

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PRE-TRAINING PURE GNNS AS GRAPH LEARNERS

Anonymous authors

Paper under double-blind review

ABSTRACT

Graphs from different datasets exhibit diverse numbers of features and labels, where each feature or label is associated with different semantic meanings. Such diversity poses challenges in adapting pre-trained graph neural networks (GNNs) to different datasets with a single set of input and output (I/O) module parameters. This raises a fascinating question: Can pure GNNs be pre-trained on diverse datasets, adapting to various datasets effectively without additional effort? To explore this, we propose unified I/O modules that enable pre-training with pure GNNs. Unlike traditional methods that tightly couple parameters to specific datasets, our approach decouples parameters through a shared relation function for the input and uniformly sampled points for the output. These designs effectively resolve the challenges in quantity inconsistency and semantic discrepancies of dataset features and labels. By integrating our I/O modules with various GNN architectures, we demonstrate that pure GNNs can be effective graph learners for direct adaptation to downstream tasks. Pre-training experiments under different setups show that increasing hidden dimensions and the average number of nodes per training dataset enhances model performance. Moreover, fine-tuning the I/O modules with frozen pre-trained graph operators significantly simplifies the model hyperparameter tuning process, achieving superior or comparable performance to supervised models on downstream datasets.

1 INTRODUCTION

Pre-trained foundation models have shown exceptional adaptability across different datasets, such as large language models (LLMs) (OpenAI et al., 2024) for MMLU (Hendrycks et al., 2020) and HumanEval (Chen et al., 2021), large vision models (LVMs) (Kirillov et al., 2023) for CityScapes (Cordts et al., 2016) and PIDRay (Zhang et al., 2023a). A key factor underpinning this capability lies in the unified feature and label space across datasets. In the feature space, although the encoded information varies, the semantic meanings of features remain consistent. For instance, a landscape image and a colored X-ray image can both be represented as 3D tensors, with features corresponding to their RGB values. In the label space, data can be assigned to a limited number of labels.

In contrast to data with the unified feature and label space, graph data typically exhibits diverse numbers of features and labels, with each associated with different semantics (Fig. 1). For instance, feature and label semantics in tolokers (Platonov et al., 2023) correspond to user profiles and user status, whereas those in CoauthorCS (Shchur et al., 2019) correspond to publication keywords and research interest. This inherent diversity presents substantial challenges in developing pre-trained graph models. First, the inconsistent number of features and labels hinders the unified design of the input/output modules (I/O). Second, the semantic discrepancies across graphs impede the effective adaptation of pre-trained models to diverse graph datasets. Traditional I/O fails to tackle these challenges by tightly coupling the quantity and values of the learnable parameters to specific datasets, thereby limiting their adaptability.

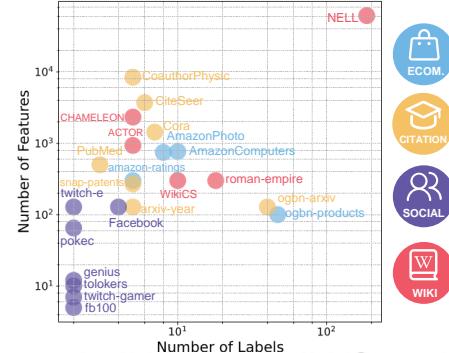


Figure 1: **Diversity of Features and Labels across Graph Datasets.** Graphs from different datasets exhibiting diverse numbers of features and labels, while each feature or label is associated with different semantics.

To address this problem, methods have proposed leveraging language models (LMs) as I/O for graph neural networks (GNNs) (Liu et al., 2023a; Li et al., 2024b). By transforming graph features and labels into natural language, GNNs integrated with LMs can effectively handle graphs with diverse features and labels. Beyond advancements in pre-training GNNs with LMs, researchers have also explored fine-tuning strategies (Sun et al., 2022; 2023; Huang et al., 2024) to accommodate different features and labels. However, these methods still rely on few-shot knowledge for effective adaptation. It remains an open problem that *can pure GNNs be pre-trained on diverse datasets and directly adapted to downstream datasets?*

In this paper, we propose unified I/O modules to achieve pre-training with pure GNNs by decoupling model parameters from specific datasets. Instead of treating the whole mapping matrix as learnable parameters, unified I/O decomposes the mapping into two successive mapping matrices: one associated with the datasets and the other associated with the hidden space. Our objective is to model the dataset-associated mapping in a transferable manner. For input features, unified I/O employs a shared parametric relation function to learn a predefined number of relations between feature dimensions. The shared function targets and analyzes the same relation patterns across different datasets, which can be employed to construct the dataset-associated mapping with the same set of parameters. For output labels, the module samples uniformly distributed points as pseudo labels, enabling prediction over diverse label spaces. When label information is available for downstream graphs, these uniform points can be aligned with the real labels without additional training.

Our unified I/O modules enable graph pre-training with pure GNNs. Empirical results with different GNN architectures demonstrate that pre-trained pure GNNs can be effective graph learners for direct adaptation to downstream tasks. Specifically, we evaluate the performance of pre-trained models with scaling parameters, scaling training data, and varying domain gaps. Results show that increasing either hidden dimensions or the average number of nodes per graph during pre-training enhances the performance. Moreover, fine-tuning the I/O modules with frozen pre-trained graph operators on downstream graphs substantially reduces the need for extensive hyperparameter tuning, achieving superior or comparable performance with the supervised models. Our contribution can be summarized as

- We propose a novel method to unify the I/O modules for pre-training with general pure GNNs, providing graph operators to simplify the extensive hyperparameter tuning process.
- We demonstrate that pre-trained pure GNNs can serve as effective graph learners on eight classic GNN architectures across diverse real-world datasets.
- We experimentally verify the adaptation performance of pre-trained GNNs with scaling parameters, scaling training data, and different domain gaps.

2 RELATED WORK

Due to space limitations, we provide a brief overview of related work, with a comprehensive discussion in Appendix B. Existing methods for adapting pre-trained graph models fall into two categories: I/O unification and fine-tuning. The former mainly leverage LMs to encode textual attributes for unifying diverse features and labels (Liu et al., 2023a; Wang et al., 2023; Chen et al., 2024a; Kong et al., 2024; Li et al., 2024b; Tang et al., 2024; Zhu et al., 2025). Except for LM-based methods, both parametric (Jing et al., 2023; Zhao et al., 2024b) and parameter-free (Sun et al., 2023; Tang et al., 2024; Sun et al., 2025) unification strategies for pure GNNs have been explored, but they fail to unify label spaces. GraphAny (Zhao et al., 2024a) extends this direction to label unification with linear GNNs. Yet these methods remain limited in scope and often require observed labels, leaving pre-training with general pure GNN architectures an open challenge. The latter fine-tuning methods adapt pre-trained models through graph adapters (Li et al., 2024a; Gui et al., 2024) or graph prompts (Sun et al., 2023; Yu et al., 2025). Distinct from both, our method can be applied to general GNN architectures and enables pre-training for direct adaptation to diverse datasets.

3 UNIFIED I/O FOR GENERAL PURE GNN ARCHITECTURES

To enable training-free adaptation of pure GNNs, we formulate the unification of the I/O modules as the modeling of the semantics associated with each feature and label (Fig. 2). Specifically, our unified

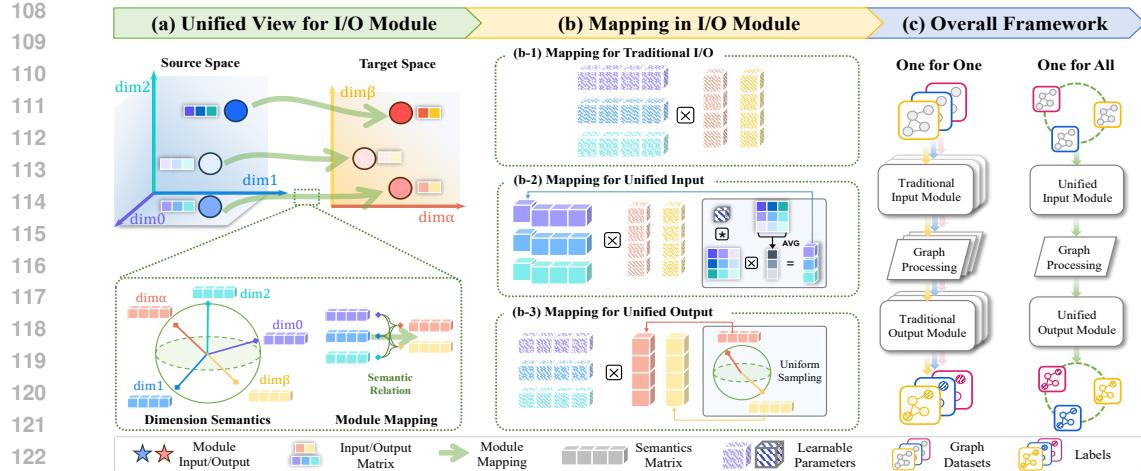


Figure 2: **Illustration of the Unified Input/Output Pipeline.** (a) A linear mapping projects source dimensions onto a set of target dimensions. Each dimension corresponds to certain semantic descriptions that can be embedded in the semantic space. Modeling **semantic relations** between source and target dimensions results in module mappings. (b) Instead of treating both semantic matrices as parameters, unified I/O modules model the **feature semantics** as parametric relations and sample **label semantics** uniformly in the semantic space. (c) The parameter quantity and values in GNNs with traditional I/O are coupled with specific datasets. Our unified I/O decouples the parameters from specific datasets, enabling one set of parameters for different datasets.

input module encodes the feature semantics as parametric relations of the input features, while our output module represents diverse label semantics as uniformly sampled points in the semantic space.

3.1 PROBLEM SETUP

Notations. Given an input graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, $\mathcal{V} = \{v_1, \dots, v_n\}$ denotes a set of n nodes and $\mathcal{E} = \{e_{i,j} | v_j \in \mathcal{N}(v_i)\}$ denotes a set of m edges. $\mathcal{N}(\cdot)$ denotes the set of one-hop neighbors for a given node. Each node $v \in \mathcal{V}$ corresponds to a feature vector $\mathbf{x}_v \in \mathbb{R}^{d_{in}}$ where d_{in} is the number of input features. Let $\mathbf{X} = (\mathbf{x}_{v_1}, \dots, \mathbf{x}_{v_n})^\top \in \mathbb{R}^{n \times d_{in}}$ be the node feature matrix composed of feature vectors. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be the adjacency matrix of \mathcal{G} . $\mathbf{A}_{i,j} = 1$ if $e_{i,j} \in \mathcal{E}$. Let $\mathbf{C} = (\mathbf{c}_{v_1}, \dots, \mathbf{c}_{v_n})^\top \in \mathbb{R}^{n \times c}$ be the node label matrix composed of label vectors, where c is the number of labels, $\mathbf{C}_{i,j} \in \{0, 1\}$. Although we take node classification as an example in this paper, our method can be applied to general graph learning tasks (Appendix A).

Modules in GNN. Let $\text{GNN}(\mathcal{G}) = (\mathbf{F}_{\text{out}} \circ \mathbf{F}_g \circ \mathbf{F}_{\text{in}})(\mathcal{G})$ be a GNN model. The target of $\text{GNN}(\mathcal{G})$ is to optimize the sets of learnable parameters \mathcal{W}_{in} , \mathcal{W}_g , and \mathcal{W}_{out} and form the optimal mapping for \mathbf{F}_{in} , \mathbf{F}_g , and \mathbf{F}_{out} . The input module $\mathbf{F}_{\text{in}} : \mathbb{R}^{d_{in}} \mapsto \mathbb{R}^d$ maps input features to the hidden space, yielding $\mathbf{H}^{(0)} = \mathbf{F}_{\text{in}}(\mathbf{X}; \mathcal{W}_{\text{in}})$, where d denotes the hidden dimensionality and “;” separates module input from the parameters. The module $\mathbf{F}_g : \mathbb{R}^d \times \mathbb{R}^{n \times n} \mapsto \mathbb{R}^d$ applies general graph processing methods (Kipf & Welling, 2017; Rampášek et al., 2022), giving $\mathbf{H}^{(L)} = \mathbf{F}_g(\mathbf{H}^{(0)}, \mathbf{A}; \mathcal{W}_g)$ with L layers. Finally, the output module $\mathbf{F}_{\text{out}} : \mathbb{R}^d \mapsto \mathbb{R}^c$ performs prediction, giving $\hat{\mathbf{C}} = \mathbf{F}_{\text{out}}(\mathbf{H}^{(L)}; \mathcal{W}_{\text{out}})$.

Specifically, the focus of this paper is to model the mappings of the I/O modules \mathbf{F}_{in} and \mathbf{F}_{out} , which can be uniformly formulated as $\mathbf{F}_{i/o} : \mathbb{R}^{d_{src}} \mapsto \mathbb{R}^{d_{tgt}}$, yielding $\mathbf{F}_{i/o}(\mathbf{H}; \mathcal{W}_{i/o})$. The input and output of the modules are termed as “source” and “target” to distinguish from the input and output of the whole model. $\mathbf{F}_{i/o}$ as input modules has $d_{src} = d_{in}$, $d_{tgt} = d$, $\mathbf{H} = \mathbf{X}$, $\mathcal{W}_{i/o} = \mathcal{W}_{\text{in}}$. $\mathbf{F}_{i/o}$ as output modules has $d_{src} = d$, $d_{tgt} = c$, $\mathbf{H} = \mathbf{H}^{(L)}$, $\mathcal{W}_{i/o} = \mathcal{W}_{\text{out}}$.

3.2 MAPPINGS OF THE I/O MODULES

To decouple the model parameters from specific datasets, we start by formulating the module mappings as dimension relations. Note that the nonlinearity in module mappings is obtained via

162 element-wise operations, which are independent of the I/O dimensionality. Therefore, we only focus
 163 on the linear part of the module mappings. Specifically, a linear mapping defines a projection from the
 164 source dimensions onto a new set of target dimensions (Fig. 2(a)). Learning the dimension relations
 165 enables the model to infer the optimal mapping from the source space to the target space.

166 **Theorem 3.1** (Mapping with Dimension Relations). *Given any linear mapping $\mathbf{W} \in \mathbb{R}^{d_{\text{src}} \times d_{\text{tgt}}}$ and
 167 $s \in \mathbb{N}^+$, there always exist two representation matrices $\mathbf{S}_{\text{src}} \in \mathbb{R}^{d_{\text{src}} \times s}$ and $\mathbf{S}_{\text{tgt}} \in \mathbb{R}^{d_{\text{tgt}} \times s}$, such
 168 that $\mathbf{W} = \psi(\mathbf{S}_{\text{src}}, \mathbf{S}_{\text{tgt}})$, where $\psi(\cdot, \cdot)$ is a bilinear composition function.*

170 This theorem shows that we can model the mappings as relations. A typical choice of $\psi(\cdot, \cdot)$ is
 171 the inner product form, where $\psi(\mathbf{S}_{\text{src}}, \mathbf{S}_{\text{tgt}}) = \mathbf{S}_{\text{src}} \mathbf{S}_{\text{tgt}}^\top$. Proof of Theorem 3.1 is presented in
 172 Appendix E.1. Without loss of generality, the I/O modules can be formulated as

$$F_{i/o}(\mathbf{H}; \mathcal{W}_{i/o}) = \sigma[\mathbf{H}\mathbf{W}] = \sigma[\mathbf{H}\psi(\mathbf{S}_{\text{src}}, \mathbf{S}_{\text{tgt}})] = \sigma[\mathbf{H}\mathbf{S}_{\text{src}}\mathbf{S}_{\text{tgt}}^\top], \quad (1)$$

175 where σ can be any nonlinear function.

176 **Decomposition as Semantics.** \mathbf{S}_{src} and \mathbf{S}_{tgt} are the decomposition results of the original weight
 177 matrix \mathbf{W} , which can be interpreted as the semantic embeddings associated with the dimensions of
 178 the source and target spaces, respectively. Each row of \mathbf{S}_{src} and \mathbf{S}_{tgt} encodes the specific semantic
 179 meaning of a dimension, typically characterizing graph nodes and their associated labels. For example,
 180 CoauthorCS (Shchur et al., 2019) provides node features representing the frequency of the paper
 181 keywords for each author’s papers. These semantic descriptions can be embedded into a semantic
 182 space \mathbb{R}^s , giving rise to semantic embeddings such as \mathbf{S}_{src} and \mathbf{S}_{tgt} .

183 **Problems in Traditional Solutions.** In traditional graph learning solutions (Zhou et al., 2020), $F_{i/o}$
 184 is highly sensitive to the source and target spaces. It directly treats the space semantics as parameters
 185 for mapping, where $\mathbf{S}_{\text{src}}, \mathbf{S}_{\text{tgt}} \in \mathcal{W}_{i/o}$. For instance, a single-layer perceptron can be formulated as
 186 $\sigma(\mathbf{H}\mathbf{S}_{\text{src}}\mathbf{S}_{\text{tgt}}^\top; \mathbf{S}_{\text{src}}, \mathbf{S}_{\text{tgt}})$. Consequently, the learned parameter set $\mathcal{W}_{i/o}$ becomes intrinsically tied
 187 to the specific source and target spaces, with its values tailored to particular spaces and its quantity
 188 scales to the number of dimensions in those spaces. This inherent sensitivity significantly limits the
 189 adaptability of pure GNNs to diverse datasets.

190 **Our Solution.** To address this issue, we propose to decouple the parameters $\mathcal{W}_{i/o}$ from the source
 191 and target dimension semantics (Fig. 2), where feature semantics are redefined as parametric relations
 192 and label semantics are sampled uniformly in the semantic space.

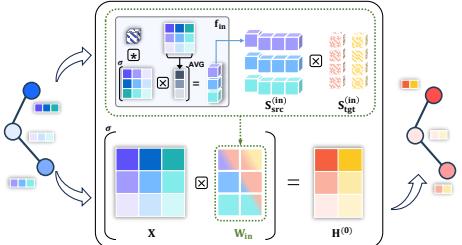
194 3.3 SOURCE-ADAPTIVE INPUT MODULE

196 A input module f_{in} maps the input features to the
 197 hidden space. Based on Eq. 1, f_{in} can be formulated
 198 as $f_{\text{in}}(\mathbf{X}) = \sigma[\mathbf{X}\mathbf{W}_{\text{in}}] = \sigma[\mathbf{X}\mathbf{S}_{\text{src}}^{(\text{in})}\mathbf{S}_{\text{tgt}}^{(\text{in})\top}]$,
 199 where $\mathbf{S}_{\text{tgt}}^{(\text{in})} \in \mathbb{R}^{d_{\text{in}} \times s}$ is a learnable parameter
 200 matrix. Our focus is modeling the source space seman-
 201 tics $\mathbf{S}_{\text{src}}^{(\text{in})} \in \mathbb{R}^{d_{\text{in}} \times s}$ regarding specific inputs, i.e., the
 202 semantics of the input features \mathbf{X} . To decouple the
 203 parameters from the number of source dimensions, $\mathbf{S}_{\text{src}}^{(\text{in})}$
 204 can be formulated as a parametric function of \mathbf{X} :

$$f_{\text{in}} : \mathbb{R}^{n \times d_{\text{in}}} \mapsto \mathbb{R}^{d_{\text{in}} \times s}, \quad \mathbf{S}_{\text{src}}^{(\text{in})} = f_{\text{in}}(\mathbf{X}; \mathcal{W}_{\text{in}}), \quad (2)$$

208 where $f_{\text{in}}(\cdot)$ is subject to two conditions: (1) Permu-
 209 tation invariance to the order of input nodes and equivari-
 210 ance to that of source dimensions; (2) Size independence of the parameter set \mathcal{W}_{in} to the values of n
 211 and d_{in} . Input edges are disregarded in Eq. 2 as our focus lies in unifying the input module across
 212 different node features, while the unification of graph structures is left for future work.

213 **Modeling Features as Sets.** Given the absence of graph structures and the permutation conditions for
 214 Eq. 2, the input features can be modeled as a set of channels $\{\mathbf{X}_{\cdot,j}\}$, where each channel corresponds
 215 to a set of nodes $\{\mathbf{X}_{i,j}\}$. As a result, Eq. 2 is transformed into a set-learning problem at both the
 channel level and the node level. Based on the universal functions for set learning (Zaheer et al.,



216 **Figure 3: Pipeline for the Unified Input**
 217 **Module.** A parametric relation function
 218 is employed to construct the source space
 219 semantics $\mathbf{S}_{\text{src}}^{(\text{in})}$, i.e., the semantics of
 220 input features \mathbf{X} . The target space semantics
 221 $\mathbf{S}_{\text{tgt}}^{(\text{in})}$ is a learnable parameter matrix.

216 $f_{in}(\cdot)$ can be formulated as follows. See Appendix E.2 for detailed derivation.
 217

$$218 \quad f_{in}(\mathbf{X}) = \sigma [\Theta \rho(\mathbf{X}^\top) \mathbf{1} \alpha^\top], \quad \Theta = \frac{d_{in} \mathbf{X}^\top \mathbf{X}}{\mathbf{X}^\top \mathbf{X} 1}. \quad (3)$$

220 $\Theta \in \mathbb{R}^{d_{in} \times d_{in}}$ denotes the channel mixer that provides global information. $\rho(\cdot)$ computes the channel
 221 representations. $\mathbf{1}$ denotes the all-one vector and $\alpha \in \mathbb{R}^{s \times 1}$ is a learnable vector. The multiplication
 222 of α enables different activations through the nonlinearity of $\sigma(\cdot)$, giving s row embeddings in $\mathbf{S}_{src}^{(in)}$.
 223 Although Zaheer et al. also provides an implementation named Deep Sets based on the universal set
 224 function, our input module differs from this specific implementation regarding problem formulation,
 225 conditions, and operator selections. Please refer to Appendix E.2 for a detailed discussion.
 226

227 **Unification via Relations.** A direct implementation for $\rho(\cdot)$ is to take the specific values in \mathbf{X} as
 228 channel representations. However, identical numerical values across different source spaces may
 229 correspond to entirely different semantics, making it nontrivial to uniformly map these values into a
 230 common semantic space via f_{in} . To tackle this, we propose modeling the channel relations as a proxy
 231 for feature semantics. By applying a shared relation function on feature channels, $\rho(\cdot)$ measures
 232 the same relation patterns across diverse source spaces. Crucially, the extracted patterns, such as
 233 similarity and co-variation, carry consistent semantic meaning. This consistency makes them naturally
 234 comparable and provides a stable foundation for unified semantic mapping. Among the typical choices
 235 for relation measure, such as Euclidean distance and inner product, we implement $\rho(\cdot)$ with the scaled
 236 product for its computing efficiency and training stability, giving $\rho(\mathbf{X}^\top) = \mathbf{X}^\top \mathbf{X} / \sqrt{n}$.
 237

238 **Source-adaptive Input.** Compiling Eq. 1-3 gives rise to the input module as
 239

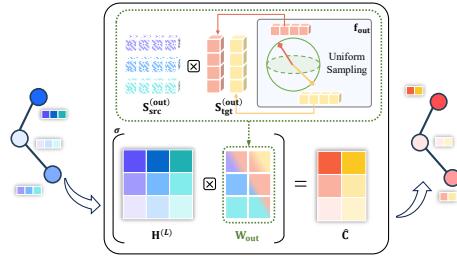
$$238 \quad \mathbf{H}^{(0)} = F_{in} \left(\mathbf{X}; \mathbf{S}_{tgt}^{(in)}, \alpha \right) = \sigma [\mathbf{X} \mathbf{W}_{in}] = \sigma \left[\mathbf{X} f_{in}(\mathbf{X}) \mathbf{S}_{tgt}^{(in)\top} \right], \quad (4)$$

240 where the mapping changes with specific input features, forming source-adaptive input for different
 241 datasets. F_{in} is permutation invariant to the order of the source dimensions (see Appendix E.3) and
 242 has the parameter quantity independent of d_{in} .
 243

244 3.4 TARGET-INSENSITIVE OUTPUT MODULE

245 An output module F_{out} maps the hidden representations to the label space. Based on Eq. 1, F_{out} can
 246 be formulated as $F_{out}(\mathbf{H}^{(L)}) = \sigma[\mathbf{H}^{(L)} \mathbf{W}_{out}] = \sigma[\mathbf{H}^{(L)} \mathbf{S}_{src}^{(out)} \mathbf{S}_{tgt}^{(out)\top}]$, where $\mathbf{S}_{src}^{(out)} \in \mathbb{R}^{d \times s}$ is a learnable
 247 parameter matrix. Unifying the output module requires the modeling of the target space semantics
 248 $\mathbf{S}_{tgt}^{(out)}$, i.e., the semantics of the labels. However, the
 249 label knowledge of downstream datasets is typically
 250 unavailable. To tackle this problem, we propose a two-
 251 step approach, including prediction and assignment. In
 252 the prediction step, F_{out} uniformly samples c points
 253 in \mathbb{R}^s as pseudo-label semantics. By learning the
 254 relations between the parameter matrix $\mathbf{S}_{src}^{(out)}$ and the
 255 pseudo-label semantics, the module can make pre-
 256 dictions without prior label knowledge. In the assign-
 257 ment step, the module assigns the pseudo labels to
 258 the actual labels of each dataset, enabling precise
 259 adaptation to diverse target spaces.
 260

261 **Target-insensitive Prediction.** The pseudo labels are independent of specific datasets, so their
 262 relations should remain consistent, without assuming that some labels are inherently closer than
 263 others. To ensure this, we uniformly sample pseudo labels in the semantic space. Note that the
 264 output module implements the relation function ψ as an inner product, quantifying relations by
 265 the angles between vectors. Accordingly, pseudo-label semantics are uniformly sampled on the
 266 unit sphere and mapped into Cartesian coordinates. In the s -dimensional spherical coordinates, a
 267 pseudo-label semantic vector can be denoted as $(1, \theta_1, \dots, \theta_{s-1})$ with $\theta_i \in [0, \pi]$. To ensure the
 268 coverage of the unit sphere and maintain a uniform density of the semantics across all dimensions,
 269 we sample a number of $c^{1/(s-1)}$ values of equal intervals in $[0, \pi]$ for each θ_i and consider all
 270 combinations of these values. This results in a number of c semantic vectors distributed uniformly



271 **Figure 4: Pipeline for the Unified Out-
 272 put Module.** Target space semantics $\mathbf{S}_{tgt}^{(out)}$,
 273 i.e., the semantics of pseudo labels, are se-
 274 lected uniformly in the semantic space. The
 275 source space semantics $\mathbf{S}_{src}^{(out)}$ is a learnable
 276 parameter matrix.
 277

on the s -dimensional unit sphere. The j -th semantic vector can be converted into the Cartesian coordinates with $\mathbf{S}_{\text{tgt},j,i}^{(\text{out})} = \sigma[\prod_{k=1}^{i-1} \sin^{\text{sgn}(i>1)}(\theta_k) \cos^{\text{sgn}(i<s)}(\theta_i)]$, $i \in \{1, \dots, s\}$ (Blumenson, 1960). sgn denotes the sign function, $\text{sgn}(\text{True}) = 1$ and $\text{sgn}(\text{False}) = 0$. Compiling the space division process as $\mathbf{S}_{\text{tgt}}^{(\text{out})} = \mathbf{f}_{\text{out}}(c, s)$, the output module can be formulated as

$$\hat{\mathbf{C}} = \mathbf{F}_{\text{out}} \left(\mathbf{H}^{(L)}; \mathbf{S}_{\text{src}}^{(\text{out})} \right) = \sigma \left[\mathbf{H}^{(L)} \mathbf{W}_{\text{out}} \right] = \sigma \left[\mathbf{H}^{(L)} \mathbf{S}_{\text{src}}^{(\text{out})} \mathbf{f}_{\text{out}}(c, s)^{\top} \right]. \quad (5)$$

The implementation of the nonlinear function σ depends on the specific tasks (Appendix A).

Pseudo Label Assignment. The prediction step enables the output module to make predictions without prior knowledge of the target labels. When the label knowledge is available, one can further assign the pseudo labels to the real labels. In this paper, we consider two assignment strategies. (1) To explore the potential of pre-trained pure GNNs on general downstream tasks, observed target labels are only included during inference to match pseudo labels with real labels. Given the observed real labels \mathbf{C} , the mapping relations between the pseudo labels and the real labels can be formulated as $\hat{\mathbf{C}} \mathbf{P} (\mathbf{c} \mathbf{I} - \mathbf{1} \mathbf{1}^{\top}) = \mathbf{c} \log(c \mathbf{C})$. The assignment matrix \mathbf{P} can be solved as the least-squares solution of the linear equation without additional training. For detailed derivation, please refer to Appendix E.4. (2) To ensure fair comparison with LM-based graph models in the zero-shot setting, we replace observed labels with label knowledge by employing the embedded label semantics $\mathbf{S}_{\text{tgt}}^{\text{LM}}$ from language models (Li et al., 2024b) and construct the assignment matrix with $\mathbf{f}_{\text{out}}(c, s) \mathbf{S}_{\text{tgt}}^{\text{LM}^{\top}}$.

3.5 PIPELINE AND PRE-TRAINING STRATEGY

GNNs with unified I/O take a mini-batch from a single dataset as input and are optimized on different datasets sequentially. During pre-training, GNNs only perform the first prediction step in the output module. Consequently, traditional optimization objectives that require strict alignment between the ordering of outputs and labels become inapplicable, such as cross-entropy loss and mean squared error. To address this problem, we draw inspiration from contrastive loss (Qiu et al., 2020) and propose to optimize the predicted distributions within the same class and across different classes. Given the node sets of each class $\{\mathcal{V}_1, \dots, \mathcal{V}_c\}$, the loss function is formulated as

$$\mathcal{L} = \frac{1}{n} \left(\underbrace{\sum_{k, i, j, v_j \in \mathcal{V}_i} \left| \bar{\mathbf{C}}_{i,k} - \hat{\mathbf{C}}_{j,k} \right|}_{\mathcal{L}_{\text{inner}}} + \underbrace{2 - \frac{1}{c-1} \sum_{k, i, j, v_j \notin \mathcal{V}_i} \left| \bar{\mathbf{C}}_{i,k} - \hat{\mathbf{C}}_{j,k} \right|}_{\mathcal{L}_{\text{intra}}} \right), \bar{\mathbf{C}}_{i,.} = \frac{1}{|\mathcal{V}_i|} \sum_{j, v_j \in \mathcal{V}_i} \hat{\mathbf{C}}_{j,.}, \quad (6)$$

where $\bar{\mathbf{C}} \in \mathbb{R}^{c \times c}$ denotes the average prediction of each class. The inner-class loss, \mathcal{L}_{inn} , minimizes the prediction variance within the same class by ensuring that they are close to their class average. In contrast, the intra-class loss, \mathcal{L}_{int} , encourages differences in predictions across classes. To ensure positivity, \mathcal{L}_{int} employs a constant bias of 2.

4 EXPERIMENT

4.1 UNIFIED I/O ENABLES PRE-TRAINING WITH PURE GNNs

We now evaluate pre-trained GNNs with unified I/O modules, focusing on (1) whether pure GNNs can be pre-trained on diverse datasets and directly adapted to downstream datasets; (2) how pure GNNs generalize under different conditions, *i.e.*, the amount of training data and parameters, and the gap between the training and inference domains. Various real-world datasets of different scales are adopted from four domains (Tab. S11), including electronic commerce (e-com.), citation, social, and Wikipedia (wiki) graphs. Eight GNN methods are employed as the backbone, including GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT (Veličković et al., 2018a), GIN (Xu et al., 2019), MixHop (Abu-El-Haija et al., 2019), DeepGCN (Li et al., 2019), GraphGPS (Rampášek et al., 2022), and N² (Sun et al., 2024). Detailed experimental setup can be found in Appendix C.

Non-textual Datasets. To evaluate the pre-trained graph models on traditional datasets with non-textual attributes, we conduct a comparison with models that can make inference on downstream

324 **Table 1: Evaluation Results on Non-textual Datasets (Measured by accuracy except ROC**
 325 **AUC for tolokers: %).** Bold values denote the best results per test dataset. SUP denotes the
 326 best-performing results among supervised baselines. SSL denotes the best-performing results among
 327 self-supervised baselines. LP, Lap, and Rand denote Label Propagation, Laplacian decomposition,
 328 and random projection, respectively.

	AMAZON COMPUTERS	CORA	COAUTHOR PHYSICS	ARXIV -YEAR	TWITCH -GAMER	TOLOKERS	CHA-MELEON	ACTOR	AVG. RANK
ORIGINAL SPLIT									
SUP	91.09 \pm 0.13	81.80 \pm 0.28	95.52 \pm 0.20	48.03 \pm 0.41	61.09 \pm 0.32	80.72 \pm 0.26	61.74 \pm 0.30	31.34 \pm 0.20	1.87
SSL	89.28 \pm 0.34	81.50 \pm 0.66	92.32 \pm 0.08	41.63 \pm 0.27	59.19 \pm 0.05	75.92 \pm 0.18	61.01 \pm 0.72	27.61 \pm 0.27	5.62
FUG	88.22 \pm 0.09	30.70 \pm 0.96	91.09 \pm 0.72	42.54 \pm 0.30	58.16 \pm 0.27	75.95 \pm 0.34	22.59 \pm 0.06	25.53 \pm 0.11	7.15
GRAPHANY	82.94 \pm 0.82	79.41 \pm 0.35	92.43 \pm 0.21	38.36 \pm 0.53	59.96 \pm 0.02	78.16 \pm 0.18	61.84 \pm 0.81	28.75 \pm 0.69	5.25
LABEL PROPAGATION	87.27 \pm —	81.53 \pm —	95.67 \pm —	17.02 \pm —	58.30 \pm —	71.9 \pm —	18.86 \pm —	18.82 \pm —	6.87
SVD	83.89 \pm 0.76	79.92 \pm 0.56	92.87 \pm 0.55	42.54 \pm 0.22	59.73 \pm 0.06	76.12 \pm 0.26	62.04 \pm 0.85	30.05 \pm 0.13	4.45
LAP	84.98 \pm 0.78	78.33 \pm 0.84	91.11 \pm 0.78	42.18 \pm 0.14	59.05 \pm 0.12	76.40 \pm 0.20	60.66 \pm 0.55	24.91 \pm 0.02	6.62
RAND	88.85 \pm 1.65	81.64 \pm 1.48	91.75 \pm 2.79	41.37 \pm 1.26	59.03 \pm 1.85	76.02 \pm 1.34	61.22 \pm 1.86	34.39 \pm 1.08	5.12
UNIFIED I/O	89.85 \pm 0.18	82.32 \pm 0.97	92.85 \pm 0.48	42.58 \pm 0.17	59.99 \pm 0.05	76.44 \pm 0.44	62.13 \pm 0.43	35.35 \pm 0.26	2.00
1-SHOT FOR TRAINING-FREE INFERENCE									
SUP	36.80 \pm 0.53	32.00 \pm 0.98	53.44 \pm 0.99	26.87 \pm 0.75	54.83 \pm 0.68	66.17 \pm 0.73	30.18 \pm 0.74	23.44 \pm 0.59	6.50
SSL	55.67 \pm 0.36	42.80 \pm 0.35	77.86 \pm 0.12	29.76 \pm 0.12	57.11 \pm 0.05	67.82 \pm 0.10	25.07 \pm 2.08	20.72 \pm 0.89	4.62
FUG	27.26 \pm 0.29	41.83 \pm 1.03	67.70 \pm 1.35	27.58 \pm 0.48	49.93 \pm 0.48	56.86 \pm 0.93	23.39 \pm 0.36	22.83 \pm 0.17	7.25
GRAPHANY	62.87 \pm 0.31	53.63 \pm 0.49	80.81 \pm 0.75	25.03 \pm 0.58	49.65 \pm 0.41	52.59 \pm 0.38	28.51 \pm 0.43	19.80 \pm 0.54	5.50
LABEL PROPAGATION	46.26 \pm 2.95	18.81 \pm 1.55	22.98 \pm 2.88	18.54 \pm 0.25	53.00 \pm 1.00	66.20 \pm 2.92	18.86 \pm 0.62	11.45 \pm 0.69	8.12
SVD	55.42 \pm 0.31	42.22 \pm 0.83	76.31 \pm 0.12	33.44 \pm 0.25	56.94 \pm 0.10	67.62 \pm 0.49	31.14 \pm 0.18	23.61 \pm 0.06	4.15
LAP	55.53 \pm 1.21	43.73 \pm 0.43	78.41 \pm 1.26	33.08 \pm 0.35	57.00 \pm 0.09	67.62 \pm 0.58	29.82 \pm 0.16	21.89 \pm 0.03	4.15
RAND	58.80 \pm 1.85	42.34 \pm 1.42	76.05 \pm 2.27	32.73 \pm 1.03	57.72 \pm 1.75	67.98 \pm 2.07	30.75 \pm 0.91	24.71 \pm 0.74	3.37
UNIFIED I/O	59.89 \pm 0.80	43.94 \pm 0.50	85.13 \pm 0.68	33.47 \pm 0.14	57.90 \pm 0.15	68.51 \pm 0.13	32.00 \pm 0.11	25.69 \pm 0.12	1.25
3-SHOT FOR TRAINING-FREE INFERENCE									
SUP	65.64 \pm 0.30	37.10 \pm 0.55	76.44 \pm 0.48	27.80 \pm 0.51	54.02 \pm 0.62	68.89 \pm 0.81	33.57 \pm 0.41	20.88 \pm 0.43	5.62
SSL	64.51 \pm 2.68	48.73 \pm 1.86	84.22 \pm 0.12	26.53 \pm 1.11	56.78 \pm 0.16	59.24 \pm 2.24	31.99 \pm 0.37	20.42 \pm 0.15	5.25
FUG	50.59 \pm 1.43	47.77 \pm 2.11	66.52 \pm 2.47	24.02 \pm 0.34	49.83 \pm 0.18	57.93 \pm 1.17	25.47 \pm 0.56	20.35 \pm 0.33	7.75
GRAPHANY	70.04 \pm 0.70	66.32 \pm 0.61	91.33 \pm 0.79	24.74 \pm 0.80	54.71 \pm 0.81	54.12 \pm 0.63	33.69 \pm 0.73	18.55 \pm 0.72	4.37
LABEL PROPAGATION	60.04 \pm 2.64	31.64 \pm 2.22	32.82 \pm 2.47	18.49 \pm 0.06	52.95 \pm 2.12	66.36 \pm 3.47	16.45 \pm 2.18	11.91 \pm 0.73	8.12
SVD	59.86 \pm 0.57	45.23 \pm 0.90	76.88 \pm 0.35	33.44 \pm 0.30	56.93 \pm 0.13	68.47 \pm 0.34	33.64 \pm 0.18	23.01 \pm 0.04	4.81
LAP	56.58 \pm 0.31	47.31 \pm 0.45	76.88 \pm 0.62	34.64 \pm 0.38	56.75 \pm 0.11	69.34 \pm 0.35	32.21 \pm 0.16	21.54 \pm 0.02	4.93
RAND	66.11 \pm 1.00	48.98 \pm 1.57	79.31 \pm 1.34	35.05 \pm 1.07	56.96 \pm 1.78	69.09 \pm 1.09	33.68 \pm 1.00	24.99 \pm 0.74	2.75
UNIFIED I/O	68.33 \pm 0.28	49.21 \pm 0.91	84.68 \pm 0.67	35.32 \pm 0.29	57.64 \pm 0.06	71.77 \pm 0.25	33.76 \pm 0.11	25.20 \pm 0.11	1.37

351 datasets without additional training efforts, including Label Propagation (Kothari & Jain, 2002),
 352 GraphAny (Zhao et al., 2024a), and parameter-free feature alignment methods SVD-based (Sun et al.,
 353 2023), Laplacian-based (Sun et al., 2025), and random-based (Tang et al., 2024) input combined
 354 with our output module. We also include parameterized feature alignment method FUG (Zhao
 355 et al., 2024b), supervised baselines (GCN (Kipf & Welling, 2017), GraphSAGE (Hamilton et al.,
 356 2017), GAT (Veličković et al., 2018a)) and self-supervised baselines, including contrastive-based
 357 methods (DGI (Veličković et al., 2018b), GraphCL (You et al., 2020), GraphACL (Xiao et al.,
 358 2023), GRACE (Zhu et al., 2020), SimGRACE (Xia et al., 2022)) and reconstruction-based methods
 359 (MaskGAE (Li et al., 2023) and GraphMAE2 (Hou et al., 2023)). For FUG and self-supervised
 360 baselines, we follow GraphAny to solve the mapping matrix from the learned hidden representations
 361 to the labels in a training-free manner. The models are pre-trained on datasets from four distinct
 362 domains: amazon-ratings, ogbn-arxiv, Facebook, and roman-empire. The best results among the eight
 363 GNN backbones are reported for both our unified I/O and parameter-free feature alignment methods.
 364

365 Results are summarized in Tab. 1. Compared to supervised baselines, pre-training with unified I/O
 366 achieves comparable or even superior performance on the original split. Under 1-shot and 3-shot
 367 settings, unified I/O consistently outperforms the supervised baselines. These results demonstrate that
 368 model pre-training is necessary for graph learning, particularly in data-scarce settings. Compared to
 369 other baselines, pre-trained GNNs with unified I/O obtain clear advantages on heterophilic datasets,
 370 whereas GraphAny performs better on homophilic datasets in certain cases. This difference reflects
 371 the higher transferability of node-feature knowledge, compared to structural knowledge learned by
 372 GNNs with unified I/O (see Appendix D.4 for details). Nevertheless, pure GNNs with unified I/O
 373 achieve the best average rank across different datasets. This indicates the superior ability of our
 374 unified I/O to support effective pre-training and downstream adaptation.

375 **Textual Datasets.** In comparison to the LM-based models, we adopt textual datasets (Chen et al.,
 376 2024c) for pre-training and inference. Models are pre-trained on PubMed, bookhistory, amazon-
 377 ratings, and arxiv with textual features. To ensure fair comparison, pure GNNs employ the second
 378 pseudo label assignment strategy in Sec 3.4. Tab. 2 presents comparison results with methods
 379 employing LM as I/O (OFA (Liu et al., 2023a), ZeroG (Li et al., 2024b), LLaGA (Chen et al., 2024a),
 380 GraphCLIP (Zhu et al., 2025), and RiemannGFM (Sun et al., 2025)), and parameter-free feature

378
 379 **Table 2: Evaluation Results on Textual Datasets (Measured by accuracy: %).** Bold values
 380 denote the best results per test dataset. LP, Lap, and Rand denote Label Propagation, Laplacian
 381 decomposition, and random projection, respectively.

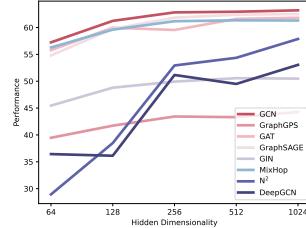
	WIKICS	BOOKCHILD	COMPUTERS	PHOTO	SPORTSFIT	PRODUCTS	DBLP	TOLOOKERS
LLAGA	2.65 ± 0.07	21.05 ± 0.16	23.00 ± 0.04	5.10 ± 0.04	5.45 ± 0.24	10.40 ± 0.02	11.55 ± 0.07	71.80 ± 0.28
ZEROG	37.13 ± 0.41	12.62 ± 2.25	6.72 ± 0.52	3.84 ± 0.17	30.04 ± 0.20	24.79 ± 1.68	54.86 ± 0.52	78.13 ± 0.01
GRAPHCLIP	3.54 ± 0.51	16.16 ± 0.01	25.43 ± 0.16	4.19 ± 0.01	7.61 ± 0.10	9.31 ± 0.08	34.94 ± 0.37	78.01 ± 0.07
OFA	33.89 ± 0.09	1.98 ± 0.01	5.98 ± 0.10	14.72 ± 0.01	12.65 ± 0.01	2.64 ± 0.02	51.01 ± 0.02	78.16 ± 0.01
RIEMANNGFM	4.26 ± 0.11	1.74 ± 0.06	5.77 ± 0.01	6.93 ± 0.49	3.83 ± 0.02	2.45 ± 0.05	38.68 ± 0.37	77.65 ± 0.01
SVD	30.24 ± 0.37	16.16 ± 0.34	27.65 ± 0.43	49.15 ± 0.98	41.93 ± 1.04	13.04 ± 0.20	46.91 ± 0.60	78.50 ± 0.52
LAP	23.43 ± 0.24	30.47 ± 0.82	27.05 ± 0.38	49.09 ± 0.64	42.05 ± 1.43	13.05 ± 0.28	43.63 ± 0.39	78.47 ± 0.58
RAND	23.41 ± 0.36	30.32 ± 1.01	29.82 ± 0.38	49.04 ± 1.22	41.83 ± 1.13	13.42 ± 0.78	47.06 ± 0.77	78.16 ± 0.83
UNIFIED I/O	32.63 ± 0.21	31.60 ± 0.69	30.82 ± 0.26	49.20 ± 0.31	42.87 ± 1.03	15.93 ± 0.32	52.04 ± 0.86	78.66 ± 0.49

389
 390 alignment methods. Pure GNNs with our unified I/O achieve superior performance to baselines
 391 except for ZeroG on WikiCS, products, and DBLP. Notably, baseline models with LM introduce
 392 knowledge gained from enormous training data for graph learning. In contrast, pure GNNs with only
 393 the knowledge of PubMed, bookhistory, amazon-ratings, and arxiv during pre-training achieve better
 394 performance. Compared to ZeroG, which is restricted to graphs with rich textual attributes, pure
 395 GNNs can be applied to either textual or non-textual datasets. This demonstrates the potential of
 396 pre-training with pure GNNs in tackling various graph tasks.

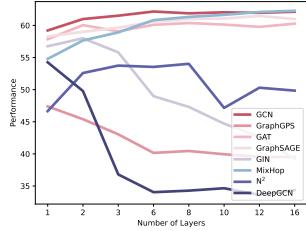
398 4.2 PRE-TRAINING CONDITION STUDY

400 **Pre-training with Scaling Parameters.** Pure GNNs are
 401 pre-trained on amazon-ratings, ogbn-arxiv, Facebook, and
 402 roman-empire, with scaling parameters. To mitigate the
 403 impact of the domain gap, one dataset is selected from
 404 each domain, encompassing both homophilic and het-
 405 erophilic graphs. Performance results are averaged across
 406 test graphs (Tab. S11). Fig. 5(a) presents the impact of
 407 hidden dimensionality d , showing that larger values of d
 408 consistently improve performance across all GNN archi-
 409 tectures. In contrast, the impact of the number of layers
 410 L varies by architecture. As shown in Fig. 5(b), deeper
 411 network configurations consistently enhance performance
 412 for GCN, GAT, GraphSAGE, and MixHop, whereas GIN,
 413 DeepGCN, and GraphGPS experience performance de-
 414 gradation with more layers. For N^2 , performance initially
 415 improves with more layers but eventually declines when
 416 L exceeds 8. In Appendix D.2, we examine larger pa-
 417 rameter configurations for GCN and GIN. The results
 418 show that increasing the number of layers leads to over-
 419 parameterization, whereas enlarging the hidden dimen-
 420 sion does not. All these results suggest that scaling up hidden dimensionality is the prior strategy for
 421 enhancing pre-trained GNN models, while the configura-
 422 tion of the number of layers depends on the
 423 specific GNN architectures.

424 **Pre-training with Scaling Data.** To assess the effect of data scaling in GNN pre-training, we consider
 425 two strategies: (1) increasing the number of training datasets (one, three, and four combined), and
 426 (2) enlarging individual datasets (1k, 10k, and 100k nodes per dataset). Detailed combinations of
 427 the training and test datasets are provided in Appendix Tab. S11, S12. Due to the varying difficulty
 428 of specific downstream tasks, model performance cannot be directly compared across different test
 429 datasets. To address this problem, training datasets are split into three groups with an average number
 430 of nodes around 1k, 10k, and 100k. Model performance is then normalized with the group average
 431 performance. For more analysis on the data scaling strategies, please refer to Appendix D.3. The
 432 averaged results over 1,848 data points across different backbones and test datasets are presented in
 433 Fig. 6. We can see that increasing either the minimum dataset sizes or increasing training datasets
 434 with the same node scale improves the model performance. This suggests that scaling up training
 435 data enhances the adaptation ability of the pre-trained models to test datasets.

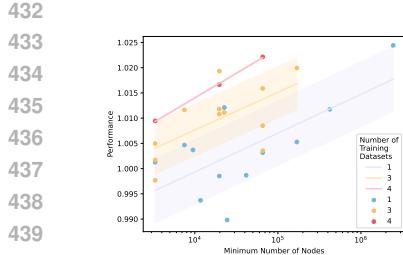


(a) Hidden Dimensions



(b) Layers

Figure 5: Pre-training with Scaling Parameters.



441
442
443
444
445
446
447

Figure 6: Pre-training with Scaling Data. Different dot colors indicate the number of datasets for pre-training. The lines denote trending-fitting with dots under the same number of dataset combinations.

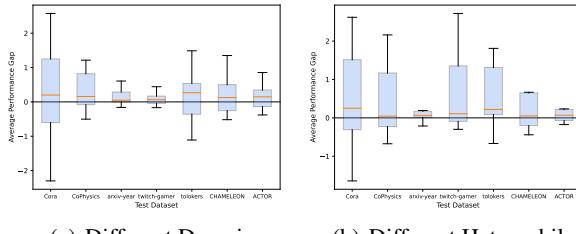


Figure 7: Adaptation Results with Different Domain Gap. The cross-domain performance gap is calculated as the performance difference between GNNs pre-trained on the same-domain group as the test datasets and those on the different-domain group. The heterophily performance gap is computed by subtracting the same homophily–heterophily training type as the test datasets with that of the opposite type.

Inference with Different Domain Gap. We further evaluate pre-trained GNNs on adaptation tasks: (1) pre-training in one domain and adapting to the others, (2) pre-training across three domains and adapting to the remaining one, and (3) transferring across datasets with varying homophily–heterophily. Dataset combinations are listed in Tab. S11, S12.

The adaptation results for tasks (1) and (2) are presented in Fig. 7(a). For each test dataset, the training datasets are categorized into two groups: those collected from the same domain as the test dataset and those from different domains. The performance gap is computed by subtracting the performance of GNNs pre-trained on the different-domain group from that of the same-domain group ($\text{Metric}_{\text{same}} - \text{Metric}_{\text{diff}}$). To avoid the influence of the dataset scales, the model performance is first grouped based on the average number of nodes per training dataset (1k, 10k, and 100k), and then averaged and compared within each group. As shown in Fig. 7(a), pre-trained GNNs generally exhibit positive performance gaps between the same-domain and different-domain groups across diverse test datasets. This observation indicates that aligning the training and test domains tends to improve model performance during inference.

The adaptation results for task (3) with different homophily-heterophily are presented in Fig. 7(b). When comparing on the same test dataset, the training datasets are categorized into two groups: those with the same homophily-heterophily as the test dataset and those with the opposite. The performance gap is the performance difference between GNNs pre-trained on the same-homophily-heterophily group and that of the opposite-homophily-heterophily group ($\text{Metric}_{\text{same}} - \text{Metric}_{\text{oppo}}$). Since training datasets of certain scales are missing for heterophily/homophily graphs in certain domains, our experimental analysis for task (3) directly averages results by mixing all training scales together. Fig. 7(b) shows that models pre-trained on datasets with the same homophily-heterophily as the test datasets tend to achieve better performance during inference. This suggests that one may construct a training dataset based on the homophily-heterophily of downstream tasks to gain better results. We also compared adaptation results with the same pre-training datasets in Appendix D.4. Results in Fig. 11(a) show that models pre-trained on either homophilic or heterophilic graphs gain better results on heterophilic graphs than homophilic graphs. This can be attributed to the better transferability of the node feature knowledge learned by our unified I/O than the structural knowledge (Fig. 11(d)), where node feature knowledge better benefits the adaptation to heterophilic graphs (Fig. 11(b)) and structural knowledge benefits homophilic tasks (Fig. 11(c)). Please refer to Appendix D.4 for more details.

4.3 PRE-TRAINED PURE GNNs PROVIDE COMPETITIVE GRAPH OPERATORS

Our unified I/O modules enable seamless adaptation of pure GNN architectures across diverse datasets. To further evaluate the effectiveness of the pre-trained GNN operators, we fine-tune the models pre-trained on amazon-ratings, ogbn-arxiv, Facebook, and roman-empire. The internal GNN module F_g within the pre-trained models is frozen during the fine-tuning. The unification-oriented I/O function

486
 487 **Table 3: Evaluation Results of Fine-tuning the I/O Modules in the Pre-trained GNNs (Measured**
 488 **by accuracy except ROC AUC for tolokers: %).** Bold values denote the best results per test dataset.

	CORA	PUBMED	AMAZON COMPUTERS	WIKICCS	AMAZON -RATINGS	MINESWEEPER	TOLOKERS
SELF-SUPERVISED LEARNING AND SUPERVISED OUTPUT LEARNING							
DGI	84.00 \pm 0.28	83.73 \pm 0.41	82.11 \pm 0.16	75.05 \pm 0.39	40.80 \pm 0.74	88.45 \pm 0.38	77.73 \pm 0.14
GRACE	84.30 \pm 0.57	85.81 \pm 0.18	89.67 \pm 0.36	75.80 \pm 0.56	42.19 \pm 0.12	86.15 \pm 0.45	75.06 \pm 0.14
GRAPHACL	75.00 \pm 0.75	82.93 \pm 0.17	80.58 \pm 0.15	68.00 \pm 0.75	40.65 \pm 0.14	87.23 \pm 0.11	77.68 \pm 0.25
GraphCL	63.33 \pm 1.76	63.53 \pm 1.08	84.57 \pm 0.34	76.32 \pm 0.18	42.35 \pm 0.37	79.85 \pm 0.12	80.03 \pm 0.12
MASKGAE	75.13 \pm 1.78	75.27 \pm 1.03	92.15 \pm 0.05	78.25 \pm 0.20	43.54 \pm 0.30	84.33 \pm 0.16	81.13 \pm 0.34
SimGRACE	67.07 \pm 0.82	77.63 \pm 0.82	87.44 \pm 0.18	78.75 \pm 0.28	43.46 \pm 0.23	84.23 \pm 0.16	80.29 \pm 0.30
GraphMAE2	79.50 \pm 0.51	67.07 \pm 0.91	91.03 \pm 0.19	76.24 \pm 0.11	40.95 \pm 0.71	80.16 \pm 0.10	80.17 \pm 0.07
SUPERVISED LEARNING							
GraphSAGE	78.83 \pm 0.50	88.11 \pm 0.05	91.09 \pm 0.02	78.13 \pm 0.15	45.71 \pm 0.38	90.55 \pm 0.10	83.06 \pm 0.59
GAT	77.51 \pm 2.35	85.30 \pm 0.15	89.78 \pm 0.02	76.35 \pm 0.80	44.54 \pm 0.52	82.07 \pm 1.17	77.37 \pm 0.28
GIN	77.36 \pm 0.15	85.13 \pm 0.55	90.51 \pm 0.80	74.02 \pm 0.62	46.33 \pm 0.11	74.93 \pm 0.58	60.93 \pm 2.25
GCN	80.35 \pm 0.25	85.44 \pm 0.50	90.66 \pm 0.13	78.55 \pm 0.01	46.71 \pm 0.25	76.43 \pm 1.05	77.79 \pm 0.12
GraphGPS	58.61 \pm 0.05	85.21 \pm 0.30	88.87 \pm 0.20	75.18 \pm 0.04	47.85 \pm 0.29	89.64 \pm 0.24	79.82 \pm 0.06
PRE-TRAINING AND I/O FINE-TUNING							
UNIFIED I/O	84.63 \pm 0.12	88.91 \pm 0.45	92.33 \pm 0.25	78.98 \pm 0.12	51.59 \pm 0.05	91.39 \pm 0.15	83.29 \pm 0.13

505 $f_{in}(\cdot)$ in Eq. 4 and $f_{out}(\cdot)$ in Eq. 5 are replaced with learnable parameters. The best fine-tuning
 506 results among different backbones on downstream graphs are summarized in Tab. 3. For full results,
 507 please refer to Appendix D.5. The pre-trained operators achieve superior performance compared
 508 to supervised methods and self-supervised methods (DGI (Veličković et al., 2018b), GRACE (Zhu
 509 et al., 2020), GraphACL (Xiao et al., 2023), GraphCL (You et al., 2020), SimGRACE (Xia et al.,
 510 2022), MaskGAE (Li et al., 2023), GraphMAE2 (Hou et al., 2023)). Notably, the pre-trained
 511 operators require minimal hyperparameter tuning, with only dropout adjusted during fine-tuning. This
 512 significantly simplifies the hyperparameter tuning process, enabling efficient adaptation of pre-trained
 513 GNNs to various graphs with promising performance.

515 4.4 COST ANALYSIS ON THE UNIFIED I/O

517 Both the space complexity and time complexity of our unified I/O are $O(n)$, with $d_{in}, d, s, c \ll n$.
 518 Empirical time consumption and information loss results are provided in Appendix D.6 and D.7.
 519 Results show that unified I/O maintains a reasonable time cost under various scales of graphs and
 520 numbers of input features, and does not cause severe information loss. This demonstrates the
 521 effectiveness of our unified I/O in learning input and output mappings.

523 5 CONCLUSION

526 In this paper, we achieved unified input and output for graphs, enabling pre-training with pure GNNs
 527 across diverse datasets. To decouple learnable parameters from the number and semantics of input
 528 features and output labels, our unified I/O modules employ a shared relation function for the feature
 529 semantics and uniformly sampled points for the label semantics. By integrating our unified I/O
 530 modules with various GNN architectures, we demonstrated that pure GNNs can serve as effective
 531 graph learners for direct adaptation to downstream tasks and provide competitive pre-trained graph
 532 operators. For the usage of LLM and the limitation discussion, please refer to Appendix F and G.

534 REPRODUCIBILITY STATEMENT

536 We have made efforts to ensure the reproducibility of our work. Specifically, we provide a detailed de-
 537 scription of the experimental setups in Appendix C, including evaluation settings, dataset information,
 538 architecture configurations, and hyperparameter setups. All datasets employed are publicly available.
 539 In addition, the code implementation of our proposed methods is provided in the supplementary
 material. The complete source code will be released publicly upon acceptance of the paper.

540 REFERENCES
541

542 Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
543 Harutyunyan, Greg Ver Steeg, and Aram Galstyan. MixHop: Higher-Order Graph Convolutional
544 Architectures via Sparsified Neighborhood Mixing. In *International Conference on Machine
545 Learning*, pp. 21–29, Long Beach, USA, 2019. PMLR.

546 L. E. Blumenson. A Derivation of n-Dimensional Spherical Coordinates. *The American Mathematical
547 Monthly*, 67(1):63–66, 1960.

548 Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka, and Tom M.
549 Mitchell. Toward an architecture for never-ending language learning. In *Proceedings of the
550 Twenty-Fourth AAAI Conference on Artificial Intelligence*, AAAI’10, pp. 1306–1313, Atlanta,
551 Georgia, July 2010. AAAI Press.

552 Mark Chen, Jerry Tworek, and Heewoo et al. Jun. Evaluating Large Language Models Trained on
553 Code, 2021.

554 Runjin Chen, Tong Zhao, Ajay Kumar Jaiswal, Neil Shah, and Zhangyang Wang. LLaGA: Large
555 Language and Graph Assistant. In *International Conference on Machine Learning*, pp. 7809–7823.
556 PMLR, 2024a.

557 Zhikai Chen, Haitao Mao, Hang Li, Wei Jin, Hongzhi Wen, Xiaochi Wei, Shuaiqiang Wang, Dawei
558 Yin, Wenqi Fan, Hui Liu, and Jiliang Tang. Exploring the Potential of Large Language Models
559 (LLMs) in Learning on Graphs. *SIGKDD Explor. Newsl.*, 25(2):42–61, 2024b.

560 Zhikai Chen, Haitao Mao, Jingzhe Liu, Yu Song, Bingheng Li, Wei Jin, Bahare Fatemi, Anton
561 Tsitsulin, Bryan Perozzi, Hui Liu, and Jiliang Tang. Text-space Graph Foundation Models:
562 Comprehensive Benchmarks and New Insights. In *Advances in Neural Information Processing
563 Systems*, volume 37, pp. 7464–7492, December 2024c.

564 Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
565 Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The Cityscapes Dataset for Semantic
566 Urban Scene Understanding. In *IEEE Conference on Computer Vision and Pattern Recognition*,
567 pp. 3213–3223, 2016.

568 Taoran Fang, Yunchao Zhang, Yang Yang, Chumping Wang, and Lei Chen. Universal Prompt Tuning
569 for Graph Neural Networks. *Advances in Neural Information Processing Systems*, 36:52464–52489,
570 2023.

571 Anchun Gui, Jinqiang Ye, and Han Xiao. G-Adapter: Towards structure-aware parameter-efficient
572 transfer learning for graph transformer networks. In *Proceedings of the Thirty-Eighth AAAI
573 Conference on Artificial Intelligence*, volume 38, pp. 12226–12234. AAAI Press, 2024.

574 William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
575 In *International Conference on Neural Information Processing Systems*, pp. 1025–1035, Red Hook,
576 USA, 2017. Curran Associates Inc.

577 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
578 Steinhardt. Measuring Massive Multitask Language Understanding. In *International Conference
579 on Learning Representations*, 2020.

580 Zhenyu Hou, Yufei He, Yukuo Cen, Xiao Liu, Yuxiao Dong, Evgeny Kharlamov, and Jie Tang.
581 GraphMAE2: A Decoding-Enhanced Masked Self-Supervised Graph Learner. In *Proceedings
582 of the ACM Web Conference 2023*, pp. 737–746, New York, NY, USA, 2023. Association for
583 Computing Machinery. doi: 10.1145/3543507.3583379.

584 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
585 and Jure Leskovec. Open Graph Benchmark: Datasets for Machine Learning on Graphs. In *Ad-
586 vances in Neural Information Processing Systems*, volume 33, pp. 22118–22133. Curran Associates,
587 Inc., 2020.

594 Qian Huang, Hongyu Ren, Peng Chen, Gregor Kržmanc, Daniel Zeng, Percy Liang, and Jure
 595 Leskovec. PRODIGY: Enabling In-context Learning Over Graphs. In *Conference on Neural*
 596 *Information Processing Systems*, 2023.

597

598 Renhong Huang, Jiarong Xu, Xin Jiang, Chenglu Pan, Zhiming Yang, Chunping Wang, and Yang
 599 Yang. Measuring Task Similarity and Its Implication in Fine-Tuning Graph Neural Networks. In
 600 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38 of 11, pp. 12617–12625,
 601 2024.

602 Yongcheng Jing, Chongbin Yuan, Li Ju, Yiding Yang, Xinchao Wang, and Dacheng Tao. Deep Graph
 603 Reprogramming. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 604 *Recognition*, pp. 24345–24354, 2023.

605

606 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
 607 RNNs: Fast Autoregressive Transformers with Linear Attention. In *Proceedings of the 37th*
 608 *International Conference on Machine Learning*, pp. 5156–5165. PMLR, November 2020.

609 Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In *International*
 610 *Conference for Learning Representations*, San Diego, USA, 2015.

611

612 Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
 613 Networks. In *International Conference on Learning Representations*, Toulon, France, 2017.

614

615 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 616 Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
 617 Segment Anything, 2023.

618 Lecheng Kong, Jiarui Feng, Hao Liu, Chengsong Huang, Jiaxin Huang, Yixin Chen, and Muhan
 619 Zhang. GOFA: A Generative One-For-All Model for Joint Graph Language Modeling. In *The*
 620 *Thirteenth International Conference on Learning Representations*, October 2024.

621

622 R. Kothari and V. Jain. Learning from labeled and unlabeled data. In *Proceedings of the 2002*
 623 *International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)*, volume 3,
 624 pp. 2803–2808 vol.3, 2002.

625 Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. DeepGCNs: Can GCNs Go As Deep
 626 As CNNs? In *IEEE/CVF International Conference on Computer Vision*, pp. 9266–9275, Seoul,
 627 South Korea, 2019. IEEE.

628

629 Jintang Li, Ruofan Wu, Wangbin Sun, Liang Chen, Sheng Tian, Liang Zhu, Changhua Meng,
 630 Zibin Zheng, and Weiqiang Wang. What's Behind the Mask: Understanding Masked Graph
 631 Modeling for Graph Autoencoders. In *Proceedings of the 29th ACM SIGKDD Conference on*
 632 *Knowledge Discovery and Data Mining*, pp. 1268–1279, New York, NY, USA, 2023. Association
 633 for Computing Machinery. doi: 10.1145/3580305.3599546.

634

635 Shengrui Li, Xuetong Han, and Jing Bai. AdapterGNN: Parameter-Efficient Fine-Tuning Improves
 636 Generalization in GNNs. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 637 volume 38, pp. 13600–13608, 2024a.

638

639 Yuhan Li, Peisong Wang, Zhixun Li, Jeffrey Xu Yu, and Jia Li. ZeroG: Investigating Cross-dataset
 640 Zero-shot Transferability in Graphs. In *ACM SIGKDD Conference on Knowledge Discovery and*
 641 *Data Mining*, pp. 1725–1735, New York, NY, USA, 2024b. Association for Computing Machinery.

642

643 Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
 644 Ser Nam Lim. Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and
 645 Strong Simple Methods. In *Advances in Neural Information Processing Systems*, volume 34, pp.
 646 20887–20902. Curran Associates, Inc., 2021.

647

648 Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan Zhang.
 649 One For All: Towards Training One Graph Model For All Classification Tasks. In *International*
 650 *Conference on Learning Representations*, 2023a.

648 Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. GraphPrompt: Unifying Pre-Training and
 649 Downstream Tasks for Graph Neural Networks. In *Proceedings of the ACM Web Conference 2023*,
 650 pp. 417–428, New York, NY, USA, 2023b. Association for Computing Machinery.
 651

652 Péter Mernyei and Cătălina Cangea. Wiki-CS: A Wikipedia-Based Benchmark for Graph Neural
 653 Networks. In *International Conference on Machine Learning Workshop on Graph Representation
 654 Learning and Beyond*. arXiv, January 2022.

655 Carl D Meyer. *Matrix analysis and applied linear algebra*. SIAM, 2023.
 656

657 Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
 658 Neumann. TUDataset: A collection of benchmark datasets for learning with graphs. In *Interna-
 659 tional Conference on Machine Learning Workshop on Graph Representation Learning and Beyond*,
 660 Virtual Only, 2020. arXiv.

661 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
 662 Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, and Red et al.
 663 Avila. GPT-4 Technical Report, 2024.
 664

665 Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-GCN: Geometric
 666 Graph Convolutional Networks. In *International Conference on Learning Representations*, 2019.
 667

668 Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A
 669 critical look at the evaluation of GNNs under heterophily: Are we really making progress? In *The
 670 Eleventh International Conference on Learning Representations*, Kigali, Rwanda, 2023.

671 Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
 672 and Jie Tang. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. In *ACM
 673 SIGKDD International Conference on Knowledge Discovery & Data Mining*, pp. 1150–1160, New
 674 York, NY, USA, 2020. Association for Computing Machinery.
 675

676 Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
 677 minique Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. In *Advances in
 678 Neural Information Processing Systems*, volume 35, pp. 14501–14515, New Orleans, USA, 2022.

679 Benedek Rozemberczki, Carl Allen, Rik Sarkar, and xx Thilo Gross. Multi-Scale attributed node
 680 embedding. *Journal of Complex Networks*, 9(1):1–22, April 2021. ISSN 2051-1329.
 681

682 Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
 683 Collective Classification in Network Data. *AI Magazine*, 29(3):93, 2008. ISSN 0738-4602,
 684 0738-4602.

685 Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
 686 of Graph Neural Network Evaluation. *arXiv:1811.05868 [cs, stat]*, 2019.
 687

688 Junshu Sun, Chenxue Yang, Xiangyang Ji, Qingming Huang, and Shuhui Wang. Towards Dynamic
 689 Message Passing on Graphs. In *Conference on Neural Information Processing Systems*, December
 690 2024.

691 Li Sun, Zhenhao Huang, Suyang Zhou, Qiqi Wan, Hao Peng, and Philip S. Yu. RiemannGFM:
 692 Learning a Graph Foundation Model from Structural Geometry. In *THE WEB CONFERENCE
 693 2025*, January 2025.

694 Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. GPPT: Graph Pre-training and
 695 Prompt Tuning to Generalize Graph Neural Networks. In *Proceedings of the 28th ACM SIGKDD
 696 Conference on Knowledge Discovery and Data Mining*, pp. 1717–1727, New York, NY, USA,
 697 2022. Association for Computing Machinery.
 698

699 Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. All in One: Multi-Task Prompting
 700 for Graph Neural Networks. In *ACM SIGKDD Conference on Knowledge Discovery and Data
 701 Mining*, pp. 2120–2131, New York, NY, USA, 2023. Association for Computing Machinery.

702 Zhen Tan, Ruocheng Guo, Kaize Ding, and Huan Liu. Virtual Node Tuning for Few-shot Node
 703 Classification. In *ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp.
 704 2177–2188, New York, NY, USA, 2023. Association for Computing Machinery.

705

706 Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
 707 GraphGPT: Graph Instruction Tuning for Large Language Models. In *Proceedings of the 47th*
 708 *International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp.
 709 491–500, New York, NY, USA, 2024. Association for Computing Machinery.

710

711 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 712 Bengio. Graph Attention Networks. In *International Conference on Learning Representations*,
 713 Vancouver, Canada, 2018a.

714

715 Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon
 716 Hjelm. Deep Graph Infomax. In *International Conference on Learning Representations*, 2018b.

717

718 Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov.
 719 Can language models solve graph problems in natural language? In *International Conference on*
 720 *Neural Information Processing Systems*, pp. 30840–30861, Red Hook, NY, USA, 2023. Curran
 721 Associates Inc.

722

723 Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’ networks. *Nature*,
 724 393(6684):440–442, 1998. ISSN 1476-4687. doi: 10.1038/30918.

725

726 Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
 727 plifying Graph Convolutional Networks. In *International Conference on Machine Learning*, pp.
 728 6861–6871, Long Beach, USA, 2019. PMLR.

729

730 Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z. Li. SimGRACE: A Simple Framework for
 731 Graph Contrastive Learning without Data Augmentation. In *Proceedings of the ACM Web Confer-
 732 ence 2022*, pp. 1070–1079, New York, NY, USA, 2022. Association for Computing Machinery.
 733 doi: 10.1145/3485447.3512156.

734

735 Teng Xiao, Huaisheng Zhu, Zhengyu Chen, and Suhang Wang. Simple and Asymmetric Graph
 736 Contrastive Learning without Augmentations. In *Advances in Neural Information Processing*
 737 *Systems*, volume 36, pp. 16129–16152, 2023.

738

739 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
 740 Networks? In *International Conference on Learning Representations*, New Orleans, LA, USA,
 741 2019.

742

743 Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
 744 contrastive learning with augmentations. In *Proceedings of the 34th International Conference*
 745 *on Neural Information Processing Systems*, pp. 5812–5823, Red Hook, NY, USA, 2020. Curran
 746 Associates Inc.

747

748 Xingtong Yu, Yuan Fang, Zemin Liu, Yuxia Wu, Zhihao Wen, Jianyuan Bo, Xinming Zhang, and
 749 Steven C. H. Hoi. A Survey of Few-Shot Learning on Graphs: From Meta-Learning to Pre-Training
 750 and Prompt Learning, 2024.

751

752 Xingtong Yu, Zechuan Gong, Chang Zhou, Yuan Fang, and Hui Zhang. SAMGPT: Text-free Graph
 753 Foundation Model for Multi-domain Pre-training and Cross-domain Adaptation. In *THE WEB
 754 CONFERENCE 2025*, 2025.

755

756 Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
 757 Alexander J Smola. Deep Sets. In *Advances in Neural Information Processing Systems*, volume 30.
 758 Curran Associates, Inc., 2017.

759

760 Libo Zhang, Lutao Jiang, Ruyi Ji, and Heng Fan. PIDRay: A Large-Scale X-ray Benchmark for Real-
 761 World Prohibited Item Detection. *International Journal of Computer Vision*, 131(12):3170–3192,
 762 2023a.

756 Wen Zhang, Yushan Zhu, Mingyang Chen, Yuxia Geng, Yufeng Huang, Yajing Xu, Wenting Song,
757 and Huajun Chen. Structure Pretraining and Prompt Tuning for Knowledge Graph Transfer. In
758 *Proceedings of the ACM Web Conference*, pp. 2581–2590, New York, NY, USA, 2023b. Association
759 for Computing Machinery.

760 Jianan Zhao, Zhaocheng Zhu, Mikhail Galkin, Hesham Mostafa, Michael M. Bronstein, and Jian
761 Tang. Fully-inductive Node Classification on Arbitrary Graphs. In *The Thirteenth International*
762 *Conference on Learning Representations*, 2024a.

763 Jitao Zhao, Di Jin, Meng Ge, Lianze Shan, Xin Wang, Dongxiao He, and Zhiyong Feng. FUG:
764 Feature-Universal Graph Contrastive Pre-training for Graphs with Diverse Node Features. In *The*
765 *Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024b.

766 Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
767 Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
768 *AI Open*, 1:57–81, 2020. ISSN 2666-6510.

769 Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep Graph Contrastive
770 Representation Learning. In *International Conference on Machine Learning Workshop on Graph*
771 *Representation Learning and Beyond*, 2020.

772 Yun Zhu, Haizhou Shi, Xiaotang Wang, Yongchao Liu, Yaoke Wang, Boci Peng, Chuntao Hong,
773 and Siliang Tang. GraphCLIP: Enhancing Transferability in Graph Foundation Models for Text-
774 Attributed Graphs. In *THE WEB CONFERENCE 2025*, 2025.

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A GENERAL TARGET-INSENSITIVE OUTPUT MODULE
811812 Sec. 3.4 takes node classification as an example to formulate our unified output module. In practice,
813 our method can be applied to general classification and regression tasks. Specifically, the general
814 output module in Eq. 5 can be formulated as

815
$$\hat{\mathbf{C}} = \mathbf{F}_{\text{out}}(\mathbf{H}^{(L)}) = \sigma \left(\mathbf{g}(\mathbf{H}^{(L)}) \mathbf{S}_{\text{src}}^{(\text{out})} \mathbf{f}_{\text{out}}(c, s)^\top \right), \quad (S7)$$

816

817 where \mathbf{g} denotes the read-out function for different levels of tasks. For classification tasks, the
818 nonlinear function σ can be implemented as softmax, sigmoid, or tanh, and the loss function in
819 Eq. 6 remains a similar form. For regression tasks, σ can be omitted and the loss function only
820 contains the inner-class loss with node sets of each class constituted with a single node.
821822 B RELATED WORK
823824 B.1 I/O UNIFICATION FOR TRAINING-FREE ADAPTATION
825826 **Unified with Language Models.** One of the key challenges in developing pre-trained graph
827 foundation models lies in the diverse features and labels. Inspired by the remarkable success of the
828 pre-trained LLMs (OpenAI et al., 2024), researchers have proposed to adopt LMs as I/O modules
829 for graphs (Liu et al., 2023a; Kong et al., 2024; Tang et al., 2024; Zhu et al., 2025). Chen et al.
830 (2024b) investigates the potential of LMs as enhancers for input and predictors for output, separately.
831 ZeroG (Li et al., 2024b) further integrates the two approaches by employing an LM to encode textual
832 descriptions of nodes and classes into unified embeddings. While ZeroG achieves unified input and
833 output for graph pre-training, its applicability is limited to text-attributed graphs (TAGs, *i.e.*, graphs
834 with rich textual features). OFA (Liu et al., 2023a) generalizes TAGs by introducing templates to
835 convert numerical node and edge features into textual descriptions, thus extending its applicability
836 to general graphs. In addition to integrating LMs with GNNs, researchers have also explored pure
837 LLMs in addressing graph-related tasks (Wang et al., 2023; Chen et al., 2024a).838 **Unified with Specific Design.** Distinct from the aforementioned approaches, our work aims to
839 pre-train purely GNN-based models and explore their potential for training-free adaptation. Related
840 efforts in this area include the use of singular value decomposition (SVD) (Sun et al., 2023), Laplacian
841 decomposition (Sun et al., 2025), random projection (Tang et al., 2024), adversarial reprogramming
842 attacks (Jing et al., 2023), and parametric principal component analysis (PCA) (Zhao et al., 2024b) to
843 align different numbers of features. However, these methods couple the parameter values of the input
844 module with specific inputs or fail to unify label spaces for GNNs. A recent approach, GraphAny,
845 attempts to address this challenge by solving the pseudo-inverse of the transformation weight matrix
846 in a linear GNN (Zhao et al., 2024a). Despite the unified input and output for different datasets,
847 GraphAny requires observed labels from test datasets to compute the weight matrix, and is constrained
848 to node-level tasks and linear GNN architectures (Wu et al., 2019). As a result, pre-training graph
849 models with general pure GNN architectures remains an open problem.850 B.2 MODEL FINE-TUNING FOR FEW-SHOT ADAPTATION
851852 In addition to I/O unification, model fine-tuning has been extensively explored to adapt pre-trained
853 graph models to diverse features and labels (Yu et al., 2024). Approaches like GCC (Qiu et al., 2020)
854 employ full fine-tuning on pre-trained models, which is resource-intensive and prone to overfitting,
855 particularly when downstream datasets involve limited labeled data. To address these limitations,
856 researchers have proposed parameter-efficient graph fine-tuning methods, such as graph adapters (Li
857 et al., 2024a; Gui et al., 2024) and graph prompts (Sun et al., 2023). Graph adapters incorporate
858 additional tunable modules for GNNs, effectively bridging the gap between pre-training and inference
859 domains. Alternatively, graph prompt learning introduces input-specific prompts to modify node
860 features (Sun et al., 2022; Fang et al., 2023; Liu et al., 2023b) or graph structures (Sun et al., 2023;
861 Huang et al., 2023; Zhang et al., 2023b; Tan et al., 2023; Yu et al., 2025), enabling better adaptation
862 to various datasets. Different from model fine-tuning, this paper focuses on directly unifying diverse
863 graph features and labels at the pre-training stage. By exploring this foundational problem, our
864 findings show that the pre-trained GNN models can provide competitive graph operators for further
865 fine-tuning and simplify the hyperparameter tuning process (Sec 4.3).

864

865

Table S4: Original Dataset Split for Training-free Inference.

866

867

	TRAIN	TEST	TOTAL
AMAZONCOMPUTERS	8,252	2,750	13,381
CORA	1,208	1,000	2,708
COAUTHORPHYSICS	20,697	6,898	34,493
ARXIV-YEAR	84,671	42,337	169,343
TWITCH-GAMER	84,057	42,029	168,114
TOLOKERS	5,879	2,940	11,758
CHAMELEON	1,092	456	2,277
ACTOR	3,698	1,520	7,600

871

872

873

874

875

876

Table S5: Dataset Split for Model Fine-tuning.

877

878

879

880

881

882

883

	TRAIN	VALID	TEST	TOTAL
CORA	1,208	500	1,000	2,708
PUBMED	18,217	500	1,000	1,9717
AMAZONCOMPUTERS	8,252	2,379	2,750	1,3381
WIKICS	580	5,274	5,847	1,1701
AMAZON-RATINGS	12,246	6,123	6,123	2,4492
MINESWEEPER	5,000	2,500	2,500	1,0000
TOLOKERS	5,879	2,939	2,940	1,1758

884

885

C EXPERIMENTAL SETUP

886

887

C.1 SETTINGS

888

Zero-shot learning with label priors requires test label knowledge. However, label semantics vary across graph datasets, making full coverage of different semantics during pre-training impractical. To align with real-world scenarios, we exclude label knowledge from pre-training. Models do not have access to the label description knowledge during training and target-insensitive prediction. For further evaluation, the prediction results are permuted by aligning pseudo labels with actual labels. Specifically, to ensure fair comparison with LM-based graph models in the zero-shot setting, we employ the embedded label semantics \mathbf{S}_{tgt}^{LM} from language models (Li et al., 2024b) and construct the assignment matrix with $f_{out}(c, s)\mathbf{S}_{tgt}^{LM\top}$. This scenario does not require any labeled samples from test datasets. To explore the potential of pre-trained pure GNNs on general downstream tasks, observed target labels are only included during inference to match pseudo labels with real labels. Given the observed real labels \mathbf{C} , the mapping relations between the pseudo labels and the real labels can be formulated as $\hat{\mathbf{C}}\mathbf{P}(c\mathbf{I} - \mathbf{1}\mathbf{1}^\top) = c\log(c\mathbf{C})$. The assignment matrix \mathbf{P} can be solved as the least-squares solution of the linear equation without additional training effort.

902

903

C.2 DATASETS

904

905

906

907

908

909

Various real-world datasets are adopted for model pre-training and evaluation. These datasets can be categorized into four domains, including electronic-commerce graphs (e-com.), citation graphs, social graphs, and Wikipedia graphs (wiki). Three levels of average node number per dataset including 1k, 10k, and 100k are incorporated for each domain. The statistics of these datasets are summarized in Tab. S11 and Tab. S12. For the test datasets, we follow the standard split as the supervised learning setting in the original paper.

910

911

912

913

914

915

916

917

The e-com. domain consists of one test dataset AmazonComputers (Shchur et al., 2019), and three train datasets AmazonPhoto (Shchur et al., 2019), amazon-ratings (Platonov et al., 2023), and ogbn-products (Hu et al., 2020). All these datasets are collected from Amazon. The citation domain consists of three test datasets Cora (Sen et al., 2008), CoauthorPhysics (Shchur et al., 2019), and arxiv-year (Lim et al., 2021), and four train datasets CiteSeer (Sen et al., 2008), PubMed (Sen et al., 2008), ogbn-arxiv (Hu et al., 2020), and snap-patents (Lim et al., 2021). These datasets are collected from academic graphs, encoding coauthorship and citation relations. The social domain consists of two test datasets twitch-gamer (Lim et al., 2021), tolokers (Platonov et al., 2023), and five train datasets twitch-e (Lim et al., 2021), fb100 (Lim et al., 2021), genius (Lim et al., 2021),

918
919 **Table S6: Textual Dataset Statistics.**
920

	DATASET	USAGE	#NODES	#EDGES	#LABELS
CITATION	ARXIV	TRAIN	169,343	2,315,598	40
	PUBMED	TRAIN	19,717	88,648	3
	DBLP	TEST	14,376	431,326	4
E-COM.	AMAZON-RATINGS	TRAIN	24,492	186,100	5
	BOOKHISTORY	TRAIN	41,551	503,180	12
	BOOKCHILD	TEST	76,875	2,325,044	24
	COMPUTERS	TEST	87,229	1,256,548	10
	PHOTO	TEST	48,362	873,782	12
	SPORTSFIT	TEST	173,055	3,020,134	13
	PRODUCTS	TEST	316,513	19,337,722	39
WIKI.	WIKICS	TEST	11,701	431,726	10
SOCIAL	TOLOKERS	TEST	11,758	1,038,000	2

934 Facebook (Rozemberczki et al., 2021), and pokec (Lim et al., 2021). These datasets are collected
 935 from online social media, encoding social relationships between different users. Specifically, tolokers
 936 encapsulates crowdsourcing participation data sourced from the Toloka platform. Edges in tolokers
 937 link toloker pairs that have completed the same tasks. This graph indicates certain interests of the
 938 participants. Therefore, we classify it in the social domain. The wiki. domain consists of two
 939 test datasets CHAMELEON (Pei et al., 2019), ACTOR (Pei et al., 2019), and three train datasets
 940 WikiCS (Mernyei & Cangea, 2022), roman-empire (Platonov et al., 2023), and NELL (Carlson et al.,
 941 2010). These datasets are collected from Wikipedia. The splits employed in Tab. 1 and Tab. 3 are
 942 summarized in Tab. S4 and Tab. S5, respectively.

943 We also employ textual datasets (Chen et al., 2024c) to compare with LM-based models. The datasets
 944 can also be categorized into citation, e-com., social, and Wiki graphs. The citation graphs include
 945 arxiv, PubMed, and DBLP. The e-com. graphs include amazon-ratings, bookhistory, bookchild,
 946 computers, photo, sportsfit, and products. The Wiki. graph refers to WikiCS, and the social graph
 947 refers to tolokers. The statistics of these datasets are summarized in Tab. S6.

948 C.3 IMPLEMENTATION

949 Eight GNN methods are employed as the backbone for model pre-training, including GCN (Kipf &
 950 Welling, 2017), GAT (Veličković et al., 2018a), GraphSAGE (Hamilton et al., 2017), GIN (Xu et al.,
 951 2019), MixHop (Abu-El-Haija et al., 2019), GraphGPS (Rampášek et al., 2022), DeepGCN (Li et al.,
 952 2019), and N² (Sun et al., 2024). The evaluations are conducted on a single NVIDIA GeForce RTX
 953 4090 or a single NVIDIA A100. Models are pre-trained on the TRAIN datasets and evaluated on the
 954 TEST datasets in Tab. S11.

955 Except for N², backbones are implemented with the framework of PyTorch Geometric. The pre-
 956 training process is conducted for 5000 epochs with a learning rate fixed at $1e - 5$. The supervised
 957 result reproducing is conducted for 500 epochs and will be early stopped if there is no further
 958 reduction in the validation loss during 200 epochs. The total epoch for model fine-tuning is 1000,
 959 with early-stopping for 200 epochs. We adopt Adam (Kingma & Ba, 2015) as optimizer and set
 960 weight decay as 1×10^{-6} . The supervised results are reproduced under the same architecture, with
 961 grid search performed on the number of layers in {2, 3, 5, 10}, dropout in {0., 0.1, 0.2, 0.3, 0.5}, and
 962 the number of hidden dimensions in {64, 128, 256}. The self-supervised models are first pre-trained
 963 in the self-supervised setting and then frozen with a trainable linear output for supervised learning.
 964 The hyperparameter configuration follows the original implementation. For model fine-tuning,
 965 we perform grid search on dropout in {0., 0.1, 0.2, 0.3, 0.5} based on the validation results. For
 966 the information loss study in Appendix D.7, grid search is performed on the number of layers in
 967 {2, 3, 5, 10}, and the number of hidden dimensions in {64, 128}. Except for performance comparison
 968 with baselines on textual/non-textual datasets and pre-training with scaling parameters, we fix the
 969 number of dimensions at 256 for all backbones. The configuration for the number of layers during
 970 pre-training for data scaling and domain gap is presented in Tab. S7.

972
973
974
975
976
977
978
979
980
981
982
983

Table S7: Layer Configuration.

	#LAYERS
GCN	6
GAT	6
GRAPHSAGE	6
GIN	2
DEEPGCN	1
N^2	6
GRAPHGPS	1
MIXHOP	8

Table S8: Evaluation Results with Graph-level Datasets (Measured by accuracy: %). Bold values denote the best results per test dataset. LP, Lap, and Rand denote Label Propagation, Laplacian decomposition, and random projection, respectively.

	ENZYMES	REDDIT-BINARY	PROTEINS	AMAZONCOMPUTERS	CORA	ARXIV-YEAR	TWITCH-GAMER
ORIGINAL SPLIT							
GCN (SUP)	37.41 \pm 0.32	78.40 \pm 0.41	71.70 \pm 0.39	91.09 \pm 0.13	81.80 \pm 0.28	48.03 \pm 0.41	59.44 \pm 0.18
GRAPHCL	19.77 \pm 0.41	71.26 \pm 0.32	67.23 \pm 1.01	88.67 \pm 0.48	61.93 \pm 1.47	OOM	OOM
LAP	52.38 \pm 0.37	72.04 \pm 0.71	70.07 \pm 0.52	78.69 \pm 0.76	76.80 \pm 0.46	40.86 \pm 0.64	56.25 \pm 0.50
RAND	18.33 \pm 0.37	52.20 \pm 0.43	59.67 \pm 0.73	34.73 \pm 0.68	15.50 \pm 0.71	37.00 \pm 0.76	52.29 \pm 0.44
SVD	53.65 \pm 0.54	71.08 \pm 0.54	70.89 \pm 0.69	75.67 \pm 0.49	73.50 \pm 0.66	40.57 \pm 0.55	56.82 \pm 0.52
FUG	-	-	-	88.22 \pm 0.09	30.70 \pm 0.96	42.54 \pm 0.30	58.16 \pm 0.27
GRAPHANY	-	-	-	82.94 \pm 0.82	79.41 \pm 0.35	38.36 \pm 0.53	59.96 \pm 0.02
UNIFIED I/O (NODE)	52.83 \pm 1.06	69.65 \pm 0.36	70.73 \pm 0.26	89.85 \pm 0.18	82.32 \pm 0.97	42.58 \pm 0.17	59.99 \pm 0.05
UNIFIED I/O (GRAPH)	54.88 \pm 0.40	73.09 \pm 0.43	72.45 \pm 0.44	80.29 \pm 0.55	80.30 \pm 0.70	41.35 \pm 0.43	57.73 \pm 0.66
1-SHOT FOR TRAINING-FREE INFERENCE							
GRAPHCL	16.71 \pm 0.69	52.85 \pm 1.53	51.89 \pm 3.68	41.39 \pm 2.64	27.83 \pm 1.20	OOM	OOM
LAP	17.33 \pm 2.46	56.88 \pm 1.66	55.62 \pm 1.91	45.71 \pm 2.18	22.80 \pm 2.00	28.57 \pm 1.90	53.45 \pm 1.88
RAND	17.68 \pm 2.06	55.36 \pm 1.86	49.56 \pm 1.56	15.67 \pm 1.78	16.20 \pm 2.26	26.61 \pm 1.93	52.56 \pm 2.16
SVD	17.87 \pm 1.37	56.80 \pm 1.35	55.47 \pm 1.60	43.46 \pm 1.27	18.90 \pm 2.44	24.78 \pm 1.37	53.45 \pm 1.17
FUG	-	-	-	27.26 \pm 0.36	41.83 \pm 0.26	27.58 \pm 0.11	49.93 \pm 0.01
GRAPHANY	-	-	-	62.87 \pm 0.29	53.63 \pm 1.03	25.03 \pm 0.48	49.65 \pm 0.48
UNIFIED I/O (NODE)	17.82 \pm 1.27	48.21 \pm 1.34	52.27 \pm 1.75	59.89 \pm 0.80	43.94 \pm 0.50	33.47 \pm 0.14	57.90 \pm 0.15
UNIFIED I/O (GRAPH)	18.08 \pm 1.82	58.89 \pm 2.40	56.07 \pm 0.81	60.33 \pm 2.16	25.90 \pm 0.92	29.96 \pm 0.95	54.60 \pm 1.47
3-SHOT FOR TRAINING-FREE INFERENCE							
GRAPHCL	18.16 \pm 0.88	57.13 \pm 1.46	53.73 \pm 0.82	55.41 \pm 1.41	34.97 \pm 0.64	OOM	OOM
LAP	20.42 \pm 1.29	58.23 \pm 1.23	58.60 \pm 1.26	45.35 \pm 1.10	34.80 \pm 1.39	24.62 \pm 1.35	54.51 \pm 1.26
RAND	18.62 \pm 1.28	56.30 \pm 1.16	51.38 \pm 1.16	19.02 \pm 1.31	30.70 \pm 1.37	25.64 \pm 1.09	53.04 \pm 1.43
SVD	20.67 \pm 1.10	58.28 \pm 1.16	55.95 \pm 1.35	50.76 \pm 1.36	35.60 \pm 1.26	21.62 \pm 1.23	53.26 \pm 1.13
FUG	-	-	-	50.59 \pm 0.29	47.77 \pm 0.29	24.02 \pm 0.19	49.83 \pm 0.09
GRAPHANY	-	-	-	70.04 \pm 1.43	66.32 \pm 1.21	24.74 \pm 0.34	54.71 \pm 0.18
UNIFIED I/O (NODE)	19.00 \pm 1.93	49.07 \pm 1.68	54.46 \pm 1.36	68.33 \pm 0.28	49.21 \pm 0.91	35.32 \pm 0.29	57.64 \pm 0.06
UNIFIED I/O (GRAPH)	22.05 \pm 2.00	59.32 \pm 0.93	60.46 \pm 1.57	65.78 \pm 2.27	38.90 \pm 1.17	23.97 \pm 1.48	55.56 \pm 1.43

D ADDITIONAL RESULTS

D.1 GRAPH-LEVEL TASKS

As noted in Appendix A, except for the node-level evaluation, unified I/O can be employed for more tasks. To demonstrate this, GNNs are pre-trained on graph-level datasets (COLLAB, IMDB-BINARY, MUTAG, and D&D) (Morris et al., 2020), and evaluated on graph-level tasks (PROTEINS, REDDIT-BINARY, ENZYMES) (Morris et al., 2020), and node-level tasks (AmazonComputers (Shchur et al., 2019), Cora (Watts & Strogatz, 1998), arxiv-year, twitch-gamer (Lim et al., 2021)). Baselines include supervised method GCN (Kipf & Welling, 2017), self-supervised learning method GraphCL (You et al., 2020), parameter-free feature alignment methods SVD (Sun et al., 2023), Laplacian projection (Sun et al., 2025), and random projection (Tang et al., 2024)) combined with our unified output module. We also adopt FUG (Zhao et al., 2024b) and GraphAny (Zhao et al., 2024a) as baselines for node-level tasks. Neither methods support graph tasks and are thus pre-trained on (amazon-ratings, ogbn-arxiv, Facebook, and roman-empire).

Results in Tab. S8 show that pre-training with unified I/O surpasses GraphCL and parameter-free feature alignment methods on both graph-level and node-level tasks. On graph-level tasks, unified I/O also delivers performance comparable to, or better than, supervised GCN. However, transferring between graph-level and node-level tasks introduces a noticeable performance gap in both directions. In particular, for node-level downstream tasks, models pre-trained on graph-level datasets perform competitively on the original split but lag behind under the 1-shot and 3-shot settings when compared with models pre-trained directly on node-level datasets.

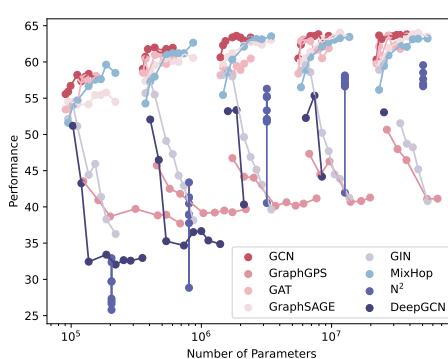


Figure S8: **Pre-training with Scaling Parameters.** The connected dots denote scaling the number of parameters by stacking multiple layers. The adjacent line segments denote scaling by expanding the hidden dimension.

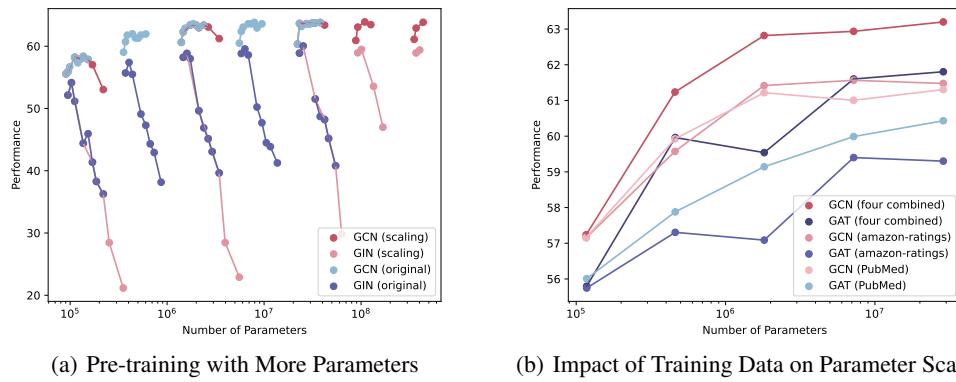


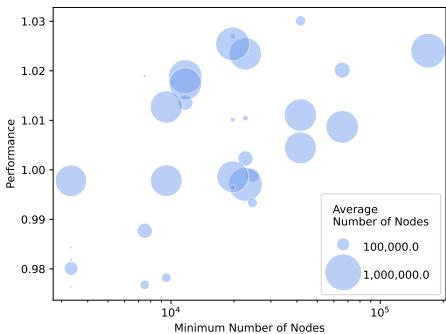
Figure S9: **Over-parameterization in Parameter Scaling.** (a) The connected dots denote scaling the number of parameters by stacking multiple layers. The adjacent line segments denote scaling by expanding the hidden dimension. (b) “Four combined” denotes employing amazon-ratings, ogbn-arxiv, Facebook, and roman-empire for pre-training.

D.2 SCALING PARAMETERS

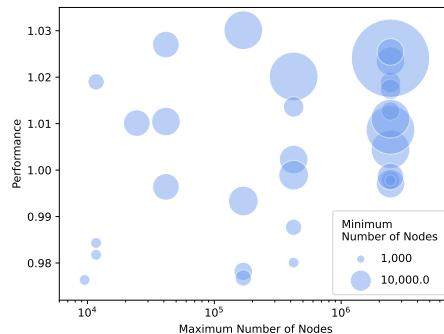
Following the common practice in LLM (OpenAI et al., 2024), model performance is also compared with different numbers of parameters. The experimental settings are the same as Fig. 5, with models pre-trained on (amazon-ratings, ogbn-arxiv, Facebook, roman-empire) and performance averaged across different test graphs. The connected dots denote scaling the number of parameters by stacking multiple layers. Note that N^2 is a recurrent model, where the number of parameters does not change with different layer depths. Results in Fig. S8 exhibit the clear influence driven by layer depth and hidden dimension. Notably, increasing parameter count by adding more layers does not consistently improve performance, while scaling hidden dimensionality is a more stable and beneficial strategy to improve pre-trained GNN models. These observations indicate that model capacity cannot be assessed solely through parameter volume. Instead, layer depth must be chosen appropriately for each architecture, as simply increasing parameters by stacking layers does not always yield better performance.

We further explore the boundary of parameter scaling with more parameters, *i.e.*, hidden dimensions of $\{2048, 4096\}$ and depths of $\{20, 32\}$ layers. Fig. S9(a) shows that further scaling the number of layers (connected dots) causes over-parameterization. This can be alleviated by expanding training datasets, where results in Fig. S9(b) indicate that more training datasets can better support parameter scaling.

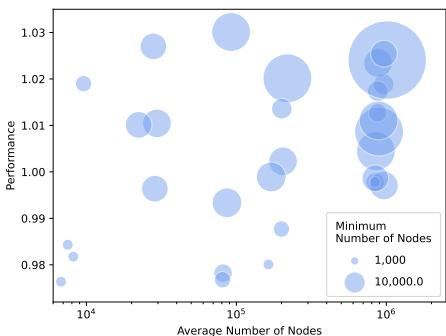
1080
1081 In contrast, increasing the number of hidden dimensions to 4096 does not show over-parameterization.
1082 This observation further supports the conclusion that scaling hidden dimensionality is a more stable
1083 and beneficial strategy for improving pre-trained GNN models.
1084
1085



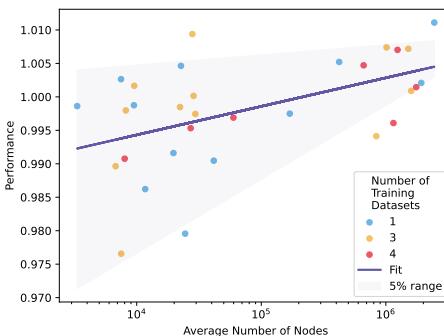
(a) Fix the Minimum, Increase the Average



(b) Fix the Maximum, Increase the Minimum



(c) Fix the Average, Increase the Minimum



(d) Scaling with the Average Number of Nodes

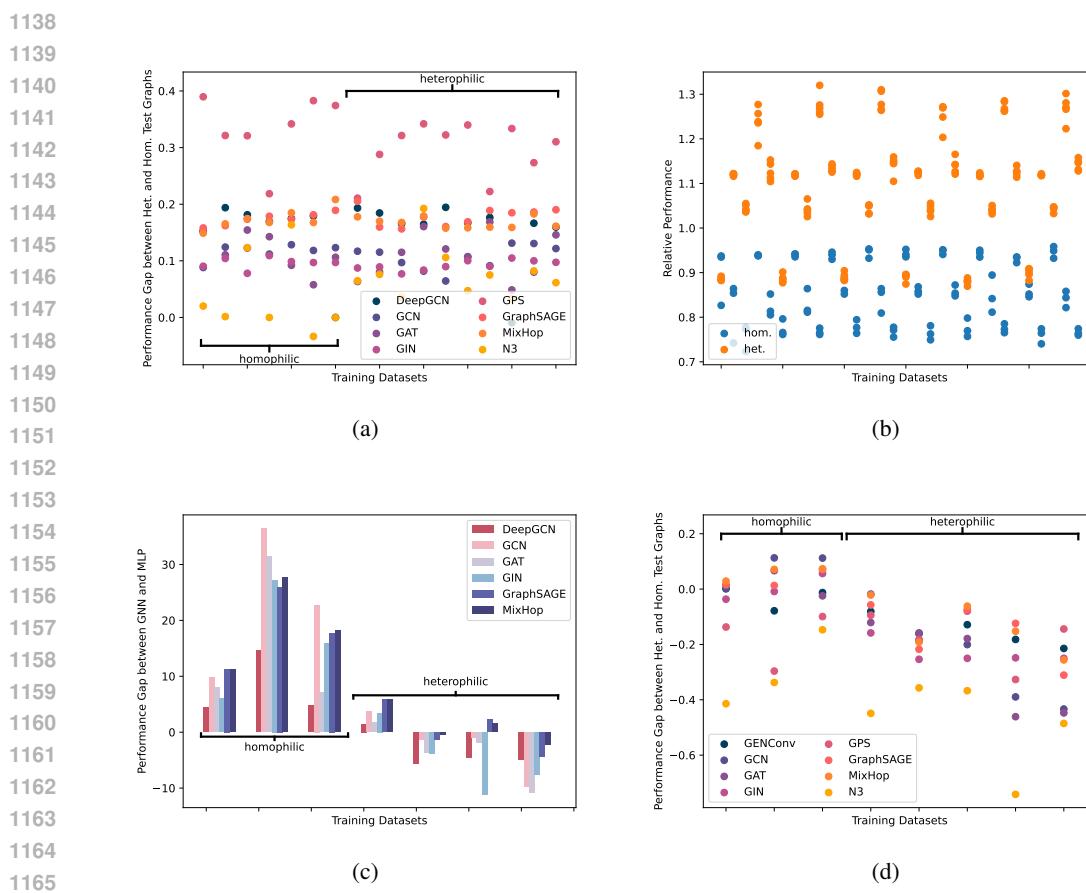
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113 **Figure S10: Study on the Data Scaling Strategy.** (c) Different dot colors indicate the number of
1114 datasets employed for pre-training. “5%” denotes envelope-fitting with the top and bottom 5% of the
1115 data in each bin.

D.3 DATA SCALING STRATEGY

1116
1117 To explore an effective data scaling strategy, we compare model pre-training with different training
1118 data. Specifically, different combinations of three datasets are employed as training data. Model
1119 performance is normalized by dividing the median result of the same backbone pre-trained with
1120 various datasets on the corresponding test dataset. Fig. S10(a) shows the results of fixing the minimum
1121 dataset size and varying the average number of nodes. When the minimum training dataset size
1122 remains, increasing the average number of nodes does not consistently improve performance. This
1123 indicates that simply adding larger datasets while keeping the smallest size unchanged is not an
1124 effective way to expand the training set.

1125
1126 Moreover, Fig. S10(b) and Fig. S10(c) show the results of fixing the maximum dataset size or the
1127 average number of nodes and increasing the minimum. In both cases, raising the minimum dataset
1128 sizes yields improved performance. Together, these findings suggest that mixing datasets with widely
1129 varying node scales is inefficient; datasets should instead be chosen to maintain a similar node scale.
1130 Therefore, we compare dataset combinations that are aligned in node scale for the data scaling study
1131 in Fig. 6. Additionally, we directly expand the average number of nodes in dataset combinations
1132 without considering the smallest dataset size. Model performance is normalized by dividing the
1133 median result of the same backbone pre-trained with various datasets on the corresponding test datasets are

1134 presented in Fig. S10(d). Results show that increasing the average number of nodes benefits model
 1135 performance. In contrast, incorporating more training datasets with various node scales does not
 1136 necessarily result in superior performance, which verifies the inefficiency of this strategy.
 1137



1166 **Figure S11: Adaptation Performance Comparison on Heterophilic and Homophilic graphs.**
 1167 (a) presents the difference between the performance of the same pre-trained model evaluated on
 1168 heterophilic graphs and homophilic graphs. (b) presents the normalized performance of MLP by
 1169 dividing the state-of-the-art supervised results of classic GNN models on the corresponding test
 1170 datasets. (c) presents the difference between the absolute performance of pre-trained GNNs and MLP.
 1171 (d) presents the difference between the performance of pre-trained GNNs and MLP normalized by
 1172 their supervised counterpart.

1174 D.4 INFERENCE WITH DIFFERENT HOMOPHILY-HETEROPHILY

1177 **Comparison with the same pre-training dataset.** Sec. 4.2 examines model adaptation using
 1178 different pre-training datasets on the same test dataset, showing that training on datasets with the same
 1179 homophily–heterophily characteristics as the test dataset generally yields better results. In this section,
 1180 we shift the focus to comparing model performance across different test datasets under the same pre-
 1181 training setting. However, direct comparison is challenging because the inherent difficulty of each test
 1182 dataset varies, resulting in different absolute performance values. To address this issue, we normalize
 1183 the results by dividing them by the corresponding reproduced supervised results. A higher normalized
 1184 value indicates that the pre-trained model adapts more effectively to the corresponding downstream
 1185 task. Fig. S11(a) presents the difference between the averaged performance of the same pre-trained
 1186 model on heterophilic test datasets and homophilic test datasets ($\text{Metric}_{\text{het}} - \text{Metric}_{\text{hom}}$). We can
 1187 see that models pre-trained on either homophilic or heterophilic graphs gain a positive performance
 1188 gap, indicating better results on heterophilic graphs than homophilic graphs. To further study this
 1189 phenomenon, we contrast pre-trained MLPs with pre-trained GNNs to evaluate the requirement of

1188 homophilic and heterophilic graphs during model adaptation, and thus derive the root cause of the
 1189 phenomenon for Fig. S11(a).

1190 **Requirement of heterophilic graphs.** We compare the performance of pre-trained MLP with
 1191 supervised GNNs. Supervised GNNs are directly optimized to meet task-specific requirements on
 1192 downstream datasets. Comparing them with pre-trained models assesses whether the latter also
 1193 fulfill these requirements. Fig. S11(b) presents the normalized performance of MLP by dividing the
 1194 state-of-the-art supervised results of classic GNN models on the corresponding test datasets. MLP
 1195 achieves more comparable performance on heterophilic test graphs compared to supervised results.
 1196 This indicates that node features better benefit the adaptation to heterophilic graphs. In contrast, the
 1197 requirement of the adaptation to homophilic graphs cannot be well satisfied by MLP and leads to
 1198 inferior normalized performance.

1199 **Requirement of homophilic graphs.** We compare the performance of pre-trained MLPs and
 1200 GNNs. MLPs that only employ node features serve as a baseline for adapting to homophilic graphs.
 1201 Comparing more complex models with MLP highlights the further requirement of homophilic graphs.
 1202 Fig. S11(c) presents the performance gap between pre-trained GNNs and MLPs. We can see that
 1203 GNNs gain better performance on homophilic graphs and similar performance on heterophilic graphs
 1204 compared to MLP. This indicates that capturing graph structures contributes to the adaptation to
 1205 homophilic graphs.

1206 **Transferability of the learned knowledge.** Given the requirement of capturing node features to
 1207 adapt to heterophilic graphs and capturing structures for homophilic graphs, we further analyze the
 1208 difficulty of transferring these learned patterns. Specifically, supervised models transfer knowledge
 1209 within the same dataset, while pre-trained models transfer across datasets. Therefore, comparing the
 1210 performance of pre-trained models with their supervised counterparts shows the transferability of
 1211 knowledge learned during pre-training, where GNNs correspond to the structural knowledge and MLP
 1212 corresponds to the node feature knowledge. Fig. S11(d) presents the normalized performance gap
 1213 between pre-trained GNNs and MLP, where pre-training results are divided by the supervised results
 1214 of the same model on the same datasets. Results show that the performance gap between normalized
 1215 pre-trained GNNs and MLP is generally negative, where the pre-trained MLP is more comparable to
 1216 its supervised counterpart. This suggests that the node feature knowledge is consistently transferable
 1217 within and across datasets. Conversely, structural knowledge transfers well within the same dataset
 1218 but fails to generalize across different datasets. As a result, pre-trained GNNs with only transferable
 1219 node feature knowledge cannot satisfy the requirement of the homophilic graphs and thus achieve
 1220 better normalized performance on heterophilic graphs.

1221 Based on the above conclusions, the phenomenon in Fig. S11(a) can be attributed to the inherent
 1222 differences between homophilic and heterophilic graphs. Adapting to heterophilic graphs mostly
 1223 requires the capturing of node features, while adapting to homophilic graphs requires models to
 1224 adhere closely to the input graph structures. However, structural knowledge fails to transfer across
 1225 different datasets compared to the better transferability of the node feature knowledge, resulting in
 1226 consistently better performance when adapting to heterophilic graphs.

1228 D.5 MODEL FINE-TUNING

1229 Our unified I/O modules enable seamless adaptation of pure GNN architectures across diverse
 1230 datasets. To further evaluate the effectiveness of the pre-trained GNN operators, we fine-tune the
 1231 models pre-trained on amazon-ratings, ogbn-arxiv, Facebook, and roman-empire. The internal
 1232 GNN module F_g within the pre-trained models is frozen during the fine-tuning. The unification-
 1233 oriented I/O function $f_{in}(\cdot)$ in Eq. 4 and $f_{out}(\cdot)$ in Eq. 5 are replaced with learnable parameters.
 1234 We implemented GCN (Kipf & Welling, 2017), GAT (Veličković et al., 2018a), GIN (Xu et al.,
 1235 2019), GraphSAGE (Hamilton et al., 2017), and GraphGPS (Rampášek et al., 2022) in the supervised-
 1236 learning setting and DGI (Veličković et al., 2018b), GRACE (Zhu et al., 2020), GraphACL (Xiao
 1237 et al., 2023), GraphCL (You et al., 2020), SimGRACE (Xia et al., 2022), MaskGAE (Li et al., 2023),
 1238 GraphMAE2 (Hou et al., 2023) in the self-supervised setting. The fine-tuning results with different
 1239 backbones on downstream graphs are summarized in Tab. S9. The pre-trained operators achieve
 1240 superior performance to supervised methods and self-supervised methods. Notably, the pre-trained
 1241 operators require minimal hyperparameter tuning, with only dropout adjusted during fine-tuning. This

1242

1243 Table S9: **Evaluation Results of Fine-tuning the I/O Modules in the Pre-trained GNNs (Measured**
1244 **by accuracy except ROC AUC for tolokers: %).** Bold values denote the best results per test dataset.

1245

	CORA	PUBMED	AMAZON COMPUTERS	WIKICCS	AMAZON -RATINGS	MINESWEEPER	TOLOKERS
SELF-SUPERVISED							
DGI	84.00 ± 0.28	83.73 ± 0.41	82.11 ± 0.16	75.05 ± 0.39	40.80 ± 0.74	88.45 ± 0.38	77.73 ± 0.14
GRACE	84.30 ± 0.57	85.81 ± 0.18	89.67 ± 0.36	75.80 ± 0.56	42.19 ± 0.12	86.15 ± 0.45	75.06 ± 0.14
GRAPHACL	75.00 ± 0.75	82.93 ± 0.17	80.58 ± 0.15	68.00 ± 0.75	40.65 ± 0.14	87.23 ± 0.11	77.68 ± 0.25
GRAPHCL	63.33 ± 1.76	63.53 ± 1.08	84.57 ± 0.34	76.32 ± 0.18	42.35 ± 0.37	79.85 ± 0.12	80.03 ± 0.12
MASKGAE	75.13 ± 1.78	75.27 ± 1.03	92.15 ± 0.05	78.25 ± 0.20	43.54 ± 0.30	84.33 ± 0.16	81.13 ± 0.34
SIMGRACE	67.07 ± 0.82	77.63 ± 0.82	87.44 ± 0.18	78.75 ± 0.28	43.46 ± 0.23	84.23 ± 0.16	80.29 ± 0.30
GRAPHMAE2	79.50 ± 0.51	67.07 ± 0.91	91.03 ± 0.19	76.24 ± 0.11	40.95 ± 0.71	80.16 ± 0.10	80.17 ± 0.07
SUPERVISED							
GRAPHSAGE	78.83 ± 0.50	88.11 ± 0.05	91.09 ± 0.02	78.13 ± 0.15	45.71 ± 0.38	90.55 ± 0.10	83.06 ± 0.59
GAT	77.51 ± 2.35	85.30 ± 0.15	89.78 ± 0.02	76.35 ± 0.80	44.54 ± 0.52	82.07 ± 1.17	77.37 ± 0.28
GIN	77.36 ± 0.15	85.13 ± 0.55	90.51 ± 0.80	74.02 ± 0.62	46.33 ± 0.11	74.93 ± 0.58	60.93 ± 2.25
GCN	80.35 ± 0.25	85.44 ± 0.50	90.66 ± 0.13	78.55 ± 0.01	46.71 ± 0.25	76.43 ± 1.05	77.79 ± 0.12
GRAPHGPS	58.61 ± 0.05	85.21 ± 0.30	88.87 ± 0.20	75.18 ± 0.04	47.85 ± 0.29	89.64 ± 0.24	79.82 ± 0.06
PRE-TRAINED AND FINE-TUNED							
GCN	84.32 ± 0.09	85.28 ± 0.21	91.02 ± 0.01	78.42 ± 0.07	46.17 ± 0.09	69.10 ± 0.11	69.50 ± 0.69
GAT	78.01 ± 0.87	84.47 ± 0.33	89.74 ± 0.42	77.96 ± 0.13	47.13 ± 0.45	71.03 ± 0.72	75.67 ± 0.73
GIN	79.31 ± 0.82	85.61 ± 0.38	87.89 ± 0.43	73.49 ± 0.14	49.93 ± 0.22	77.62 ± 0.28	66.83 ± 0.56
GRAPHGPS	50.62 ± 0.42	86.79 ± 0.71	85.93 ± 0.23	73.41 ± 0.74	43.74 ± 0.26	88.68 ± 0.29	80.41 ± 0.53
GRAPHSAGE	83.92 ± 0.43	86.37 ± 0.23	91.24 ± 0.17	78.98 ± 0.12	48.85 ± 0.82	91.39 ± 0.15	83.29 ± 0.13
MIXHOP	84.63 ± 0.12	88.91 ± 0.45	90.33 ± 0.30	78.93 ± 0.17	51.59 ± 0.05	90.77 ± 0.18	83.03 ± 0.13
N^2	81.50 ± 0.33	88.32 ± 0.32	92.33 ± 0.25	76.60 ± 0.25	49.85 ± 0.31	90.31 ± 0.31	81.51 ± 0.36
DEEPGCN	74.40 ± 0.33	88.50 ± 0.32	91.02 ± 0.25	74.67 ± 0.25	50.76 ± 0.46	88.00 ± 0.28	79.86 ± 0.36

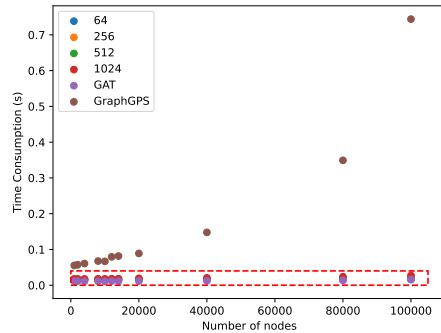
1264

1265

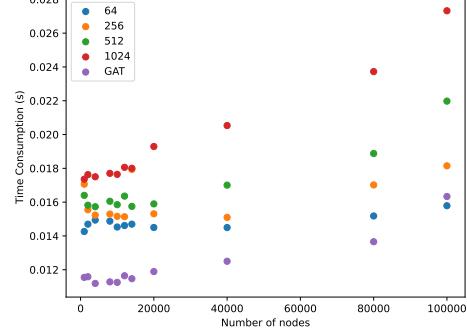
1266 significantly simplifies the hyperparameter tuning process, enabling efficient adaptation of pre-trained
1267 GNNs to various graphs with promising performance.
1268

1269

1270



(a) Different graph sizes



(b) Different numbers of input features

1282

1283

1284 Figure S12: **Time comparison.** (b) zooms in on the red block in (a).

1285

1286

1287

D.6 COMPLEXITY ANALYSIS

1288

1289

1290

1291

1292

1293

1294

1295

The space complexity of the unified I/O is $O(n)$, with $d_{in}, d, s, c \ll n$. To evaluate the time cost of different modules, We construct synthetic graphs. Nodes in the synthetic graphs have an average degree of 20. The largest number of edges is 100,000. The number of classes is 10, which is close to the common configuration of the real-world datasets in Fig. 1. The number of GNN layers is fixed to 3. The results are presented in Fig. S12. As the number of input features increases, the time cost of the unified I/O module increases but is constantly less than the cost of the GraphGPS module. The I/O time cost also scales linearly with the graph size. This demonstrates the efficiency of the proposed unified I/O modules.

1296

1297 Table S10: **Information Loss Study.** “Ori” and “Uni” denote the supervised learning results with
1298 traditional I/O modules and our unified I/O modules, respectively.

	AMAZON-RATINGS	ARXIV-YEAR	COAUTHORCS	COAUTHORPHYSICS
GCN (ORI.)	48.70	46.02	92.92	96.18
GCN (UNI.)	47.12	45.19	92.77	96.38
GAT (ORI.)	52.70	46.05	93.61	96.17
GAT (UNI.)	46.19	46.26	88.38	94.16
GraphSAGE (ORI.)	53.63	43.76	93.91	96.49
GraphSAGE (UNI.)	45.45	44.76	95.17	97.06

1305

1306

1307

1308 D.7 EFFECTIVENESS OF THE UNIFIED I/O

1309

1310 **Information Loss.** Unified I/O decouples the learnable parameters from the numbers and semantics
1311 of dimensions for the feature and label space. To evaluate whether this leads to information loss,
1312 we conduct supervised training with our unified I/O on GCN, GAT, and GraphSAGE. As presented
1313 in Tab. S10, our unified I/O modules do not cause severe information loss. They even enable
1314 the backbone GNN methods to achieve better performance than that of their vanilla architectures
1315 for GAT and GraphSAGE on arxiv-year, GraphSAGE on CoauthorCS, GCN and GraphSAGE on
1316 CoauthorPhysics. This demonstrates the effectiveness of our unified I/O in learning input and output
1317 mappings.

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

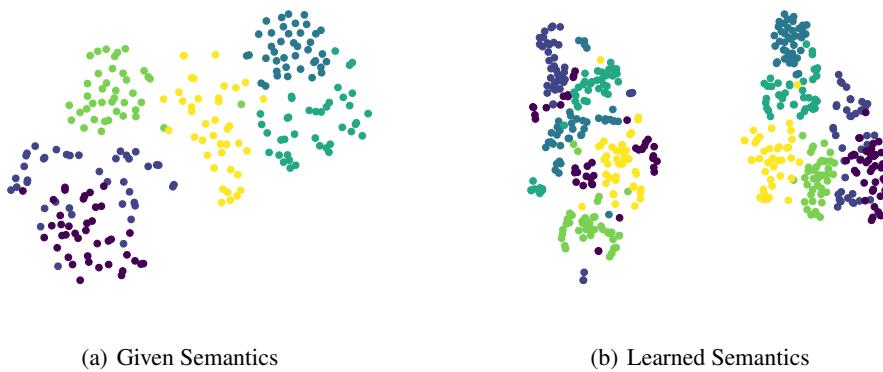
1329

1330

1331

1332

1333



1334

1335

1336

1337 Figure S13: **t-SNE Results for Semantics Alignment Comparison.** Each dot represents a different
1338 feature channel, with dot colors representing different datasets.

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1344 **Feature Semantics.** To explore whether our parametric function $f_{in}(\cdot)$ empowers feature semantics
1345 unification across different inputs, we use t-SNE to visualize feature semantics from (Cora, CiteSeer,
1346 Photo, Computers, ogbn-products, and WikiCS) (Chen et al., 2024c). 40 feature channels are sampled
1347 for each dataset. Each dot represents a different feature channel, with dot colors representing different
1348 datasets. Fig. S13(a) shows the t-SNE result of the original feature semantics, where features from
1349 different datasets form clearly separated clusters rather than merging into a shared global structure.
This pronounced dataset separation indicates that the representations are not well aligned within
a common semantic space. Conversely, in Fig. S13(b), feature semantics from different datasets
learned by unified I/O form two major clusters, indicating that the learned representations are unified
into two common semantic subspaces. Within each cluster, channels from different datasets do not
fully mix but show partial segregation, suggesting that the semantic representations still preserve
dataset-specific characteristics. All these results demonstrate the effectiveness of our proposed
method in modeling unified feature semantics.

1350 **E PROOF AND DERIVATION**
13511352 **E.1 MAPPING WITH DIMENSION RELATIONS**
13531354 **Theorem 3.1** (Mapping with Dimension Relations). *Given any linear mapping $\mathbf{W} \in \mathbb{R}^{d_{\text{src}} \times d_{\text{tgt}}}$ and*
1355 *$s \in \mathbb{N}^+$, there always exist two representation matrices $\mathbf{S}_{\text{src}} \in \mathbb{R}^{d_{\text{src}} \times s}$ and $\mathbf{S}_{\text{tgt}} \in \mathbb{R}^{d_{\text{tgt}} \times s}$, such*
1356 *that $\mathbf{W} = \psi(\mathbf{S}_{\text{src}}, \mathbf{S}_{\text{tgt}})$, where $\psi(\cdot, \cdot)$ is a bilinear composition function.*1357 **Definition E.1** (Bilinear Composition Function). *Let $\mathbf{X} \in \mathbb{R}^{m \times d_1}$ and $\mathbf{Y} \in \mathbb{R}^{n \times d_2}$ be two input*
1358 *matrices, and let $\mathbf{U} \in \mathbb{R}^{d_1 \times d_2}$ be a learnable parameter matrix. A bilinear composition function*
1359 *$\psi : \mathbb{R}^{m \times d_1} \times \mathbb{R}^{n \times d_2} \rightarrow \mathbb{R}^{m \times n}$ is defined as*

1360
$$\psi(\mathbf{X}, \mathbf{Y}) = \mathbf{X} \mathbf{U} \mathbf{Y}^\top,$$

1361

1362 *which computes the bilinear form between each pair of row vectors from \mathbf{X} and \mathbf{Y} . This function is*
1363 *linear with respect to either argument when the other is fixed, but not jointly linear.*1364
1365 We now provide the proof for Theorem 3.1:
13661367 *Proof.* Let $r = \text{rank}(\mathbf{W}) \leq \min(d_{\text{src}}, d_{\text{tgt}})$. By the full-rank factorization theorem (Meyer, 2023),
1368 there exist matrices $\mathbf{A} \in \mathbb{R}^{d_{\text{src}} \times r}$ and $\mathbf{B} \in \mathbb{R}^{d_{\text{tgt}} \times r}$ such that
1369

1370
$$\mathbf{W} = \mathbf{A} \mathbf{B}^\top.$$

1371 Let $s = r$, $\mathbf{S}_{\text{src}} := \mathbf{A}$, $\mathbf{S}_{\text{tgt}} := \mathbf{B}$, and \mathbf{U} be the identity matrix \mathbf{I}_r . Then
1372

1373
$$\mathbf{S}_{\text{src}} \mathbf{U} \mathbf{S}_{\text{tgt}}^\top = \mathbf{A} \mathbf{I}_r \mathbf{B}^\top = \mathbf{A} \mathbf{B}^\top = \mathbf{W}.$$

1374 Thus, such \mathbf{S}_{src} , \mathbf{S}_{tgt} , \mathbf{U} always exist.
13751376 More generally, for any $s \geq r$, we can embed \mathbf{A} and \mathbf{B} into higher-dimensional matrices by padding
1377 zeros and set \mathbf{U} as a diagonal matrix with the first r entries as 1 and others as 0. Hence, the bilinear
1378 form $\psi(\mathbf{S}_{\text{src}}, \mathbf{S}_{\text{tgt}}) = \mathbf{S}_{\text{src}} \mathbf{U} \mathbf{S}_{\text{tgt}}^\top$ is expressive enough to represent any linear mapping \mathbf{W} . \square
13791380 **E.2 SET LEARNING FOR THE UNIFIED INPUT MODULE**
13811382 To decouple the parameters from the number of source dimensions, feature semantics $\mathbf{S}_{\text{src}}^{(\text{in})}$ is
1383 formulated as a parametric function $\mathbf{f}_{\text{in}}(\mathbf{X}; \mathcal{W}_{\text{in}})$. The function $\mathbf{f}_{\text{in}}(\cdot)$ is subject to two conditions:
1384 (1) Permutation invariance to the order of input nodes and equivariance to that of source dimensions;
1385 (2) Size independence of the parameter set \mathcal{W}_{in} to the values of n and d_{in} . Given the absence of
1386 topological structures and the permutation condition (Cond 1) for $\mathbf{f}_{\text{in}}(\cdot)$, the input features can be
1387 modeled as a set of channels $\{\mathbf{X}_{\cdot, j}\}$, where each channel corresponds to a set of nodes $\{\mathbf{X}_{i, j}\}$. As a
1388 result, $\mathbf{f}_{\text{in}}(\cdot)$ is transformed into a set-learning problem at both the channel level and the node level,
1389 $\mathbf{f}_{\text{in}} = \mathbf{f}_{\text{in}}^{\text{cha}} \circ \mathbf{f}_{\text{in}}^{\text{nod}}$.
13901391 **Channel-level Set Learning.** Based on the universal functions on set (Zaheer et al., 2017), $\mathbf{f}_{\text{in}}(\cdot)$ is
1392 a permutation-equivariant set function at the channel level and can be decomposed as
1393

1394
$$\mathbf{f}_{\text{in}}(\mathbf{X}) = \mathbf{f}_{\text{in}}^{\text{cha}}(\mathbf{f}_{\text{in}}^{\text{nod}}(\mathbf{X})) = \sigma[\Theta \mathbf{f}_{\text{in}}^{\text{nod}}(\mathbf{X})], \quad (\text{S8})$$

1395

1396 where σ can be any nonlinear function, $\Theta \in \mathbb{R}^{d_{\text{in}} \times d_{\text{in}}}$ denotes the channel mixer. To enable the
1397 scalability of the input module for input features with a large number of channels (e.g., NELL
1398 $d_{\text{in}} = 61,278$, CoauthorPhysics $d_{\text{in}} = 8,415$, and CoauthorCS $d_{\text{in}} = 6,805$), we follow the linear
1399 attention (Katharopoulos et al., 2020) to construct Θ as
1400

1401
$$\Theta = \frac{d_{\text{in}} \mathbf{X}^\top \mathbf{X}}{\mathbf{X}^\top \mathbf{X} \mathbf{1}}, \quad (\text{S9})$$

1402

1403 where $\mathbf{1}$ denotes the all-one vector.
14041405 **Node-level Set Learning.** Due to the size independence and the permutation invariance conditions
1406 for $\mathbf{f}_{\text{in}}(\cdot)$, $\mathbf{f}_{\text{in}}^{\text{nod}}(\cdot)$ in Eq. S8 can be formulated as a permutation-invariant set function at the node
1407 level. Given $\mathbf{f}_{\text{in}} : \mathbb{R}^{n \times d_{\text{in}}} \mapsto \mathbb{R}^{d_{\text{in}} \times s}$, our ultimate target is to model a number of s representations
1408

for each channel. Therefore, we apply s set functions to $\{\mathbf{X}_{i,j}\}$. Each function can be decomposed following the universal set function (Zaheer et al., 2017) as

$$\mathbf{f}_{\text{in}}^{\text{nod}}(\mathbf{X}) = \left[\mathbf{f}_{\text{in}}^{\text{nod},1}(\mathbf{X}) \parallel \cdots \parallel \mathbf{f}_{\text{in}}^{\text{nod},s}(\mathbf{X}) \right], \quad \mathbf{f}_{\text{in}}^{\text{nod},k}(\mathbf{X}) = \phi^k \left(\sum_{i \in [1, n]} \rho^k(\mathbf{X}^\top)_{\cdot, i} \right), \quad (\text{S10})$$

where the parameters in both ϕ^k and ρ^k are shared for each element in \mathbf{X} to ensure the size independence condition (Cond 2). We share the function ρ^k for all $k \in [1, s]$ as ρ and implement ϕ^k as a parameter-weighting function to keep simplicity. As a result, Eq. S8-Eq. S10 can be complied as

$$\mathbf{f}_{\text{in}}(\mathbf{X}) = \sigma \left[\frac{d_{\text{in}} \mathbf{X}^\top \mathbf{X}}{\mathbf{X}^\top \mathbf{X} \mathbf{1}} \rho(\mathbf{X}^\top) \mathbf{1} \alpha^\top \right], \quad (\text{S11})$$

where $\alpha = \{\alpha_k\} \in \mathbb{R}^{s \times 1}$ denotes the parameter vector with $k \in [1, s]$ to implement ϕ^k , $\mathbf{1}$ denotes the all-one vector to implement the summation in Eq. S10.

Although Zaheer et al. also provides an implementation named Deep Sets based on the universal set function, our input module differs from this specific implementation in several key aspects. Specifically, graph learning requires permutation invariance over nodes, which constitute the set representations in our case. This demands the input module to decouple parameters from the representation dimensionality. In contrast, Deep Sets are not faced with such a condition. We further decompose the set-learning task into a bi-level formulation, while Deep Sets addresses the original single-level formulation. Moreover, our input module employs a linear-attention-like set mixer in Eq. S9, while Deep Sets applies sum or max pooling to mix sets.

E.3 PERMUTATION INVARIANCE OF THE UNIFIED INPUT MODULE

Theorem E.2 (Permutation Invariance of the Unified Input Module). *Let $\mathbf{P} \in \mathbb{R}^{d_{\text{in}} \times d_{\text{in}}}$ be any permutation matrix. Then the source-adaptive input module \mathbf{F}_{in} is permutation invariant, such that $\mathbf{F}_{\text{in}}(\mathbf{XP}) = \mathbf{F}_{\text{in}}(\mathbf{X})$.*

Proof. Let $\mathbf{P} \in \mathbb{R}^{d_{\text{in}} \times d_{\text{in}}}$ be a permutation matrix. Consider the input module $\mathbf{F}_{\text{in}}(\mathbf{X}) = \sigma \left[\mathbf{X} \mathbf{f}_{\text{in}}(\mathbf{X}) \mathbf{S}_{\text{tgt}}^{(\text{in})\top} \right]$, where $\sigma(\cdot)$ is applied element-wise. Applying the permutation giving rise to $\mathbf{F}_{\text{in}}(\mathbf{XP}) = \sigma \left[\mathbf{XP} \mathbf{f}_{\text{in}}(\mathbf{XP}) \mathbf{S}_{\text{tgt}}^{(\text{in})\top} \right]$. Specifically, let $\mathbf{r} = \mathbf{X}^\top \mathbf{X} \mathbf{1} / \sqrt{n}$, $\bar{\mathbf{x}} = \mathbf{X} \mathbf{1}_{d_{\text{in}}} / d_{\text{in}}$, $\mathbf{f}_{\text{in}}(\mathbf{XP})$ can be formulated as

$$\begin{aligned} \mathbf{f}_{\text{in}}(\mathbf{XP}) &= \sigma \left(\frac{(\mathbf{XP})^\top \mathbf{XP} \mathbf{P}^\top \mathbf{r} \alpha^\top}{(\mathbf{XP})^\top \bar{\mathbf{x}}} \right) \\ &= \sigma \left(\frac{(\mathbf{XP})^\top \mathbf{X} \mathbf{r} \alpha^\top}{(\mathbf{XP})^\top \bar{\mathbf{x}}} \right). \end{aligned}$$

Here, both the division and $\sigma(\cdot)$ are applied element-wise and invariant to consistent column permutation. Therefore, applying the permutation before or after the element-wise operations yields the same result, giving

$$\begin{aligned} \mathbf{f}_{\text{in}}(\mathbf{XP}) &= \sigma \left(\mathbf{P}^\top \frac{\mathbf{X}^\top \mathbf{X} \mathbf{r} \alpha^\top}{\mathbf{X}^\top \bar{\mathbf{x}}} \right) \\ &= \mathbf{P}^\top \sigma \left(\frac{\mathbf{X}^\top \mathbf{X} \mathbf{r} \alpha^\top}{\mathbf{X}^\top \bar{\mathbf{x}}} \right) \\ &= \mathbf{P}^\top \mathbf{f}_{\text{in}}(\mathbf{X}). \end{aligned}$$

Substituting $\mathbf{f}_{\text{in}}(\mathbf{XP})$ into $\mathbf{F}_{\text{in}}(\mathbf{XP})$, we have

$$\begin{aligned} \mathbf{F}_{\text{in}}(\mathbf{XP}) &= \sigma \left[\mathbf{XP} \mathbf{P}^\top \mathbf{f}_{\text{in}}(\mathbf{X}) \mathbf{S}_{\text{tgt}}^{(\text{in})\top} \right] \\ &= \mathbf{F}_{\text{in}}(\mathbf{X}). \end{aligned}$$

which completes the proof. \square

1458 E.4 PSEUDO LABEL ASSIGNMENT
14591460 Given the observed labels \mathbf{C} , the mapping relations between the pseudo labels and the observed
1461 labels can be formulated as

1462
1463
$$\text{softmax}(\hat{\mathbf{CP}}) = \frac{\exp(\hat{\mathbf{CP}})}{\exp(\hat{\mathbf{CP}})\mathbf{1}\mathbf{1}^\top} = \mathbf{C}, \quad (\text{S12})$$

1464

1465 where $\mathbf{P} \in \mathbb{R}^{c \times c}$ denotes the assignment matrix, $\mathbf{1}$ denotes the all-one vector. For a set of values
1466 $\{x_i\}, i \in [1, c]$, the first-order Taylor expansion of $\exp(x_i)$ around $\bar{x} = \sum_i x_i/c$ is

1467
1468
$$\exp(x_i) \approx \exp(\bar{x}) \cdot (1 + x_i - \bar{x}). \quad (\text{S13})$$

1469 As a result, the summation of $\exp(x_i)$ can be approximated as

1470
1471
$$\sum_i \exp(x_i) \approx \exp(\bar{x}) \sum_i (1 + x_i - \bar{x}) = n\exp(\bar{x}). \quad (\text{S14})$$

1472

1473 Substituting Eq. S14 in Eq. S12 yields

1474
1475
$$\frac{\exp(\hat{\mathbf{CP}})}{\exp(\frac{1}{c}\hat{\mathbf{CP}}\mathbf{1}\mathbf{1}^\top)} = c\mathbf{C}$$

1476
1477
1478
$$\exp(\hat{\mathbf{CP}} - \frac{1}{c}\hat{\mathbf{CP}}\mathbf{1}\mathbf{1}^\top) = c\mathbf{C} \quad (\text{S15})$$

1479
1480
1481
1482

1483 F LLM USAGE
14841485 In preparing this manuscript, we employed a large language model (LLM) exclusively for surface-
1486 level language refinement, such as grammar correction and improving clarity of expression. The
1487 LLM did not contribute to method ideation and experimental study.1488 G LIMITATION
14891490 In this paper, we explore the training-free adapting capability of the pre-trained models with pure
1491 GNNs. However, although the proposed method can be employed for any graph learning task
1492 (Appendix A), the empirical evaluation in this paper is limited to node classification. Further study
1493 on graph-level and edge-level tasks is left for future work.1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565

Table S11: **Dataset Statistics.** “✓” marks the training datasets as different scales, where “S”, “M”, “L” denote small-scale, middle-scale, and large-scale datasets with numbers of nodes around 1k, 10k, and 100k, respectively.

DATASET	USAGE	TYPE	#NODES	#FEATURES	#LABELS	E-COM. ONLY			CITATION ONLY			SOCIAL ONLY			WIKI. ONLY		
						S	M	L	S	M	L	S	M	L	S	M	L
AMAZON-COMPUTERS	TEST	HOM.	13,381	767	10	8	✓		5	✓							
AMAZON-PHOTO	TRAIN	HOM.	7,487	745	300	5			47								
AMAZON-RATINGS	TRAIN	HET.	24,492		100												
OCBN-PRODUCTS	TRAIN	HOM.	2,449,029														
CORA	TEST	HOM.	2,708	1,433	7												
COAUTHOR-PHYSICS	TEST	HOM.	34,493	8,415	5												
COAUTHOR-YEAR	TEST	HET.	169,343	128	5												
CITATION	TEST	HOM.	3,327	3,703	6												
CITUS-SEER	TRAIN	HOM.	19,717	500	3												
CITUS-MED	TRAIN	HOM.	169,343	128	49												
CITUS-ARXIV	TRAIN	HOM.	169,343	269	5												
SNAP-PATENTS	TRAIN	HET.	2,923,922														
TWITCH-GAMER	TEST	HET.	168,114	7	2												
TOLOKERS	TEST	HET.	11,758	10	2												
TWITCH-E	TRAIN	HET.	9,498	128	2												
FBI-100	TRAIN	HET.	41,554	5	2												
GENIUS	TRAIN	HET.	421,961	12	2												
FACEBOOK	TRAIN	HOM.	22,470	128	4												
POKEC	TRAIN	HET.	1,632,803	65	2												
CHAMELEON	TEST	HET.	2,277	2,325	5												
ACTOR	TEST	HET.	7,600	932	5												
WIKICIS	TRAIN	HOM.	11,701	300	10												
ROMAN-EMPIRE	TRAIN	HET.	22,662	300	18												
NEIL	TRAIN	HET.	65,755	61,278	186												

1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

Table S12: **Dataset Combinations for Pre-training.** ‘‘✓’’ marks the selected datasets for different setups. ‘‘S’’, ‘‘M’’, ‘‘L’’ denote small-scale, middle-scale, and large-scale datasets with numbers of nodes around 1k, 10k, and 100k, respectively. ‘‘No XXX’’ denotes pre-training on datasets from three domains and adapting to the remaining one for the domain gap experiment.

DATASET	USAGE	TYPE	#NODES	#FEATURES	#LABELS	NO E-COM.			NO CATION			NO SOCIAL			NO WIKI.			ALL			HET.			HOM.			
						S	M	L	S	M	L	S	M	L	S	M	L	S	M	L	S	M	L	S	M	L	
AMAZON-COMPUTERS	TEST	HOM.	13,381	767	10				✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
AMAZON-PHOTO	TRAIN	HOM.	7,487	745	8																						
AMAZON-RATINGS	TRAIN	HET.	24,492	300	5																						
OCBN-PRODUCTS	TRAIN	HOM.	2,449,029	100	47																						
CORA	TEST	HOM.	2,708	1,433	7																						
COAUTHORPHYSICS	TEST	HOM.	34,493	8,415	5																						
ARXIV-YEAR	TEST	HET.	169,343	128	5																						
CITESEER	TRAIN	HOM.	3,327	3,703	6	✓																					
PUBMED	TRAIN	HOM.	19,717	500	3	✓																					
OCBN-ARXIV	TRAIN	HOM.	169,343	128	40	✓																					
SNAP-PATENTS	TRAIN	HET.	2,923,922	269	5																						
TWITCH-GAMER	TEST	HET.	168,114	7																							
TOLKERS	TEST	HET.	11,758	10	2																						
TWITCH-E	TRAIN	HET.	9,498	128	2	✓																					
FBI100	TRAIN	HET.	41,554	5																							
GENIUS	TRAIN	HET.	421,961	12																							
FACEBOOK	TRAIN	HOM.	22,470	128	4																						
POKEC	TRAIN	HET.	1,633,803	65	2																						
CHAMELEON	TEST	HET.	2,277	2,325	5																						
ACTOR	TEST	HET.	7,600	932	5																						
WIKICS	TRAIN	HOM.	11,701	300	10	✓																					
ROMAN-EMPIRE	TRAIN	HET.	23,962	300	18	✓																					
NEIL	TRAIN	HET.	65,755	61,278	186																						