensive Benchmarks and New Insights. In Advances in Neural Information Processing
Systems, volume 37, pp. 7464—7492, December 2024c.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The Cityscapes Dataset for Semantic
Urban Scene Understanding. In IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3213-3223, 2016.

Taoran Fang, Yunchao Zhang, Yang Yang, Chunping Wang, and Lei Chen. Universal Prompt Tuning
for Graph Neural Networks. Advances in Neural Information Processing Systems, 36:52464-52489,
2023.

Anchun Gui, Jingiang Ye, and Han Xiao. G-Adapter: Towards structure-aware parameter-efficient
transfer learning for graph transformer networks. In Proceedings of the Thirty-Eighth AAAI
Conference on Artificial Intelligence, volume 38, pp. 12226-12234. AAAI Press, 2024.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In International Conference on Neural Information Processing Systems, pp. 1025-1035, Red Hook,
USA, 2017. Curran Associates Inc.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring Massive Multitask Language Understanding. In International Conference
on Learning Representations, 2020.

Zhenyu Hou, Yufei He, Yukuo Cen, Xiao Liu, Yuxiao Dong, Evgeny Kharlamov, and Jie Tang.
GraphMAE2: A Decoding-Enhanced Masked Self-Supervised Graph Learner. In Proceedings
of the ACM Web Conference 2023, pp. 737-746, New York, NY, USA, 2023. Association for
Computing Machinery. doi: 10.1145/3543507.3583379.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open Graph Benchmark: Datasets for Machine Learning on Graphs. In Ad-
vances in Neural Information Processing Systems, volume 33, pp. 22118-22133. Curran Associates,
Inc., 2020.

11

Under review as a conference paper at ICLR 2026

Qian Huang, Hongyu Ren, Peng Chen, Gregor Krzmanc, Daniel Zeng, Percy Liang, and Jure
Leskovec. PRODIGY: Enabling In-context Learning Over Graphs. In Conference on Neural
Information Processing Systems, 2023.

Renhong Huang, Jiarong Xu, Xin Jiang, Chenglu Pan, Zhiming Yang, Chunping Wang, and Yang
Yang. Measuring Task Similarity and Its Implication in Fine-Tuning Graph Neural Networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38 of 11, pp. 12617-12625,
2024.

Yongcheng Jing, Chongbin Yuan, Li Ju, Yiding Yang, Xinchao Wang, and Dacheng Tao. Deep Graph
Reprogramming. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 24345-24354, 2023.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Francois Fleuret. Transformers are
RNNs: Fast Autoregressive Transformers with Linear Attention. In Proceedings of the 37th
International Conference on Machine Learning, pp. 5156-5165. PMLR, November 2020.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In International
Conference for Learning Representations, San Diego, USA, 2015.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In International Conference on Learning Representations, Toulon, France, 2017.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollar, and Ross Girshick.
Segment Anything, 2023.

Lecheng Kong, Jiarui Feng, Hao Liu, Chengsong Huang, Jiaxin Huang, Yixin Chen, and Muhan
Zhang. GOFA: A Generative One-For-All Model for Joint Graph Language Modeling. In The
Thirteenth International Conference on Learning Representations, October 2024.

R. Kothari and V. Jain. Learning from labeled and unlabeled data. In Proceedings of the 2002
International Joint Conference on Neural Networks. IICNN’02 (Cat. No.02CH37290), volume 3,
pp- 28032808 vol.3, 2002.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. DeepGCNs: Can GCNs Go As Deep
As CNNs? In IEEE/CVF International Conference on Computer Vision, pp. 9266-9275, Seoul,
South Korea, 2019. IEEE.

Jintang Li, Ruofan Wu, Wangbin Sun, Liang Chen, Sheng Tian, Liang Zhu, Changhua Meng,
Zibin Zheng, and Weigiang Wang. What’s Behind the Mask: Understanding Masked Graph
Modeling for Graph Autoencoders. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 1268-1279, New York, NY, USA, 2023. Association
for Computing Machinery. doi: 10.1145/3580305.3599546.

Shengrui Li, Xueting Han, and Jing Bai. AdapterGNN: Parameter-Efficient Fine-Tuning Improves
Generalization in GNNs. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 13600-13608, 2024a.

Yuhan Li, Peisong Wang, Zhixun Li, Jeffrey Xu Yu, and Jia Li. ZeroG: Investigating Cross-dataset
Zero-shot Transferability in Graphs. In ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 1725-1735, New York, NY, USA, 2024b. Association for Computing Machinery.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and
Strong Simple Methods. In Advances in Neural Information Processing Systems, volume 34, pp.
20887-20902. Curran Associates, Inc., 2021.

Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan Zhang.

One For All: Towards Training One Graph Model For All Classification Tasks. In International
Conference on Learning Representations, 2023a.

12

Under review as a conference paper at ICLR 2026

Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. GraphPrompt: Unifying Pre-Training and
Downstream Tasks for Graph Neural Networks. In Proceedings of the ACM Web Conference 2023,
pp. 417428, New York, NY, USA, 2023b. Association for Computing Machinery.

Péter Mernyei and Citélina Cangea. Wiki-CS: A Wikipedia-Based Benchmark for Graph Neural
Networks. In International Conference on Machine Learning Workshop on Graph Representation
Learning and Beyond. arXiv, January 2022.

Carl D Meyer. Matrix analysis and applied linear algebra. SIAM, 2023.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. TUDataset: A collection of benchmark datasets for learning with graphs. In Interna-
tional Conference on Machine Learning Workshop on Graph Representation Learning and Beyond,
Virtual Only, 2020. arXiv.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, and Red et al.
Avila. GPT-4 Technical Report, 2024.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-GCN: Geometric
Graph Convolutional Networks. In International Conference on Learning Representations, 2019.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A
critical look at the evaluation of GNNs under heterophily: Are we really making progress? In The
Eleventh International Conference on Learning Representations, Kigali, Rwanda, 2023.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
and Jie Tang. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. In ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1150-1160, New
York, NY, USA, 2020. Association for Computing Machinery.

Ladislav Rampasek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. In Advances in
Neural Information Processing Systems, volume 35, pp. 14501-14515, New Orleans, USA, 2022.

Benedek Rozemberczki, Carl Allen, Rik Sarkar, and xx Thilo Gross. Multi-Scale attributed node
embedding. Journal of Complex Networks, 9(1):1-22, April 2021. ISSN 2051-1329.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective Classification in Network Data. Al Magazine, 29(3):93, 2008. ISSN 0738-4602,
0738-4602.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Giinnemann. Pitfalls
of Graph Neural Network Evaluation. arXiv:1811.05868 [cs, stat], 2019.

Junshu Sun, Chenxue Yang, Xiangyang Ji, Qingming Huang, and Shuhui Wang. Towards Dynamic
Message Passing on Graphs. In Conference on Neural Information Processing Systems, December
2024.

Li Sun, Zhenhao Huang, Suyang Zhou, Qiqi Wan, Hao Peng, and Philip S. Yu. RiemannGFM:
Learning a Graph Foundation Model from Structural Geometry. In THE WEB CONFERENCE
2025, January 2025.

Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. GPPT: Graph Pre-training and
Prompt Tuning to Generalize Graph Neural Networks. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 1717-1727, New York, NY, USA,
2022. Association for Computing Machinery.

Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. All in One: Multi-Task Prompting

for Graph Neural Networks. In ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 2120-2131, New York, NY, USA, 2023. Association for Computing Machinery.

13

Under review as a conference paper at ICLR 2026

Zhen Tan, Ruocheng Guo, Kaize Ding, and Huan Liu. Virtual Node Tuning for Few-shot Node
Classification. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.
2177-2188, New York, NY, USA, 2023. Association for Computing Machinery.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
GraphGPT: Graph Instruction Tuning for Large Language Models. In Proceedings of the 47th
International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.
491-500, New York, NY, USA, 2024. Association for Computing Machinery.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph Attention Networks. In International Conference on Learning Representations,
Vancouver, Canada, 2018a.

Petar Velickovi¢, William Fedus, William L. Hamilton, Pietro Lid, Yoshua Bengio, and R. Devon
Hjelm. Deep Graph Infomax. In International Conference on Learning Representations, 2018b.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov.
Can language models solve graph problems in natural language? In International Conference on
Neural Information Processing Systems, pp. 30840-30861, Red Hook, NY, USA, 2023. Curran
Associates Inc.

Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,
393(6684):440-442, 1998. ISSN 1476-4687. doi: 10.1038/30918.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying Graph Convolutional Networks. In International Conference on Machine Learning, pp.
6861-6871, Long Beach, USA, 2019. PMLR.

Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z. Li. SimGRACE: A Simple Framework for
Graph Contrastive Learning without Data Augmentation. In Proceedings of the ACM Web Confer-
ence 2022, pp. 1070-1079, New York, NY, USA, 2022. Association for Computing Machinery.
doi: 10.1145/3485447.3512156.

Teng Xiao, Huaisheng Zhu, Zhengyu Chen, and Suhang Wang. Simple and Asymmetric Graph
Contrastive Learning without Augmentations. In Advances in Neural Information Processing
Systems, volume 36, pp. 16129-16152, 2023.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? In International Conference on Learning Representations, New Orleans, LA, USA,
2019.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. In Proceedings of the 34th International Conference
on Neural Information Processing Systems, pp. 5812-5823, Red Hook, NY, USA, 2020. Curran
Associates Inc.

Xingtong Yu, Yuan Fang, Zemin Liu, Yuxia Wu, Zhihao Wen, Jianyuan Bo, Xinming Zhang, and
Steven C. H. Hoi. A Survey of Few-Shot Learning on Graphs: From Meta-Learning to Pre-Training
and Prompt Learning, 2024.

Xingtong Yu, Zechuan Gong, Chang Zhou, Yuan Fang, and Hui Zhang. SAMGPT: Text-free Graph
Foundation Model for Multi-domain Pre-training and Cross-domain Adaptation. In THE WEB
CONFERENCE 2025, 2025.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep Sets. In Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

Libo Zhang, Lutao Jiang, Ruyi Ji, and Heng Fan. PIDray: A Large-Scale X-ray Benchmark for Real-
World Prohibited Item Detection. International Journal of Computer Vision, 131(12):3170-3192,
2023a.

14

Under review as a conference paper at ICLR 2026

Wen Zhang, Yushan Zhu, Mingyang Chen, Yuxia Geng, Yufeng Huang, Yajing Xu, Wenting Song,
and Huajun Chen. Structure Pretraining and Prompt Tuning for Knowledge Graph Transfer. In
Proceedings of the ACM Web Conference, pp. 2581-2590, New York, NY, USA, 2023b. Association
for Computing Machinery.

Jianan Zhao, Zhaocheng Zhu, Mikhail Galkin, Hesham Mostafa, Michael M. Bronstein, and Jian
Tang. Fully-inductive Node Classification on Arbitrary Graphs. In The Thirteenth International
Conference on Learning Representations, 2024a.

Jitao Zhao, Di Jin, Meng Ge, Lianze Shan, Xin Wang, Dongxiao He, and Zhiyong Feng. FUG:
Feature-Universal Graph Contrastive Pre-training for Graphs with Diverse Node Features. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024b.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
Al Open, 1:57-81, 2020. ISSN 2666-6510.

Yangiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep Graph Contrastive
Representation Learning. In International Conference on Machine Learning Workshop on Graph
Representation Learning and Beyond, 2020.

Yun Zhu, Haizhou Shi, Xiaotang Wang, Yongchao Liu, Yaoke Wang, Boci Peng, Chuntao Hong,
and Siliang Tang. GraphCLIP: Enhancing Transferability in Graph Foundation Models for Text-
Attributed Graphs. In THE WEB CONFERENCE 2025, 2025.

15

Under review as a conference paper at ICLR 2026

A GENERAL TARGET-INSENSITIVE OUTPUT MODULE

Sec. 3.4 takes node classification as an example to formulate our unified output module. In practice,
our method can be applied to general classification and regression tasks. Specifically, the general
output module in Eq. 5 can be formulated as

src

C=F.. (H<L)) —0 (g(H(L))S("“t)fout(c, s)T) , (S7)

where g denotes the read-out function for different levels of tasks. For classification tasks, the
nonlinear function o can be implemented as softmax, sigmoid, or tanh, and the loss function in
Eq. 6 remains a similar form. For regression tasks, o can be omitted and the loss function only
contains the inner-class loss with node sets of each class constituted with a single node.

B RELATED WORK

B.1 1/0 UNIFICATION FOR TRAINING-FREE ADAPTATION

Unified with Language Models. One of the key challenges in developing pre-trained graph
foundation models lies in the diverse features and labels. Inspired by the remarkable success of the
pre-trained LLMs (OpenAl et al., 2024), researchers have proposed to adopt LMs as I/O modules
for graphs (Liu et al., 2023a; Kong et al., 2024; Tang et al., 2024; Zhu et al., 2025). Chen et al.
(2024b) investigates the potential of LMs as enhancers for input and predictors for output, separately.
ZeroG (Li et al., 2024b) further integrates the two approaches by employing an LM to encode textual
descriptions of nodes and classes into unified embeddings. While ZeroG achieves unified input and
output for graph pre-training, its applicability is limited to text-attributed graphs (TAGs, i.e., graphs
with rich textual features). OFA (Liu et al., 2023a) generalizes TAGs by introducing templates to
convert numerical node and edge features into textual descriptions, thus extending its applicability
to general graphs. In addition to integrating LMs with GNNSs, researchers have also explored pure
LLMs in addressing graph-related tasks (Wang et al., 2023; Chen et al., 2024a).

Unified with Specific Design. Distinct from the aforementioned approaches, our work aims to
pre-train purely GNN-based models and explore their potential for training-free adaptation. Related
efforts in this area include the use of singular value decomposition (SVD) (Sun et al., 2023), Laplacian
decomposition (Sun et al., 2025), random projection (Tang et al., 2024), adversarial reprogramming
attacks (Jing et al., 2023), and parametric principal component analysis (PCA) (Zhao et al., 2024b)to
align different numbers of features. However, these methods couple the parameter values of the input
module with specific inputs or fail to unify label spaces for GNNs. A recent approach, GraphAny,
attempts to address this challenge by solving the pseudo-inverse of the transformation weight matrix
in a linear GNN (Zhao et al., 2024a). Despite the unified input and output for different datasets,
GraphAny requires observed labels from test datasets to compute the weight matrix, and is constrained
to node-level tasks and linear GNN architectures (Wu et al., 2019). As a result, pre-training graph
models with general pure GNN architectures remains an open problem.

B.2 MODEL FINE-TUNING FOR FEW-SHOT ADAPTATION

In addition to I/O unification, model fine-tuning has been extensively explored to adapt pre-trained
graph models to diverse features and labels (Yu et al., 2024). Approaches like GCC (Qiu et al., 2020)
employ full fine-tuning on pre-trained models, which is resource-intensive and prone to overfitting,
particularly when downstream datasets involve limited labeled data. To address these limitations,
researchers have proposed parameter-efficient graph fine-tuning methods, such as graph adapters (Li
et al., 2024a; Gui et al., 2024) and graph prompts (Sun et al., 2023). Graph adapters incorporate
additional tunable modules for GNNG, effectively bridging the gap between pre-training and inference
domains. Alternatively, graph prompt learning introduces input-specific prompts to modify node
features (Sun et al., 2022; Fang et al., 2023; Liu et al., 2023b) or graph structures (Sun et al., 2023;
Huang et al., 2023; Zhang et al., 2023b; Tan et al., 2023; Yu et al., 2025), enabling better adaptation
to various datasets. Different from model fine-tuning, this paper focuses on directly unifying diverse
graph features and labels at the pre-training stage. By exploring this foundational problem, our
findings show that the pre-trained GNN models can provide competitive graph operators for further
fine-tuning and simplify the hyperparameter tuning process (Sec 4.3).

16

Under review as a conference paper at ICLR 2026

Table S4: Original Dataset Split for Training-free Inference.

TRAIN TEST TOTAL
AMAZONCOMPUTERS 8,252 2,750 13,381

CORA 1,208 1,000 2,708
COAUTHORPHYSICS 20,697 6,898 34,493
ARXIV-YEAR 84,671 42,337 169,343
TWITCH-GAMER 84,057 42,029 168,114
TOLOKERS 5,879 2,940 11,758
CHAMELEON 1,092 456 2,277
ACTOR 3,698 1,520 7,600

Table S5: Dataset Split for Model Fine-tuning.

TRAIN VALID TEST TOTAL

CORA 1,208 500 1,000 2,708
PUBMED 18,217 500 1,000 11,9717
AMAZONCOMPUTERS 8,252 2,379 2,750 11,3381
WIKICS 580 5,274 5,847 11,1701
AMAZON-RATINGS 12,246 6,123 6,123 2,4492
MINESWEEPER 5,000 2,500 2,500 1,0000
TOLOKERS 5,879 2,939 2,940 11,1758

C EXPERIMENTAL SETUP

C.1 SETTINGS

Zero-shot learning with label priors requires test label knowledge. However, label semantics vary
across graph datasets, making full coverage of different semantics during pre-training impractical.
To align with real-world scenarios, we exclude label knowledge from pre-training. Models do not
have access to the label description knowledge during training and target-insensitive prediction. For
further evaluation, the prediction results are permuted by aligning pseudo labels with actual labels.
Specifically, to ensure fair comparison with LM-based graph models in the zero-shot setting, we
employ the embedded label semantics Sty, from language models (Li et al., 2024b) and construct the

assignment matrix with £, (c, s)SIgg,: . This scenario does not require any labeled samples from test
datasets. To explore the potential of pre-trained pure GNNs on general downstream tasks, observed
target labels are only included during inference to match pseudo labels with real labels. Given the
observed real labels C, the mapping relations between the pseudo labels and the real labels can
be formulated as CP(cI — 117) = clog(cC). The assignment matrix P can be solved as the
least-squares solution of the linear equation without additional training effort.

C.2 DATASETS

Various real-world datasets are adopted for model pre-training and evaluation. These datasets can be
categorized into four domains, including electronic-commerce graphs (e-com.), citation graphs, social
graphs, and Wikipedia graphs (wiki). Three levels of average node number per dataset including 1k,
10k, and 100k are incorporated for each domain. The statistics of these datasets are summarized in
Tab. S11 and Tab. S12. For the test datasets, we follow the standard split as the supervised learning
setting in the original paper.

The e-com. domain consists of one test dataset AmazonComputers (Shchur et al., 2019), and three
train datasets AmazonPhoto (Shchur et al., 2019), amazon-ratings (Platonov et al., 2023), and ogbn-
products (Hu et al., 2020). All these datasets are collected from Amazon. The citation domain
consists of three test datasets Cora (Sen et al., 2008), CoauthorPhysics (Shchur et al., 2019), and
arxiv-year (Lim et al., 2021), and four train datasets CiteSeer (Sen et al., 2008), PubMed (Sen
et al., 2008), ogbn-arxiv (Hu et al., 2020), and snap-patents (Lim et al., 2021). These datasets are
collected from academic graphs, encoding coauthorship and citation relations. The social domain
consists of two test datasets twitch-gamer (Lim et al., 2021), tolokers (Platonov et al., 2023), and
five train datasets twitch-e (Lim et al., 2021), fb100 (Lim et al., 2021), genius (Lim et al., 2021),

17

Under review as a conference paper at ICLR 2026

Table S6: Textual Dataset Statistics.

DATASET USAGE #NODES #EDGES #LABELS
ARXIV TRAIN 169,343 2,315,598 40
CITATION PUBMED TRAIN 19,717 88,648 3
DBLP TEST 14,376 431,326 4
AMAZON-RATINGS TRAIN 24,492 186,100 5
BOOKHISTORY TRAIN 41,551 503,180 12
BOOKCHILD TEST 76,875 2,325,044 24
E-CowMm. COMPUTERS TEST 87,229 1,256,548 10
PHOTO TEST 48,362 873,782 12
SPORTSFIT TEST 173,055 3,020,134 13
PRODUCTS TEST 316,513 19,337,722 39
WIKI. WIKICS TEST 11,701 431,726 10
SOCIAL TOLOKERS TEST 11,758 1,038,000 2

Facebook (Rozemberczki et al., 2021), and pokec (Lim et al., 2021). These datasets are collected
from online social media, encoding social relationships between different users. Specifically, tolokers
encapsulates crowdsourcing participation data sourced from the Toloka platform. Edges in tolokers
link toloker pairs that have completed the same tasks. This graph indicates certain interests of the
participants. Therefore, we classify it in the social domain. The wiki. domain consists of two
test datasets CHAMELEON (Pei et al., 2019), ACTOR (Pei et al., 2019), and three train datasets
WikiCS (Mernyei & Cangea, 2022), romain-empire (Platonov et al., 2023), and NELL (Carlson et al.,
2010). These datasets are collected from Wikipedia. The splits employed in Tab. 1 and Tab. 3 are
summarized in Tab. S4 and Tab. S5, respectively.

We also employ textual datasets (Chen et al., 2024c) to compare with LM-based models. The datasets
can also be categorized into citation, e-com., social, and Wiki graphs. The citation graphs include
arxiv, PubMed, and DBLP. The e-com. graphs include amazon-ratings, bookhistory, bookchild,
computers, photo, sportsfit, and products. The Wiki. graph refers to WikiCS, and the social graph
refers to tolokers. The statistics of these datasets are summarized in Tab. S6.

C.3 IMPLEMENTATION

Eight GNN methods are employed as the backbone for model pre-training, including GCN (Kipf &
Welling, 2017), GAT (Velickovic et al., 2018a), GraphSAGE (Hamilton et al., 2017), GIN (Xu et al.,
2019), MixHop (Abu-El-Haija et al., 2019), GraphGPS (Rampasek et al., 2022), DeepGCN (Li et al.,
2019), and N (Sun et al., 2024). The evaluations are conducted on a single NVIDIA GeForce RTX
4090 or a single NVIDIA A100. Models are pre-trained on the TRAIN datasets and evaluated on the
TEST datasets in Tab. S11.

Except for N2, backbones are implemented with the framework of PyTorch Geometric. The pre-
training process is conducted for 5000 epochs with a learning rate fixed at 1e — 5. The supervised
result reproducing is conducted for 500 epochs and will be early stopped if there is no further
reduction in the validation loss during 200 epochs. The total epoch for model fine-tuning is 1000,
with early-stopping for 200 epochs. We adopt Adam (Kingma & Ba, 2015) as optimizer and set
weight decay as 1 x 1076, The supervised results are reproduced under the same architecture, with
grid search performed on the number of layers in {2, 3, 5, 10}, dropout in {0.,0.1,0.2,0.3,0.5}, and
the number of hidden dimensions in {64, 128, 256}. The self-supervised models are first pre-trained
in the self-supervised setting and then frozen with a trainable linear output for supervised learning.
The hyperparameter configuration follows the original implementation. For model fine-tuning,
we perform grid search on dropout in {0.,0.1,0.2,0.3,0.5} based on the validation results. For
the information loss study in Appendix D.7, grid search is performed on the number of layers in
{2, 3, 5,10}, and the number of hidden dimensions in {64, 128}. Except for performance comparison
with baselines on textual/non-textual datasets and pre-training with scaling parameters, we fix the
number of dimensions at 256 for all backbones. The configuration for the number of layers during
pre-training for data scaling and domain gap is presented in Tab. S7.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table S7: Layer Configuration.

#LAYERS
GCN 6
GAT 6
GRAPHSAGE 6
GIN 2
DEEPGCN 1
N2 6
GRAPHGPS 1
MixHop 8

Table S8: Evaluation Results with Graph-level Datasets (Measured by accuracy: %). Bold
values denote the best results per test dataset. LP, Lap, and Rand denote Label Propagation, Laplacian
decomposition, and random projection, respectively.

ENZYMES REDDIT-BINARY PROTEINS AMAZONCOMPUTERS CORA ARXIV-YEAR TWITCH-GAMER
ORIGINAL SPLIT

GCN (supr) 3741032 78.40- 1 71700 59 91.09-0.13 81.80 . : 48.03.0.4 59.44 .15
GRAPHCL 19.77 10,41 71.2610.30 67.23 1 .01 88.67 0.5 61.9341 47 OOM OOM

Lap 52.38.0.37 72.04.0.71 70.07 052 78.69-0.76 76.80:0.46 40.86:0.61 56.25:0.50
RAND 18.33 1037 52.2040.43 59.67 073 34.73 068 15.5040.71 37.000.76 52.29.40.44
SVD 53.65:0.54 71.08 1054 70.89 1069 75.67 +0.40 73.5040.66 40.57 1055 56.8210.52
FUG - - - 88.22.0.00 30.70:0.06 42.54:0.30 58.16.0.27
GRAPHANY - - - 82.94 . s 7941035 38361053 59.96 1002
UNIFIED I/O (NODE) 52.83.:1.06 69.65.0.56 70.73.:0.26 89.85 0.1 82.324097 42.5810.7 59.99.10.05
UNIFIED I/0 (GRAPH) 54.88 . 19 73.0910.45 72.45 .14 80.29 .55 80.3010.70 41.35. 045 57.73 1066

1-SHOT FOR TRAINING-FREE INFERENCE

GRAPHCL 16.71-0.60 52.8541 53 51.89.5.65 41.39.5 44 27.8311 20 OOM OOM

Lar 17.33 546 56.8841.66 5562101 457105 22.80:2.00 28.57+1.00 534551 88
RAND 17.68-2 06 55.3641 .56 49.56-1 56 15672175 16.204006 26.6141.03 52.5615.16
SVD 17.87 21 37 56.80+1 35 55.47+1.60 43.46.1 07 18.9040.40 247841 37 53.45 117
FUG - - - 27.26-0.36 41.834006 27.58:0.11 49.93:0.01
GRAPHANY - - - 62.87 029 53.63.103 25.03.0us 49.65+0 48
UNIFIED I/O (NODE) 17.8241 07 482141 34 52274175 59.890.50 43.9410.50 33.47 1014 5790015
UNIFIED I/0 (GRAPH) 18.08 . s 58.89.5 10 56.07 .51 60.33.5 15 25.9010.90 29.960.05 54.60 1 47

3-SHOT FOR TRAINING-FREE INFERENCE

GRAPHCL 18.16. 055 571351 46 53.73. 052 554111 34.97 064 OOM OOM

Lar 20.42. 09 58.231 103 58.601 26 4535110 348011 39 24.62.11 35 545141 06
RAND 18.62.1 25 56304116 51.38.116 19.02: 151 30.701157 25.64.1.00 53.04 1143
SVD 20.67 110 58281116 55951135 50.76.+1 .36 3560126 21.6241 .25 53.2611 .13
FUG - - - 50.590.20 47.77 1000 24.0210.19 49.8310.00
GRAPHANY - - - 70.04.1 43 66.32.11 21 24.74 1034 54711018
UNIFIED I/O (NODE) 19.00-1 93 49.07 4168 54.46-1 36 68.33. 28 49.21.0.01 35.3210.29 57.6410.06
UNIFIED I/O (GRAPH) 22.05.. 59.32.0.03 60.46-, -7 65.78-5 07 38.90+ .17 23.97 148 55.561 43

D ADDITIONAL RESULTS

D.1 GRAPH-LEVEL TASKS

As noted in Appendix A, except for the node-level evaluation, unified I/O can be employed for more
tasks. To demonstrate this, GNNs are pre-trained on graph-level datasets (COLLAB, IMDB-BINARY,
MUTAG, and D&D) (Morris et al., 2020), and evaluated on graph-level tasks (PROTEINS, REDDIT-
BINARY, ENZYMES) (Morris et al., 2020), and node-level tasks (AmazonComputers (Shchur et al.,
2019), Cora (Watts & Strogatz, 1998), arxiv-year, twitch-gamer (Lim et al., 2021)). Baselines include
supervised method GCN (Kipf & Welling, 2017), self-supervised learning method GraphCL (You
et al., 2020), parameter-free feature alignment methods SVD (Sun et al., 2023), Laplacian projec-
tion (Sun et al., 2025), and random projection (Tang et al., 2024)) combined with our unified output
module. We also adopt FUG (Zhao et al., 2024b) and GraphAny (Zhao et al., 2024a) as baselines for
node-level tasks. Neither methods support graph tasks and are thus pre-trained on (amazon-ratings,
ogbn-arxiv, Facebook, and roman-empire).

Results in Tab. S8 show that pre-training with unified I/O surpasses GraphCL and parameter-free
feature alignment methods on both graph-level and node-level tasks. On graph-level tasks, unified
I/0 also delivers performance comparable to, or better than, supervised GCN. However, transferring
between graph-level and node-level tasks introduces a noticeable performance gap in both directions.
In particular, for node-level downstream tasks, models pre-trained on graph-level datasets perform
competitively on the original split but lag behind under the 1-shot and 3-shot settings when compared
with models pre-trained directly on node-level datasets.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

65 1

L

e GCN GIN

© GraphGPs ® MixHop
GAT o N2
GraphSAGE ® DeepGCN

Performance
»
v

10° 10° 107
Number of Parameters

Figure S8: Pre-training with Scaling Parameters. The connected dots denote scaling the number
of parameters by stacking multiple layers. The adjacent line segments denote scaling by expanding
the hidden dimension.

l-}
L0

601

"\ 621
504 61
60 1
404 59 1
58
304 GCN (scaling) 57 @
GIN (scaling)
GCN (original
(original) 564
10° 10°

Performance
Performance

GCN (four combined)
GAT (four combined)
GCN (amazon-ratings)
GAT (amazon-ratings)
GCN (PubMed)
GAT (PubMed)

GIN (original)
201 9

107 108 10° 10° 107
Number of Parameters Number of Parameters

(a) Pre-training with More Parameters (b) Impact of Training Data on Parameter Scaling

Figure S9: Over-parameterization in Parameter Scaling. (a) The connected dots denote scaling
the number of parameters by stacking multiple layers. The adjacent line segments denote scaling by
expanding the hidden dimension. (b) “Four combined” denotes employing amazon-ratings, ogbn-
arxiv, Facebook, and roman-empire for pre-training.

D.2 SCALING PARAMETERS

Following the common practice in LLM (OpenAl et al., 2024), model performance is also compared
with different numbers of parameters. The experimental settings are the same as Fig. 5, with models
pre-trained on (amazon-ratings, ogbn-arxiv, Facebook, roman-empire) and performance averaged
across different test graphs. The connected dots denote scaling the number of parameters by stacking
multiple layers. Note that N is a recurrent model, where the number of parameters does not change
with different layer depths. Results in Fig. S8 exhibit the clear influence driven by layer depth and
hidden dimension. Notably, increasing parameter count by adding more layers does not consistently
improve performance, while scaling hidden dimensionality is a more stable and beneficial strategy
to improve pre-trained GNN models. These observations indicate that model capacity cannot be
assessed solely through parameter volume. Instead, layer depth must be chosen appropriately for
each architecture, as simply increasing parameters by stacking layers does not always yield better
performance.

We further explore the boundary of parameter scaling with more parameters, i.e., hidden dimensions of
{2048, 4096} and depths of {20, 32} layers. Fig. S9(a) shows that further scaling the number of layers
(connected dots) causes over-parameterization. This can be alleviated by expanding training datasets,
where results in Fig. S9(b) indicate that more training datasets can better support parameter scaling.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

In contrast, increasing the number of hidden dimensions to 4096 does not show over-parameterization.
This observation further supports the conclusion that scaling hidden dimensionality is a more stable

and beneficial strategy for improving pre-trained GNN models.

1.024

g
o
4

Performance
=
o
3

’l

0.99 1

Average
Number of Nodes

' 100,000.0

| 1,000,000.0

10t
Minimum Number of Nodes

10°

(a) Fix the Minimum, Increase the Average

Performance

Minimum
Number of Nodes

© 1,000

() 10,0000

10* 10°
Average Number of Nodes

108

Performance

Performance

e ((en@

Minimum
Number of Nodes

© 1,000

() 100000

104

(b) Fix the Maximum, Increase the Minimum

10° 106

Maximum Number of Nodes

1.010 1

1.005 4

1.000 4

e
©
©
o

0.990 4

0.985

0.980 4

0.975

0.970 4

Number of
Training
Datasets

o 1
3
e 4
— Fit
5% range

104

10°
Average Number of Nodes

108

(c) Fix the Average, Increase the Minimum (d) Scaling with the Average Number of Nodes

Figure S10: Study on the Data Scaling Strategy. (c) Different dot colors indicate the number of
datasets employed for pre-training. “5%” denotes envelope-fitting with the top and bottom 5% of the
data in each bin.

D.3 DATA SCALING STRATEGY

To explore an effective data scaling strategy, we compare model pre-training with different training
data. Specifically, different combinations of three datasets are employed as training data. Model
performance is normalized by dividing the median result of the same backbone pre-trained with
various datasets on the corresponding test dataset. Fig. S10(a) shows the results of fixing the minimum
dataset size and varying the average number of nodes. When the minimum training dataset size
remains, increasing the average number of nodes does not consistently improve performance. This
indicates that simply adding larger datasets while keeping the smallest size unchanged is not an
effective way to expand the training set.

Moreover, Fig. S10(b) and Fig. S10(c) show the results of fixing the maximum dataset size or the
average number of nodes and increasing the minimum. In both cases, raising the minimum dataset
sizes yields improved performance. Together, these findings suggest that mixing datasets with widely
varying node scales is inefficient; datasets should instead be chosen to maintain a similar node scale.
Therefore, we compare dataset combinations that are aligned in node scale for the data scaling study
in Fig. 6. Additionally, we directly expand the average number of nodes in dataset combinations
without considering the smallest dataset size. Model performance is normalized by dividing the
median result of the same backbone pre-trained with various datasets on the corresponding test
dataset. The averaged results over 1,848 data points across different backbones and test datasets are

21

Under review as a conference paper at ICLR 2026

presented in Fig. S10(d). Results show that increasing the average number of nodes benefits model
performance. In contrast, incorporating more training datasets with various node scales does not
necessarily result in superior performance, which verifies the inefficiency of this strategy.

hetenl)phi\ic

o o
w IS
°
[
L]
°
°
L[]
° .
= =
N} w

o

N
=
A

Relative Performance

Performance Gap between Het. and Hom. Test Graphs
»

.
° . e ©®
e a8 e ° .
® o $s80o8 LI 104
° L] e o M
[e ® o 0 0 ° (4 H
0171 o ’ s o 8 e 8 o0 o o o 3 2 8 8 0 L H
o e © ° e 0.94 °
L4 - ° s e S
@ DeepGCN @ GPS ° S . s 8 8" . o !
0.0 e GCN © GraphSAGE 0.8 0, © ° ® o ®
® GAT MixHop ® hom. @ [] $ ’ i []] []
e GIN N3 het. °
homophilic 074 . . .
Training Datasets Training Datasets
(@ (b)
w - :
mmm DeepGCN é_ 021 thﬂlph\h(" heter?pmh(,
N GCN o]
s 30 GAT 5 - .
° GIN Lod L4
5 W GraphSAGE E 009 © $ ° °
E = MixHop b . I []
G 20 2 ° M . e
& < ° °
g g -02] 3 ° °
H b ° ° °
2 104 g ° .
3 heterophilic ﬂ;J L]
< g -04 L4 N
g o .
g o] I I [I -] 8
_—
s homophilic I I I r g ® GENConv ® GPS
5 £ -061 o GCN ® GraphSAGE
o £ ® GAT MixHop
-104 2 ® GIN N3
Training Datasets Training Datasets
() (d)

Figure S11: Adaptation Performance Comparison on Heterophilic and Homophilic graphs.
(a) presents the difference between the performance of the same pre-trained model evaluated on
heterophilic graphs and homophilic graphs. (b) presents the normalized performance of MLP by
dividing the state-of-the-art supervised results of classic GNN models on the corresponding test
datasets. (c) presents the difference between the absolute performance of pre-trained GNNs and MLP.
(d) presents the difference between the performance of pre-trained GNNs and MLP normalized by
their supervised counterpart.

D.4 INFERENCE WITH DIFFERENT HOMOPHILY-HETEROPHILY

Comparison with the same pre-training dataset. Sec. 4.2 examines model adaptation using
different pre-training datasets on the same test dataset, showing that training on datasets with the same
homophily—heterophily characteristics as the test dataset generally yields better results. In this section,
we shift the focus to comparing model performance across different test datasets under the same pre-
training setting. However, direct comparison is challenging because the inherent difficulty of each test
dataset varies, resulting in different absolute performance values. To address this issue, we normalize
the results by dividing them by the corresponding reproduced supervised results. A higher normalized
value indicates that the pre-trained model adapts more effectively to the corresponding downstream
task. Fig. S11(a) presents the difference between the averaged performance of the same pre-trained
model on heterophilic test datasets and homophilic test datasets (Metricyer — Metricyo,). We can
see that models pre-trained on either homophilic or heterophilic graphs gain a positive performance
gap, indicating better results on heterophilic graphs than homophilic graphs. To further study this
phenomenon, we contrast pre-trained MLPs with pre-trained GNNSs to evaluate the requirement of

22

Under review as a conference paper at ICLR 2026

homophilic and heterophilic graphs during model adaptation, and thus derive the root cause of the
phenomenon for Fig. S11(a).

Requirement of heterophilic graphs. We compare the performance of pre-trained MLP with
supervised GNNs. Supervised GNNs are directly optimized to meet task-specific requirements on
downstream datasets. Comparing them with pre-trained models assesses whether the latter also
fulfill these requirements. Fig. S11(b) presents the normalized performance of MLP by dividing the
state-of-the-art supervised results of classic GNN models on the corresponding test datasets. MLP
achieves more comparable performance on heterophilic test graphs compared to supervised results.
This indicates that node features better benefit the adaptation to heterophilic graphs. In contrast, the
requirement of the adaptation to homophilic graphs cannot be well satisfied by MLP and leads to
inferior normalized performance.

Requirement of homophilic graphs. We compare the performance of pre-trained MLPs and
GNNs. MLPs that only employ node features serve as a baseline for adapting to homophilic graphs.
Comparing more complex models with MLP highlights the further requirement of homophilic graphs.
Fig. S11(c) presents the performance gap between pre-trained GNNs and MLPs. We can see that
GNNss gain better performance on homophilic graphs and similar performance on heterophilic graphs
compared to MLP. This indicates that capturing graph structures contributes to the adaptation to
homophilic graphs.

Transferability of the learned knowledge. Given the requirement of capturing node features to
adapt to heterophilic graphs and capturing structures for homophilic graphs, we further analyze the
difficulty of transferring these learned patterns. Specifically, supervised models transfer knowledge
within the same dataset, while pre-trained models transfer across datasets. Therefore, comparing the
performance of pre-trained models with their supervised counterparts shows the transferability of
knowledge learned during pre-training, where GNNs correspond to the structural knowledge and MLP
corresponds to the node feature knowledge. Fig. S11(d) presents the normalized performance gap
between pre-trained GNNs and MLP, where pre-training results are divided by the supervised results
of the same model on the same datasets. Results show that the performance gap between normalized
pre-trained GNNs and MLP is generally negative, where the pre-trained MLP is more comparable to
its supervised counterpart. This suggests that the node feature knowledge is consistently transferable
within and across datasets. Conversely, structural knowledge transfers well within the same dataset
but fails to generalize across different datasets. As a result, pre-trained GNNs with only transferable
node feature knowledge cannot satisfy the requirement of the homophilic graphs and thus achieve
better normalized performance on heterophilic graphs.

Based on the above conclusions, the phenomenon in Fig. S11(a) can be attributed to the inherent
differences between homophilic and heterophilic graphs. Adapting to heterophilic graphs mostly
requires the capturing of node features, while adapting to homophilic graphs requires models to
adhere closely to the input graph structures. However, structural knowledge fails to transfer across
different datasets compared to the better transferability of the node feature knowledge, resulting in
consistently better performance when adapting to heterophilic graphs.

D.5 MODEL FINE-TUNING

Our unified I/O modules enable seamless adaptation of pure GNN architectures across diverse
datasets. To further evaluate the effectiveness of the pre-trained GNN operators, we fine-tune the
models pre-trained on amazon-ratings, ogbn-arxiv, Facebook, and roman-empire. The internal
GNN module Fg within the pre-trained models is frozen during the fine-tuning. The unification-
oriented I/O function f;, () in Eq. 4 and fou.(+) in Eq. 5 are replaced with learnable parameters.
We implemented GCN (Kipf & Welling, 2017), GAT (Velickovic et al., 2018a), GIN (Xu et al.,
2019), GraphSAGE (Hamilton et al., 2017), and GraphGPS (Rampasek et al., 2022) in the supervised-
learning setting and DGI (Velickovi¢ et al., 2018b), GRACE (Zhu et al., 2020), GraphACL (Xiao
et al., 2023), GraphCL (You et al., 2020), SimGRACE (Xia et al., 2022), MaskGAE (Li et al., 2023),
GraphMAE?2 (Hou et al., 2023) in the self-supervised setting. The fine-tuning results with different
backbones on downstream graphs are summarized in Tab. S9. The pre-trained operators achieve
superior performance to supervised methods and self-supervised methods. Notably, the pre-trained
operators require minimal hyperparameter tuning, with only dropout adjusted during fine-tuning. This

23

Under review as a conference paper at ICLR 2026

Table S9: Evaluation Results of Fine-tuning the I/O Modules in the Pre-trained GNNs (Measured
by accuracy except ROC AUC for tolokers: %). Bold values denote the best results per test dataset.

AMAZON AMAZON

CORA PUBMED COMPUTERS WIKICS _RATINGs MINESWEEPER TOLOKERS
SELF-SUPERVISED
DGI 84.001025 83.73:041 82.11:016 75.05:030 40.8010.74 88.4510.35 77731014
GRACE 84.301057 85.81:01s 89.67:056 75.80:056 42191012 86.1510.45 75.0640.14
GRAPHACL 75.000.75 82.93..17 80.58.:0.15 68.00.10.75 40.65:0.14 87.23.10.11 77.68 1095
GRAPHCL 63.33—\ 76 63.53—\ 08 84.57—() 34 76.32A(y.|>’ 42.35Au,,=7 79485—[] 12 80.03+n 12
MASKGAE 75130078 75274103 92.1540.05 78.25:020 43.54.10.30 84.33.0.16 81.13.10.34
SIMGRACE 67.07 . 058> 77.63.05> 87.44 . 15 78.75 008 43.46. 0.3 84.23 . .15 80.29. 0 30
GRAPHMAE?2 79‘507[1_’,1 67‘077[1_&)1 91.037“_1&) 76.24;(;_11 40.95;(;_71 80‘16,&11) 80~17L1) 07
SUPERVISED
GRAPHSAGE 78.837(1_3(] 88.117(1_[]’, 91.097()_(12 78.137(“’, 45.717(;_‘% 90‘557[1_10 83.06L1) 59
GAT 77.517_)_;', 85.307(1_13 89.787(»_(1_’ 76.357(;,8(1 44.547(;,53 82.0771_17 77.37L1) 28
GIN 77.36:0.15 85.1310.55 90.51 050 74.02:060 46330011 74.93 058 60.93.:5 55
GCN 80.351025 85.44.050 90.66-0.13 78.5510.01 46.71.0.25 76.43.1 .05 77.79+0.12
GRAPHGPS 58.61.0.05 85.21 030 88.87 020 7518004 47.8510.29 89.64 . (o4 79.8210.06
PRE-TRAINED AND FINE-TUNED

GCN 84.32.0.00 85.2840.21 91.02:0.01 78.42.0.07 46.1710.09 69.1020.11 69.5040.60
GAT 78.01:0.57 84471035 89741042 77.96:015 47.1310.45 71.03+0.72 75.67 1073
GIN 7931052 85.61:i035 87.89:10435 73.49:014 4993102 77.62.0.05 66.8310.56
GRAPHGPS 50.627(1_42 86.797(1.71 85.937(»_3g 73.417(,,74 43.747(,_3() 88.68,(1_2‘) 80.4li4) 53
GRAPHSAGE 83.92. 043 86.37 0.3 91.24 .17 78.98 (.12 48.85 1.5 91.39 .05 83.29 (.13
MixHop 84.63 . 1> 88.91 . .5 90.33 .30 78.93 1017 51.59. .05 90.77+0.18 83.0340.13
N2 81.5040.33 88.32.:10.3 92.33 .95 76.60:005 49.85:0.3 90.31 1031 81.51+0.36
DEEPGCN 7440033 88.50+0.32 91.02:0 .25 74.67+025 50.7640.46 88.00-+0.28 79.86-0.36

significantly simplifies the hyperparameter tuning process, enabling efficient adaptation of pre-trained
GNNss to various graphs with promising performance.

0.028

52 ° ® 64 L]
[]
256
0.7 4 256 00261 o 55
e 512 ® 1024
061 ® 1024 0.0247 o GaT °
o GAT _
205 ® GraphGPS £ 0.022 °
c s
S s
= S 0.020 °
£04 £ °
g H .
2 . H
S S 0.018
0 0.3 o
g £ ° .
£ F 0.016 ° °
Fo2 °
L] L]
L4 0.014 °
0.1
oo 00® ° °
gL L O O 5 00129 o
0o Mo e o [[D i e 00%®
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000
Number of nodes Number of nodes
(a) Different graph sizes (b) Different numbers of input features

Figure S12: Time comparison. (b) zooms in on the red block in (a).

D.6 COMPLEXITY ANALYSIS

The space complexity of the unified I/O is O(n), with dsy, d, s, ¢ < n. To evaluate the time cost of
different modules, We construct synthetic graphs. Nodes in the synthetic graphs have an average
degree of 20. The largest number of edges is 100,000. The number of classes is 10, which is close to
the common configuration of the real-world datasets in Fig. 1. The number of GNN layers is fixed
to 3. The results are presented in Fig. S12. As the number of input features increases, the time cost
of the unified I/O module increases but is constantly less than the cost of the GraphGPS module.
The I/0 time cost also scales linearly with the graph size. This demonstrates the efficiency of the
proposed unified I/O modules.

24

Under review as a conference paper at ICLR 2026

Table S10: Information Loss Study. “Ori” and “Uni” denote the supervised learning results with
traditional I/O modules and our unified I/O modules, respectively.

AMAZON-RATINGS ARXIV-YEAR COAUTHORCS COAUTHORPHYSICS

GCN (ORI.) 48.70 46.02 92.92 96.18
GCN (UNL.) 47.12 45.19 92.77 96.38
GAT (ORI.) 52.70 46.05 93.61 96.17
GAT (UNL.) 46.19 46.26 88.38 94.16
GRAPHSAGE (ORL.) 53.63 43.76 9391 96.49
GRAPHSAGE (UNI.) 45.45 44.76 95.17 97.06

D.7 EFFECTIVENESS OF THE UNIFIED I/0

Information Loss. Unified I/O decouples the learnable parameters from the numbers and semantics
of dimensions for the feature and label space. To evaluate whether this leads to information loss,
we conduct supervised training with our unified I/O on GCN, GAT, and GraphSAGE. As presented
in Tab. S10, our unified I/O modules do not cause severe information loss. They even enable
the backbone GNN methods to achieve better performance than that of their vanilla architectures
for GAT and GraphSAGE on arxiv-year, GraphSAGE on CoauthorCS, GCN and GraphSAGE on
CoauthorPhysics. This demonstrates the effectiveness of our unified I/O in learning input and output
mappings.

*%0° s
:o’;’...t 8o b.’, .O.’ \.
ey L V7o i
®e « 8
° o ° p.'o. e 2°%e
[2P 1) N C
'-l ° °° ‘ .4 } % o.. °
o '..": .‘. ¢ et * [obe &
ke, L
% 8,0 %% b ef
Tt s
(a) Given Semantics (b) Learned Semantics

Figure S13: t-SNE Results for Semantics Alignment Comparison. Each dot represents a different
feature channel, with dot colors representing different datasets.

Feature Semantics. To explore whether our parametric function £, (-) empowers feature semantics
unification across different inputs, we use t-SNE to visualize feature semantics from (Cora, CiteSeer,
Photo, Computers, ogbn-products, and WikiCS) (Chen et al., 2024c¢). 40 feature channels are sampled
for each dataset. Each dot represents a different feature channel, with dot colors representing different
datasets. Fig. S13(a) shows the t-SNE result of the original feature semantics, where features from
different datasets form clearly separated clusters rather than merging into a shared global structure.
This pronounced dataset separation indicates that the representations are not well aligned within
a common semantic space. Conversely, in Fig. S13(b), feature semantics from different datasets
learned by unified I/O form two major clusters, indicating that the learned representations are unified
into two common semantic subspaces. Within each cluster, channels from different datasets do not
fully mix but show partial segregation, suggesting that the semantic representations still preserve
dataset-specific characteristics. All these results demonstrate the effectiveness of our proposed
method in modeling unified feature semantics.

25

Under review as a conference paper at ICLR 2026

E PROOF AND DERIVATION

E.1 MAPPING WITH DIMENSION RELATIONS

Theorem 3.1 (Mapping with Dimension Relations). Given any linear mapping W € R%<*dwee qn
s € Nt, there always exist two representation matrices Sgre € R%*5 and Segtr € R X5 sych
that W = 1)(Ssrc, Stge), where (-, -) is a bilinear composition function.

Definition E.1 (Bilinear Composition Function). Let X € R™*% and Y € R™*% be two input
matrices, and let U € R%*9% be a learnable parameter matrix. A bilinear composition function
s RmMXdi x Rxd2 5 R™XM s defined as

W(X,Y)=XUY',

which computes the bilinear form between each pair of row vectors from X and Y. This function is
linear with respect to either argument when the other is fixed, but not jointly linear.

We now provide the proof for Theorem 3.1:

Proof. Letr = rank(W) < min(ds;c, digt). By the full-rank factorization theorem (Meyer, 2023),
there exist matrices A € R%=*" and B € R%s X" guch that

W =AB".
Let s =7, Sgrc := A, Stz := B, and U be the identity matrix I,.. Then
SercUSy, = ALBT = AB' = W.
Thus, such Sg;c, Stgt, U always exist.

More generally, for any s > r, we can embed A and B into higher-dimensional matrices by padding
zeros and set U as a diagonal matrix with the first 7 entries as 1 and others as 0. Hence, the bilinear
form (Serc, Stgr) = SSICUStTgt is expressive enough to represent any linear mapping W. O

E.2 SET LEARNING FOR THE UNIFIED INPUT MODULE

To decouple the parameters from the number of source dimensions, feature semantics Sgi‘é) is
formulated as a parametric function f;,(X; Wiy). The function £;,(+) is subject to two conditions:
(1) Permutation invariance to the order of input nodes and equivariance to that of source dimensions;
(2) Size independence of the parameter set Wj, to the values of n and d;,. Given the absence of
topological structures and the permutation condition (Cond 1) for £;,(+), the input features can be
modeled as a set of channels {X. ;}, where each channel corresponds to a set of nodes {X; ;}. Asa
result, £3,(-) is transformed into a set-learning problem at both the channel level and the node level,
fin = £522 0 £330

Channel-level Set Learning. Based on the universal functions on set (Zaheer et al., 2017), £3,(+) is
a permutation-equivariant set function at the channel level and can be decomposed as

£in(X) = £55* (£354(X)) = o [0£130 (X)] , (S8)

where o can be any nonlinear function, © € R%=*din denotes the channel mixer. To enable the
scalability of the input module for input features with a large number of channels (e.g., NELL
din = 61,278, CoauthorPhysics d;, = 8,415, and CoauthorCS d;, = 6, 805), we follow the linear
attention (Katharopoulos et al., 2020) to construct © as

din XX

=<1

(89)

where 1 denotes the all-one vector.

Node-level Set Learning. Due to the size independence and the permutation invariance conditions
for £1,(+), £224(+) in Eq. S8 can be formulated as a permutation-invariant set function at the node
level. Given £, : R"*%n s R XS our ultimate target is to model a number of s representations

26

Under review as a conference paper at ICLR 2026

for each channel. Therefore, we apply s set functions to {X; ;}. Each function can be decomposed
following the universal set function (Zaheer et al., 2017) as

£220(X) = [X)) e (0], smM) =0k | X XD s10)

in in in
1€[1,n]

where the parameters in both ¢* and p* are shared for each element in X to ensure the size indepen-
dence condition (Cond 2). We share the function p* for all k € [1, s] as p and implement ¢* as a
parameter-weighting function to keep simplicity. As a result, Eq. S8-Eq. S10 can be complied as
din XX Toa T
fin(X) =0 [XTX1’O(X Jlo |, (S11)

where a = {ay,} € R**! denotes the parameter vector with k € [1, s] to implement ¢*, 1 denotes
the all-one vector to implement the summation in Eq. S10.

Although Zaheer et al. also provides an implementation named Deep Sets based on the universal
set function, our input module differs from this specific implementation in several key aspects.
Specifically, graph learning requires permutation invariance over nodes, which constitute the set
representations in our case. This demands the input module to decouple parameters from the
representation dimensionality. In contrast, Deep Sets are not faced with such a condition. We further
decompose the set-learning task into a bi-level formulation, while Deep Sets addresses the original
single-level formulation. Moreover, our input module employs a linear-attention-like set mixer in
Eq. S9, while Deep Sets applies sum or max pooling to mix sets.

E.3 PERMUTATION INVARIANCE OF THE UNIFIED INPUT MODULE

Theorem E.2 (Permutation Invariance of the Unified Input Module). Let P € R%»*%= pe any
permutation matrix. Then the source-adaptive input module F i, is permutation invariant, such that
Fin(XP) = Fi,(X).

Proof. Let P € R%=*du be a permutation matrix. Consider the input module Fi,(X) =
o [Xf in(X)SggT] , where o(+) is applied element-wise. Applying the permutation giving rise to
Fin(XP) = o [XPfin(XP)sSg‘;”] Specifically, let r = X TX1//n, X = X1, /din, £1(XP)
can be formulated as

i) <o ()
_ ((XP)"Xra"
-7 ((XP)Tx>

Here, both the division and o (+) are applied element-wise and invariant to consistent column permu-
tation. Therefore, applying the permutation before or after the element-wise operations yields the
same result, giving

XTXral
_ T
fu(XP) =0 (P m)

_pT, (XTXr_ozT>
XTx
=P f,(X).
Substituting f;,(XP) into F;,(XP), we have
Fin(XP) = o [XPPTfin(X)SSg?T}
= Fin(X).
which completes the proof. O

27

Under review as a conference paper at ICLR 2026

E.4 PSEUDO LABEL ASSIGNMENT

Given the observed labels C, the mapping relations between the pseudo labels and the observed
labels can be formulated as
. CP
softmax(CP) = L)T =C, (S12)
exp(CP)11

where P € R°*¢ denotes the assignment matrix, 1 denotes the all-one vector. For a set of values
{z;},1 € [1, c], the first-order Taylor expansion of exp(z;) around Z =) . x;/cis

exp(x;) =~ exp(Z) - (1 + x; —). (S13)
As a result, the summation of exp(x;) can be approximated as
Z exp(z;) ~ exp(T) Z(l + x; — T) = nexp(). (S14)
Substituting Eq. S14 in Eq. S12 yields
exp(CP)
exp(%CPllT)
. 1. T
CP - -CP11) =cC
exp(p)=c (S15)

A 1
exp[CP(I — Ell—r)] =cC
CP(cI—11") = clog(cC).

F LLM USAGE

In preparing this manuscript, we employed a large language model (LLM) exclusively for surface-
level language refinement, such as grammar correction and improving clarity of expression. The
LLM did not contribute to method ideation and experimental study.

G LIMITATION

In this paper, we explore the training-free adapting capability of the pre-trained models with pure
GNNs. However, although the proposed method can be employed for any graph learning task
(Appendix A), the empirical evaluation in this paper is limited to node classification. Further study
on graph-level and edge-level tasks is left for future work.

28

Under review as a conference paper at ICLR 2026

o 799'7CT E AANA-NVINOA

009°L " AOLOV
€08°TE9°T ¥ DaM0d
a 196°1T K SNINAD
Vi 8676 . 4-HOLIML
PI1°891 " YHWVD-HOLIML
Vi £YE691 : AIXAV-NEDO
/ LTE'E) MAASHALID
€67 Ve . SOISAHJMOHLAVOD)
Y 001 620°6¥¥'C . SLONAOYd-NIDO
N SYL L8Y'L . OLOHINOZYWY
1 W S 1 W S 1 N S 1 N S
AINO AINO AINO AINO AINO STHEVT# SHNLVAL# SHAON# 4dAL ~ HOVSQ) LASVIV(
DIM DIM TVIDOS NOLLV.LID ‘W0D-1

"A[oAnoadsar YO pue Q] [PUNOIe SOpoU JO SIoqUINU YIm
S19SB)Rp 9[BIS-FIR] PUB ‘O[BIS-O[PPIW ‘Q[BIS-[[BWS JOUIP ,/T,, ‘I, ‘..S,, 2IOYM ‘SI[BIS JUSIOIJIP Sk S1aseiep Jururer} ay) SSIBUWL A, *SONISIIR)S J9seye(] (1S 9[qeL

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

29

799°CC " HYIdNI-NVINOA

009°L X MOLOY

€08°C€9°1 K 2d30d

196121 " SNINED

867°6 " d-HOLIML

PI1°891 " MFNVO-HOLIML

€YE°691 . AIXY¥V-NEDO

LTEE . AFASHLID

€61 Ve . SOISAHJMOHLNVOD)

001 620°617°T ' $1ONA0¥d-NgD0

SYL L8Y'L . OLOHINOZYWY

XIN 'WOH "LEH v TIM TVIDOS NOILYLID “WOO-1 STHEVI# STUNLVEd# SHAON# AdAL ~ HOVSQ) LASVIVA
ON ON ON ON

Juownadxa de3 urewop oy 10§ duo Jururewar
9 03 Sundepe pue surewop 991y} WO sjaseiep uo Jururen-aid sajouap XX ON,, ‘A[0A10adsar OO pue O] [PunoIe sapou Jo SIdqUINU YIIm S}asejep o[eds-osIe|
PUB ‘O[BOS-9[ppIW ‘[BIS-[[BWS JOUP T, ‘.JA, ‘..S,, 'SANI3S JUSIIIJIP JOJ $}asBIEp PSS) SHIBUWL , A, “SUIUIRI)-IIJ IO} SUOBUIqUIO)) JIsBIe(7S 9[qeL

30

Under review as a conference paper at ICLR 2026

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581

1582
1583
1584
1585
1586
1587
1588
1589
1590
1591

1592
1593

1594

1595

1596

1597
1598

1599

1600

1601
1602
1603

1604
1605
1606

1607
1608
1609
1610

1611

1612

1613
1614
1615
1616

1617
1618

1619

	Introduction
	Related Work
	Unified I/O for General Pure GNN Architectures
	Problem Setup
	Mappings of the I/O Modules
	Source-adaptive Input Module
	Target-insensitive Output Module
	Pipeline and Pre-training Strategy

	Experiment
	Unified I/O enables Pre-training with Pure GNNs
	Pre-training Condition Study
	Pre-trained Pure GNNs provide Competitive Graph Operators
	Cost Analysis on the Unified I/O

	Conclusion
	General Target-insensitive Output Module
	Related Work
	I/O Unification for Training-free Adaptation
	Model Fine-tuning for Few-shot Adaptation

	Experimental Setup
	Settings
	Datasets
	Implementation

	Additional Results
	Graph-level Tasks
	Scaling Parameters
	Data Scaling Strategy
	Inference with Different Homophily-heterophily
	Model Fine-tuning
	Complexity Analysis
	Effectiveness of the Unified I/O

	Proof and Derivation
	Mapping with Dimension Relations
	Set learning for the Unified Input Module
	Permutation Invariance of the Unified Input Module
	Pseudo Label Assignment

	LLM Usage
	Limitation

