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Abstract

Data valuation is essential for quantifying data’s worth, aiding in assessing data1

quality and determining fair compensation. While existing data valuation methods2

have proven effective in evaluating the value of Euclidean data, they face limita-3

tions when applied to the increasingly popular graph-structured data. Particularly,4

graph data valuation introduces unique challenges, primarily stemming from the5

intricate dependencies among nodes and the growth in value estimation costs. To6

address the challenging problem of graph data valuation, we put forth an innovative7

solution, Precedence-Constrained Winter (PC-Winter) Value, to account for the8

complex graph structure. Furthermore, we develop a variety of strategies to address9

the computational challenges and enable efficient approximation of PC-Winter.10

Extensive experiments demonstrate the effectiveness of PC-Winter across diverse11

datasets and tasks.12

1 Introduction13

The abundance of training data has been a key driver of recent advancements in machine learning14

(ML) [51]. As models and the requisite training data continue to expand in scale, data valuation15

has gained significant attention due to its ability to quantify the usefulness of data for ML tasks and16

determine fair compensation [28, 34]. Notable techniques in this field include Data Shapley [13]17

and its successors [20, 39, 29], which have gained prominence in assessing data value. Despite18

the promise of these methods, they are primarily designed for Euclidean data, where samples are19

often assumed to be independent and identically distributed (i.i.d.). Given the prevalence of graph-20

structured data in the real world [10, 31, 22], there arises a compelling need to perform data valuation21

for graphs. However, due to the interconnected nature of samples (nodes) on graphs, existing data22

valuation frameworks are not directly applicable to addressing the graph data valuation problem.23

In particular, designing data valuation methods for graph-structured data faces several fundamen-24

tal challenges: Challenge I: Graph machine learning algorithms such as Graph Neural Networks25

(GNNs) [19, 37, 41] often involve both labeled and unlabeled nodes in their model training process.26

Therefore, unlabeled nodes, despite their absence of explicit labels, also hold intrinsic value. Existing27

data valuation methods, which typically assess a data point’s value based on its features and the28

associated label, do not readily accommodate the valuation of unlabeled nodes within graphs. Chal-29

lenge II: Nodes in a graph contribute to model performance in an interdependent and complex way:30

(1) Unlabeled nodes, while not providing direct supervision, can contribute to model performance by31

potentially affecting multiple labeled nodes through message-passing. (2) Labeled nodes, on the other32
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hand, contribute by providing direct supervision signals for model training, and similarly to unlabeled33

nodes, they also contribute by affecting other labeled nodes through message-passing. Challenge III:34

Traditional data valuation methods are often computationally expensive due to repeated retraining35

of models [13]. The challenge is magnified in the context of graph-structured data, where samples36

contribute to model performance in multifaceted manners. Additionally, the inherent message-passing37

mechanism in GNN models further amplifies the computational demands for model re-training.38

In this work, we make the first attempt to explore the challenging graph data valuation problem, to39

the best of our knowledge. In light of the aforementioned challenges, we propose the Precedence-40

Constrained Winter (PC-Winter) Value, a pioneering approach designed to intricately unravel and41

analyze the contributions of nodes within graph structures, thereby offering a detailed perspective on42

the valuation of graph elements. Our key contributions are as follows:43

• We formulate the graph data valuation problem as a unique cooperative game [38] with special44

coalition structures. Specifically, we decompose each node in the graph into several “players”45

within the game, each representing a distinct contribution to model performance. We then devise46

the PC-Winter to address the game, enabling the accurate valuation of all players. The PC-Winter47

values of these players can be conveniently combined to generate values for nodes and edges.48

• To tackle the computational challenges of calculating PC-Winter values, we develop a set of49

strategies including hierarchical truncation and local propagation. These strategies together enable50

an efficient approximation of PC-Winter values.51

• Extensive experiments on various datasets and tasks, along with detailed ablation studies and52

parameter analyses, validate the effectiveness of PC-Winter and provide insights into its behavior.53

2 Preliminary and Related Work54

In this section, we delve into some fundamental concepts that are essential for developing our55

methodology. More extensive literature exploration can be found in Appendix A.56

2.1 Cooperative Game Theory57

Cooperative game theory explores the dynamics where players, or decision-makers, can form alliances,58

known as coalitions, to achieve collectively beneficial outcomes [2, 7]. The critical components of59

such a game include a player set P consisting of all players in the game and a utility function U(·),60

which quantifies the value or payoff that each coalition of players can attain. Shapley Value [32] is61

developed to fairly and efficiently distribute payoffs (values) among players.62

Shapley value. The Shapley value ϕi(P, U) for a player i ∈ P can be defined on permutations of P63

as follows.64

ϕi(P, U) =
1

|Π(P)|
∑

π∈Π(P)

[U (Pπ
i ∪ {i})− U (Pπ

i )] (1)

where Π(P) denotes the set of all possible permutations of P with |Π(P)| denoting its cardinality,65

and Pπ
i is predecessor set of i, i.e, the set of players that appear before player i in a permutation π:66

Pπ
i = {j ∈ P | π(j) < π(i)}. (2)

The Shapley value considers each player’s contribution to every possible coalition they could be67

a part of. Specifically, in Eq. (1), for each permutation π, the marginal contribution of player i is68

calculated as the difference in the utility function U when player i is added to an existing coalition69

Pπ
i . The Shapley value ϕi(P, U) for i is the average of these marginal contributions across all70

permutations in Π(P). The Shapley value has been widely applied in ML for various tasks such71

as data valuation [13, 17] and model explanation [24, 11]. In the context of graph ML, it has been72

primarily used for GNN explainability [8, 47, 25, 1]. A more detailed discussion on Shapley Value73

on graph ML can be found in Appendix A.3.74
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Coalition Structure

Winter Value. The Shapley value is to address cooperative games, where75

players collaborate freely and contribute on an equal footing. However, in many76

practical cases, cooperative games, exhibit a Level Coalition Structure [26, 36,77

48], reflecting a hierarchical organization. For instance, consider a corporate78

setting where different tiers of management and staff contribute to a project in79
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varying capacities and with differing degrees of decision-making authority. Players within such a game80

are hierarchically categorized into nested coalitions with several levels, as depicted in Figure 1. The81

outermost and largest ellipse represents the entire coalition and each of the smaller ellipse within the82

largest ellipse symbolizes a “sub-coaliation” at various hierarchical levels. Collaborations originate83

within the smallest sub-coalitions at the base level (illustrated by the innermost ellipses in Figure 1.84

These base units are then integrated into the next level, facilitating inter-coalition collaboration and85

enabling contributions to ascend to higher levels. This bottom-up flow of contributions continues,86

with each layer consolidating and passing on inputs to the next, culminating in a multi-leveled87

collaborative contribution to the final objective of the entire coalition. To accommodate such88

complex Level Coalition Structure, Winter value [40] was introduced. Winter value follows a similar89

permutation-based definition as Shapley Value (Eq. (1)) but with only a specific subset of permutations90

that respect the Level Coalition Structure. In these permutations, members of the same sub-coalition,91

regardless of the level, must appear in an unbroken sequence without interruptions. This ensures that92

the value attributed to each player is consistent with the level structure of the coalition. A formal93

definition of the Winter value can be found in Appendix B.94

2.2 Data Valuation and Data Shapley95

Data valuation quantifies the contribution of data points for machine learning tasks. The seminal96

work [13] introduces Data Shapley, applying cooperative game theory to data valuation, where97

training samples are the players P , and the utility function U assesses a model’s performance98

on subsets of these players using a validation set. With P and U , data values can be calculated99

with Eq. (1). However, Data Shapley and subsequent methods [13, 20, 39] primarily focus on i.i.d.100

data, overlooking potential coalitions or dependencies among data points.101

2.3 Graphs and Graph Neural Networks102

Consider a graph G = {V, E} where V denotes the set of nodes and E denotes the set of edges. Each103

node vi ∈ V carries a feature vector xi ∈ Rd, where d is the dimensionality of the feature space.104

Additionally, each node vi is associated with a label yi from a set of possible labels C. We assume105

that only a subset Vl ⊂ V are with known labels.106

GNNs [19, 37, 41] are prominent models for graph ML tasks. Specifically, from a local per-107

spective for node vi, the k-th GNN layer generally performs a feature averaging process as108

h
(k)
i = 1

deg(vi)

∑
vj∈N (vi)

Wh
(k−1)
j , where W is the parameter matrix, deg(vi) and N (vi) denote109

the degree and neighbors of node vi, respectively. After a total of K layers, h(K)
i are utilized as the110

learned representation of vi. Such a feature aggregation process can be also described with a K-level111

computation tree [15] rooted on node vi.112

Definition 1 (Computation Tree). For a node vi ∈ V , its K-level computation tree corresponding to113

a K-layer GNN model is denoted as T K
i with vi as its root node. The first level of the tree consists of114

the immediate neighbors of vi, and each subsequent level is formed by the neighbors of nodes in the115

level directly above. This pattern of branching out continues, expanding through successive levels of116

neighboring nodes until the depth of the tree grows to K.117

The feature aggregation process in a K-layer GNN can be regarded as a bottom-up feature propagation118

process in the computation tree, where nodes in the lowest level are associated with their initial119

features. Therefore, the final representation h
(K)
i of a node vi is affected by all nodes within its120

K-hop neighborhood, which is referred to as the receptive field of node vi. The GNN model is trained121

using the (h(K)
i , yi) pairs, where each labeled node vi in Vl is represented by its final representation122

and corresponding label. Thus, in addition to labeled nodes, those unlabeled nodes that are within123

the receptive field of labeled nodes also contribute to model performance.124

3 Methodology125

In classic machine learning models designed for Euclidean data, such as images and texts, training126

samples are typically assumed as i.i.d. Thus, each labeled sample contributes to the model perfor-127

mance by directly providing supervision signals through the training objective. However, due to the128
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interdependent nature of graph data, nodes in a graph contribute to GNN performance in a more129

complicated way, which poses unique challenges. Specifically, as discussed in Section 2.3, both130

labeled and unlabeled nodes are involved in the training stage through the feature aggregation. Next,131

we discuss how these nodes contribute to GNN performance.132

Observation 1. Unlabeled nodes influence GNN performance by affecting the final representation of133

labeled nodes. On the other hand, labeled nodes can contribute to GNN performance in two ways:134

(1) they provide direct supervision signals to GNN with their labels, and (2) just like unlabeled nodes,135

they can impact the final representation of other labeled nodes through feature aggregation. Note136

that both labeled nodes and unlabeled nodes can affect the final representations of multiple labeled137

nodes, as long as they lie within the receptive field of these labeled nodes. Hence, a single node138

can make multifaceted and heterogeneous contributions to GNN performance by affecting multiple139

labeled nodes in various manners.140

3.1 The Graph Data Valuation Problem141

Based on Observation 1, due to the heterogeneous and diverse effects of labeled and unlabeled nodes,142

it is necessary to perform fine-grained data valuation on graph data elements. In particular, we143

propose to decompose a node into distinct “duplicates” corresponding to their impact on different144

labeled nodes. We then aim to obtain values for all “duplicates” of these nodes. This could clearly145

express and separate how nodes impact GNN performance in various aspects. Following existing146

literature [13, 39, 43], we approach the graph data value problem through a cooperative game. Next,147

we introduce the player set and the utility function of this game. In general, we define the graph data148

valuation game based on K-layer GNN models.149

Definition 2 (Player Set). The player set P in a graph data valuation game is defined as the union150

of nodes in the computation trees of labeled nodes. Duplication of nodes may occur within a151

single computation tree T K
i or across different labeled nodes’ computation trees. In the graph data152

valuation game, these potential duplicates are treated as distinct players, uniquely identified by their153

paths to the corresponding labeled node. We define the player set P as the set of all these distinct154

players across the computation trees of all labeled nodes in Vl.155

Definition 3 (Utility Function). Given a subset S ⊂ P , we first generate a node-induced graph156

Gin(S) using their corresponding edges in the computation trees. Then, a GNN model A is trained157

on the induced graph Gin(S). Its performance is evaluated on a held-out validation set to serve as158

the utility of S, calculated as U(S) = acc(A(Gin(S))), where acc measures the accuracy of the159

trained GNN model A(Gin(S)) on a held-out validation set.160

The goal of the graph data valuation problem is to assign a value to all players in P with the help161

of the utility function U . When calculated properly, these values are supposed to provide a detailed162

understanding of how players in P contribute to the GNN performance in a fine-grained manner.163

Furthermore, these values can be flexibly combined to generate higher-level values for nodes and164

edges, which will be discussed in Section 3.5.165

3.2 Precedence-Constrained Winter Value166

As discussed in Section 2.3, the final representations of a labeled node vi come from the hierarchical167

collaboration of all players in the computation tree T K
i . These labeled nodes with the updated168

representations then contribute to the GNN performance through the training objective. Such a169

contribution process forms a hierarchical collaboration between the players in P , which can be170

illustrated with a contribution tree T as shown in Figure 2a. In particular, the contribution tree T is171

constructed by linking the root nodes of the computation trees of all labeled nodes with a dummy172

node representing the GNN training objective O. In Figure 2a, for the ease of illustration, we set173

K = 2, include only 2 labeled nodes, i.e, v0, v1, and utilize wi, ui to denote the nodes in the lower174

level. The subtree rooted at a labeled node vi ∈ V is the corresponding computation tree T 2
i . With175

this, we observe the following about the coalition structure of the graph data valuation game.176

Observation 2 (Level Coalition Structure). As shown in Figure 2a, the players in P hierarchically177

collaborate to contribute. At the bottom level, the players are naturally grouped by their parents.178

Specifically, players with a common parent such as u0, u1, u2 with their parent w0, establish a179

foundation sub-coalition. This sub-coalition is clearly depicted in Figure 2b. Moving up the tree,180
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these parent nodes, like w0, serve as “delegates” for their respective sub-coalitions, further engaging181

in collaborations with other sub-coalitions. This interaction forms higher-level sub-coalitions, such182

as the one between w0, w1, w2, and v0 in Figure 2b, indicating inter-coalition cooperation. This183

ascending process of coalition formation continues until the root node O is reached, which represents184

the objective of the entire coalition consisting of all players. The depicted hierarchical collaboration185

process aligns with the Level Coalition Structure discussed in Section 2.1.186

(a) Contribution Tree (b) Coalition Structure

Figure 2: Graph Data Valuation Game Structure

While the contribution tree shares similarities with the187

Level Coalition Structure illustrated in Section 2.1, a188

pivotal distinction lies in the representation and func-189

tion of “delegates” (highlighted in red in Figure 2b)190

within each coalition. In the traditional Level Coali-191

tion Structure, contributions within a sub-coalition are192

made collectively, with each player or lower-level sub-193

coalition participating on an equitable basis. In contrast, the contribution tree framework distinguishes194

itself by designating a “delegate” within each sub-coalition, a player that represents and advances195

the collective contributions, establishing a directed and tiered flow of influence, hence forming a196

Unilateral Dependency Structure.197

Observation 3 (Unilateral Dependency Structure). In the contribution tree framework, a player198

p ∈ P contributes to the final objective through a hierarchical pathway facilitated by its ancestors199

(its “delegates” at different levels). Therefore, the collaboration between players in P exhibits a200

Unilateral Dependency Structure, where a player p’s contribution is dependent on its ancestors.201

According to these two observations, the players demonstrate unique coalition structures in the graph202

data valuation game. We aim to propose a permutation-based valuation framework similar to Eq. (1)203

to address the cooperative game with both Level Coalition Structure and Unilateral Dependency204

Structure. In particular, instead of utilizing all the permutations as in Eq. (1), only the permissible205

permutations aligning with such coalition structures are included in the value calculations. As we206

described in Section 2.1, cooperative games with Level Coalition Structure have been addressed by207

the Winter value [40, 4]. Specifically, a permutation respecting the Level Coalition Structure must208

ensure that players in the same (sub-)coalition, regardless of its level, are grouped together without209

interruption from other players [40]. In our scenario, any subtree of the contribution tree corresponds210

to a sub-coalition as demonstrated in Figure 2. Hence, we need to ensure that for any player p ∈ P ,211

the player p and its descendants in the contribution tree should be grouped together in the permutation.212

For example, the players w0, u0, u1, u2 should present together as a group in the permutation with213

potentially different orders. On the other hand, to ensure the Unilateral Dependency Structure, a214

permutation must maintain a partial order. Specifically, for any player p in the permutation, its215

descendants must present in later positions in the permutation than p. Otherwise, the descendants of216

p cannot make non-trivial contributions, resulting in 0 marginal contributions.217

We formally define the permissible permutations that align with both Level Coalition Structure and218

Unilateral Dependency Structure utilizing the following two constraints.219

Constraint 1 (Level Constraint). For any player p ∈ P , the set of its descendants in the contribution220

tree is denoted as D(p). Then, a permutation π aligning with the Level Coalition Structure satisfies221

the following Level Constraint: |π[i]− π[j]| ≤ |D(p)|,∀i, j ∈ D(p)∪ p, ∀p ∈ P, where π[i] denotes222

the positional rank of the i in π.223

Constraint 2 (Precedence Constraint). A permutation π aligning with the Unilateral Dependency224

Structure satisfies the following Precedence Constraint: π[p] < π[i],∀i ∈ D(p),∀p ∈ P .225

We denote the set of permissible permutations satisfying both Level Constraint and Precedence226

Constraint as Ω. Then, we define the Precedence-Constrained Winter (PC-Winter) value for a227

player p ∈ P with the permutations in Ω as follows.228

ψp(P, U) =
1

|Ω|
∑
π∈Ω

(
U
(
Pπ

p ∪ p
)
− U

(
Pπ

p

))
, (3)

where U(·) is the utility function (see Definition 3), and Pπ
p denotes the predecessor set of p in π as229

defined in Eq. (2).230
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3.3 Permissible Permutations for PC-Winter231

To calculate PC-Winter value, it is required to obtain all permissible permutations. A straightforward232

way is to enumerate all permutations and only retain the permissible permutations. However, such an233

approach is extremely computationally intensive and typically not feasible in reality. In this section,234

to address this challenge, we propose a novel method to directly generate these permutations by235

traversing the contribution tree with Depth-First Search (DFS). Specifically, each DFS traversal results236

in a preordering, which is a list of the nodes (players) in the order that they were visited by DFS.237

Such a preordering naturally defines a permutation of P by simply removing the dummy node in the238

contribution tree from the preordering. By iterating all possible DFS traversals of the contribution239

tree, we can obtain all permutations in Ω, which is demonstrated in the following theorems.240

Theorem 1 (Specificity). Given a contribution tree T with a set of players P , any DFS traversal241

over the T results in a permissible permutation of P that satisfies both the Level Constraint and242

Precedence Constraint.243

Theorem 2 (Exhaustiveness). Given a contribution tree T with a set of players P , any permissible244

permutation π ∈ Ω can be generated by a corresponding DFS traversal of T .245

The proofs for two theorems can be found in Appendix C. Theorem 1 demonstrates that DFS246

traversals specifically generate permissible permutations. On the other hand, Theorem 2 ensures247

the exhaustiveness of generation, which allows us to obtain all permutations in Ω by DFS traversal.248

Together, these two theorems ensure us to exactly generate the set of permissible permutations Ω.249

Notably, the calculation of PC-Winter value involves two steps: 1) generating Ω with DFS traversals;250

and 2) calculating the PC-Winter value according to Eq. (3). Nonetheless, it can be done in a251

streaming way while we perform the DFS traversals. Specifically, once we reach a player p in a DFS252

traversal, we can immediately calculate its marginal contribution. The PC-Winter values for all253

players are computed by averaging their marginal contributions from all possible DFS traversals.254

3.4 Efficient Approximation of PC-Winter255

Calculating the PC-Winter value for players in P is infeasible due to computational intensity, arising256

from: 1) The exponential growth in the number of permissible permutations with more players,257

rendering exhaustive enumeration intractable; 2) The necessity to re-train the GNN within the utility258

function for each permutation, a process repeated |P| times to account for every player’s marginal259

contribution; and 3) The intensive computation involved in GNN re-training, requiring feature260

aggregation over the graph that increases in complexity with the graph’s size. These challenges261

necessitate an efficient approximation method for PC-Winter valuation in practical applications. We262

propose three strategies to address these computational issues.263

Permutation Sampling. Following Data Shapley [13], we adopt Monte Carlo (MC) sampling to264

randomly sample a subset of permissible permutations denoted as Ωs. Then, we utilize Ωs to replace265

Ω in Eq. (3) for approximating PC-Winter value.266

Hierarchical Truncation. GNN models often demonstrate a phenomenon of neighborhood satura-267

tion, i.e, these models achieve satisfactory performance even when trained on a subgraph using only268

a small subset of neighbors, rather than the full neighborhood [14, 23, 45, 5], indicating diminishing269

returns from additional neighbors beyond a certain point. This indicates that for a player p in a270

permissible permutation π generated by DFS over the contribution tree, the marginal contributions of271

its late visited child players are insignificant. Thus, we propose hierarchical truncation for efficiently272

obtaining the marginal contributions by directly approximating insignificant values as 0. Specifically,273

during the DFS traversal, given a truncation ratio r, we only compute actual marginal contributions274

for players in the first 1 − r portion of each node’s child subtrees, approximating the marginal275

contributions of players in the remaining subtrees as 0. For example, in Figure 2a, given a truncation276

ratio r = 2/3, when DFS reaches player v0, we only calculate marginal contributions for players in277

the subtree rooted at w0. Furthermore, in the subtree rooted at w0, due to the hierarchical truncation,278

only the marginal contribution of u0 is evaluated, those for node u1 and u2 are set to 0. This approach279

is further optimized by adjusting truncation ratios based on the tree level, accommodating varying280

contribution patterns across levels. In particular, we organize the pair of truncation ratio as r1-r2,281
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indicating we truncate r1 (or r2) portion of subtrees (or child players) of vi (or wi). We show how282

the hierarchical truncation helps tremendously reduce the model re-training in Appendix D.283

Local Propagation. To enhance scalability, we leverage SGC [41] in our utility function, which284

simplifies GNNs by aggregating node features before applying an MLP. According to the Level285

Constraint (Constraint 1), the players within the same computation tree are grouped together in the286

permutation. Therefore, the induced graph of any coalition Pπ
p defined by a permissible permutation287

consists of a set of separated computation trees (or a partial computation tree corresponding to the last288

visited labeled node in Pπ
p ). A key observation is that the feature aggregation process for the labeled289

nodes can be done independently within their own computation trees. Hence, instead of performing290

the feature propagation for the entire induced graph, we propose to perform local propagation only291

on necessary computation trees. In particular, the aggregated representation for a labeled node is292

fixed after we traverse its entire computation tree in DFS. Therefore, for evaluating a player p’s293

marginal contribution, only the partial computation tree of the last visited labeled node requires local294

propagation, minimizing feature propagation efforts.295

The PC-Winter values for all players are approximated with these three strategies in a streaming296

manner. In particular, we randomly traverse the contribution tree with DFS for |Ωs| times. During297

each DFS traversal, the marginal contributions for all players in P are efficiently obtained with the298

help of hierarchical truncation and local propagation. The marginal contributions calculated through299

these |Ωs| DFS traversals are averaged to approximate the PC-Winter value for all players. In300

Appendix H.5, we provide a detailed complexity analysis of the PC-Winter algorithm.301

3.5 From PC-Winter to Node and Edge Values302

The PC-Winter values for players in P can be flexibly combined to obtain the values for elements303

in the original graph, which are illustrated in this section. Specifically, as discussed in Section 3.1,304

multiple “duplicates” of a node v ∈ V in the original graph may potentially present in P . Thus, we305

could obtain node value for the node v by summing the PC-Winter values of all its “duplicates” in P .306

On the other hand, each player (except for the rooted labeled players) in P corresponds to an “edge” in307

the contribution tree as identified by the player and its parent. For instance, in Figure 2a, the player u0308

corresponds to “edge” connecting u0 and w0. Therefore, DFS traversals also generate permutations309

for these “edges”. From this perspective, the marginal contribution for a player p calculated through310

a DFS traversal can be also regarded as the marginal contribution of its corresponding edge, if we311

treat this process as gradually adding “edges” to connecting the players in P . Hence, the PC-Winter312

values for players in P can be regarded as PC-Winter values for their corresponding “edges” in the313

contribution tree. Multiple “duplicates” of an edge e ∈ E in the original graph may be present in the314

contribution tree. Hence, similar to the node values, we define the edge value for e ∈ E by taking the315

summation of the PC-Winter value for all its “duplicates” in the contribution tree.316

4 Experiment317

Datasets and Settings. We assess the proposed approach on six real-world benchmark datasets:318

Cora, Citeseer, and Pubmed [30], Amazon-Photo, Amazon-Computer, and Coauther-Physics [33].319

The detailed statistics of datasets are summarized in Table 2 in Appendix G. Our experiments focus320

on the inductive node classification task. The detailed setup of the inductive setting can be found in321

Appendix G.1. To obtain the PC-Winter values, we run permutations in a streaming way as described322

in Section 3.4. This process terminates with a convergence criterion as detailed in Appendix G.4.323

PC-Winter typically terminates with a different number of permutations for different datasets. The324

other hyper-parameters are detailed in Appendix G.5.325

4.1 Dropping High-Value Nodes326

In this section, we aim to evaluate the quality of data values produced by PC-Winter via dropping327

high-value nodes from the graph. Dropping high-value nodes is expected to significantly diminish328

performance, and thus the performance observed after removing high-value nodes serves as a strong329

indicator of the efficacy of graph data valuation. Notably, PC-Winter values values are calculated as330

described in Section 3.5.331
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To demonstrate the effectiveness of PC-Winter, we include Random value, Degree value, Leave-332

one-out (LOO) value, and Data Shapley value as baselines. A more detailed description of these333

baselines is included in Appendix G.6. To conduct node-dropping experiments, nodes are ranked by334

their assessed values for each method and removed sequentially from the training graph Gtr. After335

each removal, we train a GNN model based on the remaining graph and evaluate its performance336

on the testing graph Gte. Performance changes are depicted through a curve that tracks the model’s337

accuracy as nodes are progressively eliminated. Labeled nodes often contribute more significantly338

to model performance than unlabeled nodes because they directly offer supervision. Thereby, with339

accurately assigned node values, labeled nodes should be prioritized for removal over unlabeled340

nodes. We empirically validate this hypothesis in Figure 6, discussed in Appendix E. Specifically, in341

nearly all datasets, our observations reveal that the majority of labeled nodes are removed prior to the342

unlabeled nodes by both PC-Winter and Data Shapley. This leads to a plateau in the latter portion343

of the performance curves since a GNN model cannot be effectively trained with only unlabeled344

nodes. Consequently, this scenario significantly hampers the ability to assess the value of unlabeled345

nodes. Therefore, we propose to conduct separate assessments for the values of labeled and unlabeled346

nodes. Here, we only inlcude the results for unlabeled nodes, while the results for labeled nodes are347

presented in Appendix F.348
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Figure 3: Dropping High-Value Nodes

Results and Analysis. Figure 3 illustrates the per-349

formance comparison between PC-Winter and350

other baselines across various datasets. From Fig-351

ure 3, we make the following observations. First,352

the removal of high-value unlabeled nodes iden-353

tified by PC-Winter consistently results in the354

most significant decline in model performance355

across various datasets. This is particularly ev-356

ident after removing a relatively small fraction357

(10%-20%) of the highest-value nodes. This trend358

underscores the importance of high-value nodes.359

Notably, in most datasets PC-Winter outper-360

forms the best baseline method, Data Shapley,361

by a considerable margin, highlighting its effec-362

tiveness. Second, the decrease in performance363

caused by our method is not only substantial364

but also persistent throughout the node-dropping365

process, further validating the effectiveness of366

PC-Winter. Third, the performance curves of PC-Winter and Data Shapley eventually rebound367

towards the end. This rebound corresponds to the removal of unlabeled nodes that make negative con-368

tributions. Their removal aids in improving performance, ultimately reaching the MLP performance369

when all nodes are excluded. This upswing not only evidences the discernment of PC-Winter and370

Data Shapley in ascertaining node values but also showcases the particularly acute precision of371

PC-Winter. These insights collectively affirm the capability of PC-Winter in accurately assessing372

node values.373

4.2 Adding High-Value Edges374

In this section, we explore the impact of adding high-value elements to a graph, providing an375

alternative perspective to validate the effectiveness of data valuation. Notably, adding high-value376

nodes to a graph typically involves the concurrent addition of edges, which complicates the addition377

process. Thus, we target the addition of high-value edges, providing a complementary perspective378

to our analysis. As described in Section 3.5, the flexibility of PC-Winter allows for obtaining edge379

values without a separate “reevaluation” process for edges.380

Here, we keep all nodes in Gtr and sequentially add edges according to the edge values in descend-381

ing order, starting with the highest-valued ones. Similar to the node-dropping experiments, the382

effectiveness of the edge addition is shown through performance curves. We include Random value,383
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Edge-Betweeness, Leave-one-out (LOO) as baselines. Notably, here, Random and LOO specifically384

pertain to edges, and while we use the same terminology as in the prior section, they are distinct385

methods, which are detailed in Appendix G.6.386
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Figure 4: Adding the High-Value Edges

Results and Analysis. Figure 4 illustrates that387

the Random, LOO, and Edge-Betweeness base-388

lines achieve only linear performance improve-389

ments with the addition of more edges, failing390

to discern the most impactful ones for a sparse391

yet informative graph. In contrast, the inclu-392

sion of edges based on the PC-Winter value re-393

sults in a steep performance climb, affirming the394

PC-Winter’s efficacy in pinpointing key edges.395

Notably, the Cora dataset reaches full-graph per-396

formance using merely 8% of the edges selected397

by PC-Winter. Moreover, with just 10% of398

PC-Winter-selected edges, the accuracy climbs399

to 72.9%, outperforming the full graph’s 71.3%,400

underscoring PC-Winter’s capability to identify401

valuable edges. This trend is generally consistent402

across other datasets as well.403

4.3 Ablation Study, Parameter and Efficiency Analysis404

In this section, we conduct an ablation study, parameter analysis, and efficiency analysis to gain405

deeper insights into PC-Winter using node-dropping experiments.406
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Figure 5: Ablation Study

Ablation Study. We conduct an ablation study to407

understand how the two constraints in Section 3.2408

affect the effectiveness of PC-Winter. We intro-409

duce two variants of PC-Winter by lifting one410

of the constraints for the permutations. In par-411

ticular, we define PC-Winter-L using the per-412

mutations satisfying the Level Constraint. Simi-413

larly, PC-Winter-P is defined with permutations414

only satisfying Precedence Constraint. As shown in Figure 5, PC-Winter value outperforms the415

PC-Winter-L and PC-Winter-P on both datasets, which demonstrates that both constraints are416

crucial for PC-Winter. Additional results on other datasets are provided in Appendix H.1.417

Parameter Analysis. We conduct parameter analyses to investigate the impact of permutation418

number and truncation ratios on PC-Winter’s performance. The results reveal that PC-Winter419

achieves robust performance even with a significantly reduced number of permutations and high420

truncation ratios. Detailed findings are presented in Appendix H.2 and Appendix H.3, respectively.421

Efficiency Analysis. We compare the efficiency of PC-Winter and Data Shapley. Analysis of422

converged permutation count and time per permutation across 6 datasets underscores PC-Winter’s423

significantly higher efficiency. A comprehensive breakdown is available in Appendix H.4.424

5 Conclusion425

In this paper, we introduce PC-Winter, an innovative approach for effective graph data valuation.426

The method is specifically designed for graph-structured data and addresses the challenges posed by427

unlabeled elements and complex node dependencies within graphs. Furthermore, we introduce a set428

of strategies for reducing the computational cost, enabling efficient approximation of PC-Winter.429

Extensive experiments demonstrate the practicality and effectiveness of PC-Winter in various430

datasets and tasks. While PC-Winter demonstrates improved efficiency compared to Data Shapley,431

we acknowledge that further efficiency enhancements are crucial to fully unlock the potential of graph432

data valuation in real-world applications. Our work can be seen as a foundation for future research in433

this direction.434
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• Did you include the license to the code and datasets? [Yes] See Section 2.564

• Did you include the license to the code and datasets? [No] The code and the data are565

proprietary.566

• Did you include the license to the code and datasets? [N/A]567

Please do not modify the questions and only use the provided macros for your answers. Note that the568

Checklist section does not count towards the page limit. In your paper, please delete this instructions569

block and only keep the Checklist section heading above along with the questions/answers below.570

1. For all authors...571

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s572

contributions and scope? [Yes] The abstract and introduction clearly outline the main573

contributions, including the proposed PC-Winter for graph data valuation and the574

extensive experiments demonstrating its effectiveness.575

(b) Did you describe the limitations of your work? [Yes] The paper mentions that while576

PC-Winter is significantly more efficient than baseline methods like Data Shapley, its577

scalability is still limited and future work on further improving efficiency is desired.578

(c) Did you discuss any potential negative societal impacts of your work? [No] The authors579

believe that the proposed method does not have any potential negative societal impacts.580

(d) Have you read the ethics review guidelines and ensured that your paper conforms to581

them? [Yes]582

2. If you are including theoretical results...583

(a) Did you state the full set of assumptions of all theoretical results? [Yes] The paper states584

the assumptions and setup for the theoretical results, including the Level Constraint585

and Precedence Constraint in Section 3.2.586

(b) Did you include complete proofs of all theoretical results? [Yes] Complete proofs of the587

Specificity Theorem and Exhaustiveness Theorem regarding permissible permutations588

are provided in Appendix C.589

3. If you ran experiments (e.g. for benchmarks)...590

(a) Did you include the code, data, and instructions needed to reproduce the main exper-591

imental results (either in the supplemental material or as a URL)? [Yes] The code is592

provided in an anonymous repository (Appendix H.6). The repository also includes593

instructions for downloading the datasets using PyTorch Geometric, allowing for the594

reproduction of the main experimental results.595

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they596

were chosen)? [Yes] The datasets and data splits are described in Appendix G.2 and597

G.3. Model hyperparameters and the convergence criteria for the experiments are598

specified in Appendix G.4 and G.5.599

(c) Did you report error bars (e.g., with respect to the random seed after running experi-600

ments multiple times)? [No] Error bars or results from multiple runs are applicable in601

our setting.602

(d) Did you include the total amount of compute and the type of resources used (e.g., type603

of GPUs, internal cluster, or cloud provider)? [Yes] Appendix H.4 includes the total604

GPU hours and hardware used for the experiments.605

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...606

(a) If your work uses existing assets, did you cite the creators? [Yes] The paper cites the607

creators of the benchmark datasets used in the experiments, including Cora, Citeseer,608

Pubmed, Amazon-Photo, Amazon-Computer, and Coauthor-Physics (Appendix G.2).609

(b) Did you mention the license of the assets? [No] The licenses of the datasets are not610

explicitly mentioned.611
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(c) Did you include any new assets either in the supplemental material or as a URL? [No]612

No new assets are included in the supplemental material or as a URL.613

(d) Did you discuss whether and how consent was obtained from people whose data you’re614

using/curating? [N/A]615

(e) Did you discuss whether the data you are using/curating contains personally identifiable616

information or offensive content? [No] The paper does not discuss if the benchmark617

graph datasets used contain personally identifiable information or offensive content.618

5. If you used crowdsourcing or conducted research with human subjects...619

(a) Did you include the full text of instructions given to participants and screenshots, if620

applicable? [N/A]621

(b) Did you describe any potential participant risks, with links to Institutional Review622

Board (IRB) approvals, if applicable? [N/A]623

(c) Did you include the estimated hourly wage paid to participants and the total amount624

spent on participant compensation? [N/A]625

A Additional Related Work626

This section presents an extended review of related works, offering a broader and more nuanced627

exploration of the literature surrounding Data Valuation and Graph Neural Networks.628

A.1 Data Valuation629

Data Shapley is proposed in [13] which computes data values with Shapley values in cooperative630

game theory. Beta Shapley [20] is a further generalization of Data Shapley by relaxing the efficiency631

axiom of the Shapley value. Data Banzhaf [39] offers a data valuation method which is robust to data632

noises. Data Valuation with Reinforcement Learning is also explored by [46]. KNN-Shapley [17]633

estimates the shapley Value for the K-Nearest Neighbours algorithm in linear time. CS-Shapley [29]634

provides a new valuation method that differentiate in-class contribution and out-class contribution.635

Data-OOB [21] proposes a data valuation method for a bagging model which leverages the out-of-bag636

estimate. Just, Hoang Anh, et al [18] introduce a learning-agnostic data valuation framework by637

approximating the utility of a dataset according to its class-wise Wasserstein distance. Another638

training-free data valuation method utilizing the complexity-gap score is proposed at the same time639

[27]. However, those methods are not designed for the evaluation of data value of graph data which640

bears higher complexity due to the interconnections of individual nodes.641

A.2 Graph Neural Networks642

Graph Neural Networks (GNNs) generate informative representations from graph-structured data and643

facilitate the solving of many graph-related tasks. Bruna et al. [3] first apply the spectral convolution644

operation to graph-structured data. From the spatial perspective, the spectral convolution can be645

interpreted to combine the information from its neighbors. GCN [19] simplified this spectral646

convolution and proposed to use first-order approximation. Since then, many other attention-based,647

sampling-based and simplified GNN variants which follow the same neighborhood aggregation design648

have been proposed [37, 14, 12, 41].Theoretically, those Graph neural networks typically enhance649

node representations and model expressiveness through a message-passing mechanism, efficiently650

integrating graph data into the learning of representations [42].651

A.3 Shapley Value in Graph Machine Learning652

The Shapley value has found several applications in graph machine learning, primarily in the domain653

of explainability for Graph Neural Networks. GraphSVX [8] is one of the early works that utilizes654

the Shapley value to explain the predictions of GNNs. It identifies influential nodes and features655

for a particular prediction by treating them as players in a cooperative game. However, GraphSVX656

focuses on local explanations for individual predictions of a fixed GNN. SubgraphX [47] takes a657
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different approach by explaining GNN predictions through identifying important subgraphs, rather658

than individual nodes or edges. It uses Monte Carlo tree search to efficiently explore different659

subgraphs and proposes to use Shapley values as a measure of subgraph importance. EdgeSHAPer660

[25] is another method that assesses edge importance for GNN predictions using the Shapley value661

concept. It is particularly relevant for molecular graphs where edges represent chemical bonds.662

GNNShap [1] extends upon previous Shapley value based GNN explanation methods by providing663

explanations for edge, leading to better fidelity scores and faster explanations. SAME [44] proposes a664

structure-aware Shapley-based multipiece explanation method for GNNs that can identify important665

substructures and provide explanations composed of multiple connected components.666

In addition to explainability, Shapley has also been widely adopted for data valuation for conventional667

machine learning methods as discussed in Section 2. However, it has rarely been utilized for data668

valuation on graph data. In this work, we pioneer the exploration of graph data valuation, a challenging669

and previously unexplored problem. Although a recent survey [50] inadvertently refers to GraphSVX670

as a graph data valuation method, it does not align with the traditional definition of data valuation. We671

clarify the key differences between graph data valuation (such as our method) and graph explainability672

(such as GraphSVX) as follows.673

1. In general, data valuation (such as our method) aims to understand how graph elements674

contribute to the model training process, while explainability methods (such as GraphSVX)675

provide post-hoc explanations for a fixed, pre-trained model.676

2. Specifically, our method differs from GraphSVX in several aspects:677

(a) GraphSVX focuses on the explainablity of a local prediction for a single sample, while678

our method aims to quantify the global contribution of graph elements to the overall679

model performance.680

(b) GraphSVX operates post hoc, analyzing the contributions of features and nodes in the681

testing graph to the predictions of an already-trained GNN model, while our approach682

focuses on the global contribution of each data element in the training graph to the683

GNN model’s training process.684

(c) GraphSVX employs the standard Shapley value formulation, which assumes free685

collaboration among players, while our work introduces the PC-Winter value to686

handle the unique hierarchical coalition structures inherent in graph data valuation.687

To the best of our knowledge, our investigation constitutes the first foray into graph data valuation,688

pioneering research in this previously uncharted domain.689

B Mathematical Formulation of Winter Value690

The Shapley value offers a solution for equitable payoff distribution in cooperative games, assuming691

that players cooperate without any predefined structure. In reality, however, cooperative games often692

have inherent hierarchical coalitions. To accommodate these structured coalitions, the Winter value693

extends Shapley value to handle this extra coalition constraints.694

Specifically, considering level structures B, with B = B0, . . . , Bn representing a sequence of player695

partitions. Here, a partition, Bm, subdivides the player set P into a set of disjoint, non-empty subsets696

T1, T2, . . . , Tk. These disjoint subsets satisfy the condition that their union reconstructs the original697

player set P , which means T1 ∪ T2 ∪ . . .∪ Tk = P . This partition sequence forms a hierarchy where698

B0 represents individual players as the leaves of the structure and Bn functions as the root of this699

hierarchy.700

We then determine Ω(B), the set of all permissible permutations, starting with a single partition Bm:701

Ω(Bm) = {π ∈ Π(P) : ∀T ∈ Bm,∀i, j ∈ T and k ∈ P,

if π(i) < π(k) < π(j) then k ∈ T}.

Ω(B) can be further defined as the set of permutations which satisfy all constraints of all levels,702

Ω(B) =
⋂n

t=0 Ω (Bt).703
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A permissible permutation π from the set Ω(B) requires that players from any derived coalition of B
must appear consecutively. Given the defined set of permissible permutations Ω(B), the Winter value
Φ for player i is calculated as:

Φi(P, U,B) = 1

|Ω(B)|
∑

π∈Ω(B)

(U (Pπ
i ∪ i)− U (Pπ

i ))

where Pπ
i = {j ∈ N : π(j) < π(i)} is the set of predecessors of i at the permutation σ and U is the704

utility function in the cooperative game.705

C Proofs of Theorems706

Theorem 1 (Specificity). Given a contribution tree T with a set of players P , any DFS traversal707

over the T results in a permissible permutation of P that satisfies both the Level Constraint and708

Precedence Constraint.709

Proof. We validate the theorem by demonstrating that a permutation obtained through pre-order710

traversal on T meets Level Constraints and Precedence Constraints. (1) Level Constraints: During a711

pre-order traversal of T , a node p and its descendants D(p) are visited sequentially before moving712

to another subtree. Thus, in the resulting permutation π, the positions of p and any i, j ∈ D(p)713

are inherently close to each other, satisfying the condition |π[i]− π[j]| ≤ |D(p)|. This contiguous714

traversal ensures that all descendants and the node itself form a continuous sequence in π, meeting715

the Level Constraint. (2) Precedence Constraints: In the same traversal, each node p is visited before716

its descendants. Therefore, in π, the position of p always precedes the positions of its descendants,717

i.e., π[p] < π[i] for all i ∈ D(p). This traversal pattern naturally embeds the hierarchy of the tree718

into the permutation, ensuring that ancestors are positioned before their descendants, in line with the719

Precedence Constraint.720

Theorem 2 (Exhaustiveness). Given a contribution tree T with a set of players P , any permissible721

permutation π ∈ Ω can be generated by a corresponding DFS traversal of T .722

Proof. To prove the theorem of exhaustiveness, consider a contribution tree T with a set of players723

P and any permissible permutation π ∈ Ω. We apply induction on the depth of T . For the base case,724

when T has a depth of 1, which means there are no dependencies among players, any permissible725

permutation of players is trivially generated by a DFS traversal since there are no constraints on the726

order of traversal. For the inductive step, assume the theorem holds for contribution trees of depth k.727

For a contribution tree of depth k + 1 T k+1, consider its root node and subtrees of depth k rooted728

at the child nodes of the root node. For any given permissible permutation π corresponding to the729

T k+1, according to the Level Constraint, it is a direct composition of the permissible permutations730

corresponding to the subtrees of depth k rooted at the child nodes of the root node. Now we can731

construct a DFS traversal over the contribution tree T k+1 that can generate π. Specifically, the order732

of composition defines the traversal order of the child nodes of the root node. Furthermore, by the733

inductive hypothesis, any permissible permutations corresponding to the subtrees can be generated734

by DFS traversal over the subtrees. Hence, at each child node of the root node, we just follow the735

corresponding DFS traversal of its corresponding tree. This DFS traversal can generate the given736

permutation π, which completes the proof.737

D Hierarchical Truncation738

In Table 1, we present data comparing the number of model re-trainings on the all six dataset with739

and without the application of truncation. For the Citeseer dataset, the truncation ratios are defined as740

1st-hop: 0.5 and 2nd-hop: 0.7. For the remaining datasets, the truncation ratios are set at 1st-hop: 0.7741

and 2nd-hop: 0.9. The results clearly indicate that the number of model re-trainings is substantially742

reduced when truncation is applied. For instance, focusing on the Citeseer dataset the application743

of truncation significantly reduces the number of retrainings from 1388 to 535. This significant744
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decrease, especially in larger datasets like Amazon-Photo and Amazon-Computer, where retraining745

instances decrease from 147664 to 6258 and from 317959 to 12139 respectively, can be attributed to746

the substantial number of 2-distance neighbors present in these datasets. The application of truncation747

effectively reduces the computation by omitting a considerable portion of these neighbors. This748

finding also implies that overall training time is decreased while still maintaining the ability to749

accurately measure the total marginal contribution.750

Table 1: Retraining Number Comparison Per Permutation
Dataset w.o. Truncation w.t. Truncation

Cora 2241 756
Citeseer 1388 535
Pubmed 3683 887

Amazon-Photo 147664 6258
Amazon-Computer 317959 12139
Coauther-Physics 11178 852

E Mixed Node Dropping Experiment751

As mentioned in the experiment, labeled nodes will dominate the performance curve when both752

labeled nodes and unlabeled nodes. The corresponding experiment result is shown in the Figure 6.753

This experiment validates the assumption that a effective data valuation method would naturally rank754

labeled nodes for earlier removal over their unlabeled counterparts. For instance, in the Cora dataset,755

we can observe that the initial drop in accuracy is significant, indicating the removal of high-value756

labeled nodes. As the experiment progresses and more nodes are removed, the accuracy barely757

changes, reflecting the removal of unlabeled nodes which has a minimal impact on performance758

when most labeled nodes are unavailable. The observed pattern across all datasets is consistent: there759

is a substantial drop in performance at the beginning, followed by a plateau with minimal changes.760

This suggests that the initial set of nodes removed, predominantly high-value labeled nodes, are761

those critical to the model’s performance, whereas the subsequent nodes show less influence on the762

outcome.
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Figure 6: Mixed Node Dropping Experiment
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F Labeled Node Dropping Experiment764

Here, we perform node dropping experiment employing the aggregated value define in the main-765

body of paper, to demonstrate that PC-Winter can capture the heterogeneous influence of labeled766

nodes. As shown in the Figure 7, both PC-Winter and Data Shapley demonstrate effectiveness767

in capturing the diverse contributions of labeled nodes to the model’s performance. Particularly in768

the Pubmed and Amazon-Photo datasets, PC-Winter exhibits better performance compared to Data769

Shapley. In other datasets, such as Cora, Citeseer, and Coauthor-Physics, PC-Winter shows results770

that are on par with Data Shapley.771

0 50 100
Number of Node Removed

0.0

0.2

0.4

0.6

Pr
ed

ict
io

n 
Ac

cu
ra

cy
 (%

)

Cora

0 25 50 75 100
Number of Node Removed

0.0

0.2

0.4

0.6

Pr
ed

ict
io

n 
Ac

cu
ra

cy
 (%

)

Citeseer

0 20 40 60
Number of Node Removed

0.0

0.2

0.4

0.6

Pr
ed

ict
io

n 
Ac

cu
ra

cy
 (%

)

Pubmed

0 50 100 150
Number of Node Removed

0.0

0.2

0.4

0.6

0.8

Pr
ed

ict
io

n 
Ac

cu
ra

cy
 (%

)

Amazon-Photo

0 50 100 150 200
Number of Node Removed

0.0

0.2

0.4

0.6

Pr
ed

ict
io

n 
Ac

cu
ra

cy
 (%

)

Amazon-Computers

0 20 40 60 80 100
Number of Node Removed

0.0

0.2

0.4

0.6

0.8

Pr
ed

ict
io

n 
Ac

cu
ra

cy
 (%

)

Coauthor-Physics

Data Shapley PC-Winter

Figure 7: Labeled Node Dropping Experiment

G Experimental Details772

G.1 Inductive Setting773

Our experiments focus on the inductive node classification task, which aims to generalize a trained774

model to unseen nodes and is commonly adopted in real-world graph applications [14, 35, 16, 9].775

Unlike the transductive setting [19] which incorporates the test nodes in the model training process,776

the inductive setting separates them apart from the training graph. Such a separation allows us to777

measure the value of the graph elements in the training graph solely based on their contribution778

to GNN model training. Following [14], we split each graph G into 3 disjoint subgraphs: training779

graph Gtr, validation graph Gva, and test graph Gte. The training graph Gtr is constructed without780

any nodes from the validation or test set. Correspondingly, edges connecting to a validation node781

or a testing node are also removed from the training graph. For the validation graph Vva and the782

testing graph Vte, only edges with both nodes within the respective node sets are retained, which is783

aligned with the inductive setting in prior work [49]. We utilize Gtr to train the GNN model, which is784

evaluated on Vva for obtaining the data values for elements. The test graph Vte is utilized to evaluate785

the effectiveness of the obtained values.786

G.2 Datasets787

We assess the proposed approach on six real-world benchmark datasets. These include three citation788

graphs, Cora, Citeseer and Pubmed [30] and two Amazon Datasets, Amazon-Photo and Amazon-789

Computer, and Coauther-Physics [33]. The detailed statistics of datasets are summarized in Table790

2.791
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Table 2: Dataset Summary
Dataset # Node # Edge # Class # Feature # Train/Val/Test

Cora 2,708 5,429 7 1,433 140 / 500 / 1,000
Citeseer 3,327 4,732 6 3,703 120 / 500 / 1,000
Pubmed 19,717 44,338 3 500 60 / 500 / 1,000

Amazon-Photo 7,650 119,081 8 745 160 / 20% / 20%
Amazon-Computer 13,752 245,861 10 767 200 / 20% / 20%
Coauthor-Physics 34,493 247,962 8 745 100 / 20% / 20%

G.3 Dataset Split792

In the conducted experiments, we split each graph G into 3 disjoint subgraphs: training graph Gtr,793

validation graph Gva, and test graph Gte. The training graph Gtr is constructed without any nodes794

from the validation or test set. Correspondingly, edges connecting to a validation node or a testing795

node are also removed from the training graph. For the validation graph Vva and the testing graph796

Vte, only edges with both nodes within the respective node sets are retained, which is aligned with the797

inductive setting in prior work [49]. We utilize Gtr to train the GNN model, which is evaluated on Vva798

for obtaining the data values for elements. The test graph Vte is utilized to evaluate the effectiveness799

of the obtained values. In the case of the specific split for each dataset, for the citation networks, we800

adopt public train/val/test splits in our experiments. For the remaining datasets, we randomly select801

20 labeled nodes per class for training, 20% nodes for validation and 20% nodes as the testing set.802

G.4 Convergence Criteria803

Convergence Criterion. For permutation-based data valuation methods such as Data Shapley and
PC-Winter, we follow convergence criteria similar to the one applied in prior work [13] to determine
the number of permutations for approximating data values:

1

n

n∑
i=1

∣∣vti − vt−20
i

∣∣
|vti |

< 0.05

where vti is the estimated value for the data element i using the first t sampled permutations.804

Time Limit. For larger datasets, sampling a sufficient number of permutations for converged data805

values could be impractical in time. To address this and to stay within a realistic scope, we cap the806

computation time at 120 GPU hours on NVIDIA Titan RTX, after which the calculation is terminated.807

G.5 Truncation Ratios and Hyper-parameters808

Table 3 includes the hyper-parameters and truncation ratios used for value estimation.809

Table 3: Truncation Ratios and Hyper-parameters
Dataset Truncation Ratio Learning Rate Epoch Weight Decay

Cora 0.5-0.7 0.01 200 5e-4
Citeseer 0.5-0.7 0.01 200 5e-4
Pubmed 0.5-0.7 0.01 200 5e-4

Amazon-Photo 0.7-0.9 0.1 200 0
Amazon-Computer 0.7-0.9 0.1 200 0
Coauthor-Physics 0.7-0.9 0.01 30 5e-4

G.6 Baselines810

G.6.1 Dropping High-Value Nodes811

Here, we introduce the baselines used for comparison to validate the effectiveness of the proposed812

method in the dropping node experiment:813
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Figure 8: Ablation Study

• Random Value: It assigns nodes with random values, which leads to random ranking without any814

specific pattern or correlation to the node’s features.815

• Degree-based Value: A node is assigned its degree as its value, assuming that a node’s impor-816

tance in the graph is indicated by its degree.817

• Leave-one-out (LOO): This method calculates a node’s value based on its marginal contribution818

compared to the rest of the training nodes. Specifically, the value v(i) assigned to each node i819

is its marginal utility, calculated as v(i) = U (Gtr) − U
(
G−i
tr

)
, where G−i

tr denotes the training820

graph excluding node i. The utility function U measures the model’s validation performance when821

trained on the given graph. In essence, the drop in performance due to the removal of a node is822

treated as the value of that node.823

• Data Shapley: The node values are approximated with the Monte Carlo sampling method of824

Data Shapley [13] by treating both labeled nodes and unlabeled nodes as players. Notably, we825

only include those unlabeled nodes within the 2-hop neighbors of labeled nodes in the evaluation826

process. There are two approximation methods: Truncated Monte Carlo approximation and827

Gradient Shapley in [13]. We adopt the Truncated Monte Carlo approximation as it consistently828

outperforms the other variants in various experiments.829

Notably, there is a recent work [6] that aims at characterizing the impact of elements on model830

performance. Their goal is to approximate LOO value. Thus, we do not include it as a baseline as LOO831

is already included.832

G.6.2 Adding High-Value Edges833

Here are the detailed descriptions on the baselines applied in the edge adding experiment.834

• Random Value: it assigns edges with random values, reflecting a baseline where no information835

are used for differentiating the importance of edges.836

• Edge-Betweeness: the Edge-Betweeness of an edge e is the the fraction of all pairwise shortest837

paths that go through e. This classic approach assesses an edge’s importance based on its role in838

the overall network connectivity.839

• Leave-one-out (LOO): This method calculates a edge e’s value v(e) based on its marginal840

contribution compared to the rest of the training graph. In specific, v(e) = U(Gtr) − U
(
G−e
tr

)
841

Here, e ∈ Gtr represents an edge in the training graph Gtr, and G−e
tr refers to the training graph842

excluding the edge e.843
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H Ablation Study and Parameter Analysis844

H.1 Ablation Study845

This Appendix Section offers an in-depth ablation analysis across full six datasets to investigates846

the necessity of both Level Constraint and Precedence Constraint in defining an effective graph847

value. The results, as shown in Figure 8, consistently demonstrate across all datasets that the absence848

of either constraint leads to a degraded result when compared to the one incorporating both. This849

underscores the importance of both two constraints in capturing the contributions of graph elements850

to overall model performance.851

H.2 The Impact of Permutation Number852

This part expands upon the permutation analysis presented in the main paper. It provides comprehen-853

sive results across various datasets, illustrating how different numbers of sample permutations impact854

the accuracy of PC-Winter. The results of full datasets are shown in Figure 9. The results reveals
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Figure 9: The Impact of Permutation Numbers
855

that increasing the number of permutations generally improves the performance and accuracy of the856

valuation. PC-Winter also show robust results even with a limited number of permutations, high-857

lighting its effectiveness. The phenomenon is consistent across all datasets where our approach with858

just 50 to 100 permutations manages to compete closely with the fully converged Data Shapley,859

emphasizing the efficiency of PC-Winter in various settings.860

H.3 The Impact of Truncation Ratios861

Our approach involves truncating the iterations involving the first and second-hop neighbors of a862

labeled node during value estimation. Here, we investigate the impact of truncation proportion863

on overall performance, using the same number of permutations as in our primary node-dropping864

experiment. As shown in Figure 10, we adjusted the truncation ratios for the Citation Network865

datasets. The ratios ranged from truncating 50% of the first-hop and 70% of the second-hop neighbors866

(0.5-0.7), up to 90% truncation for either first-hop (0.9-0.7) or second-hop (0.5-0.9) neighbors. For867

the Cora and Citeseer datasets, increasing truncation at the first-hop level had a minimal impact868

on performance, and PC-Winter still significantly outperformed Data Shapley. In the case of869

the Pubmed dataset, more extensive truncation at the first-hop level notably reduced performance.870

Regarding large datasets such as the Amazon, while truncation at either the first or second-hop871

levels had a marginal negative effect on performance, PC-Winter ’s estimated data values generally872

remained superior to results of Data Shapley.873
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In addition, we provide a detailed analysis of our truncation strategy across other datasets. It includes874

results not presented in the main text, focusing on the impact of limiting model retraining times to the875

first and second-hop neighbors in value estimation. We investigate the impact of truncation proportion876

on overall performance, using the same number of permutations as in our primary node-dropping877

experiment. The findings on full datasets are illustrated in Figure 10. Specifically, our findings reveal878

that in datasets like Cora and Citeseer, adjusting truncation primarily at the first-hop level has a879

negligible impact on the accuracy of node valuation, with PC-Winter still maintaining a considerable880

advantage over Data Shapley. For large datasets such as the Amazon-Photo, Amazon-Computers881

and Coauther-Physics, while truncations had a marginal negative effect on performance, PC-Winter882

’s estimated data values generally remained better than Data Shapley. This analysis indicates that883

PC-Winter can afford to employ larger truncation, enhancing computational efficiency without884

substantially sacrificing the quality of data valuation.885
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Figure 10: The Impact of Truncation Ratios

Table 4: Permutation Number and Time Comparison
Dataset Truncation PC-Winter Data Shapley

Perm Number Perm Time (hrs) Perm Number Perm Time (hrs)
Cora 0.5-0.7 325 0.013 327 0.024

Citeseer 0.5-0.7 291 0.018 279 0.037
Pubmed 0.5-0.7 316 0.025 281 0.285

Amazon-Photo 0.7-0.9 418 0.211 109 1.105
Amazon-Computer 0.7-0.9 181 0.662 33 3.566
Coauthor-Physics 0.7-0.9 460 0.119 45 2.642

H.4 Efficiency Analysis886

Here, we compare the computational efficiency of our proposed method PC-Winter and the Data887

Shapley approach in terms of permutation number and time per permutation. As detailed in Table 4,888

the results indicate that PC-Winter requires significantly less time to compute each permutation889

across various datasets. Specifically, for the Cora dataset, PC-Winter completes each permuta-890

tion in approximately half the time required by Data Shapley. Moving to larger datasets, the891

efficiency of PC-Winter becomes even more pronounced. For instance, in the Amazon-Computer892

dataset, PC-Winter’s permutation time is only a fraction of what is required by Data Shapley893

—PC-Winter takes slightly over half an hour per permutation whereas Data Shapley exceeds three894
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and a half hours. This consistent reduction in permutation time demonstrates the computational895

advantage of PC-Winter, particularly when handling large graphs. Combining the insights from the896

Permutation Analysis shown in Figure 9 with the Permutation Comparison Table 4, we observe that897

for datasets such as Cora, Citeseer, Amazon-Photo, and Amazon-Computer, around 50 permutations898

are sufficient for PC-Winter to achieve performance comparable to that of Data Shapley. Simple899

calculations demonstrate that our method is significantly faster than Data Shapley in achieving900

similar performance levels. For instance, in the Cora dataset, the speedup factor is 327×0.024
50×0.013 = 12.07,901

and for the Citeseer dataset, it is 279×0.037
50×0.018 = 11.47. The speedup factors for Amazon-Photo and902

Amazon-Computer are 109×1.105
50×0.211 = 11.42, and 33×3.566

50×0.662 = 3.57, respectively. For Coauthor-Physics,903

it takes about 100 permutations for PC-Winter to match the performance of Data Shapley, which904

implies a speedup factor of 45×2.642
100×0.119 = 10.00. In conclusion, PC-Winter can achieve stronger905

performance than Data Shapley using the same or even less time. Furthermore, it takes PC-Winter906

much less time to achieve comparable performance as Data Shapley. Notably, though PC-Winter907

is significantly more efficient than Data Shapley, its scalability is still limited, and future work in908

further improving its efficiency is desired.909

H.5 Complexity Analysis910

We analyze the complexity of the PC-Winter. For convenience, we assume that we are dealing with a911

d-regular graph. There are a total of L labeled nodes in the graph. As described in the paper, we deal912

with a GNN model with 2 layers. Without loss of generality, we use F to denote the dimensionality913

of node representations in each layer. We assume the number of classes in the dataset is C. For914

hierarchical truncation, we assume we adopt a truncation ratio of r1 − r2, which is consistent with915

the description in Section 3.4. Then, the number of nodes in a computation tree for any labeled916

node is Nfull = 1 + d + d2. With hierarchical truncation, the number of nodes in the truncated917

computation tree is Ntrun = 1 + d · (1 − r1) + d2 · (1 − r1)(1 − r2). When the truncation ratios918

are large, Ntrun ≪ Nfull. For instance, when r1 = r2 = 0.9, Ntrun could be less than 5Time919

Complexity Analysis: We now analyze the time complexity of a single permissible permutation of the920

PC-Winter algorithm. We begin by examining the time complexity of generating a single permissive921

permutation. Then, we investigate the complexity of a single model retraining and provide the total922

retraining number for a single permutation. Finally, we combine these analyses to derive the overall923

time complexity for generating one permissible permutation and going through it for calculating the924

marginal contributions. Time complexity of generating a single permissive permutation: The time925

complexity of traversing the truncated contribution tree to generate a single permissive permutation is926

O(L ·Ntrun). In particular, there are L ·Ntrun+1 nodes in the contribution tree (including the dummy927

node). Hence, the cost of a DFS traversal over the contribution tree is O(L ·Ntrun + 1 + L ·Ntrun)928

= O(L ·Ntrun). Time complexity of one model retraining: As described in Section 3.4, with local929

propagation, for each model retraining, we only need to perform feature aggregation on a single partial930

computation tree. The size of a partial computation tree is, on average, Ntrun
2 . Therefore, the feature931

aggregation complexity for each retraining step is O(Ntrun
2 · F ), where F is the dimension of node932

features. The feature transformation complexity for each model retraining is O(F ·F+F ·C)=O(F 2),933

where C is the output dimension (number of classes) of the GNN model. Therefore, the total time934

complexity of a single retraining is O(Ntrun
2 · F + F 2). Without local propagation, the feature935

aggregation complexity for each model retraining would be much larger, since the propagation needs936

to be performed on the entire graph. The number of model retraining in a single permutation: In a937

permissible permutation, we need to perform retraining for each node in the truncated contribution938

tree, which has L ·Ntrun nodes in total. Therefore, L ·Ntrun model retrainings are needed for a single939

permutation. Total time complexity for a single permissible permutation: With local propagation and940

hierarchical truncation, the total time complexity of a single permissible permutation in PC-Winter is:941

O(L·Ntrun+L·Ntrun ·(Ntrun
2 ·F+F 2)) = O(L·Ntrun ·(1+Ntrun

2 ·F+F 2)) = O(L·Ntrun ·(Ntrun
2 ·F+F 2)).942

Notably, the time complexity of generating a permissible permutation is negligible compared to the943

cost of model retraining. The proposed strategies, hierarchical truncation, and local propagation, help944

reduce the overall time complexity of the PC-Winter algorithm. In particular, hierarchical truncation945

makes Ntrun much smaller than Nfull, greatly decreasing the total number of model retraining required946
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for a single permutation. On the other hand, Local propagation reduces the feature aggregation947

complexity, greatly reducing the cost of each retraining.948

H.6 Code Availability949

To facilitate the reproducibility of our work and to encourage further research in the field of graph950

data valuation, we have made our code publicly available on an anonymous repository at https:951

//anonymous.4open.science/r/graph-data-valuation-B348. The repository contains the952

implementation of the PC-Winter algorithm, along with scripts for running the experiments presented953

in this paper. We welcome researchers and practitioners to utilize and build upon our code for their954

own research and applications in graph data valuation.955
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