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Abstract001

Few-shot Named Entity Recognition (NER) en-002
ables models to learn effectively from limited003
annotated samples and perform robustly, even004
in resource-rich domains, addressing the chal-005
lenge of scarce labeled data in many fields. Re-006
cently, Large Language Models (LLMs) have007
demonstrated strong adaptability and general-008
ization capabilities in few-shot learning, of-009
fering new solutions for few-shot NER tasks.010
In this paper, we propose OBP-LLM, a novel011
approach that integrates attention-based con-012
trastive learning and Direct Preference Opti-013
mization (DPO) to enhance the performance of014
large language models in few-shot tasks by opti-015
mizing the model’s perception of entity bound-016
aries. Experimental results demonstrate that017
our method significantly outperforms existing018
approaches on multiple Few-shot NER bench-019
marks, including Few-NERD and CrossNER,020
particularly in cross-domain and extremely low-021
resource scenarios. This study validates the022
potential of contrastive learning and DPO in023
optimizing LLMs and provides new directions024
and practical solutions for NER tasks in low-025
resource domains.026

1 Introduction027

Named Entity Recognition (NER) is a critical task028

in natural language processing closely related to029

numerous other tasks. It aims to extract entities030

from unstructured text and classify them into pre-031

defined categories, such as person names, location032

names, and organization names (Guo et al., 2009;033

Mollá et al., 2006; Nadeau and Sekine, 2007). In034

recent years, deep learning models have achieved035

significant progress in NER tasks, particularly su-036

pervised methods based on pre-trained models like037

BERT (Devlin et al., 2019) and RoBERTa (Liu038

et al., 2019), which achieve high accuracy by train-039

ing on large-scale annotated datasets. However,040

these traditional methods heavily rely on extensive041

manually annotated datasets, which are often costly042
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Figure 1: An illustration of two challenges applying the
text generation framework of large language models to
NER tasks. Here, we use Llama3.1-8b as the base model
and compute the average of all multi-head attention
scores at the 26th layer.

and time-consuming to obtain. Additionally, they 043

exhibit limited flexibility in cross-domain applica- 044

tions. To address these issues, Few-shot Learning 045

(FSL) (Ding et al., 2021a; Huang et al., 2021)has 046

emerged as a research focus on NER tasks. The 047

strength of FSL is its capability to identify new 048

categories with few annotated samples, reducing 049

the need for large labeled datasets while greatly 050

enhancing cross-domain adaptability. 051

In the field of Few-shot NER, existing methods 052

can be broadly categorized into two types: 053

(1) One-stage methods (Fritzler et al., 2019; Gao 054

et al., 2019; Yang and Katiyar, 2020; Hou et al., 055

2020; Ma et al., 2022a): These methods trans- 056

form NER tasks into sequence-labeling problems 057

using prototype networks, classifying tokens by 058

computing their distance to category prototypes. 059

While computationally efficient, they are suscepti- 060

ble to interference from the non-entity label "O," 061

degrading classification performance. Moreover, in 062

transformer-based pre-trained models like BERT, 063

self-attention mechanisms can cause cross-entity 064

interference within the same sentence, leading to 065

densely packed or overlapping entity distributions 066

in the semantic space. 067
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(2) Two-stage methods(Shen et al., 2021; Wang068

et al., 2022b; Ma et al., 2022b; Wang et al.,069

2022a; Dong et al., 2023): These approaches de-070

compose NER tasks into two independent pro-071

cesses——span extraction and entity classification.072

The model first extracts all potential entity spans073

without assigning categories, followed by classi-074

fication for each candidate span. While this de-075

composition improves entity boundary modeling,076

performance heavily depends on span extractor ac-077

curacy. Errors in span extraction inevitably impact078

entity classification.079

With the rise of generative Large Language Mod-080

els (LLMs), Few-shot NER tasks have seen break-081

throughs. Compared to traditional pre-trained mod-082

els, LLMs, such as Llama-3 (Dubey et al., 2024)083

and GPT-4 (Achiam et al., 2023), have larger pa-084

rameter scales and stronger generalization capa-085

bilities. By designing various prompts, they can086

efficiently perform diverse NLP tasks without fine-087

tuning, demonstrating exceptional performance in088

few-shot learning scenarios (Zhang et al., 2024).089

While LLMs exhibit strong few-shot learning ca-090

pabilities, we observe persistent challenges when091

using text-generation frameworks for NER tasks:092

1) Attention mismatch: Input text suffers from093

attenuated attention allocation within the prompt,094

causing the model to focus on irrelevant tokens dur-095

ing response generation. 2) Generation fallacy:096

Although the model’s attention is focused on the097

correct tokens, errors still occur during generation098

(e.g., incorrect entity boundaries).099

To address these limitations, we propose a novel100

framework for LLMs based on contrastive learn-101

ing and Reinforcement Learning, enhancing the102

model’s perception of entity boundaries to ensure103

the generation of accurate entity responses. This104

framework achieves exceptional performance in105

extremely low-resource named entity recognition106

tasks by fine-tuning only a subset of LLM parame-107

ters via the LoRA method (Hu et al., 2021).108

On the one hand, we impose constraints on the109

decoding phase during response generation, ensur-110

ing that generated tokens are derived solely from111

the input text. Additionally, we introduce attention-112

based contrastive learning during the Supervised113

Fine-Tuning (SFT) stage, bringing entities of the114

same category closer together while pushing differ-115

ent categories further apart in the semantic space,116

This optimization refines the distribution of entity117

representations, enabling a global semantic adjust-118

ment that enhances local attention mechanisms,119

thereby guiding the model to focus on the correct 120

tokens. 121

On the other hand, to retain the rich boundary 122

information utilized in two-stage methods without 123

task decomposition (which risks cascading errors 124

from subtasks), we construct preference data based 125

on entity boundaries and error feedback from the 126

initially aligned model. Through reinforcement 127

learning, the model learns more precise boundary 128

information and corrects previous errors to some 129

extent. To simplify the reinforcement learning pro- 130

cess, we adopt the computationally efficient Direct 131

Preference Optimization (DPO) approach (Rafailov 132

et al., 2023). Extensive experiments across multi- 133

ple benchmarks demonstrate that our method con- 134

sistently outperforms existing state-of-the-art ap- 135

proaches. 136

In summary, our main contributions are as fol- 137

lows: 138

(1) We propose a novel large language model- 139

based approach to address few-shot NER tasks, 140

which requires training only a subset of parameters 141

yet demonstrates strong generalization capabilities 142

on novel entity categories, especially in scenarios 143

with extremely limited training samples. 144

(2)We introduce contrastive learning to optimize 145

entity semantic representations, enhance attention 146

during generation, and guide the model to focus on 147

the correct tokens. Meanwhile, Direct Preference 148

Optimization (DPO) enables the model to acquire 149

richer entity boundary information while simulta- 150

neously refining itself through error feedback. 151

(3) Experiments conducted on two widely used 152

few-shot NER benchmarks demonstrate that our 153

method outperforms current state-of-the-art ap- 154

proaches, particularly in more challenging tasks. 155

2 Related Work 156

2.1 Few-shot Named Entity Recognition 157

Few-shot Named Entity Recognition (NER) aims to 158

efficiently identify and classify entities with limited 159

annotated data. The primary challenge is learning 160

robust entity representations and achieving strong 161

generalization under data scarcity. 162

One-stage methods directly model entity cate- 163

gories in the input text, typically employing met- 164

ric learning strategies. Representative one-stage 165

methods include Prototypical Networks (Snell 166

et al., 2017) and other embedding space-based ap- 167

proaches, such as (Fritzler et al., 2019; Gao et al., 168

2019; Yang and Katiyar, 2020; Hou et al., 2020; 169
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Figure 2: The overall architecture of OBP-LLM. It consists of three stages: pre-training on the source domain,
supervised fine-tuning on the target domain, and Direct Preference Optimization.

Ma et al., 2022a).170

Two-stage methods address few-shot NER by de-171

composing the task into two phases: span detection172

and entity classification (Shen et al., 2021; Wang173

et al., 2022b; Ma et al., 2022b; Wang et al., 2022a;174

Dong et al., 2023). Compared to one-stage meth-175

ods, two-stage approaches place greater emphasis176

on boundary recognition capabilities. Although177

two-stage methods perform better in complex entity178

recognition scenarios, their staged design makes179

them susceptible to error propagation issues.180

Furthermore, with the recent emergence of181

LLMs demonstrating remarkable capabilities in182

few-shot learning, several works have explored ap-183

plying LLMs to few-shot NER tasks (Wang et al.,184

2023; Zhu et al., 2024).185

2.2 Contrastive learning186

The foundational concept of contrastive learning187

lies in the analysis of feature similarities and dispar-188

ities. Hadsell et al. (2006) introduced contrastive189

loss, which refines feature representations by min-190

imizing the distance between positive pairs while191

maximizing the separation between negative pairs.192

In recent years, contrastive learning has seen rapid193

advancements, particularly in computer vision and194

natural language processing (Chen et al., 2020; He195

et al., 2020). Today, contrastive learning has be-196

come a cornerstone technique in pre-training, find- 197

ing widespread application (Reimers, 2019; Gao 198

et al., 2021). 199

2.3 Direct Preference Optimization 200

Reinforcement Learning from Human Feedback 201

(RLHF) optimizes model behavior by incorporat- 202

ing human preferences to align generated content 203

with user expectations. Christiano et al. (2017) ap- 204

plied RLHF to simulated games and simple text 205

generation tasks, while Ziegler et al. (2019) used 206

human feedback to enhance the quality, coherence, 207

and style of language model outputs, demonstrating 208

its effectiveness in task optimization. 209

With the rise of pre-trained language models 210

(e.g., the GPT series), RLHF has been widely 211

adopted to improve text generation quality and con- 212

trol (Stiennon et al., 2020). The introduction of 213

InstructGPT (Ouyang et al., 2022) and ChatGPT 214

marks a key milestone in its application, driving its 215

expansion in large-scale language models. 216

3 Method 217

3.1 Prompt Construction 218

Before starting the training process, we first con- 219

struct a prompt for the LLM to adapt to the NER 220

task (Zhang et al., 2024). Figure 3 below provides 221
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Below is an instruction that describes a task, paired with an input 
that provides further context. Write a response that appropriately 
completes the request.

instruction：I want you to extract organization-media/newspaper 
entities from the following input sentence, the entity of organization-
media/newspaper refers to the entity that represents a specific 
media outlet, newspaper, or press organization in the input sentence.

input：It joined the CTV Television Network when it launched on 
October 1,1961.

response：The entities I extracted for you are <<< CTV Television 
Network >>> .

Figure 3: a example of prompt

an example of such a prompt, which consists of222

four parts: (1) The first line is a fixed description of223

the alpaca-lora method, introducing the following224

three sections: Instruction, Input, and Response.225

(2) instruction: In this part, we specify the entity226

categories to be extracted and briefly describe the227

definition of each entity type to help the LLM bet-228

ter understand the NER task. (3) input: The sen-229

tence from which entities are to be extracted. (4)230

response: This section contains the model’s gener-231

ated output, where each extracted entity is enclosed232

within <<< >>> identifiers.233

3.2 Pre-Training in Source Domain234

We first construct training data from the source235

Domain using the prompt designed in the previous236

subsection, enabling the model to perform NER237

tasks on the source Domain.238

L = −
T∑
t=1

log p(yt|x1:t−1) (1)239

where T is the length of the generated sequence,240

y is the target output, x1:t−1 is the input sequence241

before the current time step t, and p(yt|x1:t−1) is242

the probability of the model predicting yt given243

x1:t−1 as input.244

However, we aim for the model to focus more245

on generating better and more accurate responses246

rather than overly emphasizing the instruction and247

input. Therefore, the loss during training is com-248

puted solely based on the tokens in the model’s249

response.250

Lsource = −
T∑
t=r

log p(yt|xr:t−1) (2)251

where model’s response xres = {xr, xr+1, ...xT }.252

3.3 Supervised Fine-tuning with contrastive253

learning254

After pre-training on the Source Domain, we per-255

form supervised fine-tuning (SFT) on the model256

using a small number of Target Domain samples. 257

Similar to the Source Domain, we fine-tune the 258

model with next-token prediction. However, unlike 259

the Source Domain, we introduce attention-based 260

contrastive learning during SFT. By constructing 261

positive and negative sample pairs, we optimize en- 262

tity representations, improve internal attention, and 263

enhance the model’s perception of entity bound- 264

aries. The process of constructing positive and 265

negative sample pairs is as follows: 266

For a given input xi and the entity category pi 267

to be extracted, qi,j represents the entity in xi. 268

qi,j ∈ Cpos
i , |Cpos

i | = J . Then, (pi, qi,j) forms 269

a positive sample pair, with a total of J pairs. For 270

each positive sample pair (pi, qi,j), we select K 271

tokens ni,j,k near the boundary of entity qi,j , where 272

ni,j,k ∈ Cneg
i,j ,

∣∣∣Cneg
i,j

∣∣∣ = K, and (pi, ni,j,k) forms 273

a negative sample pair, with a total of K pairs. In 274

this way, the model can implicitly learn some infor- 275

mation related to entity boundaries. We apply con- 276

trastive learning to the model’s attention to improve 277

internal attention, increasing focus on positive sam- 278

ples and reducing focus on negative samples. The 279

contrastive loss function is defined as follows: 280

Lcon =− 1

N

N∑
i=1

log(σ(
J∑
j

(eQ,type
i · eK,pos

i,j )

−
K∑
k

(eQ,type
i · eK,neg

i,j,k )))

(3)

281

We used cosine similarity to represent the distance 282

between positive and negative sample pairs. Specif- 283

ically, for a given input xi, e
Q,type
i represents the 284

embedding of the entity category pi output by the 285

Q projector in the model. eK,pos
i,j and eK,neg

i,j,k repre- 286

sent the embeddings of the positive sample qi,j and 287

the negative sample ni,j,k output by the K projector, 288

respectively. It is important to note that the output 289

embeddings from both the Q projector head and the 290

K projector head are averaged across all heads and 291

normalized at the 26th layer. Here, we choose the 292

output of the Q and K projector heads instead of 293

the hidden layer states to further improve internal 294

attention and achieve faster convergence and better 295

performance during training. 296

By combining the SFT loss and the contrastive 297

learning loss, we obtain the overall loss function 298

for fine-tuning the target domain. This allows the 299

model to adapt to the target domain while optimiz- 300

ing the representations’ distribution in the semantic 301
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space. Here, λ is used to control the weight of the302

contrastive learning loss, and in our experiments,303

λ = 0.01.304

Ltarget = Lsft + λLcon (4)305

306
Lsft = Lsource (5)307

3.4 Direct Preference Optimization on Entity308

Boundary309

After the initial alignment of the model with the tar-310

get domain via SFT, we use preference data based311

on entity boundaries and error feedback to adjust312

the model’s generation preferences using RLHF.313

This enables the model to learn more accurate en-314

tity boundaries and correct existing errors. The315

process of constructing preference data is as fol-316

lows:317

(1)Preference Data Based on Entity Bound-318

aries For the data shown in Figure 3, we gener-319

ate incorrect entity responses by shifting one to-320

ken left or right from the correct entity boundaries.321

These incorrect entity responses are labeled as low-322

preference ‘rejected’ samples, while the original323

correct responses are labeled as high-preference324

‘chosen’ samples.325

chosen: The entities I extracted for you are <<<326

CTV Television Network >>>.327

rejected: The entities I extracted for you are <<<328

join the CTV Television Network when >>>.329

(2)Preference Data Based on Error Feedback330

We use the training data from the previous phase331

to test the SFT model that has undergone the first332

alignment. The misclassified entity extraction re-333

sults are then used to construct the preference data.334

Specifically, the original correct answers are la-335

beled as the ‘chosen’ data in the preference dataset,336

while the incorrect responses generated by the SFT337

model are labeled as the ‘rejected’ data.338

After constructing the preference data, in tra-339

ditional RLHF methods, we first need to train340

a reward model to evaluate and score the gen-341

erated responses on the preference data D =342 {
x(i), y

(i)
w , y

(i)
l

}N

i=1
, where y

(i)
w and y

(i)
l represent343

the preferred and non-preferred generations given344

input x(i), respectively. According to the Bradley-345

Terry (BT) model, the negative log-likelihood loss346

for the reward model is defined as:347

LR(rϕ,D)=−E(x,yw,yl)∼D [log σ(rϕ(x, yw)

−rϕ(x, yl))]
(6)348

Where σ is the logistic function, during initializa- 349

tion, rϕ(x, y) is typically implemented by adding 350

a linear layer on top of the SFT model πsft(y|x) 351

from the previous stage to score the model’s genera- 352

tions. After obtaining the trained reward model, the 353

large language model is further optimized based on 354

feedback from the reward model. This process is 355

formulated as: 356

max
πθ

Ex∼D,y∼πθ(y|x) [rϕ(x, y)]−

βDKL [πθ(y | x) |∥ πref(y | x)]
(7) 357

where β is a parameter controlling the deviation 358

from the baseline reference policy model πref , 359

πθ(y|x) is the current language model, and both 360

piref and πθ(y|x) are initialized with the SFT 361

model πsft(y|x). This ensures that the model is op- 362

timized toward higher rewards, as scored by the re- 363

ward model while preventing the generation distri- 364

bution from deviating too far from the SFT model, 365

which could otherwise lead to unpredictable and 366

undesirable outputs. 367

To simplify the training process and avoid the 368

need for training a reward model, we use the Direct 369

Preference Optimization (DPO) method to perform 370

the model policy optimization. Based on the deriva- 371

tion from the Equation 7, we obtain the following: 372

max
π

Ex∼D,y∼π [r(x, y)]−βDKL [π(y|x)∥πref(y|x)] 373

374
= min

π
Ex∼DEy∼π(y|x)

log π(y|x)
1

Z(x)
πref(y|x) exp

(
1
β
r(x, y)

)
− logZ(x)]

(8) 375

where Z(x) is the partition function. We will 376

not elaborate on the derivation method here. For 377

a detailed derivation, please refer to the paper on 378

DPO (Rafailov et al., 2023). 379

Z(x) =
∑
y

πref(y|x) exp
(
1

β
r(x, y)

)
(9) 380

The explicit optimal solution π∗(y|x) for model 381
π(y|x) is: 382

π∗(y|x) = 1

Z(x)
πref(y|x) exp

(
1

β
r(x, y)

)
(10) 383

The form of the reward model r(x, y) can be de- 384

rived as follows: 385

r∗(x, y) = β log
π∗(y|x)
πref(y|x)

+ β logZ(x) (11) 386
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By substituting the reward model r(x, y) into the387

loss function under the Bradley-Terry (BT) model388

Equation 6 for optimization, the optimal solution389

is directly obtained through the process of training390

the reward model.391

LR(rϕ,D)=−E(x,yw,yl)∼D

[
log σ

(
β log

π∗(y1|x)
πref(y1|x)

−β log
π∗(y2|x)
πref(y2|x)

)] (12)392

The preference generation y
(i)
w corresponds to the393

‘chosen’ part of the preference data we construct,394

while the non-preferred generation y(i)l corresponds395

to the ‘rejected’ part.396

Finally, we incorporate a portion of the model’s397

SFT loss into the training process to prevent the398

model from deviating too much from the initial399

alignment results. α represents the weight of the400

SFT loss.401

L′
dpo = αLsft(π

∗(y|x)) + Ldpo (13)402

4 Experiments403

4.1 Datasets404

We selected two widely used few-shot named en-405

tity recognition benchmarks for evaluation: Few-406

NERD and CrossNER.407

Few-NERD: Few-NERD (Ding et al., 2021b)408

is a large-scale, fine-grained manually annotated409

NER dataset with 8 coarse-grained and 66 fine-410

grained entity categories. It provides two few-shot411

settings: Inter and Intra. In the Inter setting, the412

training, validation, and test sets share all coarse-413

grained categories but have disjoint fine-grained en-414

tity categories. In the Intra setting, entity categories415

are disjoint at both coarse-grained and fine-grained416

levels. Here, we use the episode data released by417

Ding et al. for experiments, defining the few-shot418

tasks as N-way K~2K-shot scenarios, where N-419

way indicates the number of entity categories in420

the task, and K~2K-shot denotes the sampling of421

K~2K training instances per entity category.422

CrossNER: CrossNER (Hou et al., 2020) con-423

sists of four datasets: CoNLL-2003 (Sang and424

De Meulder, 2003), GUM (Zeldes, 2017), WNUT-425

17 (Derczynski et al., 2017), and OntoNotes (Prad-426

han et al., 2013), coming from four distinct do-427

mains: News, Wiki, Social, and Mixed. We used428

the episode data constructed by Hou et al. (2020),429

selecting two domains for training, one for valida-430

tion, and one for testing.431

Datasets Domain #Sent #Labels
Few-NERD Mixed 188.2k 66
CoNLL-03 News 20.7k 5
GUM WiKi 3.5k 12
WNUT-17 Social 5.6k 7
OntoNotes Mixed 159.6k 19

Table 1: The statistics of each dataset.

4.2 Baselines 432

For the baselines, we refer to previous works and 433

select several strong methods from both one-stage 434

and two-stage paradigms. 435

One-stage paradigms include ProtoBERT (Frit- 436

zler et al., 2019), Matching Network (Vinyals 437

et al., 2016), StructShot (Yang and Katiyar, 2020), 438

NNShot (Yang and Katiyar, 2020), CONTAINER 439

(Snigdha et al., 2022), and LTapNet+CDT (Hou 440

et al., 2020). 441

Two-stage paradigms include ESD (Wang et al., 442

2022b), DecomMeta (Ma et al., 2022b), SpanProto 443

(Wang et al., 2022a), and MSDP (Dong et al., 444

2023). 445

4.3 Implementation Details 446

We chose Meta’s Llama3.1-8b (Dubey et al., 2024), 447

available on HuggingFace, as the initial language 448

model. For subsequent training, we employed the 449

LoRA method, fine-tuning only a subset of the 450

large language model’s parameters to reduce hard- 451

ware requirements. The LoRA rank was set to 8, 452

and the LoRA alpha was set to 16. During the SFT 453

phase, the parameter λ, controlling the contrastive 454

learning loss, was set to 0.01, while in the DPO 455

training phase, the parameter β was set to 0.1, and 456

the weight α for the SFT loss was set to 0.2. 457

We used Adam as the optimizer and applied dif- 458

ferent learning rates across training stages: a learn- 459

ing rate of 3e-4 for the source domain pre-training 460

and target domain SFT phases, and 5e-6 for the 461

DPO phase. The warm-up ratio was set to 0.1. 462

All experiments were conducted using a single 463

4090 GPU for both training and testing. 464

4.4 Main Result 465

Tables 2 and 3 present the main results comparing 466

our method with other baselines. We have the fol- 467

lowing observations: 1) Our proposed OBP-LLM 468

significantly outperforms previous methods by a 469

large margin on both the Few-NERD and Cross- 470

NER benchmarks. Compared to MSDP, it achieves 471

overall average improvements of 2.26% and 17.16% 472
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Paradigms Models
Intra Inter

1∼2-shot 5∼10-shot
Avg.

1∼2-shot 5∼10-shot
Avg.

5 way 10 way 5way 10 way 5 way 10 way 5way 10 way

One-stage

ProtoBERT 23.45±0.92 19.76±0.59 41.93±0.55 34.61±0.59 29.94 44.44±0.11 39.09±0.87 58.80±1.42 53.97±0.38 49.08
NNShot 31.01±1.21 21.88±0.23 35.74±2.36 27.67±1.06 29.08 54.29±0.40 46.98±1.96 50.56±3.33 50.00±0.36 50.46
StructShot 35.92±0.69 25.38±0.84 38.83±1.72 26.39±2.59 31.63 57.33±0.53 49.46±0.53 57.16±2.09 49.49±1.77 53.34
CONTaiNER 40.43 33.84 53.70 47.49 43.87 55.95 48.35 61.83 57.12 55.81
OBP-LLM 75.54±2.14 74.31±2.38 78.01±3.11 75.74±2.22 75.90 81.14±4.41 79.23±1.63 81.30±3.79 80.29±2.92 80.49

Two-stage

ESD 41.44±1.16 32.29±1.10 50.68±0.94 42.92±0.75 41.83 66.46±0.49 59.95±0.69 74.14±0.80 67.91±1.41 67.12
DecomMeta 52.04±0.44 43.50±0.59 63.23±0.45 56.84±0.14 53.9 68.77±0.24 63.26±0.40 71.62±0.16 68.32±0.10 67.99
SpanProto 54.49±0.39 45.39±0.72 65.89±0.82 59.37±0.47 56.29 73.36±0.18 66.26±0.33 75.19±0.77 70.39±0.63 71.3
MSDP 56.35±0.28 47.13±0.69 66.80±0.78 64.69±0.51 58.74 76.86±0.22 69.78±0.31 84.78±0.69 81.50±0.71 78.23

Table 2: F1 scores on Few-NERD for both inter and intra settings.

Paradigms Models 1-shot 5-shot
CONLL-03 GUM WNUT-17 OntoNotes Avg. CONLL-03 GUM WNUT-17 OntoNotes Avg.

One-stage

Matching Network 19.50±0.35 4.73±0.16 17.23±2.75 15.06±1.61 14.13 19.85±0.74 5.58±0.23 6.61±1.75 8.08±0.47 10.03
ProtoBERT 32.49±2.01 3.89±0.24 10.68±1.40 6.67±0.46 13.43 50.06±1.57 9.54±0.44 17.26±2.65 13.59±1.61 22.61
L-TapNet+CDT 44.30±3.15 12.04±0.65 20.80±1.06 15.17±1.25 23.08 45.35±2.67 11.65±2.34 23.30±2.80 20.95±2.81 25.31
OBP-LLM 59.55±3.32 44.63±4.78 65.43±3.86 55.31±3.35 56.23 65.67±3.08 51.82±4.41 64.66±2.31 59.81±2.25 60.49

Two-stage
DecomMeta 46.09±0.44 17.54±0.98 25.14±0.24 34.13±0.92 30.73 58.18±0.87 31.36±0.91 31.02±1.28 45.55±0.90 41.53
SpanProto 47.70±0.49 19.92±0.53 28.31±0.61 36.41±0.73 33.09 61.88±0.83 35.12±0.88 33.94±0.50 48.21±0.89 44.79
MSDP 49.14±0.52 21.88±0.29 30.10±0.56 38.05±0.88 34.79 63.98±0.80 36.53±0.81 35.61±0.72 49.99±0.95 46.53

Table 3: F1 scores under 1-shot and 5-shot setting on CrossNER.

Methods Few-NERD CrossNER
Intra Inter 1-shot 5-shot

OBP-LLM 75.90 80.49 56.23 60.49
w/o contrastive learning 74.56 79.07 53.83 59.23
w/o dpo 75.04 79.56 54.82 59.42

Table 4: The ablation study results (average F1 score)
for Few-NERD and CrossNER.

on Few-NERD Inter and Few-NERD Intra, respec-473

tively, and a 21.75% improvement on CrossNER,474

demonstrating the effectiveness of our approach. 2)475

Among previous methods, two-stage paradigms476

consistently outperformed one-stage paradigms.477

However, our method, which preserves the integrity478

and coherence of the NER task within a one-stage479

paradigm, is the first to surpass two-stage methods480

in all aspects. 3) The Intra scenario in Few-NERD481

is more challenging as entity categories in the train-482

ing, validation, and test sets are disjoint not only483

at the fine-grained level but also at the coarse level.484

Similarly, CrossNER is difficult due to both differ-485

ent entity categories and datasets from diverse do-486

mains. Previous methods have significant room for487

improvement in these tasks. Our OBP-LLM shows488

remarkable improvements in both Few-NERD and489

CrossNER, demonstrating its strong generalization490

ability in few-shot learning, especially in cross-491

domain scenarios.492

4.5 Ablation Study493

We conducted ablation studies on the main com-494

ponents of OBP-LLM, focusing on 1) contrastive495

learning during the SFT phase and 2) Direct Prefer-496

ence Optimization (DPO) based on entity boundary497
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Figure 4: The comparison of attention heatmaps, where
(a) represents the Llama3.1-8b model with only SFT
training, and (b) represents the model with contrastive
learning added during the SFT phase.

information. The results are shown in Table 4 498

1) When either of these components is removed, 499

the overall average performance of the model de- 500

clines, indicating that both components are neces- 501

sary and highly effective. 502

2) When contrastive learning is removed, the av- 503

erage F1 score drops by 1.26% to 2.4%, with a more 504

pronounced decline in the cross-dataset task Cross- 505

NER. This demonstrates that contrastive learning 506

effectively optimizes the model for cross-domain 507

tasks. 508

3) When DPO is removed, the average F1 score 509

decreases by approximately 1% overall. Compared 510

to contrastive learning, the drop in F1 score is 511

smaller, as DPO primarily refines the model’s judg- 512

ment of entity boundaries while maintaining the ini- 513

tial alignment results of the large language model. 514

4.6 Effectiveness of Contrastive learning 515

In the SFT phase, we introduce contrastive learn- 516

ing to optimize the distribution of entity represen- 517

tations in the model’s semantic space and enhance 518
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Figure 5: t-SNE visualization of entity representations
on CrossNER for the base model and the base model
with contrastive learning, with each color representing
a different entity category.

its attention mechanism, improving performance519

in entity recognition tasks.520

To evaluate this, we perform SFT on the base521

Llama3.1-8b model, using it as the baseline. We522

randomly select some data to test the impact of523

contrastive learning on attention. Figure 4 shows524

a representative comparison of attention heatmaps,525

with “nahed dahlan” as the standard output. The526

base model focuses excessively on irrelevant to-527

kens, leading to redundant output, while contrastive528

learning helps the model focus on the correct entity529

tokens.530

Additionally, we visualized the distribution of531

entity representations in the semantic space using532

t-SNE, as shown in Figure 5. Compared to the base533

model, the model trained with contrastive learning534

shows a significantly more compact distribution of535

entities within the same category. However, the536

improvement in the boundary distinction between537

different categories of entities was relatively less538

pronounced. This is because, when constructing539

negative samples for contrastive learning, to avoid540

extreme imbalance in the number of positive and541

negative samples, we selected tokens near the enti-542

ties rather than all tokens outside the correct enti-543

ties, many of which are non-entity tokens.544

Overall, the results demonstrate that the con-545

trastive learning we introduced effectively im-546

proves entity semantic representations and en-547

hances model performance in entity recognition548

tasks.549

4.7 Effectiveness of Direct Preference550

Optimization551

To validate the Direct Preference Optimization552

(DPO) based on entity boundaries and error feed-553

back, which strengthens the model’s learning of554

entity boundary information and performs effec-555

tive error correction after the model’s first align-556

Input the hood opening reminds me of a classic ���� ����������.

Output saab 900

Baseline a classic saab 900 ×

Con-DpoNER saab 900 √

Input are the legality of votes cast by ��� ������������� checked 
after they have been cast.

Output non citizens

Baseline the legality of votes ×

Con-DpoNER non citizens √

Figure 6: A case of CrossNER.The correct and incorrect
entities are highlighted in red and green, respectively.

ment, we randomly selected 500 samples from the 557

CrossNER task for testing. We also selected repre- 558

sentative instances, as shown in Figure 6. In this 559

case, the baseline model has undergone only the 560

first alignment in the SFT phase. It can be ob- 561

served that the output of the baseline model may 562

contain word redundancies in entity boundaries, 563

even though these redundant words sometimes do 564

not affect the overall meaning of the entity. Af- 565

ter the DPO phase, the model can identify more 566

accurate entity boundaries and also correct some 567

previously erroneous responses. 568

5 Conclusion 569

We propose OBP-LLM, a method for optimizing 570

entity boundary perception in large language mod- 571

els. By introducing attention-based contrastive 572

learning during the SFT phase, we enhance the 573

distribution of entity representations and improve 574

attention, enabling the model to focus on the cor- 575

rect entity tokens. Additionally, we apply RLHF 576

for secondary alignment optimization based on en- 577

tity boundary information and error feedback, sim- 578

plifying the training process with DPO. Extensive 579

experiments demonstrate that our approach, requir- 580

ing only partial parameter training, outperforms 581

previous SOTA baselines, especially in more chal- 582

lenging tasks. 583

Limitations 584

As mentioned in Section 4.6, due to the construc- 585

tion method, our model shows limited improve- 586

ment in distinguishing boundaries between differ- 587

ent entity categories in contrastive learning. We 588

believe there is significant room for optimization 589

in the negative sample construction method, which 590

will be a focus of our future research. 591
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