
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Rankformer: a Ranking-Inspired Transformer Model for
Recommendation

Anonymous Author(s)

Abstract
Recommender Systems (RS) aim to generate personalized ranked
lists for each user and are also evaluated using ranking metrics.
Although personalized ranking is a fundamental aspect of RS, this
critical property is often overlooked in the design of model archi-
tectures. To address this issue, we propose Rankformer, a ranking-
inspired recommendation model. The architecture of Rankformer
is inspired by the gradient of the ranking objective, embodying
a unique (graph) transformer architecture — it leverages global
information from all users and items to produce more informative
representations, and employs specific attention weights to guide the
evolution of embeddings towards improved ranking performance.
We further develop an acceleration algorithm for Rankformer, re-
ducing its complexity to a linear level with respect to the number
of positive instances. Extensive experimental results demonstrate
that Rankformer outperforms state-of-the-art methods.

CCS Concepts
• Information systems→ Recommender systems.

Keywords
Recommendation, Transformer, Personalized Ranking

ACM Reference Format:
Anonymous Author(s). 2018. Rankformer: a Ranking-Inspired Transformer
Model for Recommendation . In Proceedings of Make sure to enter the correct
conference title from your rights confirmation emai (Conference acronym ’XX).
ACM, New York, NY, USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Recommender systems (RS) have been integrated into many per-
sonalized services, playing an essential role in various applications
[20]. A fundamental attribute that distinguishes RS from other ma-
chine learning tasks is its inherently personalized ranking nature.
Specifically, RS aims to create user-specific ranked lists of items and
retrieve themost relevant ones for recommendation [32]. To achieve
this, most existing RS approaches adopt model-based paradigms,
where a recommendation model is learned from users’ historical
interactions and subsequently generates ranking scores for each
user-item pair.

Recent years have witnessed substantial progress in recommen-
dationmodel architectures, evolving from basic matrix factorization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

0 1 2 3 4 5 6 7 8 9 10
Number of Layers

0.006

0.012

0.018

0.024

N
D

CG
@

20

Ali-Display

0 1 2 3 4 5 6 7 8 9 10
Number of Layers

0.0008

0.0016

0.0024

0.0032
Amazon-CDs

Rankformer LightGCN

Figure 1: Performance in terms of 𝑁𝐷𝐶𝐺@20 when using
Rankformer and LightGCN with different numbers of layers
for randomly initialized representations without training.

[21, 27] to more advanced architectures like Auto-Encoder [10, 25]
and Graph Neural Networks (GNNs) [12, 39, 40, 49]. despite their
increasingly sophisticated, we argue that a critical limitation re-
mains — their architecture design often neglects the essential
ranking property of RS, which could compromise their ef-
fectiveness.

To illustrate this point, let’s take GNN-based architectures as
examples for analyses. GNN-based models have been extensively
studied in this field and usually achieve state-of-the-art perfor-
mance [18]. In RS, the primary role of GNNs has been identified
as a low-pass filter (a.k.a. graph smoother) [30], which draws the
embeddings of connected users/items closer. However, this role
significantly deviates from the ranking objective, thereby creat-
ing a gap that can impede their effectiveness. As demonstrated
in Figure 1, without the guidance of a ranking objective function,
the performance gains from stacking multiple layers of GNNs are
limited. Even when supervised signals are introduced, stacking
multiple GNN layers would easily result in the notorious issue of
over-smoothing, where the score differences between positive and
negative instances are reduced and become indistinguishable. This
is in direct conflict with the ranking objective, which aims to ele-
vate scores of the positive instances over the negative ones, leading
to suboptimal performance. These limitations clearly underscore
the necessity of considering the ranking property in the design of
model architectures. It can serve as an inductive bias to guide the
model towards generating better ranking performance. Naturally,
a significant research question arises: How can we develop a
recommendation architecture that is well-aligned with the
ranking property of RS?

Towards this end, we propose a novel ranking-inspired recom-
mendation model, Rankformer. Instead of a heuristic design or
inheriting from other domains, the architecture of Rankformer is
directly inspired by the ranking objective. Specifically, we scru-
tinize the gradient of the ranking objective, which suggests the

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

evolution direction of embeddings for enhanced ranking perfor-
mance, and consequently develop a neural layer in accordance with
this gradient. Rankformer embodies a unique (graph) transformer
architecture: It leverages global information from all other users
and items to obtain more informative user/item representations.
Furthermore, specific attention weights, which compare positive
and negative instances, are introduced to guide the evolution of
embeddings towards improved ranking performance.

Despite its theoretical effectiveness, the implementation of Rank-
former could encounter the challenge of computational inefficiency.
As a transformer model, Rankformer involves information propa-
gation between each user and item, leading to a time complexity
that is quadratic in relation to the number of users and items. This
renders it computationally prohibitive in practice. Thus, we propose
an acceleration algorithm specifically tailored for Rankformer. By
utilizing mathematical transformations and memorization skills,
we reduce the complexity to linear with respect to the number of
positive instances, significantly improving the model’s efficiency.

Overall, this work makes the following contributions:
• Proposing a novel ranking-inspired recommendation model,

Rankformer, that explicitly incorporates the personalized rank-
ing principle into the model architecture design.

• Customizing a fast algorithm for Rankformer, reducing the
original computational complexity from quadratic with the
number of users and items to linear with the positive instances.

• Conducting experiments on four real-world datasets to demon-
strate the superiority of Rankformer over state-of-the-art meth-
ods by a significant margin (4.74% on average).

2 Preliminary
In this section, we present the background of recommender systems
and the transformer model.

2.1 Background on Recommender Systems
Task Formulation. This work focuses on collaborative filtering,
a generic and common recommendation scenario. Given a recom-
mender system with a set of users U and a set of items I, let 𝑛
and𝑚 denote the number of users and items. Let D = {𝑦𝑢𝑖 : 𝑢 ∈
U, 𝑖 ∈ I} denote the historical interactions between users and
items, where 𝑦𝑢𝑖 = 1 indicates that user 𝑢 has interacted with
item 𝑖 , and 𝑦𝑢𝑖 = 0 indicates has not. For convenience, we define
N+
𝑢 = {𝑖 ∈ I : 𝑦𝑢𝑖 = 1} as the set of positive items for user 𝑢,

and N−
𝑢 = {I \ N+

𝑢 } as the negative item set. Similar definitions
apply for N+

𝑖
and N−

𝑖
which indicate the set of positive and neg-

ative users for item 𝑖 , respectively. The recommendation task can
be formulated as learning a personalized ranked list of items for
users and recommending the top items that users are most likely
to interact with.

Personalized ranking is a fundamental property that distinguishes
RS from other machine-learning tasks. RS is typically evaluated
using ranking metrics such as NDCG@K, AUC, and Precision@K,
which measure how well positive instances are ranked higher than
negative ones [41]. Given this, the importance of considering the
ranking property in model architecture design cannot be overstated.

RecommendationModels.Modern recommender systems typ-
ically model ranking scores using a learnable recommendation

model. Embedding-based models are widely adopted [21, 32]. These
models map the features (e.g., ID) of users and items into a 𝑑-dim
embedding zu, zi ∈ R𝑑 , and generate their predicted score𝑦𝑢𝑖 based
on similarity of embeddings. The inner product, inherited from ma-
trix factorization (MF), is commonly used in RS, i.e., 𝑦𝑢𝑖 = z𝑇𝑢 z𝑖 , as
it supports efficient retrieval and has demonstrated strong perfor-
mance in various scenarios [2, 18]. The predicted scores 𝑦𝑢𝑖 are
subsequently utilized to rank items for generating recommenda-
tions. For convenience, we collect the embeddings of all users and
items as a matrix Z.

Given the ranking nature of RS, existing recommendationmodels
are often trained with ranking-oriented objective functions, e.g.,
BPR [32]. BPR aims to raise the scores of positive items relative to
negative ones and can be formulated as:

L𝐵𝑃𝑅 = −
∑︁
𝑢∈U

∑︁
𝑖∈N𝑢

∑︁
𝑗∉N𝑢

𝜎 (z𝑇𝑢 z𝑖 − z𝑇𝑢 z𝑗 )
𝑑𝑢 (𝑚 − 𝑑𝑢 )

+ 𝜆∥Z∥22 (1)

where 𝜎 (.) denotes the activation, and the hyperparameter 𝜆 con-
trols the strength of the regularizer. While BPR provides a super-
vised signal to guide model training toward better ranking, it does
not negate the importance of model architecture. As demonstrated
in recent machine learning literature [6], model architecture acts
as an inductive bias that determines the model’s learning and gen-
eralization capacity — if the bias aligns well with the underlying
patterns of the task, the model is likely to perform well. In subsec-
tion , we conduct specific analyses to demonstrate the merits of
incorporating ranking properties into model architecture design.

GNN-based RecommendationModels. In recent years, Graph
Neural Networks (GNNs) have been widely explored in the field
of RS and have demonstrated notable effectiveness [12, 17, 18, 40].
These methods construct a bipartite graph from historical inter-
actions, where users and items are represented as nodes, and an
edge exists between them if the user has interacted with the item.
User/item embeddings are iteratively refined by aggregating infor-
mation from their graph neighbors. Formally, taking the represen-
tative LightGCN [18] model as an example, the 𝑙-layer network can
be written as:

z(𝑙 )𝑢 =
∑︁
𝑖∈N+

𝑢

1
√
𝑑𝑢𝑑𝑖

z(𝑙 )
𝑖

; z(𝑙 )
𝑖

=
∑︁
𝑢∈N+

𝑖

1
√
𝑑𝑢𝑑𝑖

z(𝑙 )𝑢 (2)

where 𝑑𝑢 = |N+
𝑢 |, is the degree of node 𝑢 in graph, and 𝑑𝑖 = |N+

𝑖
|.

Recent work has shown that GNNs act as low-pass filters, which
is beneficial for capturing collaborative signals [53]. Nevertheless,
as discussed earlier, there is a gap between the role of GNNs and
the ranking objective, limiting their effectiveness. While the work
[34] attempts to build theoretical connections, their finding is con-
strained by impractical assumptions, such as requiring large em-
bedding spaces, single-layer GNNs, or untrained models.

2.2 Transformer Architecture
Transformer has been widely adopted in various fields [4, 35, 36].
The core of the Transformer is the attention module, which takes

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Rankformer: a Ranking-Inspired Transformer Model for Recommendation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

input 𝑋 ∈ R𝑛×𝑑 and computes:

Q = XW𝑄 , K = XW𝐾 , V = XW𝑉 ,

Attn(X) = softmax(QK𝑇√︁
𝑑𝐾

)V (3)

where W𝑄 ∈ R𝑑×𝑑𝐾 ,W𝐾 ∈ R𝑑×𝑑𝐾 ,W𝑉 ∈ R𝑑×𝑑𝑉 are weight
matrices for the query, key, and value projections, respectively.

The transformer architecture has significant potential to be ex-
ploited in RS. Considering the input as embeddings of users and
items, transformer estimates the similarity between these entities
based on their projected embeddings, and then aggregates infor-
mation from other entities according to this similarity. Such opera-
tions align closely with the fundamental principles of collaborative
filtering [5, 23]. However, the architecture should be specifically
designed to align with the ranking principle, and the high compu-
tational overhead from global aggregation needs to be addressed.

3 Methodology
In this section, we first introduce the architecture of the proposed
Rankformer, followed by a discussion of its connections with exist-
ing architectures. Finally, we detail how its computation is acceler-
ated.

3.1 Rankformer Layer
Rankformer is directly inspired by the ranking objective — we aim
to promote user/item embeddings to evolve towards better rank-
ing performance as they progress through the neural network. To
achieve this, a natural idea is to let the embeddings evolve in align-
ment with the gradient of the ranking objective, which suggests
the directions for enhancing ranking performance. Specifically, let
L(Z) be a specific ranking objective. We may employ gradient de-
scent (or ascent) to update the embeddings to improve their quality
with:

Z(𝑙+1) = Z(𝑙 ) − 𝜏 · 𝜕L(Z(𝑙 ) )
𝜕Z(𝑙 )

(4)

where Z(𝑙+1) denotes the embeddings in the 𝑙-th step and 𝜏 denotes
the step-size. This inspires us to develop a neural network that
mirrors such an update. We may simply let Z(𝑙+1) be the embed-
dings of the 𝑙-layer and employ a neural network along with Eq(1).
Naturally, the neural network would capture the ranking signals of
the recommendation and guide the embeddings to evolve toward
better ranking performance.

To instantiate this promising idea, this work simply adopts the
conventional objective BPR for neural network design, as it has been
demonstrated to be an effective surrogate for the AUCmetric. More-
over, for facilitating analyses and accelerating computation, we
simply choose the quadratic function activation, i.e., 𝜎 (𝑥) = 𝑥2 +𝑐𝑥 .
This can also be considered as a second-order Taylor approximation
of other activations. The 𝑙-layer neural network of Rankformer can
be formulated as follows by mirroring the gradient descent of BPR:

z(𝑙+1)𝑢 = (1 − 𝜏)z(𝑙 )𝑢 + 𝜏

𝐶
(𝑙 )
𝑢

( ∑︁
𝑖∈N+

𝑢

Ω+
𝑢𝑖

(𝑙 )z(𝑙 )
𝑖︸             ︷︷             ︸

Aggregate Positive

+
∑︁
𝑖∈N−

𝑢

Ω−
𝑢𝑖

(𝑙 )z(𝑙 )
𝑖︸              ︷︷              ︸

Aggregate Negative

)

z(𝑙+1)
𝑖

= (1 − 𝜏)z(𝑙 )
𝑖

+ 𝜏

𝐶
(𝑙 )
𝑖

( ∑︁
𝑢∈N+

𝑖

Ω+
𝑖𝑢

(𝑙 )z(𝑙 )𝑢︸              ︷︷              ︸
Aggregate Positive

+
∑︁
𝑢∈N−

𝑖

Ω−
𝑖𝑢

(𝑙 )z(𝑙 )𝑢︸              ︷︷              ︸
Aggregate Negative

)

(5)
where Ω+ and Ω− denote the weights for aggregating positive and
negative users/items by items/users:

Ω+
𝑢𝑖

(𝑙 )
= Ω+

𝑖𝑢
(𝑙 )

=
1
𝑑𝑢

(
(z(𝑙 )𝑢 )𝑇 z(𝑙 )

𝑖︸       ︷︷       ︸
Similarity

− 𝑏−𝑢
(𝑙 )︸︷︷︸

Benchmark

+ 𝛼︸︷︷︸
Offset

)

Ω−
𝑢𝑖

(𝑙 ) = Ω−
𝑖𝑢

(𝑙 ) =
1

𝑚 − 𝑑𝑢

(
(z(𝑙 )𝑢 )𝑇 z(𝑙 )

𝑖︸       ︷︷       ︸
Similarity

− 𝑏+𝑢
(𝑙 )︸︷︷︸

Benchmark

− 𝛼︸︷︷︸
Offset

) (6)

where 𝑏+𝑢
(𝑙 ) and 𝑏−𝑢 (𝑙 ) are two benchmark terms used to calculate

the average similarity of positive/negative pairs.

𝑏+𝑢
(𝑙 )

=
1
𝑑𝑢

∑︁
𝑗∈N+

𝑢

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑗

𝑏−𝑢
(𝑙 ) =

1
𝑚 − 𝑑𝑢

∑︁
𝑗∈N−

𝑢

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑗

(7)

Detailed derivations can be found in Appendix A.1. Here we
simply set the hyperparameter 𝜆 = 1. Additionally, we introduce
normalization constants to maintain numerical stability, i.e.,

𝐶
(𝑙 )
𝑢 =

∑︁
𝑖∈N+

𝑢

���Ω+
𝑢𝑖

(𝑙 )
��� + ∑︁

𝑖∈N−
𝑢

���Ω−
𝑢𝑖

(𝑙 )
���

𝐶
(𝑙 )
𝑖

=
∑︁
𝑢∈N+

𝑖

���Ω+
𝑖𝑢

(𝑙 )
��� + ∑︁

𝑢∈N−
𝑖

���Ω−
𝑖𝑢

(𝑙 )
��� (8)

While the neural layer may seem complex, its underlying in-
tuition is straightforward. The derived Rankformer embodies a
unique transformer architecture—each user (or item) iteratively
leverages global information from all items (or users) to update its
representation, utilizing both positive and negative interactions. For
example, a positive item indicates what the user likes, while a neg-
ative item suggests what the user dislikes. Both signals are crucial
for profiling user preferences. Aggregating information from both
types of items helps guide the user’s embedding closer to the items
they like and away from the items they dislike. Similar logic applies
to the item side, where aggregating information from both positive
and negative users enhances the quality of item embeddings.

Furthermore, specific attention weights (i.e., , Eq(6)) are intro-
duced, consisting of three parts:

• Similarity term z𝑇𝑢 z𝑖 : This operation can be seen as a vanilla
attention mechanism akin to that in the Transformer model,

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 1: Comparison of Rankformer with LightGCN, GAT,
and vanilla Transformer. These three methods can be viewed
as special cases of Rankformer with certain components
removed.

Ω+
𝑢𝑖

Ω−
𝑢𝑖

LightGCN 1
𝑑𝑢

0

GAT z𝑇𝑢 z𝑖
𝑑𝑢

0

Transformer z𝑇𝑢 z𝑖
𝑑𝑢

z𝑇𝑢 z𝑖
𝑑𝑢

Rankformer z𝑇𝑢 z𝑖−𝑏−𝑢 +𝛼
𝑑𝑢

z𝑇𝑢 z𝑖−𝑏−𝑢 −𝛼
𝑑𝑢

except that we omit the extra projection parameters. The in-
tuition here is that similar entities provide more valuable in-
formation and thus should be given higher attention weights
during information aggregation.

• Benchmark term𝑏+𝑢 or𝑏−𝑢 : Rankformer incorporates additional
benchmark terms that represent the average similarity among
all positive (or negative) items for each user. This approach
aligns with the inherent ranking nature of RS. The absolute
similarity value (i.e., the prediction score) may not always
be the most important factor; rather, the relative score — i.e.,
how much an item’s score is higher (or lower) compared to
others — provides crucial evidence of its ranking, indicating
the degree of its positivity or negativity. Thus, for positive
instances, a negative benchmark is used as a reference point
for comparison, and a similar strategy is applied to negative
instances.

• Offset term 𝛼 : This term differentiates the influence of pos-
itive and negative interactions. For positive user-item pairs,
the weights are increased, bringing their embeddings closer,
while for negative pairs, the weights are reduced (and can
even become negative), pushing their embeddings apart. Ad-
ditionally, the magnitude of 𝛼 can act as a smoothing factor.
A larger 𝛼 makes the weight distribution among positive (or
negative) instances more uniform while a smaller 𝛼 sharpens
the distribution.

3.2 Disscussion
In this subsection, we elucidate the distinctions and connections
between Rankformer and existing methodologies. Table 1 summa-
rizes these relationships, wherein LightGCN, GAT, and the vanilla
Transformer can be viewed as special cases of Rankformer with
certain components omitted.

Comparison with GNNs-based methods: When compared to
existing GNNs-based methods (e.g., LightGCN[18], GAT [37]), the
primary distinction of Rankformer is its ability to leverage signals
from negative instances during the aggregation process. This aspect
is pivotal, as negative instances also provide valuable information
for profiling user preferences or item attributes. For instance, neg-
ative items supply signals about user dislikes, which are equally
valuable for learning user representations, i.e., distancing the user’s
representation from the item.

Comparison with Transformer:When compared to existing
(graph) transformer models [12, 18], Rankformer exhibits three dif-
ferences: 1) During information aggregation, Rankformer handles
positive and negative relations separately, calculating their atten-
tion weights in different manners. This treatment is rational, as
they deliver distinctly different types of signals, enabling the trans-
former to perceive such crucial historical interaction information.
2) Beyond embedding similarity, Rankformer introduces additional
benchmark and offset terms, ensuring the neural network aligns
well with the ranking objective. 3) Most importantly, Rankformer is
not heuristically designed but is entirely derived from the ranking
objective, guiding the evolution of embeddings toward improved
ranking performance.

Comparison with Direct Optimization: Note that a recom-
mendation model is also optimized through a rank-oriented loss
function, e.g., BPR. Given this, some readers may question the ad-
vantages of incorporating gradient descent of ranking objectives
into the design of the model architecture.

The architecture of Rankformer is designed to simulate multi-
ple iterations of gradient descent from the original embeddings.
This implies that Rankformer has already progressed along the
optimization trajectory, thus gaining insight into the forthcoming
optimization landscape and the potential of various optimization
directions. Therefore, when Rankformer is trained with BPR, it
naturally tends to select a more advantageous optimization direc-
tion than a conventional recommendation model. This is due to
its advanced perspective of the optimization landscape and its in-
herent objective to enhance model performance after successive
optimization steps.

3.3 Fast Implementation
As a transformer model, the implementation of Rankformer would
also face an inefficiency challenge. The computational overhead
primarily originates from its information aggregation mechanism,
which involves global aggregation between users and items, with
the complexity 𝑂 (𝑛𝑚𝑑). Given the extensive number of users and
items in real-world scenarios, such operations can be prohibitively
expensive. The majority of the complexity originates from the ag-
gregation of negative instances. However, these computationally de-
manding terms can be transformed with appropriate mathematical
manipulations. Here, we take the term for aggregating

∑
𝑗∈N−

𝑢
z(𝑙 )
𝑗

as an example: ∑︁
𝑗∈N−

𝑢

z(𝑙 )
𝑗

=
∑︁
𝑗∈I

z(𝑙 )
𝑗

−
∑︁
𝑖∈N+

𝑢

z(𝑙 )
𝑗 (9)

and the term 𝑏−𝑢
(𝑙 ) can be also fast calculated with:

𝑏−𝑢
(𝑙 ) =

1
𝑚 − 𝑑𝑢

(z(𝑙 )𝑢 )𝑇 ©­«
∑︁
𝑗∈I

z(𝑙 )
𝑗

−
∑︁
𝑗∈N+

𝑢

z(𝑙 )
𝑗

ª®¬ (10)

The complexity of calculating these terms can be reduced to𝑂 ((𝑛 +
𝑚)𝑑 + 𝐸𝑑), where 𝐸 is the number of edges. Similar methods can
be applied to calculating Ω+

𝑢𝑖
(𝑙 ) , Ω−

𝑢𝑖
(𝑙 ) ,𝐶 (𝑙 )

𝑢 ,𝐶 (𝑙 )
𝑖

with complexity
𝑂 ((𝑛 +𝑚)𝑑 + 𝐸𝑑), and calculating z(𝑙+1)𝑢 , z(𝑙+1)

𝑖
with complexity

𝑂 ((𝑛 + 𝑚)𝑑2 + 𝐸𝑑). Readers may refer to the Appendix A.2 for
more detailed derivations and complexity analyses. With such an

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Rankformer: a Ranking-Inspired Transformer Model for Recommendation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 2: tab: Statistics of datasets.

Dataset #User #Item #Interaction

Ali-Display 17,730 10,036 173,111
Amazon-Kindle 47,754 47,052 689,550
Amazon-CDs 51,266 46,463 731,734
Yelp2018 167,037 79,471 1,970,721

algorithm, although Rankformer involves propagation between
every user-item pair, the complexity of Rankformer can be reduced
to 𝑂 ((𝑛 +𝑚)𝑑2 + 𝐸𝑑), making it highly efficient and applicable.

We also introduce a few simple strategies during implementation
to further enhance training stability: 1) During the calculation
of attention weights, we employ embedding normalization. This
procedure constrains the value of similarity within a fixed range of
[-1,1]. 2) Given that initial embeddings may not be of high quality
and could potentially affect the calculation of attention, we employ
a warm-up strategy. Specifically, we employ uniform weights and
remove negative aggregation at the first layer of Rankformer.

4 Experiments
In this section, we conduct comprehensive experiments to answer
the following research questions:
• RQ1: How does Rankformer perform compared to existing state-

of-the-art methods?
• RQ2: What are the impacts of the important components (such

as the terms in Eq(6) on Rankformer?
• RQ3: How do the hyperparameters affect the performance of

Rankformer?
• RQ4: How does the efficiency of Rankformer compare with

existing methods?

4.1 Experimental Settings
4.1.1 Datasets. We conducted experiments on four conventional
real-world datasets:Ali-Display 1 provided by Alibaba, is a dataset
for estimating click-through rates of Taobao display ads; Amazon-
Kindle and Amazon-CDs [28] consist of user ratings on products
on the Amazon platform; Yelp2018 2 is a dataset of user reviews
collected by Yelp. We adopt a standard 5-core setting and randomly
split the datasets into training, validation, and test sets in a 7:1:2
ratio. The statistical information of the datasets is presented in
Table 2.

4.1.2 Metrics. We closely refer to [18, 50] and employed twowidely
used metrics, 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 and 𝑁𝐷𝐶𝐺@𝐾 , to evaluate the recommen-
dation accuracy. We also simply set 𝐾 = 20 as recent work [50].

4.1.3 Baselines. 1) Recommendation Methods. The following
five representative or SOTA recommendation methods are included:
• MF [21]: the method exclusively employs the BPR loss function

for matrix factorization, without any encoding architecture.
• LightGCN [18]: the classical recommendationmethod that adopts

linear GNN.

1https://tianchi.aliyun.com/dataset/dataDetail?dataId=56
2https://www.yelp.com/dataset

• DualVAE [16]: a collaborative recommendation method that
combines disentangled representation learning with variational
inference.

• MGFormer [5]: the state-of-the-art recommendation method
based on the graph transformer, equipped with a masking mech-
anism designed for large-scale graphs.

• CAGCN [40]: a recommendation-tailored GNN, introducing the
recommendation-oriented topological metric CIR.
2) Graph Transformer with Global Attention Mechanism.

The following three state-of-the-art graph transformer methods
are included. We augment these methods with BPR loss to apply
them in recommendation tasks:
• Nodeformer [44]: the classical linear transformer for large-scale

graphs with a kernelized Gumbel-Softmax operator to reduce
the algorithmic complexity.

• DIFFormer [14]: the linear transformer derived from an energy-
constrained diffusion model, applicable to large-scale graphs.
This work is built upon NodeFormer.

• SGFormer [45]: the latest linear Transformer designed for large-
scale graphs, built upon NodeFormer and DIFFormer.
3) Recommendation Methods With Contrastive Learning

Loss. Given the SOTA methods are often achieved with contrastive
learning, we also compare Rankformer with these methods. Nev-
ertheless, it would be unfair as our Rankformer does not utilize
constrastive loss. Thus, we also equipped Rankformer with layer-
wise constrastive loss as XSimGCL [50] (named as Rankformer-CL).
The following baselines are adopted:
• XSimGCL [50]: the state-of-the-art method that enhance Light-

GCN with contrastive learning.
• GFormer [23]: the state-of-the-art recommendation method that

combine transformer architecture with contrastive learning.

4.1.4 Parameter Settings. For Rankformer, we adopt the Adam
optimizer and search the hyperparameters with grid search. Specif-
ically, we set the hidden embedding dimension 𝑑 = 64 as recent
works [18]. The weight decay is set to 1𝑒 − 4. We search for 𝜏 with
a step size of 0.1 within the range [0, 1], and select the number of
layers 𝐿 for Rankformer in the range of {1, 2, 3, 4, 5}. To reduce the
number of hyperparameters, except for the experiments in Table 3,
the parameter 𝛼 is simply set to 2, although Table 3 indicates that
fine-tuning this parameter could improve the model’s performance.
For Rankformer without contrastive learning loss, the learning rate
is set to 0.1.

We also test Rankformer-CL that combines Rankformer with the
layer-wise contrastive loss used in XSimGCL. For Rankformer-CL,
the batch size is set to 2048, and the learning rate is set to 0.001.
The relevant parameters for the contrastive loss are simply set as:
𝜖cl = 0.2, 𝜆cl = 0.05, 𝜏cl = 0.15.

For the compared methods, we use the source code provided
officially and follow the instructions from the original paper to
search for the optimal hyperparameters. We extensively traversed
and expanded the entire hyperparameter space as recommended by
the authors to ensure that all compared methods achieved optimal
performance.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 3: Performance comparison between baselines and Rankformer. The best result is bolded and the runner-up is underlined.
The mark ‘*’ suggests the improvement is statistically significant with 𝑝 < 0.05.

Ali-Display Amazon-Kindle Amazon-CDs Yelp2018
ndcg@20 recall@20 ndcg@20 recall@20 ndcg@20 recall@20 ndcg@20 recall@20

MF 0.0586 0.1094 0.1092 0.1764 0.0717 0.1255 0.0402 0.0766
LightGCN 0.0643 0.1174 0.1273 0.2016 0.0764 0.1317 0.0456 0.0842
DualVAE 0.0603 0.1119 0.1111 0.1786 0.0733 0.1276 0.0402 0.0768
CAGCN 0.0645 0.1174 0.1320 0.2049 0.0797 0.1322 0.0431 0.0787

Recommendation
Methods

MGFormer 0.0649 0.1083 0.1249 0.1980 0.0763 0.1324 0.0468 0.0869
Nodeformer 0.0205 0.0358 - - - - - -
DIFFormer 0.0370 0.0715 0.0448 0.0804 0.0369 0.0681 0.0282 0.0539Graph

Transformer SGFormer 0.0411 0.0769 0.0277 0.0518 0.0284 0.0524 0.0218 0.0427
0.0652* 0.1208* 0.1379* 0.2092* 0.0831* 0.1412* 0.0482* 0.0890*Rankformer 0.42% 2.87% 4.48% 2.09% 4.27% 6.64% 2.90% 2.46%

XSimGCL 0.0650 0.1194 0.1287 0.1999 0.0796 0.1346 0.0500 0.0907Graph-based RS
with CL Gformer 0.0644 0.1176 0.1303 0.1981 0.0812 0.1366 0.0502 0.0897

0.0680* 0.1246* 0.1445* 0.2159* 0.0877* 0.1467* 0.0523* 0.0941*Rankformer-CL 4.57% 4.32% 10.93% 8.00% 8.00% 7.41% 4.29% 3.71%

4.2 Performance Comparison (RQ1)
The performance comparison of our Rankformer and all baselines
in terms of 𝑅𝑒𝑐𝑎𝑙𝑙@20 and 𝑁𝐷𝐶𝐺@20 is shown in Table 3. Over-
all, Rankformer consistently outperforms all comparison methods
across all datasets with an average of improvements of 4.74%. This
result clearly demonstrates the effectiveness of leveraging ranking
signals in model architecture.

Comparison with Recommendation Methods. Overall, our
Rankformer outperforms existing state-of-the-art recommendation
methods. Among these comparative methods, graph-based rec-
ommender methods such as LightGCN, CAGCN, and MGFormer
outperform other methods, indicating the advantage of using graph
structure in the recommendation. GFormer, which incorporates
transformer architecture, outperforms LightGCN and CAGCN us-
ing traditional graph GCNs, suggesting that transformer architec-
tures can better leverage collaborative information.

ComparisonwithGraphTransformerMethods.Rankformer
consistently outperforms all transformer-based graph representa-
tion methods across all datasets. Remarkably, these baseline per-
formances often fall below standard benchmarks and even fail
to converge on some datasets, indicating their unsuitability for
recommendation tasks. There are two key factors contributing to
this outcome: 1) These methods are designed for traditional graph
tasks such as node classification, hence they are also based on the
smoothness assumption, which does not align with the ranking
objectives of recommendation. 2) These methods typically employ
a large number of parameters and non-linear modules, making it
challenging to effectively train them in RS due to data sparsity.

Comparison with Graph-based RS with contrastive learn-
ing. The performance of the methods with contrastive learning
surpasses other baselines significantly, and adding the contrastive
learning loss to Rankformer further enhances recommendation per-
formance noticeably. The Rankformer augmented with the CL-loss
notably outperforms these CL-based methods. Particularly on the
"Amazon-Kindle" dataset, the improvement reaches an impressive

10.93%. These observations indicate that contrastive learning can
effectively leverage rich collaborative information, and our Rank-
former model integrates well with contrastive learning modules.

4.3 Ablation Study (RQ2)
To investigate the effects of each module in Rankformer, we conduct
an ablation study and the results are presented in Table 4. We draw
the following observations:

By removing information aggregation between negative pairs,
we observe significantly performance drops. This is coincident with
our intuition, as the negative relations also bring valuable signals
to learn user or item representations;

By removing benchmark terms 𝑏𝑢 , we also observe performance
drops, with an exception on the dataset “Amazon-Kindle”. This
can be partly attributed to our simple fixed of 𝛼 , rather than fine-
tuning to find its optimal. Figure 3 indicates that the optimal 𝛼
is approximately 6 rather 2. Therefore, on “Amazon-Kindle”, the
removal of the benchmark module would relatively amplify the
influence of 𝛼 , resulting in performance boost. Conversely, on larger
and sparser datasets like “Yelp2018”, the role of the benchmark
module becomes more pronounced.

By removing the normalization terms 𝐶 in Rankformer, we ob-
serve terrible performance of Rankformer. It would be trained unsta-
ble and usually suffers from gradient explosion. Thus, we introduce
normalization terms in the Rankformer, as other transformer mod-
els do.

4.4 Role of the parameters (RQ3)
Hyperparameter 𝜏 and the number of Rankformer layers 𝐿.
The parameter 𝜏 is proportional to the step size used in simulating
gradient ascent within Rankformer layers. As illustrated in Figure
2, the performance of Rankformer varies with 𝜏 as the number of
layers changes, showing an initial increase followed by a decrease.
This trend arises because, with a fixed number of layers, an exces-
sively small step size can result in incomplete optimization, while a

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Rankformer: a Ranking-Inspired Transformer Model for Recommendation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 4: The results of the ablation study, where negative pairs, benchmark terms and normalization terms have been removed,
respectively.

Ali-Display Amazon-Kindle Amazon-Cds Yelp2018
ndcg@20 recall@20 ndcg@20 recall@20 ndcg@20 recall@20 ndcg@20 recall@20

Rankformer - w/o negative pairs 0.0535 0.1026 0.1315 0.2013 0.0744 0.1295 0.0429 0.0800
Rankformer - w/o benchmark 0.0641 0.1189 0.1379 0.2094 0.0827 0.1406 0.0475 0.0884

Rankformer - w/o normalization of Ω 0.0291 0.0527 0.0610 0.1133 0.0357 0.0596 0.0166 0.0321

Rankformer 0.0652 0.1208 0.1379 0.2092 0.0831 0.1412 0.0482 0.0890

0.0 0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06

N
D

CG
@

20

Ali-Display

0.0 0.2 0.4 0.6 0.8 1.0

0.04

0.08

0.12

0.16
Amazon-Kindle

0.0 0.2 0.4 0.6 0.8 1.0

0.025

0.050

0.075

0.100
Amazon-CDs

0.0 0.2 0.4 0.6 0.8 1.0

0.015

0.030

0.045

Yelp2018

L = 1
L = 2
L = 3
L = 4
L = 5

Figure 2: Performance of Rankformer in terms of 𝑁𝐷𝐶𝐺@20 with different layers 𝐿 and hyperparameter 𝜏 .

step size that is too large may lead to missing the optimal solution.
Furthermore, as the number of Rankformer layers 𝐿 increases, the
optimal value of 𝜏 decreases. This is because each Rankformer layer
corresponds to one step of gradient ascent. Therefore, with a higher
number of steps, approaching the optimal solution gradually with
smaller steps is more effective; whereas with fewer steps, a larger
step size is required to converge faster towards the optimal solution.

Hyperparameter 𝛼 . The parameter 𝛼 controls the coefficient of
the linear term in the Taylor expansion. Different values of 𝛼 corre-
spond to different activation functions 𝛿 (·). As shown in Figure 3 ,
when 𝛼 increases, the performance of Rankformer generally shows
an initial improvement followed by a decline. This is because a
larger 𝛼 can better distinguish between positive and negative pairs,
but an excessively large 𝛼 can lead to over-smoothing of the rep-
resentations learned by Rankformer. When 𝛼 approaches positive
infinity, the model will degenerate into a GCN that aggregates only
the average representation of the entire graph and the representa-
tion of node neighborhoods.

4.5 Efficiency Comparison (RQ5)
Table 5 illustrates the actual runtime comparison between Rank-
former and other baselines on four datasets, along with the theo-
retical computation time of Transformer with full-graph attention
mechanism calculated on GPU using matrix blocking. The official
implementation of LightGCN exhibits low efficiency, prompting us
to introduce a re-implemented version of LightGCN for compari-
son. This version aligns with our Rankformer source code in data
processing, training, testing, and other aspects, differing only in the
encoding architecture. The experiments demonstrate that our Rank-
former, with a complexity of 𝑂 ((𝑛 +𝑚)𝑑2 + 𝐸𝑑), exhibits similar
actual runtime to LightGCN, which has a complexity of 𝑂 (𝐸𝑑). In
comparison to recommendation methods with graph transformer

such as MGFormer and GFormer, Rankformer exhibits significantly
faster runtime efficiency.

5 Related Work
5.1 Architectures of Recommendation Models
In recent years, there has been a surge of publications on recommen-
dation model architectures, ranging from traditional matrix factor-
ization [19, 21, 29], neighbor-based methods [38], to more advanced
auto-encoders [10, 25, 48], diffusion models [43], recurrent neural
networks [9, 15], graph neural networks [18], and Transformer-
based methods. In this section, we focus primarily on reviewing the
most relevant GNN-based and Transformer-based recommendation
models and refer readers to excellent surveys for more comprehen-
sive information [1, 13, 33, 52].

GraphNeural Networks (GNNs), which leveragemessage-passing
mechanisms to fully exploit collaborative informationwithin graphs,
have demonstrated remarkable effectiveness in the recommenda-
tion systems (RS) domain in recent years. Early work [12, 17, 39, 49]
directly inherits the GNN architecture, including complex param-
eters, from the graph learning domain. Later, the representative
LightGCN [18] pruned unnecessary parameters from GNNs, yield-
ing better and more efficient performance. Building on LightGCN,
recent work has made various improvements. For instance, some
researchers [2, 42, 50, 51] have explored the use of contrastive learn-
ing strategies in GNN-based methods, achieving state-of-the-art
performance; others [40] have refined and reweighted graph struc-
tures to better suit the recommendation task. Additionally, some
works [31] have analyzed and enhanced LightGCN from a spec-
tral perspective. While these GNN-based methods have achieved
significant success, a potential limitation is that the role of GNNs

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0632

0.0640

0.0648

0.0656

N
D

CG
@

20

Ali-Display

2 4 6 8 10 12 14 16
0.13788

0.13792

0.13796

0.13800

Amazon-Kindle

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0822

0.0825

0.0828

0.0831

Amazon-CDs

1 2 3 4 5 6 7 8

0.04800

0.04815

0.04830

0.04845

Yelp2018

Figure 3: Performance in terms of 𝑁𝐷𝐶𝐺@20 with different hyperparameter 𝛼 .

Table 5: Runtime comparison of Rankformer with baselines (in seconds).

Ali-Display Amazon-Kindle Amazon-Cds Yelp2018

LightGCN - source code 1687 8848 11694 21651
LightGCN - rewrite 99 132 91 1132

MGFormer 1192 2695 3090 2435
Gformer 2250 8987 6779 36587

Rankformer 109 246 282 2212

tends to deviate from the ranking objective, which may hinder their
effectiveness.

Regarding the Transformer architecture, it was initially intro-
duced to sequential recommendation as a superior alternative to
recurrent neural networks [35] for modeling item dependencies
in sequences. Additionally, Transformers have been employed in
multimodal recommendation tasks to better fuse multimodal in-
formation [26]. However, these Transformer architectures differ
significantly from our proposed Rankformer, as they are not tai-
lored for generic recommendation scenarios and do not leverage
global aggregation across all users and items. To the best of our
knowledge, there are three related works that explore generic rec-
ommendation: GFormer [23], SIGformer [8], and MGFormer [5].
We argue that the major limitations of these methods are heuristic
designs that do not incorporate the ranking property into the archi-
tecture. Moreover, they exhibit additional limitations: 1) SIGformer
requires signed interaction information, which may not always
be available; 2) Gformer utilizes the Transformer for generating
contrastive views, rather than as the recommendation backbone;
3) MGFormer involves complex masking operations and positional
encoding, making it difficult to train effectively and less efficient.

5.2 Graph Transformer
In recent years, there has been an increasing number of works
applying Transformer to graph learning. By utilizing its global at-
tention mechanism, Transformer enables each node on the graph
to aggregate information from all nodes in the graph at each step,
mitigating issues such as over-smoothing, over-squeezing, and ex-
pressive boundary problems caused by traditional GNNs that only
aggregate low-order neighbors [46]. Research on graph Transform-
ers mainly focused on designing positional encodings for capturing

topological structures, including spectral encoding [11, 22], central-
ity encoding [47], shortest path encoding [24, 47], and substructure
encoding [3], which are suitable for positional encoding in graphs.

Given the time and space complexities of Transformers with
global pairwise attention are usually proportional to the square of
the number of nodes, the early study on graph transformer can
only limited to small graphs. To tackle this, various acceleration
strategies have been developed. NodeFormer [44] replaces the orig-
inal attention matrix computation with a positive definite kernel to
achieve linear computational complexity. Methods like Gophormer
[55], ANS-GT [54], and NAGphormer [7] reduce computational
complexity through sampling strategies, while DIFFormer [43] de-
rives a linearizable Transformer using a diffusion model.

6 Conclusions
Personalized ranking is a fundamental attribute of Recommender
Stystems (RS). In this work, we propose Rankformer, which explic-
itly incorporates this crucial property into its architectural design.
Rankformer simulates the gradient descent process of the ranking
objective and introduces a unique Transformer architecture. This
specific design facilitates the evolution of embeddings in a direction
that enhances ranking performance. In the future, it would be of
great interest to extend this architecture to other recommendation
scenarios, such as sequential recommendation and LLM-based rec-
ommendation, allowing ranking signals to be seamlessly integrated
into the architectures.

References
[1] M Mehdi Afsar, Trafford Crump, and Behrouz Far. 2022. Reinforcement learning

based recommender systems: A survey. Comput. Surveys 55, 7 (2022), 1–38.
[2] Xuheng Cai, Chao Huang, Lianghao Xia, and Xubin Ren. 2023. LightGCL: Simple

Yet Effective Graph Contrastive Learning for Recommendation. In The Eleventh
International Conference on Learning Representations.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Rankformer: a Ranking-Inspired Transformer Model for Recommendation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

[3] Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. 2022. Structure-aware
transformer for graph representation learning. In International Conference on
Machine Learning. PMLR, 3469–3489.

[4] Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua
Liu, Siwei Ma, Chunjing Xu, Chao Xu, and Wen Gao. 2021. Pre-trained image
processing transformer. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 12299–12310.

[5] Huiyuan Chen, Zhe Xu, Chin-Chia Michael Yeh, Vivian Lai, Yan Zheng, Minghua
Xu, and Hanghang Tong. 2024. Masked graph transformer for large-scale rec-
ommendation. In Proceedings of the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval. 2502–2506.

[6] Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan
He. 2023. Bias and debias in recommender system: A survey and future directions.
ACM Transactions on Information Systems 41, 3 (2023), 1–39.

[7] Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. 2022. NAGphormer:
A tokenized graph transformer for node classification in large graphs. In The
Eleventh International Conference on Learning Representations.

[8] Sirui Chen, Jiawei Chen, Sheng Zhou, BohaoWang, ShenHan, Chanfei Su, Yuqing
Yuan, and Can Wang. 2024. SIGformer: Sign-aware Graph Transformer for
Recommendation. In Proceedings of the 47th International ACM SIGIR Conference
on Research and Development in Information Retrieval. 1274–1284.

[9] Yan Chen, Wanhui Qian, Dongqin Liu, Mengdi Zhou, Yipeng Su, Jizhong Han,
and Ruixuan Li. 2022. Your Social Circle Affects Your Interests: Social Influ-
ence Enhanced Session-Based Recommendation. In International Conference on
Computational Science. Springer, 549–562.

[10] Shuiguang Deng, Longtao Huang, Guandong Xu, Xindong Wu, and Zhaohui Wu.
2016. On deep learning for trust-aware recommendations in social networks.
IEEE transactions on neural networks and learning systems 28, 5 (2016), 1164–1177.

[11] Vijay Prakash Dwivedi and Xavier Bresson. 2021. A Generalization of Trans-
former Networks to Graphs. AAAI Workshop on Deep Learning on Graphs:
Methods and Applications (2021).

[12] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph neural networks for social recommendation. In The world wide web
conference. 417–426.

[13] Chen Gao, Yu Zheng, Nian Li, Yinfeng Li, Yingrong Qin, Jinghua Piao, Yuhan
Quan, Jianxin Chang, Depeng Jin, Xiangnan He, et al. 2023. A survey of graph
neural networks for recommender systems: Challenges, methods, and directions.
ACM Transactions on Recommender Systems 1, 1 (2023), 1–51.

[14] Zhujin Gao, Junliang Guo, Xu Tan, Yongxin Zhu, Fang Zhang, Jiang Bian, and
Linli Xu. 2022. Difformer: Empowering diffusion models on the embedding space
for text generation. arXiv preprint arXiv:2212.09412 (2022).

[15] Pan Gu, Yuqiang Han, Wei Gao, Guandong Xu, and Jian Wu. 2021. Enhanc-
ing session-based social recommendation through item graph embedding and
contextual friendship modeling. Neurocomputing 419 (2021), 190–202.

[16] Zhiqiang Guo, Guohui Li, Jianjun Li, ChaoyangWang, and Si Shi. 2024. DualVAE:
Dual Disentangled Variational AutoEncoder for Recommendation. In Proceedings
of the 2024 SIAM International Conference on Data Mining (SDM). SIAM, 571–579.

[17] Zhiwei Guo and Heng Wang. 2020. A deep graph neural network-based mecha-
nism for social recommendations. IEEE Transactions on Industrial Informatics 17,
4 (2020), 2776–2783.

[18] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 639–648.

[19] Mohsen Jamali and Martin Ester. 2010. A matrix factorization technique with
trust propagation for recommendation in social networks. In Proceedings of the
fourth ACM conference on Recommender systems. 135–142.

[20] Hyeyoung Ko, Suyeon Lee, Yoonseo Park, and Anna Choi. 2022. A survey of
recommendation systems: recommendation models, techniques, and application
fields. Electronics 11, 1 (2022), 141.

[21] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[22] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and
Prudencio Tossou. 2021. Rethinking graph transformers with spectral attention.
Advances in Neural Information Processing Systems 34 (2021), 21618–21629.

[23] Chaoliu Li, Lianghao Xia, Xubin Ren, Yaowen Ye, Yong Xu, and Chao Huang.
2023. Graph Transformer for Recommendation. arXiv preprint arXiv:2306.02330
(2023).

[24] Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. 2020. Distance
encoding: Design provably more powerful neural networks for graph represen-
tation learning. Advances in Neural Information Processing Systems 33 (2020),
4465–4478.

[25] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018.
Variational autoencoders for collaborative filtering. In Proceedings of the 2018
world wide web conference. 689–698.

[26] Yong Liu, Susen Yang, Chenyi Lei, Guoxin Wang, Haihong Tang, Juyong Zhang,
Aixin Sun, and Chunyan Miao. 2021. Pre-training graph transformer with
multimodal side information for recommendation. In Proceedings of the 29th

ACM International Conference on Multimedia. 2853–2861.
[27] HaoMa, Irwin King, andMichael R Lyu. 2009. Learning to recommendwith social

trust ensemble. In Proceedings of the 32nd international ACM SIGIR conference on
Research and development in information retrieval. 203–210.

[28] Julian John McAuley and Jure Leskovec. 2013. From amateurs to connoisseurs:
modeling the evolution of user expertise through online reviews. In Proceedings
of the 22nd international conference on World Wide Web. 897–908.

[29] Andriy Mnih and Russ R Salakhutdinov. 2007. Probabilistic matrix factorization.
Advances in neural information processing systems 20 (2007).

[30] Hoang Nt and Takanori Maehara. 2019. Revisiting graph neural networks: All
we have is low-pass filters. arXiv preprint arXiv:1905.09550 (2019).

[31] Shaowen Peng, Kazunari Sugiyama, and Tsunenori Mine. 2022. Less is more:
Reweighting important spectral graph features for recommendation. In Proceed-
ings of the 45th International ACM SIGIR Conference on Research and Development
in Information Retrieval. 1273–1282.

[32] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. 2012. BPR: Bayesian personalized ranking from implicit feedback. arXiv
preprint arXiv:1205.2618 (2012).

[33] Kartik Sharma, Yeon-Chang Lee, Sivagami Nambi, Aditya Salian, Shlok Shah,
Sang-Wook Kim, and Srijan Kumar. 2024. A survey of graph neural networks
for social recommender systems. Comput. Surveys 56, 10 (2024), 1–34.

[34] Yifei Shen, Yongji Wu, Yao Zhang, Caihua Shan, Jun Zhang, B Khaled Letaief, and
Dongsheng Li. 2021. How powerful is graph convolution for recommendation?. In
Proceedings of the 30th ACM international conference on information & knowledge
management. 1619–1629.

[35] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder rep-
resentations from transformer. In Proceedings of the 28th ACM international
conference on information and knowledge management. 1441–1450.

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[37] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[38] Dawei Wang, Yuehwern Yih, and Mario Ventresca. 2020. Improving neighbor-
based collaborative filtering by using a hybrid similarity measurement. Expert
Systems with Applications 160 (2020), 113651.

[39] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Retrieval. 165–174.

[40] Yu Wang, Yuying Zhao, Yi Zhang, and Tyler Derr. 2023. Collaboration-aware
graph convolutional network for recommender systems. In Proceedings of the
ACM Web Conference 2023. 91–101.

[41] JunkangWu, Jiawei Chen, JiancanWu,Wentao Shi, Jizhi Zhang, and XiangWang.
2024. Bsl: Understanding and improving softmax loss for recommendation. In
2024 IEEE 40th International Conference on Data Engineering (ICDE). IEEE, 816–
830.

[42] JiancanWu, XiangWang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and
Xing Xie. 2021. Self-supervised graph learning for recommendation. In Proceed-
ings of the 44th international ACM SIGIR conference on research and development
in information retrieval. 726–735.

[43] Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, and Meng Wang. 2019.
A neural influence diffusion model for social recommendation. In Proceedings
of the 42nd international ACM SIGIR conference on research and development in
information retrieval. 235–244.

[44] Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. 2022. Node-
former: A scalable graph structure learning transformer for node classification.
Advances in Neural Information Processing Systems 35 (2022), 27387–27401.

[45] QitianWu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang,
Yatao Bian, and Junchi Yan. 2023. Simplifying and Empowering Transformers
for Large-Graph Representations. arXiv preprint arXiv:2306.10759 (2023).

[46] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions.

[47] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,
Yanming Shen, and Tie-Yan Liu. 2021. Do transformers really perform badly
for graph representation? Advances in Neural Information Processing Systems 34
(2021), 28877–28888.

[48] Haochao Ying, Liang Chen, Yuwen Xiong, and Jian Wu. 2016. Collaborative deep
ranking: A hybrid pair-wise recommendation algorithm with implicit feedback.
InAdvances in Knowledge Discovery and DataMining: 20th Pacific-Asia Conference,
PAKDD 2016, Auckland, New Zealand, April 19-22, 2016, Proceedings, Part II 20.
Springer, 555–567.

[49] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining. 974–983.

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[50] Junliang Yu, Xin Xia, Tong Chen, Lizhen Cui, Nguyen Quoc Viet Hung, and
Hongzhi Yin. 2023. XSimGCL: Towards extremely simple graph contrastive learn-
ing for recommendation. IEEE Transactions on Knowledge and Data Engineering
(2023).

[51] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung
Nguyen. 2022. Are graph augmentations necessary? simple graph contrastive
learning for recommendation. In Proceedings of the 45th international ACM SIGIR
conference on research and development in information retrieval. 1294–1303.

[52] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Jundong Li, and Zi Huang. 2023.
Self-supervised learning for recommender systems: A survey. IEEE Transactions
on Knowledge and Data Engineering 36, 1 (2023), 335–355.

[53] Wenhui Yu and Zheng Qin. 2020. Graph convolutional network for recommen-
dation with low-pass collaborative filters. In International Conference on Machine
Learning. PMLR, 10936–10945.

[54] Zaixi Zhang, Qi Liu, Qingyong Hu, and Chee-Kong Lee. 2022. Hierarchical
graph transformer with adaptive node sampling. Advances in Neural Information
Processing Systems 35 (2022), 21171–21183.

[55] Jianan Zhao, Chaozhuo Li, Qianlong Wen, Yiqi Wang, Yuming Liu, Hao Sun,
Xing Xie, and Yanfang Ye. 2021. Gophormer: Ego-graph transformer for node
classification. arXiv preprint arXiv:2110.13094 (2021).

A Appendices
A.1 Derivation of Rankformer Layer
According to Eq(1), we have:

L(Z;𝜎) = −
∑︁
𝑢∈U

∑︁
𝑖∈N𝑢

∑︁
𝑗∉N𝑢

𝜎 (z𝑇𝑢 z𝑖 − z𝑇𝑢 z𝑗 )
𝑑𝑢 (𝑚 − 𝑑𝑢 )

+ 𝜆∥Z∥22 (11)

By approximating the function 𝜎 (𝑥) using a second-order Taylor
expansion, we obtain:

L̃(Z;𝜎) = −
∑︁
𝑢∈U

∑︁
𝑖∈N𝑢

∑︁
𝑗∉N𝑢

1
𝑑𝑢 (𝑚 − 𝑑𝑢 )

[𝜔𝑢𝑖 𝑗 (z𝑇𝑢 z𝑖 + z𝑇𝑢 z𝑗 )]

+ 𝜆∥Z∥22 (12)

where 𝜔𝑢𝑖 𝑗 = z𝑇𝑢 z𝑖 − z𝑇𝑢 z𝑗 + 𝛼 . 𝛼 > 0 is a hyperparameter that
controls the coefficient of the linear term in the Taylor expansion
of 𝜎 (.).

The optimization objective is to minimize the function L(Z;𝜎).
Therefore, we propose performing one step gradient descent with
the step size of 𝜏 on L̃(Z;𝜎) within each Rankformer layer:

Z(𝑙+1) =Z(𝑙 ) + 𝜏 · 𝜕

𝜕Z(𝑙 ) L̃(Z(𝑙 ) ;𝜎) (13)

=Z(𝑙 ) + 𝜏 · (Ω(𝑙 )Z − 𝜆Z(𝑙 ) ) (14)

=(1 − 𝜏𝜆)Z(𝑙 ) + 𝜏 · Ω(𝑙 )Z(𝑙 ) (15)

where Ω𝑢𝑖 = Ω𝑖𝑢 =

{ ∑
𝑗∉N𝑢

𝜔𝑢𝑖 𝑗
𝑑𝑢 (𝑚−𝑑𝑢 ) , 𝑖 ∈ N𝑢

−∑
𝑗∈N𝑢

𝜔𝑢𝑗𝑖
𝑑𝑢 (𝑚−𝑑𝑢 ) , 𝑖 ∉ N𝑢

.

We simply set the hyperparameter 𝜆 = 1, so we get

Z(𝑙+1) = (1 − 𝜏)Z(𝑙 ) + 𝜏Ω(𝑙 )Z(𝑙 ) (16)

By reorganization the terms, we can easily get the Eq.(5).

A.2 Time Complexity
Eq(5) - Eq(6) are computed as follows, achieving a complexity of
𝑂 ((𝑛 +𝑚)𝑑2 + 𝐸𝑑).

Step 1: Calculate 𝑏+𝑢
(𝑙 ) and 𝑏−𝑢 (𝑙 ) with a complexity of 𝑂 (𝑛 +

𝑚𝑑 + 𝐸𝑑).

𝑏+𝑢
(𝑙 )

=
1
𝑑𝑢

∑︁
𝑗∈N+

𝑢

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑗

(17)

=
1
𝑑𝑢

(z(𝑙 )𝑢 )𝑇 ©­«
∑︁
𝑗∈N+

𝑢

z(𝑙 )
𝑗

ª®¬ (18)

𝑏−𝑢
(𝑙 ) =

1
𝑚 − 𝑑𝑢

∑︁
𝑗∈N−

𝑢

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑗

(19)

=
1

𝑚 − 𝑑𝑢
(z(𝑙 )𝑢 )𝑇 ©­«

∑︁
𝑗∈N−

𝑢

z(𝑙 )
𝑗

ª®¬ (20)

=
1

𝑚 − 𝑑𝑢
(z(𝑙 )𝑢 )𝑇 ©­«

∑︁
𝑗∈I

z(𝑙 )
𝑗

−
∑︁
𝑗∈N+

𝑢

z(𝑙 )
𝑗

ª®¬ (21)

Similarly, in the subsequent derivation,
∑
𝑖∈N−

𝑢
x𝑖 can be trans-

formed into
∑
𝑖∈I x𝑖 −

∑
𝑖∈N+

𝑢
x𝑖 and computed linearly. The term∑

𝑢∈N−
𝑖

x𝑢 can be transformed into
∑
𝑢∈U x𝑢 − ∑

𝑢∈N+
𝑖

x𝑢 . Subse-
quently, the terms

∑
𝑖∈N−

𝑢
and

∑
𝑢∈N−

𝑖
will be retained without

expansion.
Step 2: Calculate 𝐶𝑢 (𝑙 ) , 𝐶𝑖 (𝑙 ) , with a complexity of 𝑂 (𝑛 +𝑚𝑑 +

𝐸𝑑).
Since we have normalized z, (z(𝑙 )𝑢 )𝑇 z(𝑙 )

𝑖
≤ 1. When 𝛼 ≥ 2,

Ω+
𝑢𝑖

(𝑙 )
= Ω+

𝑖𝑢
(𝑙 )

> 0, and Ω+
𝑢𝑖

(𝑙 )
= Ω+

𝑖𝑢
(𝑙 )

< 0, so we can remove
the absolute value symbols.∑︁

𝑖∈N+
𝑢

���Ω+
𝑢𝑖

(𝑙 )
��� = ∑︁

𝑖∈N+
𝑢

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑖

− 𝑏−𝑢 (𝑙 ) + 𝛼
𝑑𝑢

(22)

=
(z(𝑙 )𝑢 )𝑇
𝑑𝑢

©­«
∑︁
𝑖∈N+

𝑢

z(𝑙 )
𝑖

ª®¬ − 𝑏−𝑢 (𝑙 ) + 𝛼 (23)

∑︁
𝑖∈N−

𝑢

���Ω−
𝑢𝑖

(𝑙 )
��� = −

∑︁
𝑖∈N−

𝑢

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑖

− 𝑏+𝑢 (𝑙 ) − 𝛼
𝑚 − 𝑑𝑢

(24)

= − (z(𝑙 )𝑢 )𝑇
𝑚 − 𝑑𝑢

©­«
∑︁
𝑖∈N−

𝑢

z(𝑙 )
𝑖

ª®¬ + 𝑏+𝑢 (𝑙 ) + 𝛼 (25)

=2𝛼 −𝐶+
𝑢
(𝑙 ) (26)∑︁

𝑢∈N+
𝑖

���Ω+
𝑖𝑢

(𝑙 )
��� = ∑︁

𝑢∈N+
𝑖

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑖

− 𝑏−𝑢 (𝑙 ) + 𝛼
𝑑𝑢

(27)

=(z(𝑙 )
𝑖

)𝑇 ©­«
∑︁
𝑢∈N+

𝑖

z(𝑙 )𝑢
𝑑𝑢

ª®¬ − ©­«
∑︁
𝑢∈N+

𝑖

𝑏−𝑢
(𝑙 )

𝑑𝑢

ª®¬
+ 𝛼 ©­«

∑︁
𝑢∈N+

𝑖

1
𝑑𝑢

ª®¬ (28)

∑︁
𝑢∈N−

𝑖

���Ω−
𝑖𝑢

(𝑙 )
��� = −

∑︁
𝑢∈N−

𝑖

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑖

− 𝑏+𝑢 (𝑙 ) − 𝛼
𝑚 − 𝑑𝑢

(29)

= − (z(𝑙 )
𝑖

)𝑇 ©­«
∑︁
𝑢∈N−

𝑖

z(𝑙 )𝑢
𝑚 − 𝑑𝑢

ª®¬ + ©­«
∑︁
𝑢∈N−

𝑖

𝑏+𝑢
(𝑙 )

𝑚 − 𝑑𝑢
ª®¬

+ 𝛼 ©­«
∑︁
𝑢∈N−

𝑖

1
𝑚 − 𝑑𝑢

ª®¬ (30)

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Rankformer: a Ranking-Inspired Transformer Model for Recommendation Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Step 3:Calculate
∑

𝑖∈N+
𝑢

Ω+
𝑢𝑖

(𝑙 )z(𝑙 )
𝑖

,
∑

𝑖∈N−
𝑢

Ω−
𝑢𝑖

(𝑙 )z(𝑙 )
𝑖

,
∑

𝑢∈N+
𝑖

Ω+
𝑖𝑢

(𝑙 )z(𝑙 )𝑢

and
∑

𝑢∈N−
𝑖

Ω−
𝑖𝑢

(𝑙 )z(𝑙 )𝑢 with a complexity of 𝑂 (𝑛 + 𝑑2 + 𝐸𝑑).

∑︁
𝑖∈N+

𝑢

Ω+
𝑢𝑖

(𝑙 )z(𝑙 )
𝑖

=
∑︁
𝑖∈N+

𝑢

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑖

− 𝑏−𝑢 (𝑙 ) + 𝛼
𝑑𝑢

z(𝑙 )
𝑖

(31)

=
1
𝑑𝑢

©­«
∑︁
𝑖∈N+

𝑢

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑖

z(𝑙 )
𝑖

ª®¬
− 𝑏−𝑢

(𝑙 ) − 𝛼
𝑑𝑢

©­«
∑︁
𝑖∈N+

𝑢

z(𝑙 )
𝑖

ª®¬ (32)

∑︁
𝑖∈N−

𝑢

Ω−
𝑢𝑖

(𝑙 )z(𝑙 )
𝑖

=
∑︁
𝑖∈N−

𝑢

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑖

− 𝑏+𝑢 (𝑙 ) − 𝛼
𝑚 − 𝑑𝑢

z(𝑙 )
𝑖

(33)

=
1

𝑚 − 𝑑𝑢
©­«

∑︁
𝑖∈N−

𝑢

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑖

z(𝑙 )
𝑖

ª®¬
− 𝑏+𝑢

(𝑙 ) + 𝛼
𝑚 − 𝑑𝑢

©­«
∑︁
𝑖∈N−

𝑢

z(𝑙 )
𝑖

ª®¬ (34)

∑︁
𝑢∈N+

𝑖

Ω+
𝑖𝑢

(𝑙 )z(𝑙 )𝑢 =
∑︁
𝑢∈N+

𝑖

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑖

− 𝑏−𝑢 (𝑙 ) + 𝛼
𝑑𝑢

z(𝑙 )𝑢 (35)

=
©­«

∑︁
𝑢∈N+

𝑖

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑖

z(𝑙 )𝑢
𝑑𝑢

ª®¬
− ©­«

∑︁
𝑢∈N+

𝑖

(𝑏−𝑢 (𝑙 ) − 𝛼)z(𝑙 )𝑢
𝑑𝑢

ª®¬ (36)

∑︁
𝑢∈N−

𝑖

Ω−
𝑖𝑢

(𝑙 )z(𝑙 )𝑢 =
∑︁
𝑢∈N−

𝑖

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑖

− 𝑏+𝑢 (𝑙 ) − 𝛼
𝑚 − 𝑑𝑢

z(𝑙 )𝑢 (37)

=
©­«

∑︁
𝑢∈N−

𝑖

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑖

z(𝑙 )𝑢
𝑚 − 𝑑𝑢

ª®¬
− ©­«

∑︁
𝑢∈N−

𝑖

(𝑏+𝑢 (𝑙 ) + 𝛼)z
(𝑙 )
𝑢

𝑚 − 𝑑𝑢
ª®¬ (38)

where
∑

𝑖∈N−
𝑢

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑖

z(𝑙 )
𝑖

and
∑

𝑢∈N−
𝑖

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑖

z(𝑙 )𝑢
𝑚−𝑑𝑢 can be calcu-

lated as follows with a complexity of 𝑂 ((𝑛 +𝑚)𝑑2 + 𝐸𝑑):∑︁
𝑖∈N−

𝑢

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑖

z(𝑙 )
𝑖

=

(∑︁
𝑖∈I

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑖

z(𝑙 )
𝑖

)
− ©­«

∑︁
𝑖∈N+

𝑢

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑖

z(𝑙 )
𝑖

ª®¬ (39)

=(z(𝑙 )𝑢 )𝑇
(∑︁
𝑖∈I

z(𝑙 )
𝑖

z(𝑙 )
𝑖

)
− ©­«

∑︁
𝑖∈N+

𝑢

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑖

z(𝑙 )
𝑖

ª®¬ (40)

∑︁
𝑢∈N−

𝑖

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑖

z(𝑙 )𝑢
𝑚 − 𝑑𝑢

=

( ∑︁
𝑢∈U

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑖

z(𝑙 )𝑢
𝑚 − 𝑑𝑢

)
− ©­«

∑︁
𝑢∈N+

𝑖

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑖

z(𝑙 )𝑢
𝑚 − 𝑑𝑢

ª®¬ (41)

=(z(𝑙 )
𝑖

)𝑇
( ∑︁
𝑢∈U

z(𝑙 )𝑢 z(𝑙 )𝑢
𝑚 − 𝑑𝑢

)
− ©­«

∑︁
𝑢∈N+

𝑖

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑖

z(𝑙 )𝑢
𝑚 − 𝑑𝑢

ª®¬ (42)

The time and space complexity of calculating
∑

𝑖∈N+
𝑢

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑖

z(𝑙 )
𝑖

and
∑

𝑢∈N+
𝑖

(z(𝑙 )𝑢 )𝑇 z(𝑙 )
𝑖

z(𝑙 )𝑢
𝑚−𝑑𝑢 in is 𝑂 (𝐸𝑑), while the time and space com-

plexity of calculating (z(𝑙 )𝑢 )𝑇
( ∑
𝑖∈I

z(𝑙 )
𝑖

z(𝑙 )
𝑖

)
and (z(𝑙 )

𝑖
)𝑇

( ∑
𝑢∈U

z(𝑙 )𝑢 z(𝑙 )𝑢
𝑚−𝑑𝑢

)
is 𝑂 ((𝑛 +𝑚)𝑑2).

Therefore, the overall time and space complexity is𝑂 ((𝑛+𝑚)𝑑2+
𝐸𝑑).

11


	Abstract
	1 Introduction
	2 Preliminary
	2.1 Background on Recommender Systems
	2.2 Transformer Architecture

	3 Methodology
	3.1 Rankformer Layer
	3.2 Disscussion
	3.3 Fast Implementation

	4 Experiments
	4.1 Experimental Settings
	4.2 Performance Comparison (RQ1)
	4.3 Ablation Study (RQ2)
	4.4 Role of the parameters (RQ3)
	4.5 Efficiency Comparison (RQ5)

	5 Related Work
	5.1 Architectures of Recommendation Models
	5.2 Graph Transformer

	6 Conclusions
	References
	A Appendices
	A.1 Derivation of Rankformer Layer
	A.2 Time Complexity


