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Abstract

Concept-based Models are neural networks that learn a concept extractor to map
inputs to high-level concepts and an inference layer to translate these into predic-
tions. Ensuring these modules produce interpretable concepts and behave reliably
in out-of-distribution is crucial, yet the conditions for achieving this remain unclear.
We study this problem by establishing a novel connection between Concept-based
Models and reasoning shortcuts (RSs), a common issue where models achieve
high accuracy by learning low-quality concepts, even when the inference layer is
fixed and provided upfront. Specifically, we extend RSs to the more complex setting
of Concept-based Models and derive theoretical conditions for identifying both the
concepts and the inference layer. Our empirical results highlight the impact of RSs
and show that existing methods, even combined with multiple natural mitigation
strategies, often fail to meet these conditions in practice.

1 Introduction

Concept-based Models (CBMs) are a broad class of self-explainable classifiers [1, 2, 3, 4, 5, 6, 7]
designed for high performance and ante-hoc interpretability. Learning a CBM involves solving
two conjoint problems: acquiring high-level concepts describing the input (e.g., an image) and an
inference layer that predicts a label from them. In many applications, it is essential that these two
elements are “high quality”, in the sense that: i) the concepts should be interpretable, as failure in
doing so compromises understanding [8, 9] and steerability [10, 11], both key selling points of CBMs;
and ii) the concepts and inference layer should behave well also out of distribution (OOD), e.g., they
should not pick up spurious correlations between the input, the concepts and the output [12, 13, 14].

This raises the question of when CBMs can acquire “high-quality” concepts and inference layers.
While existing studies focus on concept quality [15, 16, 17], they neglect the role of the inference
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Figure 1: Joint reasoning shortcuts. The goal is to predict whether the sum of two MNIST digits is
odd (as in Example 2.1) from a training set of all possible unique (even, even), (odd, odd), and (odd,
even) pairs of MNIST digits. Green elements are fixed, purple ones are learned. Left: ground-truth
concepts and inference layer. Middle: NeSy-CBMs with given knowledge can learn reasoning
shortcuts, i.e., concepts with unintended semantics. Right: CBMs can learn joint reasoning shortcuts,
i.e., both concepts and inference layer have unintended semantics.

layer altogether. In contrast, we cast the question in terms of whether it is possible to identify from
data concepts and inference layers with the intended semantics, defined formally in Section 3.1. We
proceed to answer this question by building a novel connection with reasoning shortcuts (RSs), a
well-known issue in Neuro-Symbolic (NeSy) AI whereby models achieve high accuracy by learning
low-quality concepts even if the inference layer is fixed [18, 19, 20, 21]. For instance, a NeSy model
for autonomous driving whose inference layer encodes the traffic laws might confuse pedestrians with
red lights, as both entail the same prediction (the car has to stop) [22]. We generalize RSs to CBMs in
which the inference layer is learned, and concept supervision may be absent. Our analysis shows that
shortcuts can be exponentially many, even more than RSs, (we count them explicitly in Appendix B.5)
and that maximum likelihood training is insufficient for attaining intended semantics. This hinders
both interpretability and OOD behavior. On the positive side, we also specify conditions under which
(under suitable assumptions) CBMs cannot be fooled by RSs, proving that the ground-truth concepts
and inference layer can be identified (see Theorem 3.9).

Our evaluation on several learning tasks suggest that CBMs can be severely impacted by reasoning
shortcuts in practice, as expected, and also that the benefits of popular mitigation strategies do not
carry over to this more challenging problem. These results cast doubts on the ability of these models
to identify concepts and inference layers with the intended semantics unless appropriately nudged.

Contributions: In summary, we: (i) generalize reasoning shortcuts to the challenging case of CBMs
whose inference layer is learned (Section 3.1), (ii) study conditions under which maximum likelihood
training can identify good concepts and inference layers (Section 3.2), and (iii) present empirical
evidence that well-tested mitigations fail in this challenging setting (Section 5).

2 Preliminaries

Concept-based Models (CBMs) first map the input x ∈ Rn into k discrete categorical concepts
c = (c1, . . . , ck) ∈ C via a neural backbone, and then infer labels y ∈ Y from this using a
white-box layer, e.g., a linear layer. This setup makes it easy to figure out what concepts are most
responsible for any prediction, yielding a form of ante-hoc concept-based interpretability. Several
architectures follow this recipe, including approaches for converting black-box neural networks into
CBMs [23, 24, 25, 26].

A key issue is how to ensure the concepts are interpretable. Some CBMs rely on concept annotations
[3, 27, 4, 5, 28, 29]. These are however expensive to obtain, prompting researchers to replace them
with (potentially unreliable [30, 31]) annotations obtained from foundation models [32, 33, 34, 35]
or unsupervised concept discovery [1, 2, 6, 36].

Neuro-Symbolic CBMs (NeSy-CBMs) specialize CBMs to tasks in which the prediction y ∈
Y ought to comply with known safety or structural constraints. These are supplied as a formal
specification – a logic formula K, aka knowledge – tying together the prediction y and the concepts c.
In NeSy-CBMs, the inference step is a symbolic reasoning layer that steers [37, 38, 39] or guarantees
[40, 41, 42, 43, 44] the labels and concepts to be logically consistent according to K. Throughout, we
will consider this example task:

Example 2.1 (MNIST-SumParity). Given two MNIST digits [45], we wish to predict whether
their sum is even or odd. The numerical values of the two digits can be modelled as concepts
C ∈ {0, . . . , 9}2, and the inference layer is entirely determined by the prior knowledge: K = ((y =
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1) ⇔ (C1 + C2) is odd). This specifies that the label y ∈ {0, 1} ought to be consistent with the
predicted concepts C. See Fig. 1 for an illustration.

Like CBMs, NeSy-CBMs are usually trained via maximum likelihood and gradient descent, but
without concept supervision. The reasoning layer is typically imbued with fuzzy [46] or probabilistic
[47] logic semantics to ensure differentiability. Many NeSy-CBMs require K to be provided upfront,
as in Example 2.1, hence their inference layer has no learnable parameters. Starting with Section 3,
we will instead consider NeSy-CBMs that – just like regular CBMs – learn the inference layer
[48, 49, 50, 51, 52].

2.1 Reasoning Shortcuts

Before discussing reasoning shortcuts, we need to establish a clear relationship between concepts,
inputs, and labels. The RS literature does so by assuming the following data generation process
[19, 21, 53]: each input x ∈ Rn is the result of sampling k ground-truth concepts g = (g1, . . . , gk) ∈
G (e.g., in MNIST-SumParity two numerical digits) from an unobserved distribution p∗(G) and
then x itself (e.g., two corresponding MNIST images) from the conditional distribution p∗(X | g).2
Labels y ∈ Y are sampled from the conditional distribution of g given by p∗(Y | g;K) consistently
with K (e.g., y = 1 if and only if g1 + g2 is odd). The ground-truth distribution is thus:

p∗(X,Y) = Eg∼p∗(G)[p
∗(X | g)p∗(Y | g;K)] (1)

Intuitively, a reasoning shortcut (RS) occurs when a NeSy-CBM with fixed knowledge K attains
high or even perfect label accuracy by learning concepts C that differ from the ground-truth ones G.
Example 2.2. In MNIST-SumParity, a NeSy model can achieve perfect accuracy by mapping each
pair of MNIST images x = (x1,x2) to the corresponding ground-truth digits, that is, c = (g1, g2).
However, it would achieve the same accuracy if it were to map it to c = (g1 mod 2, g2 mod 2), as
doing so leaves the parity of the sum unchanged, see Fig. 1. Hence, a NeSy model cannot distinguish
between the two based on label likelihood alone during training.

RSs by definition yield good labels in-distribution, yet they compromise out-of-distribution (OOD)
performance. For instance, in autonomous driving tasks, NeSy-CBMs can confuse the concepts
of “pedestrian” and “red light”, leading to poor decisions for OOD decisions where the distinction
matters [22]. The meaning of concepts affected by RSs is unclear, affecting understanding [8],
intervenability [54, 55, 56], debugging [57, 14] and down-stream applications that hinge on concepts
being high-quality, like NeSy formal verification [58, 59, 60]. Unfortunately, existing works on RSs
do not apply to CBMs and NeSy-CBMs where the inference layer is learned.

As commonly done, we work in the setting with equal discrete predicted C and ground-truth G concept
sets, i.e., G = C [19, 21]. Notice that, we make no assumption on how the set G is made; multiple
concept vocabularies at different levels of abstraction may be valid for a given task. At this stage,
different choices of G are allowed but may lead to distinct results for RSs, depending on the number
of ground-truth concepts and how they are related to the labels. Both these two aspects will be made
clear in light of the data generation process as per Assumptions 3.1 and 3.2.

3 Reasoning Shortcuts in CBMs

Given a finite set S, we indicate with ∆S ⊂ [0, 1]|S| the simplex of probability distributions P (Q)
over items in S . Any random variable Q ∈ S defines a point in the simplex via its distribution P (Q).
Notice that the set of the simplex vertices Vert(∆S) contains all point mass distributions 1{Q = q}
for all q ∈ S . All relevant notation we will use is reported in Table 6.

CBMs as pairs of functions. CBMs and NeSy-CBMs differ in how they implement the inference
layer, hence to bridge them we employ the following unified formalism. Any CBM can be viewed as a
pair of learnable functions implementing the concept extractor and the inference layer, respectively, cf.
Fig. 2. Formally, the former is a function f : Rn → ∆C mapping inputs x to a conditional distribution
p(C | x) over the concepts, however it can be better understood as a function α : G → ∆C taking
ground-truth concepts g as input instead, and defined as:

α(g) := Ex∼p∗(X|g)[f(x)] (2)

2This distribution subsumes stylistic factors, e.g., calligraphy.
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Figure 2: Examples of semantics in MNIST-SumParity restricted to g, c ∈ {0, 1, 2}2 for readability.
Left: ideally,α should be the identity (i.e., C recovers the ground-truth concepts G) and the inference
layer should learn β∗. Middle: (αIS,βIS) 6= (id,β∗) has intended semantics (Definition 3.3),
i.e., the ground-truth concepts and inference layer can be recovered and generalize OOD. Right:
(αJRS,βJRS) affected by the Joint Reasoning Shortcuts in Fig. 1. Elements (predicted concepts C
and entries in β) in red are never predicted nor used, highlighting simplicity bias. Maps are visualized
as matrices.

In contrast, the inference layer is a function ω : ∆C → ∆Y mapping the concept distribution output
by the concept extractor into a label distribution p(Y | f(x)). For clarity, we also define β : C → ∆Y ,
which is identical to the former except it works with concept values rather than distributions, that is:

β(c) := ω(1{C = c}) (3)

Hence, a CBM entails both a pair (f ,ω) ∈ F × Ω and a pair (α,β) ∈ A × B.3 Later on, we will
make use of the fact that A and B are simplices [61, 62], i.e., each α ∈ A (resp. β ∈ B) can be
written as a convex combination of vertices Vert(A) (resp. Vert(B)).
As mentioned in Section 2, supplying prior knowledge K to a NeSy-CBM is equivalent to fixing the
inference layer to a corresponding function ω∗ (and β∗). Note that whereas ω∗ changes based on
how reasoning is implemented – e.g., fuzzy vs. probabilistic logic – β∗ does not, as both kinds of
reasoning layers behave identically when input any point-mass concept distribution 1{C = c}.

Standard assumptions. The maps α and β, induced respectively by the concept extractor and
inference layer, are especially useful for analysis provided the following two standard assumptions
about how data are distributed [19, 21, 53]:
Assumption 3.1 (Extrapolability). The ground-truth distribution p∗(G | X) is induced by a function
f∗ : x 7→ g, i.e., p∗(G | X) = 1{G = f∗(X)}.

This means that the ground-truth concepts g can always be recovered for all inputs x by a sufficiently
expressive concept extractor; the α it induces is the identity id(g) := 1{C = g} ∈ Vert(A).
Assumption 3.2 (Deterministic knowledge). The ground-truth distribution p∗(Y | G;K) is induced
by the knowledge via a map β∗ ∈ Vert(B), such that p∗(Y | G;K) = β∗(g).

This ensures that the labels y can be predicted without any ambiguity from the ground-truth concepts
g. Notice that, not all choices of G guarantee that these assumptions are met. Small concept spaces
may not give a deterministic knowledge, i.e., labels can be confused for one another with only few
concepts, or too-arbitrary choices of the constituents may not guarantee their extrapolation from the
input, i.e., ground-truth concepts of the input are ambiguous. Nonetheless, both assumptions hold
in several NeSy tasks [22] and underlie many works in RSs [19, 63, 20], but formulating a theory
that relaxes them is not straightfoward and is technically challenging. In fact, Marconato et al. [19]
showed that upon relaxing Assumption 3.2 it might not be possible to deal with RSs.

The maximum log-likelihood objective is then written as:

max
(f ,ω)∈F×Ω

E(x,y)∼p∗(X,Y) log(ωy ◦ f)(x) (4)

Here, ωy is the conditional probability of the ground-truth labels y. Notice that under the above
assumptions CBMs attaining maximum likelihood perfectly model the ground-truth data distribution
p∗(X,Y), see Lemma C.1.

3We work in the non-parametric setting, hence F and Ω contain all learnable concept extractors f and
inference layers ω, and similarly A and B contain all learnable maps α and β.
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3.1 Intended Semantics and Joint Reasoning Shortcuts

We posit that a CBM (α,β) ∈ A×B has “high-quality” concepts and inference layer if it satisfies two
desiderata: (i) disentanglement: each learned concept Ci should correspond to a single ground-truth
concept Gj up to an invertible transformation; (ii) generalization: the combination of α and β must
always yield correct predictions.

In our setting, without concept supervision and prior knowledge, the learned concepts are anonymous
and users have to figure out which is which in a post-hoc fashion, e.g., by aligning them to dense
annotations [3, 4, 50, 51]. Doing so is also a prerequisite for understanding the learned inference
layer [52, 50, 4, 55]. When disentanglement holds the mapping between G and C can be recovered
exactly using Hungarian matching [64]; otherwise it is arbitrarily difficult to recover, hindering
interpretability. This links CBMs with many works that treat model representations’ identifiability in
Independent Component Analysis and Causal Representation Learning [65, 66, 67, 68, 69], where
disentanglement plays a central role. Generalization is equally important, as it entails that CBMs
generalize beyond the support of training data and yields sensible OOD behavior, i.e., output the
same predictions that would be obtained by using the ground-truth pair. Therefore, the pairs (α,β)
which satisfy both desiderata will be equivalent to the ground-truth pair (id,β∗) and equally valid
solutions for the NeSy task. Since we want α to be disentangled, this implies, in turn, a specific
form for the map β, as shown by the next definition, which formalizes these desiderata:
Definition 3.3 (Intended Semantics). A CBM (f ,ω) ∈ F × Ω entailing a pair (α,β) ∈ A × B
possesses the intended semantics if there exists a permutation π : [k] → [k] and k element-wise
invertible functions ψ1, . . . , ψk such that:

α(g) = (ψ ◦Pπ ◦ id)(g) β(c) = (β∗ ◦P−1
π ◦ψ−1)(c) (5)

Here, Pπ : C → C is the permutation matrix induced by π and ψ(c) := (ψ1(c1), . . . , ψk(ck)). In
this case, we say that (α,β) is equivalent to (id,β∗), i.e., (α,β) ∼ (id,β∗)

Intended semantics holds if the learned concepts C match the ground-truth concepts G modulo
simple invertible transformations – like reordering and negation (Eq. (5), left) – and the inference
layer undoes these transformations before applying the “right” inference layer β∗ (Eq. (5), right).
In particular, Eq. (5) (left) guarantees disentanglement of the concepts, ensuring that each learned
concept corresponds to a distinct ground-truth concept up to an invertible transformation, matching
the notion of [68]. A similar equivalence relation was analyzed for continuous representations in
energy-based models, including supervised classifiers, by Khemakhem et al. [65]. CBMs satisfying
these conditions are equivalent – specifically by the equivalence relation ∼, see Appendix C.1 – to
the ground-truth pair (id,β∗); see Fig. 2 (middle) for an illustration. In Lemma C.4, we prove that
models with the intended semantics yield the same predictions of the ground-truth pair for all g ∈ G.

Training a (NeSy) CBM via maximum likelihood does not guarantee it will embody intended
semantics. We denote these failure cases as joint reasoning shortcuts (JRSs):
Definition 3.4 (Joint Reasoning Shortcut). Take a CBM (f ,ω) ∈ F × Ω that attains optimal log-
likelihood (Eq. (4)). The pair (α,β) entailed by it (Eqs. (2) and (3)) is a JRSs if it does not possess
the intended semantics (Definition 3.3), i.e., (α,β) 6∼ (id,β∗).

JRSs can take different forms. First, even if the learned inference layer β matches (modulo Pπ andψ)
the ground-truth one β∗, α might not match (also modulo Pπ and ψ) the identity. This is analogous
to regular RSs in NeSy CBMs (Section 2), in that the learned concepts do not reflect the ground-truth
ones: while this is sufficient for high in-distribution performance (the training likelihood is in fact
optimal), it may yield poor OOD behavior. Second, even if α matches the identity, the inference
layer β might not match the ground-truth one β∗. In our experiments Section 5, we observe that this
often stems from simplicity bias [70], i.e., the CBM’s inference layer tends to acquire specialized
functions β that are much simpler than β∗, leading to erroneous predictions OOD. Finally, neither
the inference layer β nor the map α might match the ground-truth, opening the door to additional
failure modes. Consider the following example:
Example 3.5. Consider a MNIST-SumParity problem where the training set consists of all possible
unique (even, even), (odd, odd), and (odd, even) pairs of MNIST digits, as in Fig. 1. A CBM trained
on this data would achieve perfect accuracy by learning a JRS that extracts the parity of each input
digit, yielding two binary concepts in {0, 1}, and computes the difference between these two concepts.
This JRS involves much simpler concepts and knowledge compared to the ground-truth ones. It also
mispredicts all OOD pairs where the even digits come before odd digits.
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While the presence of JRSs undermines both interpretability and OOD generalization, their absence
alone does not guarantee OOD robustness. However, if JRSs are present, the likelihood of OOD
failure increases substantially. For example, consider Example 3.5, where a CBM achieves perfect
training accuracy by learning a shortcut that captures only the parity of each digit rather than the full
ground-truth concepts. This shortcut fails on OOD pairs; for example, given an (even, odd) pair not
present in the training set, the model wrongly outputs −1 as the final label.

3.2 Theoretical Analysis

We now count the deterministic JRSs admitted by a task, i.e., those that lie on the vertices of A and
B: (α,β) ∈ Vert(A)× Vert(B). We then show Theorem 3.9 that this number determines whether
general (non-deterministic) JRSs exist.
Theorem 3.6 (Informal). Under Assumptions 3.1 and 3.2, the number of deterministic JRSs is:∑

(α,β)

1{
∧

g∈supp(G)

(β ◦α)(g) = β∗(g)} − C[G] (6)

where the sum runs over Vert(A)× Vert(B), and C[G] counts the pairs with intended semantics.

All proofs and the definition of C[G] can be found in Appendix C. Intuitively, the first count includes
all deterministic pairs (α,β) that achieve maximum likelihood on the training set (i.e., the predicted
labels (β ◦α)(g) matches the ground-truth one β∗(g) for all ground-truth concepts g appearing in
the data), while the second term subtracts those (α,β) that possess the intended semantics as per
Definition 3.3. A positive count implies that a CBM trained via maximum likelihood can learn a
deterministic JRS. Notice that the count of JRSs also depends on the choice of the concept space
G: a large number of fine-grained ground-truth concept may increase the number of JRSs, while
coarser-grained concepts that are lower in number may reduce them.

As a sanity check, we show that if prior knowledge K is provided – fixing the inference layer to β∗ –
the number of deterministic JRSs in fact matches that of RSs, as expected:
Corollary 3.7. Consider a fixed β∗ ∈ Vert(B). Under Assumptions 3.1 and 3.2, the number of
deterministic JRSs (α,β∗) ∈ Vert(A)× Vert(B) is:∑

α∈Vert(A) 1{
∧

g∈supp(G)(β
∗ ◦α)(g) = β∗(g)} − 1 (7)

This matches the count for deterministic RSs in [19].

Corollary 3.7 implies that when |Vert(B)| > 1, the number of deterministic JRSs in Eq. (6) can be
much larger than the number of deterministic RSs (Eq. (7)). For example, in MNIST-SumParity
with digits restricted to the range [0, 4] there exist 64 RSs but about 100 thousand JRSs, and the gap
increases as we extend the range [0, N ]. An in-depth analysis appears in Appendix B.5.

Next, we show that whenever the number of deterministic JRSs in Eq. (6) is zero, there exist no
JRSs at all, including non-deterministic ones. This however only applies to CBMs that satisfy the
following natural assumption:
Assumption 3.8 (Extremality). The inference layer ω ∈ Ω satisfies extremality if, for all λ ∈ (0, 1)
and for all c 6= c′ ∈ C such that argmaxy∈Y ω(1{C = c})y 6= argmaxy∈Y ω(1{C = c′})y, it
holds:

max
y∈Y

ω(λ1{C = c}+ (1− λ)1{C = c′})y < max

(
max
y∈Y

ω(1{C = c})y,max
y∈Y

ω(1{C = c′})y
)

Intuitively, a CBM satisfies this assumption if its inference layer ω is “peaked”: for any two
concept vectors c and c′ yielding distinct predictions, the label probability output by ω for any
mixture distribution thereof is no larger than the label probability that it associates to c and c′.
That is, distributing probability mass across concepts does not increase label likelihood. While
this assumption does not hold for general CBMs, we show in Appendix E that it holds for popular
architectures, including most of those that we experiment with. Under Assumption 3.8, we have:
Theorem 3.9 (Identifiability). Under Assumptions 3.1 and 3.2, if the number of deterministic JRSs
(Eq. (6)) is zero then every CBM (f ,ω) ∈ F ×Ω satisfying Assumption 3.8 that attains maximum log-
likelihood (Eq. (4)) possesses the intended semantics (Definition 3.3). That is, the pair (α,β) ∈ A×B
entailed by each such CBM is equivalent to the ground-truth pair (id,β∗), i.e., (α,β) ∼ (id,β∗).
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Clearly, a similar conclusion does not hold for models that do not satisfy Assumption 3.8: even when
deterministic JRSs are absent, a CBM can still be affected by non-deterministic JRSs.

4 Practical Solutions

By Theorem 3.9, getting rid of deterministic JRSs from a task prevents CBMs trained via maximum
log-likelihood to learn JRS altogether. The key question is how to make the JRSs count be zero.
As previously explored in RSs, pairing the maximum likelihood objective with other well-known
penalties in the literature can limit optimal α’s for the joint training objective. Several mitigation
strategies for RSs have shown to decrease the count of the α’s, in some cases leading to zeroing
deterministic RSs [19, 21]. We report the count reduction of different mitigations in Appendix D.

Supervised strategies. The most direct strategies for controlling the semantics of learned CBMs
rely on supervision. Concept supervision is the go-to solution for improving concept quality in
CBMs [3, 71, 4, 5] and NeSy-CBMs [22, 21]. Full concept supervision prevents learning α 6= id.
However, this does not translate into guarantees on the inference layer β, at least in tasks affected
by confounding factors such as spurious correlations among concepts [14]. E.g., if the i-th and j-th
ground-truth concepts are strongly correlated, the inference layer β can interchangeably use either,
regardless of what β∗ does.

Another option is employing knowledge distillation [72], that is, supplying supervision of the form
(g,y) to encourage the learned knowledge β to be close to β∗ for the supervised g’s. This supervision
is available for free provided concept supervision is available, but can also be obtained separately,
e.g., by interactively collecting user interventions [54, 55, 56]. This strategy cannot avoid all JRSs
because even if β = β∗, the CBM may suffer from regular RSs (i.e., α does not match the identity
function id).

Another option is to fit a CBM on multiple tasks [73] sharing concepts. It is known that a NeSy-CBM
attaining optimal likelihood on multiple NeSy tasks with different prior knowledges is also optimal for
the single NeSy task obtained by conjoining those knowledges [19]: this more constrained knowledge
better steers the semantics of the learned concepts, ruling out potential JRSs. Naturally, collecting a
sufficiently large number of diverse tasks using the same concepts can be highly non-trivial, depending
on the application.

Unsupervised strategies. Many popular strategies for improving concept quality in (NeSy) CBMs
are unsupervised. A cheap but effective one when dealing with multiple inputs is to process inputs
individually, preventing mixing between their concepts. E.g., In MNIST-SumParity one can apply
the same digit extractor to each digit separately, while for images with multiple objects one can first
segment them (e.g., with YoloV11 [74]) and then process the resulting bounding boxes individually.
This is extremely helpful for reducing, and possibly overcoming, RSs [19] and frequently used in
practice [41, 75, 50, 51]. We apply it in all our experiments.

Both supervised [5] and unsupervised [1, 76] CBMs may employ a reconstruction penalty [77, 78]
to encourage learning informative concepts. Reconstruction can help prevent collapsing distinct
ground-truth concepts into single learned concepts, e.g., in MNIST-SumParity the odd digits cannot
be collapsed together without impairing reconstruction.4 Alternatively, one can employ entropy
maximization [79] to spread concept activations evenly across the bottleneck. This can be viewed
as a less targeted but more efficient alternative to reconstruction, which becomes impractical for
higher dimensional inputs. Another option is contrastive learning [80], in that augmentations render
learned concepts more robust to style variations [81], e.g., for MNIST-based tasks it helps to cluster
distinct digits [82]. Unsupervised strategies all implicitly counteract simplicity bias whereby α ends
up collapsing.

5 Case Studies

We tackle the following key research questions: Q1. Are CBMs affected by JRSs in practice? Q2.
Do JRSs affect interpretability and OOD behavior? Q3. Can existing mitigation strategies prevent
JRSs? Appendix A reports additional details about the tasks, architectures, and model selection.

4This is provably the case context-style separation i.e., assuming concepts are independent of stylistic features
like calligraphy [19, Proposition 6].
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Table 1: Results for MNIST-Add.
METHOD F1(Y ) (↑) F1(C) (↑) Cls(C) (↓) F1(β) (↑)

DPL 0.98 ± 0.01 0.99 ± 0.01 0.01 ± 0.01 −

CBNM 0.98 ± 0.01 0.99 ± 0.01 0.01 ± 0.01 1.00 ± 0.01
SENN 0.97 ± 0.01 0.80 ± 0.07 0.01 ± 0.01 0.75 ± 0.08
DSL 0.96 ± 0.02 0.98 ± 0.01 0.01 ± 0.01 1.00 ± 0.01
DPL∗ 0.91 ± 0.09 0.92 ± 0.08 0.01 ± 0.01 0.90 ± 0.08
bears∗ 0.76 ± 0.15 0.87 ± 0.13 0.01 ± 0.01 0.67 ± 0.14

Table 2: Results for MNIST-SumParity.
METHOD F1(Y ) (↑) F1(C) (↑) Cls(C) (↓) F1(β) (↑)

DPL 0.99 ± 0.01 0.43 ± 0.08 0.36 ± 0.15 −

CBNM 0.90 ± 0.18 0.09 ± 0.03 0.66 ± 0.09 0.54 ± 0.04
SENN 0.99 ± 0.01 0.49 ± 0.05 0.01 ± 0.01 0.53 ± 0.06
DSL 0.94 ± 0.03 0.07 ± 0.01 0.80 ± 0.01 0.52 ± 0.01
DPL∗ 0.99 ± 0.01 0.07 ± 0.01 0.80 ± 0.01 0.50 ± 0.05
bears∗ 0.99 ± 0.01 0.30 ± 0.03 0.22 ± 0.04 0.36 ± 0.09

Table 3: Results for Clevr.
METHOD F1(Y ) (↑) F1(C) (↑) Cls(C) (↓) F1(β) (↑)

DPL 0.99 ± 0.01 0.25 ± 0.05 0.57 ± 0.02 −

CBNM 0.99 ± 0.01 0.19 ± 0.06 0.35 ± 0.09 0.01 ± 0.02
DPL∗ 0.99 ± 0.01 0.22 ± 0.04 0.57 ± 0.03 0.01 ± 0.01

Table 4: CBNM on biased MNIST-SumParity.
ID OOD

C-SUP K-SUP F1(Y ) (↑) F1(β) (↑) F1(Y ) (↑) F1(β) (↑)

0% 0% 0.99 ± 0.01 0.55 ± 0.05 0.01 ± 0.01 0.47 ± 0.07
0% 100% 0.99 ± 0.01 0.56 ± 0.06 0.01 ± 0.01 0.58 ± 0.08
100% 0% 0.97 ± 0.01 0.88 ± 0.04 0.40 ± 0.14 0.31 ± 0.12
100% 100% 0.97 ± 0.01 0.95 ± 0.01 0.97 ± 0.02 0.69 ± 0.27

Table 5: Results for BDD-OIA.
METHOD F1(Y ) (↑) F1(C) (↑) Cls(C) (↓) F1(β) (↑)

DPL 0.69 ± 0.03 0.44 ± 0.01 0.88 ± 0.01 −
CBNM 0.62 ± 0.03 0.43 ± 0.02 0.06 ± 0.02 0.42 ± 0.03

Models. We evaluate several (also NeSy) CBMs. DeepProbLog (DPL) [41, 79] is the only method
supplied with the ground-truth knowledge K, and uses probabilistic-logic reasoning to ensure pre-
dictions are consistent with it. CBNM is a Concept-Bottleneck Model [3] with no supervision on
the concepts. Deep Symbolic Learning (DSL) [50] is a SOTA NeSy-CBM that learns concepts and
symbolic knowledge jointly; it implements the latter as a truth table and reasoning using fuzzy
logic. We also consider two variants: DPL∗ replaces fuzzy with probabilistic logic, while bears∗

wraps DPL∗ within BEARS [63], an ensemble approach for handling regular RSs. In short, bears∗

consists of a learned inference layer and multiple concept extractors. The former is learned only once,
the latter are learned sequentially. We also evaluate Self-explainable Neural Networks (SENN) [1],
unsupervised CBMs that include a reconstruction penalty. Since they do not satisfy our assumptions,
they are useful to empirically assess the generality of our remarks. In our experiments, we train all
CBM variants in a joint manner [3] using only label supervision and do not rely on foundation models
for gathering annotations [32, 33, 34]. For additional details, see Appendix A.

Data sets. To assess both learned concepts and inference layer, we use three representative NeSy tasks
with explicit concept annotations and prior knowledge. MNIST-Add [41] involves predicting the sum
of two MNIST digits, and serves as a sanity check as it provably contains no RSs. MNIST-SumParity
is similar except we have to predict the parity of the sum, as in Fig. 1, and admits many JRSs. We also
include a variant of Clevr [83] in which images belong to 3 classes as determined by a logic formula
and only contain 2 to 4 objects, for scalability. Finally, we carry out basic checks also on BDD-OIA
[84], a real-world autonomous driving task where images are annotated with actions (move_forward,
stop, turn_left, turn_right) and 21 binary concepts.

Metrics. For each CBM, we evaluate predicted labels and concepts with the F1 score (resp. F1(Y )
and F1(C)) on the test split. Computing F1(C) requires to first align the predicted concepts to ground-
truth annotations. We do so by using the Hungarian algorithm [64] to find a permutation π that
maximizes the Pearson correlation across concepts. In this way, we directly evaluate disentanglement
of the concepts as per Eq. (5) (left). Concept collapse Cls(C) quantifies to what extent the concept
extractor blends different ground-truth concepts together: high collapse indicates that it predicts
fewer concepts than expected. We measure the quality of the learned inference layer β as follows: for
each input x, (1) we reorder the corresponding concept annotations g using π, (2) feed the result to β,
and (3) compute the F1-score (F1(β)) of its predictions. Step (1) permutes and applies element-wise
invertible transformations on the ground-truth concepts using the inverse of the map returned by
Hungarian matching. This evaluates whether the learned inference layer can correctly handle (an
invertible transformation of) the ground-truth concept annotations, measuring the generalization as
per Eq. (5) (right). This procedure is precisely detailed in Appendix A.6.

Mitigation strategies. We evaluate all strategies discussed in Section 4 as well as a combination of
all unsupervised mitigations, denoted H+R+C (entropy, reconstruction, contrastive). Implementations
are taken verbatim from [22]. For contrastive learning, we apply an InfoNCE loss to the predicted
concept distribution with the augmentations suggested by Chen et al. [80]. For knowledge distillation,
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Figure 3: Traditional mitigations have limited effect on CBNM for MNIST-SumParity. The only
outlier is contrastive learning (orange and purple), which consistently ameliorates concept collapse.

the inference layer is fed ground-truth concepts and trained to optimize the log-likelihood of the
corresponding labels.

Q1: All tested CBMs suffer from JRSs and simplicity bias. We analyze three learning tasks of
increasing complexity. MNIST-Add provably contains no JRSs and thus satisfies the preconditions of
Theorem 3.9. Compatibly, all CBMs attain high label performance (F1(Y ) ≥ 90%) and high-quality
semantics, as shown by the values of F1(C) (≥ 90%) and F1(β) (≥ 75%) seen in Table 1. The
only exception is bears∗, which by design trades off performance for calibration. However, in
MNIST-SumParity and Clevr,5 which are more complex, all models lack intended semantics. This
is clear from Tables 2 and 3: despite attaining high F1(Y ) (≥ 90%), the learned concepts and
inference layer are low quality: F1(C) is always low – it never crosses the 50% mark – and F1(β) is
at best around chance level. Our results on BDD-OIA in Table 5 show the very same trend.

The behavior of concept collapse strongly hints at simplicity bias. While no collapse takes place
in MNIST-Add (Cls(C) ≤ 0.01, i.e., digits are not compacted together), in MNIST-SumParity and
Clevr collapse is omnipresent (Cls(C) ≥ 0.22), suggesting that CBMs are prone to simplicity
bias, as expected. SENN is an outlier, likely due to the higher capacity of its inference layer (rather
than reconstruction, which is entirely ineffective in Q3). Even having access to the ground-truth
knowledge is ineffective, as shown by the high degree of collapse displayed by DPL.

Q2: JRSs compromise OOD behavior and supervision only partially helps. We evaluate the
impact of JRSs and supervision on OOD behavior by training a CBNM on the biased version of
MNIST-SumParity in Fig. 1. The in-distribution (ID) data comprise all (odd, odd), (even, even),
and (odd, even) pairs of MNIST digits, while the OOD split contains all (even, odd) pairs. Table 4
reports performance under varying levels of concept and knowledge supervision. While all models
produce high-quality predictions in-distribution (F1(Y ) ≥ 0.97), only the CBNM receiving complete
supervision attains acceptable OOD predictions: for the others, F1(Y ) ≤ 0.40. Even in this case,
though, the inference layer still does not have intended semantics, as shown by F1(β) ≤ 70%.

Q3: Popular CBM and RS mitigations fall short. Finally, we test mitigation strategies on CBNM
trained on MNIST-SumParity and Clevr, ablating the amount of supervision. The results for
MNIST-SumParity in Fig. 3 show while concept supervision (x-axis) helps all metrics, adding
reconstruction, entropy maximization, and contrastive learning to the mix brings no benefits for
concept and knowledge (F1(C), F1(β)) quality, not even when combined (orange curve). Knowledge
supervision is also ineffective (blue lines), likely because MNIST-SumParity and Clevr suffer from
RSs even when the model is supplied prior knowledge. Contrastive learning improves concept
collapse (Cls(C)): the orange and purple curves in Fig. 3 (right) show it can prevent CBMs from
mixing concepts together. The results for Clevr in Appendix B show similar trends.

6 Related Work

Shortcuts in machine learning. Shortcuts occur when machine learning models solve a prediction
task by using features that correlate with but do not cause the desired output, leading to poor OOD
behavior [12, 10, 85, 86]. Existing work focuses on black-box models rather than CBMs. Existing
studies on the semantics of CBM concepts [87, 15, 88, 89] focus on individual failures but lack
formal notion of intended semantics. One exception is [17] which, however, ignores the role of
the inference layer. We build on known results on reasoning shortcuts [90, 19, 20, 53] which are

5For Clevr, we focus on representative CBMs with high fit on the training data.
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restricted to NeSy-CBMs in which the prior knowledge is given and fixed. Our analysis upgrades
these results to general CBMs. Furthermore, our simulations indicate that strategies that are effective
for CBMs and RSs no longer work for JRSs. At the same time, while NeSy approaches that learn
prior knowledge and concepts jointly are increasingly popular [48, 91, 49, 50, 51, 52], existing work
neglects the issue of shortcuts in this setting. Our work partially fills this gap. Shortcuts and JRSs
are related but distinct. While shortcuts can induce JRSs, the converse is not true: a model can be
affected by a JRS even if it does not rely on confounders, as shown in Fig. 2. This distinction also
implies that mitigation strategies designed for vanilla shortcuts do not necessarily transfer to JRSs.

Relation to identifiability. Works in Independent Component Analysis and Causal Representation
Learning focus on the identifiability of representations up to an equivalence relation, typically up to
permutations and rescaling [92, 93, 69] or more general transformations [94, 95]. The equivalence
relation introduced along with intended semantics (Definition 3.3) establishes a specific connection
between the maps α and β. This aligns with existing works that aim to identify representations and
linear inference layers using supervised labels [68, 96, 97, 98, 99]. Moreover, while prior works
primarily focus on identifying real-valued representations, we examine the identifiability of discrete
concepts and of the inference layer. [100] explores the identifiability of (potentially discrete) concepts
linearly encoded in model representations but focuses on multi-environment settings. Our results
differ in that we show how concepts can be identified in CBMs by circumventing reasoning shortcuts.

7 Conclusion

We study the issue of learning CBMs and NeSy-CBMs with high-quality concepts and inference
layers. We formalize intended semantics and joint reasoning shortcuts (JRSs), showing how, under
suitable assumptions, zeroing the number of deterministic JRSs provably prevents all JRSs, yielding
identifiability. Numerical simulations indicate that JRSs are very frequent and impactful, and that
the only (partially) beneficial mitigation stratgy is contrastive learning. Our work paves the way to
the design of effective solutions and therefore more robust and interpretable CBMs. In future work,
we plan to extend our theory to general neural nets and large language models, and we will take a
closer look at more complex mitigations such as smartly constraining the inference layer [49, 52],
debiasing [13], and human interaction [10]. Another asset is considering concept-level supervision
gathered from foundation models like CLIP, however recent results [35] call for caution in using
them to supervise the bottleneck. Wrong concept-level supervision may transfer biases of foundation
models and induce JRSs, thus resulting ineffective as a mitigation strategy.

Broader impact. With this work, we aim to highlight the issue of joint reasoning shortcuts in concept-
based models and their subtle but impactful consequences on the trustworthiness and interpretability
of these models, as well as on their reliability in out-of-distribution scenarios. It also highlights the
limited effect of unsupervised mitigation strategies, thus pointing out a significant gap in our toolbox
for addressing joint reasoning shortcuts effectively and cheaply. Our work also provides a solid
theoretical foundation upon which further studies can build.

Limitations. Our theoretical analysis of JRSs builds on two common assumptions for the data
generation process, which limit its scope. Relaxing them, while not straightforward, will allow
treating models and NeSy tasks with intrinsic uncertainty on label and concepts. Our experiments
span both synthetically-generated and a real-world vision datasets; further analysis should highlight
the impact of JRSs in other real-world settings and beyond the vision domain.
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A Implementation Details

Here, we provide additional details about metrics, datasets, and models, for reproducibility. All
the experiments were implemented using Python 3.9 and Pytorch 1.13 and run on one A100 GPU.
The implementations of DPL, and the code for RSs mitigation strategies were taken verbatim from
[19], while the code for DSL was taken from [50]. DPL∗ and bears∗ were implement on top of DSL
codebase.

A.1 Notation

We summarize the notation used in this paper.

Table 6: Glossary of common symbols.
Symbol Meaning
x, y, z Scalar constants
X , Y , Z Scalar variables
x, X Vector constant and vector variable

X Space of input
Y , G, C Sets of labels, ground-truth, and learned concepts
∆Y ,∆G ,∆C Simplices of probability distributions on sets elements

f : X → ∆C Concept extractor
ω : ∆C → ∆Y Inference layer
F ,Ω Space of concept extractors and inference layers

α : G → ∆C Map from ground-truth concepts to distribution of model concepts
β : C → ∆Y Map of the inference layer on concept vectors
A,B Spaces of α’s and β’s

p∗ distribution over inputs, label, and ground-truth concepts
K Prior knowledge
|= Logical entailment

A.2 Datasets

All data sets were generated using the rsbench library [22].

A.2.1 MNIST-Add

MNIST-Add [41] consists of pairs of MNIST digits [45], ranging from 0 to 9, and the goal is to
predict their sum. The prior knowledge used for generating the labels is simply the rule of addition:
K = (Y = C1 + C2). This task does not admit RSs nor JRSs when digits are processed separately.
The training and test examples take the following form:

{(( , ), 1), (( , ), 13), (( , ), 12), (( , ), 5)} (8)

All splits cover all possible pairs of concepts, from (0, 0) to (9, 9), i.e., there is no sampling bias.
Overall, MNIST-Add has 42, 000 training examples, 12, 000 validation examples, and 6, 000 test
examples.

A.3 MNIST-SumParity

Similarly, in MNIST-SumParity the goal is to predict the parity of the sum, i.e., the prior knowledge
is the rule: K = (Y = (C1 + C2) mod 2). This task is more challenging for our purposes, as it is
affected by both RSs and JRSs, cf. Fig. 1. Below we report four examples:

{(( , ), 1), (( , ), 1), (( , ), 0), (( , ), 1)} (9)
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We consider two variants: like MNIST-Add, in MNIST-SumParity proper the training and test splits
contain all possible combinations of digits, while in biased MNIST-SumParity the training set
contains (even, even), (odd, odd) and (odd, even) pairs, while the test set contains (even, odd) pairs
only. This fools CBMs into learning an incorrect inference layer implementing subtraction instead
of addition-and-parity, as illustrated in Fig. 1. Both variants have the same number of training,
validation, and test examples as MNIST-Add.

A.4 Clevr

Clevr [83] consists of of 3D scenes of simple objects rendered with Blender, see Fig. 4. Images
are 3× 128× 128 and contain a variable number of objects. We consider only images with 2 to 4
objects each, primarily due to scalability issues with DPL. The ground-truth labels were computed
by applying the rules (prior knowledge) proposed by [14], reported in Table 8. Objects are entirely
determined by four concepts, namely shape, color, material, and size. We list all possible values
in Table 7. Overall, Clevr has 6000 training examples, 1200 validation examples, and 1800 test
examples.

Property Value
Shapes Cube, Sphere, Cylinder

Colors Gray
Red, Blue, Green, Brown,
Purple, Cyan, Yellow

Materials Rubber, Metal

Sizes Large, Small

Table 7: Clevr properties.

Class Condition
Class 1 ∃x1 (Cube(x1) ∧ Large(x1))

∧∃x2 (Cylinder(x2) ∧ Large(x2))

Class 2 ∃x1 (Cube(x1) ∧ Small(x1) ∧ Metal(x1))
∧∃x2 (Sphere(x2) ∧ Small(x2))

Class 3 ∃x1 (Sphere(x1) ∧ Large(x1) ∧ Blue(x1))
∧∃x2 (Sphere(x2) ∧ Small(x2) ∧ Yellow(x2))

Table 8: Clevr classes. Figure 4: Example of Clevr data.

Preprocessing. All CBMs process objects separately, as follows. Following [101], we fine-tune a
pretrained YoloV11 model [74] (for 10 epochs, random seed 13) on a subset of the training set’s
bounding boxes, and use it to predict bounding boxes for all images. For each training and test image,
we concatenate the regions in the bounding boxes, obtaining a list 2 to 4 images which plays the role
of input for our CBMs.

Each object has 8×3×2×2 = 96 possible configurations of concept values, and we handle between
2 and 4 objects, hence the inference layer has to model 962 + 963 + 964 distinct possibilities. Due
to the astronomical number of possibilities (which would entail a huge truth table/inference layer
for DSL and related CBMs), we split the inference layer in two: we first predict individual concepts,
and then we aggregate them (into, e.g., large-cube and small-yellow-sphere) and use these for
prediction. Despite this simplification, Clevr still induces JRSs in learned CBMs.

A.5 BDD-OIA

BDD-OIA is an autonomous driving dataset, composed of images extracted from driving scene
videos [84]. Each image is annotated with four binary labels: move_forward, stop, turn_left,
and turn_right. Each image comes with 21 binary concepts that constitute the explanations for the
corresponding actions. The training set contains almost 16k fully labeled frames, while the validation
and test sets include almost 2k and 4.5k annotated samples, respectively. We adopt the same prior
knowledge used in [22], which we briefly summarize here for the sake of completeness.

For the move_forward and stop actions, the rules are as follows:



red_light ⇒ ¬green_light
obstacle = car ∨ person ∨ rider ∨ other_obstacle
road_clear ⇐⇒ ¬obstacle
green_light ∨ follow ∨ clear ⇒ move_forward
red_light ∨ stop_sign ∨ obstacle ⇒ stop
stop ⇒ ¬move_forward

(10)

The rules for the turn_left and the turn_right action, instead, are:
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
can_turn = left_lane ∨ left_green_lane ∨ left_follow
cannot_turn = no_left_lane ∨ left_obstacle ∨ left_solid_line
can_turn ∧ ¬cannot_turn ⇒ turn_left

(11)

An overview of the classes of BDD-OIA can be found in [84].

Preprocessing. BDD-OIA images are preprocessed following the approach described in [27]. We first
used a Faster R-CNN [102] model pre-trained on MS-COCO and fine-tuned on BDD-100k, then we
extract 2048-dimensional features using a pre-trained convolutional layer from [27].

A.6 Metrics

For all models, we report the metrics averaged over five random seeds.

Label quality. We measure the macro average F1-score and Accuracy, to account for imbalance.

Concept quality. We compute concept quality via Accuracy and F1-score. However, the order of
ground-truth and predicted concepts might might differ, e.g., in Clevr G1 might represent whether
“color = red”, while C1 whether “color = blue”. Therefore, in order to compute these metrics
we have to first align them using the Hungarian matching algorithm using concept-wise Pearson
correlation on the test data [64]. The algorithm computes the correlation matrix R between g and
c, i.e., Rij = corr(Gi, Cj) where corr is the correlation coefficient, and then infers a permutation
π between concept values (e.g., mapping ground-truth color “red” to predicted value “blue”) that
maximizes the above objective. The metrics are computed by comparing the reordered ground-truth
annotations with the predicted concepts.

Concept Collapse. To compute the Concept Collapse metric Cls(C) [22], we follow the procedure
described in Bortolotti et al. [22], which we briefly describe here. Specifically, we extract a confusion
matrix in the multilabel setting by encoding each binary concept vector (e.g., (0, 1, 1) 7→ 3) into
a categorical label. Let C∗ ⊆ {0, 1}k be the set of ground-truth concept vectors in the test set,
and C be the set of predicted concept vectors. After converting both sets to categorical values,
denoted F(C∗) and F(C) respectively, we construct the confusion matrix C ∈ [0, 1]m×m, where
m = |F(C) ∪ F(C∗)|. From this matrix, we compute the number of predicted categories p as:

p =

m∑
j=1

1{∃i . Cij > 0} = |F(C)| (12)

Then, the Cls(C) metric is given by:

Cls(C) = 1− p

m
(13)

Where m = 2k.

Inference layer quality. The same permutation is also used to assess knowledge quality. Specifically,
we apply it to reorder the ground-truth concepts and then feed these to the learned inference layer,
evaluating the accuracy and F1 score of the resulting predictions.

For MNIST-Add and MNIST-SumParity, we conducted an exhaustive evaluation since the number
of possible combinations to supervise is 100. The results in Table 1 and Table 2 evaluate the
knowledge exhaustively, whereas in Table 4, we separately assess the knowledge of in-distribution
and out-of-distribution combinations.

In Clevr, as discussed in Appendix A.4, there are too many combinations of concept values to
possibly evaluate them all. Therefore, both supervision and evaluation are performed by randomly
sampling 100 combinations of ground-truth concepts. We follow the same procedure for BDD-
OIA, except that we sample more combinations (2000) due to the larger space of possible concept
configurations.

A.7 Architectures

For MNIST-SumParity and MNIST-Add, We employed the architectures from [22], while for DSL,
DPL∗, and bears∗, we followed the architecture described in [50]. For Clevr instead, we adopted
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the decoder presented in Table 9 and the encoder presented in Table 10. All models process different
objects (e.g., digits) separately using the same backbone. For BDD-OIA, we adopt the architectures
defined in [22].

Table 9: Encoder architecture for Clevr.
INPUT LAYER TYPE PARAMETER OUTPUT

(128, 128, 3) Convolution depth=32, kernel=3, stride=1, pad=1 ReLU
(128, 128, 32) MaxPool2d kernel=2, stride=2
(64, 64, 32) Convolution depth=64, kernel=3, stride=1, pad=1 ReLU
(64, 64, 64) MaxPool2d kernel=2, stride=2
(64, 32, 32) Convolution depth=128, kernel=3, stride=1, pad=1 ReLU
(128, 32, 32) AdaptiveAvgPool2d out=(1, 1)
(128, 1, 1) Flatten
(128) Linear dim=40, bias = True c
(128) Linear dim=640, bias = True µ
(128) Linear dim=640, bias = True σ

Table 10: Decoder architecture for Clevr
INPUT LAYER TYPE PARAMETER ACTIVATION

(255) Linear dim=32768, bias = True
(8, 8, 512) ConvTranspose2d depth=256, kernel=4, stride=2, pad=1

(16, 16, 256) BatchNorm2d ReLU
(16, 16, 256) ConvTranspose2d depth=128, kernel=4, stride=2, pad=1
(32, 32, 128) BatchNorm2d ReLU
(32, 32, 128) ConvTranspose2d depth=64, kernel=4, stride=2, pad=1
(64, 64, 64) BatchNorm2d ReLU
(64, 64, 64) ConvTranspose2d depth=3, kernel=4, stride=2, pad=1 Tanh

Details of CBNM. For Clevr, we used a standard linear layer. Since this is not expressive enough for
MNIST-Add and MNIST-SumParity, we replaced it with an interpretable second-degree polynomial
layer, i.e., it associates weights to combinations of two predicted digits rather than individual digits.
We also include a small entropy term, which empirically facilitates data fit when little or no concept
supervision is available.

Details of SENN. SENN [1] are unsupervised concept-based models consisting of a neural network that
produces a distribution over concepts, a neural network that assigns a score to those concepts, and a
decoder. The final prediction is made by computing the dot product between the predicted concepts
and their predicted scores. SENN by default includes a reconstruction penalty, a robustness loss, and a
sparsity term.

In our implementation, we focus only on the reconstruction penalty. The robustness loss, which aims
to make the relevance scores Lipschitz continuous, requires computing Jacobians, making the training
of those models infeasible in terms of computational time and resources. Additionally, we did not
implement the sparsity term, as it conflicts with the quality of concepts we aim to study.

Details of bears∗. bears∗ combines DSL [50] and BEARS [63]. BEARS is a NeSy architectures
based on deep ensembles [103], designed to improve the calibration of NeSy models in the presence
of RSs and provide uncertainty estimation for concepts that may be affected by such RSs and it
assumes to be given prior knowledge.

Since in our setup the inference layer is learned, we built an ensemble with one learnable inference
layer as in DSL and multiple concept extractors. The first element of the ensemble learns both the
concepts and the inference layer. Then, we freeze it and train the other concept extractors using the
frozen inference layer for prediction. In this sense, bears∗ provides awareness of the reasoning
shortcuts present in the knowledge learned by the first model.

A.8 Mitigation Strategies

Concept supervision. When evaluating mitigation strategies, concept supervision for MNIST-
SumParity was incrementally supplied for two more concepts at each step, following this order: 3,
4, 1, 0, 2, 8, 9, 5, 6, 7. For Clevr, supervision was specifically provided for sizes, shapes, materials,
and colors, in this order.

Knowledge distillation. This was implemented using a cross-entropy on the inference layer. For
DSL and DPL, ground-truth concepts were fed into the learned truth table, expecting the correct label.
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Similarly, for CBNMs, which use a linear layer, the same approach was applied. In evaluating the
mitigation strategies, we supervised all possible combinations for MNIST-Add, whereas for Clevr,
we supervised a maximum of 500 randomly sampled combinations.

Entropy maximization. The entropy regularization term follows the implementation in [19]. The
loss is defined as 1− 1

k

∑k
i=1Hmi

[pθ(ci)] where pθ(C) represents the marginal distribution over the
concepts, and Hmi is the normalized Shannon entropy over mi possible values of the distribution.

Reconstruction. The reconstruction penalty is the same as in [19]. In this case, the concept extractor
outputs both concepts c and style variables z, i.e., it implements a distribution pθ(c, z | x) = pθ(c |
x) · pθ(z | x). The reconstruction penalty is defined as: −E(c,z)∼pθ(c,z|x) [log pψ(x | c, z)] where
pψ(x | c, z) represents the decoder network.

Contrastive loss. We implemented contrastive learning using the InfoNCE loss, comparing the
predicted concept distribution of the current batch with that of its respective augmentations. Following
the recommendations of Chen et al. [80], we applied the following augmentations to each batch:
random cropping (20 pixels for MNIST and 125 pixels for Clevr), followed by resizing, color jittering,
and Gaussian blur.

A.9 Model Selection

Optimization. For DPL∗, bears∗, CBNM and SENN we used the Adam optimizer [104], while for DSL
and DPL we achieved better results using the Madgrad optimizer [105].

Hyperparameter search. We performed an extensive grid search on the validation set over the
following hyperparameters: (i) Learning rate (γ) in {1e-4, 1e-3, 1e-2}; (ii) Weight decay (ω) in {0,
1e-4, 1e-3, 1e-2, 1e-1}; (iii) Reconstruction, contrastive loss, entropy loss, concept supervision loss
and knowledge supervision loss weights (wr, wc, wh, wcsup and wk, respectively) in {0.1, 1, 2, 5, 8,
10}; (iv) Batch size (ν) in {32, 64, 128, 256, 512}. DSL and DPL∗ have additional hyperparameters
for the truth table: εsym and εrul for DSL, and λr, the truth table learning rate, for DPL∗.

All experiments were run for approximately 50 epochs for MNIST variants, 30 for BDD-OIA and 100
epochs for Clevr using early stopping based on validation set F1(Y ) performance. The exponential
decay rate β was set to 0.99 for all experiments, as we empirically found it to provide the best
performance across tasks. In all experiments, we selected γ = 1e− 3.

To answer the first research question in Section 5 on MNIST-Add, for DPL we used: ν = 32
and ω = 0.0001; for DSL: ν = 128, ω = 0.001, εsym = 0.2807344052335263, and εrul =
0.107711951632426; for CBNM: ν = 256 and ω = 0.0001; for DPL∗: ν = 32, ω = 0.01, and
λr = 0.0001; for SENN: ν = 64, ω = 0.001, and wr = 0.1; while for bears∗ we set the diversifica-
tion loss term to 0 and the entropy term to 0.1. On MNIST-SumParity and its biased version, for DPL
we used: ν = 512 and ω = 0.0001; for DSL: ν = 128, ω = 0.0001, εsym = 0.2807344052335263,
and εrul = 0.107711951632426; for CBNM: ν = 256 and ω = 0.0001; for DPL∗: ν = 32, ω = 0.01,
and λr = 0.01; for SENN: ν = 64, ω = 0.001, and wr = 0.1; while for bears∗ we set the diver-
sification loss term to 0.1 and the entropy term to 0.2. On Clevr, for DPL, CBNM, and DPL∗, we
used ν = 32 and ω = 0.001; for DPL∗, λr = 0.001. On BDD-OIA, for DPL we used ν = 128 and
ω = 10−4, while for CBNM we used ν = 64 and ω = 0.

For the second research question, we performed a grid search for each mitigation strategy individually.
Additionally, since our analysis focuses on optimal models, we trained multiple models and retained
only those achieving optimal F1(Y ) performance on the validation set. For MNIST-SumParity, we
set ν = 128, ω = 0.001, and wcsup = 1 across all experiments. For specific mitigation strategies,
we used wh = 1 for entropy regularization, wr = 0.01 for reconstruction, wc = 0.1 for contrastive
learning, and wk = 1 for knowledge supervision. For Clevr, we applied the same settings: ν = 128,
ω = 0.001, and wcsup = 1 for all experiments. The specific mitigation strategy weights were set
as follows: wh = 1 for entropy regularization, wr = 1 for reconstruction, wc = 0.1 for contrastive
learning, and wk = 1 for knowledge supervision. When concept supervision is applied, we follow a
sequential training approach as in [3]. During the initial epochs, the model learns only the concepts,
and later, it jointly optimizes both the concepts and the label, as they are challenging to learn
simultaneously.
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B Additional results

B.1 Additional Results for Q1

Tables 11 to 13 report additional results for Q1 including two additional models and metrics. The
additional models are: “CBNM noent”, which is identical to CBNM except it does not include any
entropy term; and CBNM 20 which is a regular CBNM for which 20% of the concept combinations (e.g.,
pairs of digits in MNIST-based tasks) receive full supervision. The metrics include label accuracy
AccY , concept accuracy AccC , inference layer accuracy Acc(β), and negative log-likelihood, all
evaluated on the test set.

Table 11: Complete results for MNIST-Add.

METHOD AccY F1(Y ) AccC F1(C) Cls(C) (↓) F1(β) Acc(β) NLL

DPL 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.01 ± 0.01 − − 0.17 ± 0.03

CBNM 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.01 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0.11 ± 0.01
CBNM noent 0.98 ± 0.01 0.98 ± 0.01 0.80 ± 0.10 0.74 ± 0.13 0.08 ± 0.04 0.37 ± 0.09 0.42 ± 0.06 0.26 ± 0.01
CBNM 20 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.01 ± 0.01 0.67 ± 0.02 0.59 ± 0.02 0.70 ± 0.02
CBNM 20 noent 0.92 ± 0.02 0.94 ± 0.01 0.60 ± 0.09 0.48 ± 0.10 0.22 ± 0.12 0.02 ± 0.01 0.12 ± 0.02 1.09 ± 0.01
DSL 0.96 ± 0.02 0.96 ± 0.02 0.98 ± 0.01 0.98 ± 0.01 0.01 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0.38 ± 0.14
DPL∗ 0.90 ± 0.09 0.91 ± 0.09 0.93 ± 0.07 0.92 ± 0.08 0.01 ± 0.01 0.90 ± 0.08 0.90 ± 0.09 0.02 ± 0.01
bears∗ 0.81 ± 0.12 0.76 ± 0.15 0.87 ± 0.12 0.87 ± 0.13 0.01 ± 0.01 0.67 ± 0.14 0.65 ± 0.10 0.34 ± 0.22
SENN 0.97 ± 0.01 0.97 ± 0.01 0.84 ± 0.05 0.80 ± 0.07 0.01 ± 0.01 0.75 ± 0.08 0.75 ± 0.08 0.01 ± 0.01

Table 12: Complete results for MNIST-SumParity.

METHOD AccY F1(Y ) AccC F1(C) Cls(C) (↓) F1(β) Acc(β) NLL

DPL 0.99 ± 0.01 0.99 ± 0.01 0.47 ± 0.04 0.43 ± 0.08 0.36 ± 0.15 − − 0.33 ± 0.01

CBNM 0.90 ± 0.18 0.90 ± 0.18 0.21 ± 0.06 0.09 ± 0.03 0.66 ± 0.09 0.54 ± 0.04 0.21 ± 0.06 0.52 ± 1.04
CBNM noent 0.98 ± 0.01 0.98 ± 0.01 0.22 ± 0.01 0.08 ± 0.02 0.72 ± 0.13 0.53 ± 0.09 0.53 ± 0.09 0.07 ± 0.02
DSL 0.94 ± 0.03 0.94 ± 0.03 0.20 ± 0.01 0.07 ± 0.01 0.80 ± 0.01 0.52 ± 0.01 0.51 ± 0.02 0.29 ± 0.16
DPL∗ 0.99 ± 0.01 0.99 ± 0.01 0.22 ± 0.01 0.07 ± 0.01 0.80 ± 0.01 0.50 ± 0.05 0.50 ± 0.06 0.06 ± 0.01
bears∗ 0.99 ± 0.01 0.99 ± 0.01 0.28 ± 0.05 0.30 ± 0.03 0.22 ± 0.04 0.36 ± 0.09 0.37 ± 0.09 0.04 ± 0.01
SENN 0.99 ± 0.01 0.99 ± 0.01 0.53 ± 0.05 0.49 ± 0.05 0.01 ± 0.01 0.53 ± 0.06 0.53 ± 0.06 0.01 ± 0.01

Table 13: Complete Results for MNIST-SumParity biased.

METHOD AccY F1(Y ) AccC F1(C) Cls(C) (↓) F1(β) Acc(β) NLL

DPL 0.99 ± 0.01 0.99 ± 0.01 0.65 ± 0.05 0.59 ± 0.06 0.08 ± 0.07 − − 0.06 ± 0.01

CBNM noent 0.99 ± 0.01 0.99 ± 0.01 0.22 ± 0.01 0.08 ± 0.02 0.76 ± 0.06 0.52 ± 0.04 0.52 ± 0.04 0.05 ± 0.01
CBNM 20 0.99 ± 0.01 0.99 ± 0.01 0.21 ± 0.01 0.07 ± 0.01 0.80 ± 0.01 0.51 ± 0.01 0.52 ± 0.01 0.07 ± 0.04
CBNM 20 noent 0.99 ± 0.01 0.99 ± 0.01 0.22 ± 0.01 0.07 ± 0.01 0.80 ± 0.01 0.49 ± 0.04 0.48 ± 0.04 0.04 ± 0.01
DSL 0.94 ± 0.03 0.94 ± 0.03 0.20 ± 0.01 0.07 ± 0.01 0.80 ± 0.01 0.02 ± 0.01 0.09 ± 0.02 0.29 ± 0.16
bears∗ 0.99 ± 0.01 0.99 ± 0.01 0.20 ± 0.01 0.07 ± 0.01 0.78 ± 0.04 0.48 ± 0.04 0.49 ± 0.04 0.03 ± 0.01

B.2 Additional Results for Q1: The BDD-OIA Task

Experimental setup. BDD-OIA is a challenging real-world learning task with 21 binary concepts
and, unlike in Clevr, these cannot be decomposed into unary predicates. Moreover, each concept
cannot be separately assigned to individual actions as done for DPL in [22], as this would introduce a
negative bias in the learned solutions, effectively forcing the model to use a fixed concept budget
per action without interference. Due to scalability constraints, we compared only DPL and CBNM, as
implementing DSL or DPL∗ would require allocating at least four tensors of size 221, which exceeds
our available computational resources.

Results. The results for DPL and CBNM are reported in Table 14. Both competitors perform sub-
optimally on BDD-OIA, as expected given the challenging nature of this task: DPL scores around
70% F1(Y ) while CBNM only 62%. Perhaps surprising, CBNM does not collapse concepts together
and tends to use most of the concept bottleneck across the test set (Cls(C) ≈ 0.06). Despite the
lack of collapse, both architectures are far from attaining the intended semantics, with F1(C) scores
of 44% for DPL and 43% for CBNM. Additionally, CBNM deviates from the ground-truth knowledge,
achieving a low F1(β) of around 42%. The low collapse for CBNM may be due to the trained model
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being far from optimal. We hypothesize that adding a sparsity penalty to the linear layer of CBNM
would substantially increase concept collapse, but we leave a detailed examination to future work.

Table 14: Results for BDD-OIA.

METHOD F1(Y ) (↑) F1(C) (↑) Cls(C) (↓) F1(β) (↑)

DPL 0.69 ± 0.03 0.44 ± 0.01 0.88 ± 0.01 −
CBNM 0.62 ± 0.03 0.43 ± 0.02 0.06 ± 0.02 0.42 ± 0.03

B.3 Additional Results for Q3

Here we show the effect of traditional mitigation strategies on MNIST-SumParity and Clevr as
concept and knowledge supervision increase. As discussed in Section 5, traditional strategies have
limited impact, with the exception of concept supervision.
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Figure 5: Fig. 3 with standard deviation over 5 seeds
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Figure 6: Effect of standard mitigation strategies evaluated for CBNM on Clevr, with standard
deviation over 5 seeds. We evaluated only the contrastive strategy as it performed best. Since
supervising all knowledge is infeasible, we observe that for sampled configurations (leading to
out-of-distribution settings), the learned knowledge does not generalize.

B.4 Concept Confusion Matrices and Learned Inference Layers

Here, we present the concept and knowledge confusion matrices for different datasets and models to
show examples of joint reasoning shortcut solutions that they learn.
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Figure 7: Concept confusion matrices for CBNM on MNIST-Add and the corresponding learned
inference layer. Left two matrices: concepts and knowledge before alignment. Right two matrices:
same but after alignment. The learned inference layer is visualized as a colored matrix where the
numbers in the cells indicate the model’s predictions.
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Figure 8: Concepts and inference layer learned by CBNM on MNIST-SumParity before (two left) and
after (two right) the post-hoc alignment step. For concepts, we report the confusion matrix. For the
inference layer, we visualize the learned operation as a truth table: numbers within cells indicate the
label predicted for each combination of predicted digits.
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Figure 9: Concept confusion matrices for MNIST-SumParity. All models tend to favor α’s that
collapse concepts together, hinting at simplicity bias.

B.5 Number of Reasoning Shortcuts and Joint Reasoning Shortcuts

Here, we report the approximate number of deterministic reasoning shortcuts and joint reasoning
shortcuts for MNIST-Add and MNIST-SumParity. We obtained these numbers by extending the
count-rss software included in rsbench [22] to the enumeration of JRSs, compatibly with Eq. (7)
and Eq. (6).

We considered downsized versions of both MNIST-Add and MNIST-SumParity, with input digits
restricted to the range {0, . . . , N}, and resorted to the approximate model counter approxMC [106]
for obtaining approximate counts in the hardest cases. All counts assume object independence is in
place (i.e., that the two input digits are processed separately), for simplicity. The situation is similar
when this is not the case, except that the all counts grow proportionally.

The number of RSs and JRSs for increasing N are reported in Table 15. Specifically, the #RSs
column indicates the number of regular RSs obtained by fixing the prior knowledge (that is, assuming
β = β∗) and matches the count in [19] for the same tasks. The #JRSs columns refer to the CBM
case, where the inference layer is learned from data (i.e., β might not match β∗). We report two
distinct counts for JRSs: one assumes that β’s that match on all concepts actively output by α should
be considered identical despite possible differences on “inactive” concepts that α predicts as constant
(#JRSs non-redundant) or not (# JRSs).

As can be seen from the results, JRSs quickly outnumber regular RSs as N grows, as anticipated in
Section 3.1. This suggests that, as expected, learning CBMs with intended semantics by optimizing
label likelihood is more challenging when prior knowledge is not given a priori.
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Figure 10: Concept confusion matrices for SENN on MNIST-Add and MNIST-SumParity. SENN
provide local explanations for individual predictions, as their inference layer depends on the input
and does not yield a global, interpretable rule set. No simplicity bias is evident in these two confusion
matrices; we hypothesize that this stems from the models flexibility in modeling local rules and from
the reconstruction penalty applied to the concepts during training.

Table 15: Number of RSs vs. JRSs in MNIST-SumParity.

N #RSs #JRSs #JRSs (non-redundant)

3 (1.10 ± 0.00) × 101 (3.84 ± 0.60) × 1020 (1.20 ± 0.00) × 101

4 (6.30 ± 0.00) × 101 (1.11 ± 0.05) × 1050 (1.27 ± 0.06) × 102

5 (3.70 ± 0.15) × 102 (1.16 ± 0.05) × 1080 (1.40 ± 0.70) × 103

6 (2.98 ± 0.10) × 103 (4.45 ± 0.19) × 1011 (1.74 ± 0.13) × 104

7 (2.56 ± 0.26) × 104 (8.08 ± 0.33) × 1015 (2.61 ± 0.14) × 105

8 (2.62 ± 0.15) × 105 (5.39 ± 0.25) × 1020 (4.21 ± 0.10) × 106

C Theoretical Material

In this section, we start by summarizing the prerequisite material. We begin by recalling a central
Lemma proven in [19] that allows us to write the condition for likelihood-optimal models in terms
of α. For ease of comparison, let p(C | X) := f(X) and p(Y | X) := (ω ◦ f)(X) denote the
conditional distributions defined by the CBM (f ,ω) ∈ F × Ω, and:

p(Y | G) := Ex∼p∗(X|G)[p(Y | x)] (14)

Also, we consider the following joint distributions:

p∗(X,Y) = p∗(Y | X)p∗(X), p(X,Y) = p(Y | X)p∗(X) (15)

Lemma C.1 ([19]). It holds that: (i) The true risk of p can be upper bounded as follows:

E(x,y)∼p∗(X,Y)[log p(y | x)] = −KL[p∗(X;Y) ‖ p(X,Y)]−H[p∗(X,Y)]] (16)

≤ Eg∼p(G)

(
− KL[p∗(Y | g;K) ‖ p(Y | g)]−H[p∗(Y | g;K)]

)
(17)

where KL is the Kullback-Leibler divergence and H is the Shannon entropy. Moreover, under
Assumptions 3.1 and 3.2, p(Y | X;K) is an optimum of the LHS of Eq. (17) if and only if p(Y | G)
is an optimum of the RHS. (ii) There exists a bijection between the deterministic concept distributions
p(C | X) that, for each g ∈ supp(G), are constant over the support of p∗(X | g) apart for
zero-measure subspaces X 0 ⊂ supp(p∗(X | g)) and the deterministic distributions of the form
p(C | G).

Point (i) connects the optima of the likelihood p(Y | X) and the optima of p(Y | G). This
implies that, under Assumptions 3.1 and 3.2, knowing the optima of p(Y | G) informs us about
optimal CBMs p(Y | X). Notice that a single α(G) = p(C | G) might correspond to multiple
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choices of f ∈ F . However, by (ii), if we restrict ourselves to deterministic distributions p(C | G),
the correspondence with distributions p(C | X) that are almost constant in the support becomes
one-to-one.

Next, we describe which distributions p(Y | G) are both deterministic – and thus comply with (ii) –
and optimal.
Lemma C.2 (Deterministic optima of the likelihood). Under Assumptions 3.1 and 3.2, for all CBMs
(f ,ω) ∈ F × Ω where, for all g ∈ G, f : x 7→ c is constant over the support of p∗(X | g) apart
for a zero-measure subspace X 0 ⊂ supp(p∗(X | g)), it holds that the optima of the likelihood for
p(Y | G) are obtained when:

∀g ∈ supp(p∗(G)), (β ◦α)(g) = β∗(g) (18)

Here, α(g) := Ex∼p∗(X|g)[f(x)] ∈ Vert(A) and β(c) := ω(1{C = c}) ∈ Vert(B).

Proof. Notice that by Lemma C.1, it holds that α ∈ Vert(A) is a deterministic conditional distribu-
tion. Since f : x → c is constant over all x ∼ p∗(X | g) for a fixed g ∈ G, it holds that f(x) = α(g)
apart for some x in a measure-zero subspace X 0 ⊂ supp(p∗(X | g)). Therefore we get:

Ex∼p∗(X|g)[ω(f(x))] = ω(α(g)) = (β ◦α)(g) (19)

In the last line, we substitute ω with β since α is deterministic. For p(Y | G), the necessary and
sufficient condition for maximum log-likelihood is:

∀g ∈ supp(p∗(G)), p(Y | g) = β∗(g) (20)

and substituting Eq. (19) we get:

∀g ∈ supp(p∗(G)), (β ◦α)(g) = β∗(g) (21)

This proves the claim.

C.1 Equivalence relation given by Definition 3.3

We start by proving that Definition 3.3 defines an equivalence relation.
Proposition C.3. Definition 3.3 defines an equivalence relation ∼ between pairs (α,β), (α′,β′) ∈
A× B, as follows: (α,β) ∼ (α′,β′) iff there exist a permutation π : [k] → [k] and k element-wise
invertible functions ψ1, . . . , ψk such that:

∀g ∈ G, α(g) = (Pπ ◦ψ ◦α′)(g) (22)

∀c ∈ C, β(c) = (β′ ◦ψ−1 ◦P−1
π )(c) (23)

where Pπ : C → C is the permutation matrix induced by π and ψ(c) := (ψ1(c1), . . . , ψk(ck)).

Proof. It is useful to analyze how Pπ and ψ are related. Let for any c ∈ C:

(Pπ ◦ψ)(c) = Pπ(ψ1(c1), . . . , ψk(ck)) (24)
= (ψπ(1)(cπ(1)), . . . , ψπ(k)(cπ(k))) (25)

Using the shorthand ψπ(c) := (ψπ(1)(c1), . . . , ψπ(k)(ck)), we have that:

(Pπ ◦ψ)(c) = (ψπ ◦Pπ)(c) (26)

From this expression, notice that for all c ∈ C it holds that:

(Pπ ◦ψ)(c) = (Pπ ◦ψ ◦P−1
π ◦Pπ)(c) (27)

(ψπ ◦Pπ)(c) =
(
(Pπ ◦ψ ◦P−1

π ) ◦Pπ
)
(c) (28)

so that we can equivalently write ψπ := Pπ ◦ψ ◦P−1
π .

Reflexivity. This follows by choosing Pπ = id and similarly ψi = id for all i ∈ [k].

Symmetry. We have to prove that (α,β) ∼ (α′,β′) =⇒ (α′,β′) ∼ (α,β). Since (α, β) ∼
(α′, β′), we can write α in terms of α′ as follows:

α(g) = (Pπ ◦ψ ◦α′)(g) (29)

= (ψπ ◦Pπ ◦α′)(g) (30)

29



where in the last step we used Eq. (26). By first inverting ψπ and then Pπ , we obtain that:

α′(g) = (P−1
π ◦ψ−1

π ◦α)(g) (31)

The inverses exist by construction/definition. Showing the symmetry of α. With similar steps, we
can show that a similar relation also holds for β′, that is for all c ∈ C:

β′(c) = (β ◦ψπ ◦Pπ)(c) (32)

Transitivity. We have to prove that if (α,β) ∼ (α′,β′) and (α′,β′) ∼ (α†,β†) then also
(α,β) ∼ (α†,β†). We start from the expression of α and α′, where we have that ∀g ∈ G:

α(g) = (Pπ ◦ψ ◦α′)(g) (33)

α′(g) = (Pπ′ ◦ψ′ ◦α†)(g) (34)

We proceed by substituting the expression of α′ in α to obtain:

α(g) = (Pπ ◦ψ ◦Pπ′ ◦ψ′ ◦α†)(g) (35)

= (Pπ ◦Pπ′ ◦P−1
π′ ◦ψ ◦Pπ′ ◦ψ′ ◦α†)(g)

(Composing Pπ with the identity Pπ′ ◦P−1
π′ )

= (Pπ ◦Pπ′ ◦ψπ′−1 ◦ψ′ ◦α†)(g) (Using that ψπ′−1 := P−1
π′ ◦ψ ◦Pπ′ .)

= (Pπ† ◦ψ† ◦α†)(g) (36)

where we defined Pπ† := Pπ ◦Pπ′ and ψ† := ψπ′−1 ◦ψ′. With similar steps, we obtain that β can
be related to β† as:

β(c) = (β† ◦ψ†−1
◦P−1

π† )(c) (37)
for all c ∈ C. This shows the equivalence relation of Definition 3.3.

We now prove how solutions with intended semantics (Definition 3.3) relate to the optima of the
log-likelihood:
Lemma C.4 (Intended semantics entails optimal models). If a pair (α,β) ∈ A× B possesses the
intended semantics (Definition 3.3), it holds that:

∀g ∈ G, (β ◦α)(g) = β∗(g) (38)

Proof. By Definition 3.3, we can write:

α(g) = (Pπ ◦ψ ◦ id)(g) (39)

β(c) = (β∗ ◦ψ−1 ◦P−1
π )(c) (40)

Combining Eqs. (39) and (40), we get, for all g ∈ G, that:

(β ◦α)(g) = (β∗ ◦P−1
π ◦ψ−1 ◦ψ ◦Pπ)(g) (41)

= (β∗ ◦P−1
π ◦Pπ)(g) (42)

= β∗(g) (43)

yielding the claim.

C.2 Proof of Theorem 3.6 and Corollary 3.7

Theorem C.5. Let sG :=
⋃k
i=1{|Gi|} be the set of cardinalities of each concept Gi ⊆ G and msG

denote the multi-set msG := {(|Gi|,m(|Gi|)), i ∈ [k]}, where m(•) denotes the multiplicity of
each element of sG. Under Assumptions 3.1 and 3.2, the number of deterministic JRSs (α,β) ∈
Vert(A)× Vert(B) amounts to:∑

(α,β)∈Vert(A)×Vert(B)

1{
∧

g∈supp(G)

(β ◦α)(g) = β∗(g)} − C[G] (44)

whereC[G] is the total number of pairs with the intended semantics, given byC[G] :=
∏
ξ∈sG m(ξ)!×∏k

i=1 |Gi|!.
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Proof. Since we are considering pairs (α,β) ∈ Vert(A) × Vert(B), α defines a (deterministic)
function α : G → C and that, similarly, β defines a (deterministic) function β : C → Y . In this
case, β ◦α : G → Y is a map from ground-truth concepts to labels. We start by Definition 3.3 and
consider the pairs that attain maximum likelihood by Lemma C.2:

∀g ∈ supp(p∗(G)), (β ◦α)(g) = β∗(g) (45)
Since α ∈ Vert(A) is deterministic, we can replace ω with β. Since both Vert(A) and Vert(B) are
countable, we can count the number of pairs that attain maximum likelihood as follows:∑

(α,β)∈Vert(A)×Vert(B)

1{
∧

g∈supp(p∗(G))

(β ◦α)(g) = β∗(g)} (46)

where, for each pair (α,β) ∈ Vert(A) × Vert(B) the sum increases by one if the condition of
Eq. (45) is satisfied.

Among these optimal pairs, some possess the intended semantics and therefore do not count as JRSs.
By Lemma C.4, these correspond to all possible permutations of the concepts combined with all
possible element-wise invertible transformations of the concept values.

We begin by evaluating the number of possible element-wise invertible transformations. The i-th
concept can attain |Gi| values. The overall number of possible invertible transformations is then given
by the number of possible permutations, resulting in a total of |Gi|! maps. Hence, the number of
element-wise invertible transformations is:

k∏
i=1

|Gi|! (47)

Next, we consider what permutation of the concepts are possible. To this end, consider the set and
the multi-set comprising all different Gi cardinalities given by:

sG :=

k⋃
i=1

{|Gi|}, msG := {(|Gi|,m(|Gi|) : i ∈ [k]} (48)

where m(•) counts how many repetitions are present. When different Gi and Gj have the same
cardinality, we can permute Gi and Gj without compromising optimality, as there always exists
a β that inverts the permutation and thus provides the same output. Thankfully, this shows in the
multiplicity m(·) and we can account for this. Therefore, for each element ξ ∈ sG we have that the
total number of permutations of concepts amount to:

perm(G) :=
∏
ξ∈sG

m(ξ)! (49)

Putting everything together, we obtain that the number of optimal pairs possessing the intended
semantics is perm(G)×

∏k
i=1 |Gi|!, meaning that the total number of deterministic JRSs is:∑

(α,β)∈Vert(A)×Vert(B)

1{
∧

g∈supp(p∗(G))

(β ◦α)(g) = β∗(g)} − perm(G)×
k∏
i=1

|Gi|! (50)

yielding the claim.

Corollary 3.7. Consider a fixed β∗ ∈ Vert(B). Under Assumptions 3.1 and 3.2, the number of
deterministic JRSs (α,β∗) ∈ Vert(A)× Vert(B) is:∑

α∈Vert(A) 1{
∧

g∈supp(G)(β
∗ ◦α)(g) = β∗(g)} − 1 (7)

This matches the count for deterministic RSs in [19].

Proof. The proof follows immediately by replacing Vert(B) with {β∗}, allowing only for the ground-
truth inference function. In this context, by following similar steps of Theorem 3.6, we arrive at a
similar count to Eq. (46), that is:∑

(α,β)∈Vert(A)×{β∗}

1{
∧

g∈supp(p∗(G))

(β ◦α)(g) = β∗(g)} (51)

In the context of regular RSs, the only pair possessing the intended semantics is (id,β∗), which has
to subtracted from Eq. (51). This proves the claim.
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C.3 Proof of Theorem 3.9

Theorem 3.9 (Identifiability). Under Assumptions 3.1 and 3.2, if the number of deterministic JRSs
(Eq. (6)) is zero then every CBM (f ,ω) ∈ F ×Ω satisfying Assumption 3.8 that attains maximum log-
likelihood (Eq. (4)) possesses the intended semantics (Definition 3.3). That is, the pair (α,β) ∈ A×B
entailed by each such CBM is equivalent to the ground-truth pair (id,β∗), i.e., (α,β) ∼ (id,β∗).

Proof. Consider a pair (α,β) ∈ A× B, where both α and β can be non-deterministic conditional
probability distributions.

Step (i). We begin by first recalling Lemma C.1. Under Assumptions 3.1 and 3.2, a CBM (f ,ω) ∈
F × Ω is optimal, i.e., it attains maximum likelihood, if it holds that:

∀g ∈ supp(p∗(G)), Ex∼p∗(X|g)[(ω ◦ f)(x)] = β∗(g) (52)

Notice that, according to Assumptions 3.1 and 3.2, it also holds that the labels must be predicted with
probability one to attain maximum likelihood, that is:

∀g ∈ G, maxβ∗(g) = 1 (53)

Now consider a pair (α,β) ∈ A×B. By Lemma C.1 (i), it holds that to obtain maximum likelihood,
the learned knowledge β : C → ∆Y must be deterministic:

maxβ(c) = 1 (54)

which implies that, necessarily, for β to be optimal the space B restricts to the set Vert(B), so
any learned knowledge β must belong to Vert(B). This shows that optimal pairs (α,β) belong to
A× Vert(B).
Step (ii). Next, we make use of Assumption 3.8 and consider only inference functions ω that satisfy
it. We start by considering a pair (a′,b′) ∈ Vert(A)× Vert(B) that attain maximum likelihood, that
is, according to Theorem 3.6:

∀g ∈ supp(p∗(G)), (b′ ◦ a′)(g) = β∗(g) (55)

Now, given b′ ∈ Vert(B), we have to prove that no non-deterministic α ∈ A \ Vert(A) can attain
maximum likelihood for any of the ω′ ∈ Ω that correspond to b′, that is, such that ω′(1{C = c}) =
b′(c) for all c ∈ C. Since A is a simplex, we can always construct a non-deterministic conditional
probability distribution α ∈ A from a convex combination of the vertices ai ∈ Vert(A), i.e., for all
g ∈ G it holds:

α(g) =
∑

αi∈Vert(A)

λiai(g) (56)

Consider another a′′ 6= a′ ∈ Vert(A) and consider an arbitrary convex combination that defines a
non-deterministic α ∈ A:

∀g ∈ G, α(g) := λa′(g) + (1− λ)a′′(g) (57)

where λ ∈ (0, 1). When the deterministic JRSs count (Eq. (6)) equals to zero, we know that by
Theorem 3.6 only (a′,b′) attains maximum likelihood, whereas (a′′,b′) is not optimal. Therefore,
there exists at least one ĝ ∈ supp(p∗(G)) such that

(β′ ◦ a′)(ĝ) 6= (β′ ◦ a′′)(ĝ) (58)

We now have to look at the form of f that can induce such a non-deterministic α = λa′ + (1− λ)a′′.
Recalling, the definition of α (Eq. (2)) we have that:

α(g) = Ex∼p∗(X|g)[f(x)] (59)

= λa′(g) + (1− λ)a′′(g) (60)

For this α, there are two possible kinds of f ∈ F that can express it.

(1) In one case, we can have f : Rn → Vert(∆C) – mapping inputs to “hard” distributions over
concepts. Since α is not a “hard” distribution (provided λ ∈ (0, 1)), f(x) must be equal to a′(g)
for a fraction λ of the examples x ∈ supp(p∗(X | g)) and to a′′(g) for a fraction of 1− λ. In that
case, it holds that there exist a subspace of non-vanishing measure X ′′ ⊂ supp(p∗(X | ĝ)) such that
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f(x) = a′′(ĝ). Therefore, for all x ∈ X ′′ we have that (b′ ◦ a′′)(x) = (ω ◦ a′′)(ĝ) 6= β∗(ĝ), and
such an f is suboptimal.

(2) The remaining option is that f : Rn → ∆C \ Vert(∆C). In light of this, we rewrite f as follows:

∀x ∈ supp(p∗(X | ĝ)), f(x) =
∑
c∈C

p(c | x)1{C = c} (61)

where p(c | x) := f(x)c. Let ĉ′ := a′(ĝ) and ĉ′′ := a′′(ĝ). But α is a convex combination of a′

and a′′, hence the function f must attribute non-zero probability mass only to the concept vectors ĉ′

and ĉ′′. Hence, we rewrite it as:

∀x ∈ X ⊆ supp(p∗(X | ĝ)), f(x) = p(ĉ′ | x)1{C = ĉ′}+ p(ĉ′′ | x)1{C = ĉ′′} (62)

where X has measure one. Notice that in this case it holds argmaxy∈Y b′(ĉ′)y 6=
argmaxy∈Y b′(ĉ′′)y. By Assumption 3.8 we have that, for any choice of λ ∈ (0, 1) it holds
that for all x ∈ X :

maxω(p(c′ | x)1{C = c′}+ p(c′′ | x)1{C = c′′}) < max(argmax
y∈Y

b′(ĉ′)y, argmax
y∈Y

b′(ĉ′′)y)

(Using the condition from Assumption 3.8)
= 1 (63)

where the last step in Eq. (63) follows from the fact that b′ ∈ Vert(B), so giving point-mass
conditional probability distributions.

(1) and (2) together show that any α ∈ A \ Vert(A) constructed as a convex combination of a′
and an a′′ 6= a′ cannot attain maximum likelihood. Hence, the optimal pairs restrict to (α,β) ∈
Vert(A)×Vert(B) and since the count of JRSs (Eq. (6)) is zero, all (α,β) ∈ A×B that are optimal
also possess the intended semantics. This concludes the proof.

D Impact of mitigation strategies on the deterministic JRSs count

We focus on how the count can be updated for some mitigation strategies that we accounted for in
Section 4. We consider those strategies that gives a constraint for the Eq. (6), namely: multi-task
learning, concept supervision, knowledge distillation, and reconstruction.

D.1 Multi-task learning

In the following, we use τ to indicate an additional learning task with corresponding. Suppose that for
a subset Gτ ⊆ supp(p∗(G)), input examples are complemented with additional labels yτ , obtained
by applying an inference layer βKτ (g). Here, Kτ is the conjunction of the prior knowledges for the
original and additional task, and it yields a set Yτ of additional labels when applied to the examples
in Gτ . To understand how multi-task learning impacts the count of JRSs, we have to consider those
β : C → Y ×Yτ , where a component βY maps to the original task labels Y and the other component
βYτ maps to the augmented labels Yτ . Let B∗ := B×Bτ the space where such functions are defined.
As obtained in [19], the constraint for a pair (α,β) ∈ Vert(A)× Vert(B∗) can be written as:

1{
∧

g∈Gτ (βYτ ◦α)(g) = βKτ (g)} (64)

This term can be readily combined with the one appearing in Theorem 3.6. Doing so, reduces the
number of possible maps α ∈ Vert(A) that successfully allow a function β ∈ B∗ to predict both
(y,yτ ) consistently. Notice that, in the limit where the augmented knowledge comprehends enough
additional labels and the support covers the whole , the only admitted solutions consist of:

(βYτ ◦ id)(g) = (βYτ ◦ φ−1︸ ︷︷ ︸
=:βYτ

◦ φ︸︷︷︸
=:α

)(g) (65)

for all g ∈ G, where φ : G → C is an invertible function. This shows that α can be only a bijection
from G to C. Provided all the concept vectors g ∈ G, the number of such possible α’s amounts to the
number of possible permutation of the |G| elements, that is |G|!.
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D.2 Concept supervision

The intuition is the same as in [19]. Assume that we supply concept supervision for a subset of
concepts GI ⊆ G, with I ⊆ [k] and pair the regular log-likelihood objective over the labels with a
log-likelihood over the concepts, i.e., −

∑
i∈I log pθ(Ci = gi | x). Let GC ⊆ supp(p∗(G)) be the

subset of values that receive supervision. The only deterministic α’s that attain maximum likelihood
on the concepts are those that match said supervision, i.e., that satisfy the constraint:

1{
∧

g∈GC

∧
i∈I αi(g) = gi} (66)

This can be immediately used to obtain an updated (and smaller) JRS count. Note that if I = [k]
and GC = G, then the only suitable map is α ≡ id. Naturally, this requires dense annotations for all
possible inputs, which may be prohibitive.

D.3 Knowledge distillation

We consider the case where samples (g,β∗(g)) are used to distill the ground-truth knowledge.
Since by Assumption 3.2 the ground-truth inference layer is deterministic, we consider the following
objective for distillation. Letting GK ⊆ supp(p∗(G)) be the subset of supervised values, we augment
the original log-likelihood objective with the following log-likelihood term:∑

g∈GK logω(1{C = g})β∗(g) (67)

which penalizes the target CBM, for each g ∈ GK , based on the β∗(g) component of ω, i.e., the
predicted probability of the ground-truth label. This can be rewritten as a constraint on β as follows:

1{
∧

g∈GK β(g) = β
∗(g)} (68)

When GK = G it necessarily holds that β ≡ β∗.

D.4 Reconstruction penalty

When focusing on reconstructing the input from the bottleneck, the probability distributions p(C | X)
may not carry enough information to completely determine the input X. In fact, if X depends also on
stylistic variables S ∈ Rq , it becomes impossible to determine the input solely from G. This means
that training a decoder only passing c ∼ p(C | X) would not convey enough information and would
reduce the benefits of the reconstruction term. Marconato et al. [19] have studied this setting and
proposed to also include additional variables Z ∈ Rq in the bottleneck to overcome this problem.
The encoder/decoder architecture works as follows: first the input x is encoded into p(C,Z | x) by
the model and after sampling (c, z) ∼ p(C,Z | x) the decoder d reconstruct the an input image
x̂ = d(c, z). Following, under the assumption of content-style separation, i.e., both the encoder and
the decoder process independently the concept and the stylistic variables, it holds that the constraint
fr maps α ∈ Vert(A) given by the reconstruction penalty result in:

1{
∧

g,g′∈supp(G):g 6=g′ α(g) 6= α(g′)} (69)

The proof for this can be found in [19, Proposition 6]. Notice that, with full support over G, the only
such maps α must not confuse one concept vector for another, i.e., at most there are at most |G|!
different valid α’s that are essentially a bijection from G to C.

E Models that satisfy Assumption 3.8

E.1 Theoretical analysis

Probabilistic Logic Models. For models like DeepProbLog [41], the Semantic Loss [39], Semantic-
Probabilistic Layers [44], ω is defined as:

ω(p(C)) :=
∑
c∈C

β(c)p(C = c) (70)

Now, take c, c′ ∈ C such that: β(c) 6= β(c′). Then, for any λ ∈ (0, 1) it holds that:
ω(λ1{C = c}+ (1− λ)1{C = c′}) = λβ(c) + (1− λ)β(c′) (71)

=⇒ max
y∈Y

ω(λ1{C = c}+ (1− λ)1{C = c′})y = max
y∈Y

(
λβ(c)y + (1− λ)β(c′)y

)
(72)
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Notice that for all y ∈ Y , by the convexity of the max operator it holds that:

max
y∈Y

(
λβ(c)y + (1− λ)β(c′)y

)
≤ (73)

λmax
(
max
y∈Y

β(c)y,max
y∈Y

β(c′)y
)
+ (1− λ)max

(
max
y∈Y

β(c)y,max
y∈Y

β(c′)y
)

(74)

= max
(
max
y∈Y

(β(c)y),max
y∈Y

β(c′)y
)

(75)

Equality holds if and only if argmaxy∈Y β(c)y = argmaxy∈Y β(c
′)y and maxy∈Y β(c)y =

maxy∈Y β(c
′)y. This proves that probabilistic logic methods satisfy Assumption 3.8.

Deep Symbolic Learning [50]. At inference time, DSL predicts a concept vector c ∈ C from a
conditional probability concept distribution, that is, it implements a function fDSL : Rn → C where:

fDSL(x) := argmax
c∈C

p̃(c | x) (76)

and p̃(C | X) is a learned conditional distribution on concepts. (Note that fDSL(X) 6= p̃(C | X).)
Hence, α ∈ A can be defined as:

α(g) := Ex∼p∗(X|g)[1{C = fDSL(x)}] (77)

Notice that the learned β : G → ∆Y consists in a look up table from concepts vectors c ∈ C, thereby
giving the conditional distribution:

pDSL(Y | g) := Ex∼p∗(X|g)[β(fDSL(x))] (78)

By considering the measure defined by p∗(x | g)dx and the transformation c = fDSL(x), we can
pass to the new measure p(c | g) = α(g) obtaining:

pDSL(Y | g) =
∑
c∈C

β(c)p(c | g) (79)

=
∑
c∈C

β(c)α(g)c (80)

= (ωDSL ◦α)(g) (81)

where we used:
ωDSL(p(C)) :=

∑
c∈C

β(c)p(C = c) (82)

This form matches that of probabilistic logic methods in Eq. (70), hence Assumption 3.8 similarly
applies.

Concept Bottleneck Models. We consider CBNMs implementing a linear layer as ω : ∆C → ∆Y ,
as customary [3]. The linear layer consists of a matrix W ∈ Ra×b with a := |G| rows and b := |Y|
columns. In this setting, a probability distribution p(C) ∈ ∆C corresponds to the input vector passed
to the inference layer ω, implemented by the linear layer W and a softmax operator. Notice that
we can equivalently consider the tensor associated with the linear layer, wy

c , where lower-indices
c = (c1, . . . , ck) are the possible values of concepts and higher-indices y = (y1, . . . , y`) are the
possible values of the labels. The scalar index c (resp. y) runs over concept vectors c ∈ C (resp. y),
e.g., for two dimensional binary concepts, c = 1 corresponds to c = (0, 1)> ∈ {0, 1}2 (W1,: = wy

01)
and c = 2 to c = (1, 0)> (W2,: = wy

10). In the following, we make use of the tensor notation for
simplicity of exposition.

Given a concept probability vector p ∈ ∆C , with components pc = p(C = c), the conditional
distribution over labels is given by the softmax operator:

p(y | c) = ω(p)y =
exp

(∑
c∈C Wc,ypc

)∑
y′∈Y exp

(∑
c∈C Wc,y′pc

) =
exp

(∑
c∈C w

y
cpc

)∑
y′∈Y exp

(∑
c∈C w

y′
c pc

) (83)

A CBNM may not satisfy Assumption 3.8 for arbitrary choices of weights W. Notice also that, since ω
includes a softmax operator, the β ∈ Vert(B) expressed by CBNMs cannot be deterministic .6 This is a

6In fact, attributing near 1 probability to a label Y is only possible if the weights are extremely high in
magnitude.
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limitation for all CBNM. Specifically, in the context of Assumption 3.2, it means that they cannot reach
an optimum of maximum likelihood and therefore learn deterministic maps β∗ ∈ Vert(B) (Eq. (8)).

To proceed, we focus on a special case: a near-optimal CBNM that can express an “almost deterministic”
conditional distribution β ∈ B, where a subset of weights wy

c is very high or very low. For this to
happen, we need β to be peaked on concept vectors c ∈ C. This can happen only when the magnitude
of one wy

c is much higher than other wy′

c . Hence, we formulate the following condition for CBNM:
Definition E.1. Consider a CBNM (f ,ω) ∈ F × Ω with weights W = {wy

c} and let M > |Y − 1|.
We say that it is log(M)-deterministic if, for all c ∈ C, there exists a y ∈ Y such that:

∀y′ 6= y, wy
c −wy′

c ≥ logM (84)

∀y′ 6= y,∀y′′ 6= y, |wy′

c −wy′′

c | ≤ logM (85)

This is helpful, as any log(M)-deterministic CBNM can flexibly approximate deterministic β’s, as we
show next:
Proposition E.2. Consider a log(M)-deterministic CBNM (f ,ω) ∈ F × Ω. We have:

∀c ∈ C, max
y∈Y

ω(c)y ≥ 1

1 + (|Y| − 1)/M
(86)

Also:
∀c ∈ C, lim

M→+∞
max
y∈Y

ω(c)y = 1 (87)

Proof. For c ∈ C, let y = argmaxy′ ω(1{C = c})y′ . We consider the expression:

ω(1{C = c}) = expwy
c∑

y′∈C expw
y′
c

(88)

=
1

1 +
∑

y′ 6=y exp(−wy
c +wy′

c )
(89)

We now make use of the fact that the CBNM is log(M)-deterministic and use Eq. (84) to obtain:
1

1 +
∑

y′ 6=y exp(−(wy
c −wy′

c ))
≥ 1

1 +
∑

y′ 6=y exp(− logM)
(90)

=
1

1 +
∑

y′ 6=y
1
M

(91)

=
1

1 + (|Y − 1|)/M
(92)

Putting everything together yields:

max
y∈Y

ω(c)y ≥ 1

1 + (|Y| − 1)/M
(93)

Now, consider the limit for large M ∈ R:

lim
M→+∞

max
y∈Y

ω(c)y ≥ lim
M→+∞

1

1 + (|Y| − 1)/M
= 1 (94)

This concludes the proof.

The last point of Proposition E.2 shows a viable way to get peaked label distributions from a log(M)-
deterministic CBNM. Specifically, the limit guarantees that these CBNMs can approach an optimal
likelihood. Now, we prove that a log(M)-deterministic CBNM respects Assumption 3.8.
Proposition E.3. A CBNM (f ,ω) ∈ F × Ω that is log(M)-deterministic (Definition E.1) satisfies
Assumption 3.8, i.e., for all λ ∈ (0, 1) and for all c 6= c′ such that argmaxy∈Y ω(1{C = c})y 6=
argmaxy∈Y ω(1{C = c′})y, it holds :

max
y∈Y

ω(λ1{C = c1}+(1−λ)1{C = c2})y < max
(
max
y∈Y

ω(1{C = c1})y,max
y∈Y

ω(1{C = c2})y
)

(95)
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Proof. Let y1 := argmaxy∈Y ω(1{C = c1})y and y2 := argmaxy∈Y ω(1{C = c2})y and
λ1 := λ and λ2 := 1− λ, with λ ∈ (0, 1) and y1 6= y2. The proof consists of two steps.

First, we check that the values taken by ω(λ1{C = c1}+ (1− λ)1{C = c2})yi
, for i ∈ {1, 2}, are

lower than those taken at the extremes. The explicit expression for ω(·)y1
is given by:

ω(λ11{C = c1}+ λ21{C = c2})y1
=

eλ1w
y1
c1

+λ2w
y1
c2∑

y∈Y e
λ1w

y
c1

+λ2w
y
c2

(96)

We differentiating over λ, leveraging the fact that ∂λ1/∂λ = 1 and ∂λ2/∂λ = −1. Let Z(λ) :=∑
y∈Y exp(λ1w

y
c1

+ λ2w
y
c2
). We first evaluate the derivative of this expression:

∂Z(λ)

∂λ
=

∑
y∈Y

∂

∂λ
eλ1w

y
c1

+λ2w
y
c2 (97)

=
∑
y∈Y

eλ1w
y
c1

+λ2w
y
c2 (∂λλ1w

y
c1

+ ∂λλ2w
y
c2
) (98)

=
∑
y∈Y

eλ1w
y
c1

+λ2w
y
c2 (wy

c1
−wy

c2
) (99)

= Z(λ)
∑
y∈Y

eλ1w
y
c1

+λ2w
y
c2

Z(λ)
(wy

c1
−wy

c2
) (100)

= Z(λ)
∑
y∈Y

(wy
c1

−wy
c2
)ω(λ11{C = c1}+ λ21{C = c2})y (101)

This is legitimate as Z(λ) > 0 by definition. Using this result we get:

∂

∂λ

eλ1w
y1
c1

+λ2w
y2
c2

Z(λ)
=
∂λe

λ1w
y1
c1

+λ2w
y1
c2 Z(λ)− eλ1w

y1
c1

+λ2w
y1
c2 ∂λZ(λ)

Z(λ)2
(102)

=
eλ1w

y1
c1

+λ2w
y1
c2 (w

y1
c1 −w

y1
c2 )Z(λ)

Z(λ)2

−
eλ1w

y1
c1

+λ2w
y1
c2 Z(λ)

∑
y∈Y(w

y
c1

−wy
c2
)ω(λ11{C = c1}+ λ21{C = c2})y

Z(λ)2
(103)

=
eλ1w

y1
c1

+λ2w
y1
c2 (w

y1
c1 −w

y1
c2 )

Z(λ)

−
eλ1w

y1
c1

+λ2w
y1
c2

∑
y∈Y(w

y
c1

−wy
c2
)ω(λ11{C = c1}+ λ21{C = c2})y
Z(λ)

(104)

=
eλ1w

y1
c1

+λ2w
y1
c2

(
(w

y1
c1 −w

y1
c2 )−

∑
y∈Y(w

y
c1

−wy
c2
)ω(λ11{C = c1}+ λ21{C = c2})y

)
Z(λ)

(105)

Next, we analyze the sign of the derivative. Notice that we can focus only on the following term since
the others are always positive:

(wy1
c1

−wy1
c2
)−

∑
y∈Y

(wy
c1

−wy
c2
)ω(λ11{C = c1}+ λ21{C = c2})y (106)

From this expression, we can make use of the fact that in general, for a scalar function f(x), we have
EX[f(X)] ≤ maxx f(x) and consider the following:

(wy1
c1

−wy1
c2
)−

∑
y∈Y

(wy
c1

−wy
c2
)ω(λ11{C = c1}+ λ21{C = c2})y

≥ (wy1
c1

−wy1
c2
)−max

y∈Y
(wy

c1
−wy

c2
) (107)

= (wy1
c1

−wy1
c2
)− (wy1

c1
−wy1

c2
) (108)

= 0 (109)
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where in the second line we used that the maximum is given by y1. Therefore, the derivative is
always increasing in the [0, 1] interval, meaning that:

∀λ ∈ [0, 1], ω(λ11{C = c1}+ λ21{C = c2})y1
≤ ω(1{C = c1})y1

(110)

where the equality holds if an only if λ = 1. Similarly, the derivative for ω(·)y2
gives:

∂ω(λ11{C = c1}+ λ21{C = c2})y2

∂λ

=
eλ1w

y2
c1

+λ2w
y2
c2

(
(w

y2
c1 −w

y2
c2 )−

∑
y∈Y(w

y
c1

−wy
c2
)ω(λ11{C = c1}+ λ21{C = c2})y

)
Z(λ)

(111)

By using the fact that EX[f(X)] ≥ minx f(x) for a scalar function f(x), we obtain:

(wy2
c1

−wy2
c2
)−

∑
y∈Y

(wy
c1

−wy
c2
)ω(λ11{C = c1}+ λ21{C = c2})y

≤ (wy2
c1

−wy2
c2
)−min

y∈Y
(wy

c1
−wy

c2
) (112)

= (wy2
c1

−wy2
c2
)− (wy2

c1
−wy2

c2
) (113)

= 0 (114)

where in the second line we used that the minimum is given by y2. Hence, the derivative is always
decreasing for λ ∈ [0, 1] and it holds:

∀λ ∈ [0, 1], ω(λ11{C = c1}+ λ21{C = c2})y2
≤ ω(1{C = c2})y2

(115)

where the equality holds if and only if λ = 0.

(2) Now, we check the same holds when choosing another element y′ 6= y1,y2. To this end, we
consider the following expressions:

p(y | λ11{C = c1}+ λ21{C = c2})
p(y1 | c1)

,
p(y | λ11{C = c1}+ λ21{C = c2})

p(y2 | c2)
(116)

where p(y | p) := ω(p)y. Consider the first expression. We can rewrite it as follows:

p(y | λ11{C = c1}+ λ21{C = c2})
p(y1 | c1)

(117)

=
p(y | λ11{C = c1}+ λ21{C = c2})
p(y1 | λ11{C = c1}+ λ21{C = c2})

p(y1 | λ11{C = c1}+ λ21{C = c2})
p(y1 | c1)

(118)

≤ p(y | λ11{C = c1}+ λ21{C = c2})
p(y1 | λ11{C = c1}+ λ21{C = c2})

(119)

where in the last line we made use of the fact that the second fraction in the right-hand side of the
first line is always ≤ 1. Similarly we have that:

p(y | λ11{C = c1}+ λ21{C = c2})
p(y2 | c2)

≤ p(y | λ11{C = c1}+ λ21{C = c2})
p(y2 | λ11{C = c1}+ λ21{C = c2})

(120)

We proceed to substituting explicitly the expression for p(y | λ11{C = c1}+ λ21{C = c1} into the
upper bound of Eq. (119):

p(y | λ11{C = c1}+ λ21{C = c2})
p(y1 | λ11{C = c1}+ λ21{C = c2})

=
eλ1w

y
c1

+λ2w
y
c2

eλ1w
y1
c1

+λ2w
y1
c2

Z(λ)

Z(λ)
(121)

= exp
(
λ1(w

y
c1

−wy1
c1
) + λ2(w

y
c2

−wy1
c2
)
)

(122)

≤ exp
(
− λ1 log(M) + λ2(w

y
c2

−wy1
c2
)
)

(Substituting the bound from Eq. (84))

≤ exp
(
− λ1 log(M) + λ2 log(M)

)
(Substituting the bound from Eq. (85))

=Mλ2−λ1 (123)
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With similar steps and substitutions we get that:
p(y | λ11{C = c1}+ λ21{C = c2})
p(y2 | λ11{C = c1}+ λ21{C = c2})

≤Mλ1−λ2 (124)

Taking the product of Eq. (123) and Eq. (124) we obtain:
p(y | λ11{C = c1}+ λ21{C = c2})
p(y1 | λ11{C = c1}+ λ21{C = c2})

· p(y | λ11{C = c1}+ λ21{C = c2})
p(y2 | λ11{C = c1}+ λ21{C = c2})

≤Mλ2−λ1Mλ1−λ2 (125)
= 1 (126)

Notice also that:
p(y | λ11{C = c1}+ λ21{C = c2})
p(y1 | λ11{C = c1}+ λ21{C = c2})

· p(y | λ11{C = c1}+ λ21{C = c2})
p(y2 | λ11{C = c1}+ λ21{C = c2})

≥ min

(
p(y | λ11{C = c1}+ λ21{C = c2})2

p(y1 | λ11{C = c1}+ λ21{C = c2})2
,
p(y | λ11{C = c1}+ λ21{C = c2})2

p(y2 | λ11{C = c1}+ λ21{C = c2})2

)
(127)

which in turn means that:

min

(
p(y | λ11{C = c1}+ λ21{C = c2})2

p(y1 | λ11{C = c1}+ λ21{C = c2})2
,
p(y | λ11{C = c1}+ λ21{C = c2})2

p(y2 | λ11{C = c1}+ λ21{C = c2})2

)
≤ 1

(128)

=⇒ min

(
p(y | λ11{C = c1}+ λ21{C = c2})
p(y1 | λ11{C = c1}+ λ21{C = c2})

,
p(y | λ11{C = c1}+ λ21{C = c2})
p(y2 | λ11{C = c1}+ λ21{C = c2})

)
≤ 1

(129)

This last expression is in line with the condition of Assumption 3.8, showing that, for all y ∈ Y , either
ω(1{C = c1})y1

orω(1{C = c2})y2
are greater or equal toω(λ1{C = c1}+(1−λ)1{C = c2})y.

Combining step (1) and (2), we obtain that Assumption 3.8 holds and that:
max
y∈Y

ω(λ1{C = c1}+(1−λ)1{C = c2})y ≤ max
(
max
y∈Y

ω(1{C = c1})y,max
y∈Y

ω(1{C = c2})y
)

(130)
where equality holds if and only if λ ∈ {0, 1}.

E.2 Numerical evaluation of Assumption 3.8

Finally, we investigate experimentally whether the models used in our experiments satisfy Assump-
tion 3.8. We have already shown in Appendix E.1 that the DSL inference layer reduces to Probabilistic
Logic methods and, therefore, we only consider DPL and DPL∗ as representatives, and our empirical
results support this claim. We evaluate CBNMs separately. In this evaluation, train models on MNIST-
Add, where there are two concepts c = (c1, c2) ∈ [10]2 and 19 total labels y ∈ [19]. This yields a
total of 100× 19 weights for the inference layer ω, which are fixed (by the prior knowledge) for DPL
and learned from data for DPL∗ and CBNM.

We begin from DPL, where the prior knowledge K defines the inference layer ω∗. In this case, we
find that – as expected – Assumption 3.8 is satisfied by all possible pairs (c1, c2) ∈ [10]2 × [10]2

that predict distinct labels (as requested by the assumption), see Fig. 11.

We now turn to DPL∗. Due to the linearity of the inference layer, in order to study the learned inference
layer ω it suffices to consider random weights for ω, cf. Eq. (71). Also in this case, we find that for
all possible pairs (c1, c2) ∈ [10]2 × [10]2 that predict distinct labels, Assumption 3.8 is satisfied. See
Fig. 12.

Finally, we evaluate whether a CBNM trained on MNIST-Add and that is close to achieving optimal
likelihood satisfies, at least approximately, Assumption 3.8. To this end, we train the CBNM for 150
epochs, reaching a mean negative log-likelihood of 0.0884 on the test set. We find that Assumption 3.8
is satisfied for the 95% of possible pairs (c1, c2) ∈ [10]2 × [10]2 giving different labels. For the
remaining 5% the assumption is marginally violated with a maximum discrepancy:

max
c1,c2,λ

(
max
y
ω(λ1{C = ci}+ (1− λ)1{C = cj})y −max

(
max
y
ω(1{c1})y,max

y
ω(1{c2})y

))
(131)

≤ 1.38 · 10−3 (132)
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Figure 11: The logic inference layer of DPL in MNIST-Add. (Top) The behavior of f(λ) :=
maxy ω(λ1{C = ci} + (1 − λ)1{C = cj}), for four pairs i, j sampled randomly from the 100
possible worlds. The x-axis represents λ and the y-axis f(λ). (Bottom) The linear layer weights for
DPL.

Figure 12: A random inference layer for DPL∗ in MNIST-Add. (Top) The behavior of f(λ) :=
maxy ω(λ1{C = ci} + (1 − λ)1{C = cj}), for four pairs i, j sampled randomly from the 100
possible worlds. (Bottom) The linear layer weights for DPL∗.

Figure 13: Optimal CBNM in MNIST-Add. We visualize the learned weights by a CBNM achieving
maximum log-likelihood in MNIST-Add. (Top) The behavior of f(λ) := maxy ω(λ1{C = ci} +
(1− λ)1{C = cj}), for four pairs i, j sampled randomly the 100 possible worlds. The sampled pairs
align with Assumption 3.8. (Bottom) The linear layer weights for the trained CBNM.

The results are illustrated in Fig. 13.
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