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Abstract

Providing functionality through articulation and interaction with objects is a key
objective in 3D generation. We introduce MIDGArD (Modular Interpretable Diffu-
sion over Graphs for Articulated Designs), a novel diffusion-based framework for
articulated 3D asset generation. MIDGArD improves over foundational work in
the field by enhancing quality, consistency, and controllability in the generation
process. This is achieved through MIDGArD’s modular approach that separates the
problem into two primary components: structure generation and shape generation.
The structure generation module of MIDGArD aims at producing coherent articula-
tion features from noisy or incomplete inputs. It acts on the object’s structural and
kinematic attributes, represented as features of a graph that are being progressively
denoised to issue coherent and interpretable articulation solutions. This denoised
graph then serves as an advanced conditioning mechanism for the shape generation
module, a 3D generative model that populates each link of the articulated structure
with consistent 3D meshes. Experiments show the superiority of MIDGArD on
the quality, consistency, and interpretability of the generated assets. Importantly,
the generated models are fully simulatable, i.e., can be seamlessly integrated into
standard physics engines such as MuJoCo, broadening MIDGArD’s applicability
to fields such as digital content creation, meta realities, and robotics.
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Figure 1: The MIDGATrD generative pipeline.
1 Introduction
Despite their significance for applications in meta realities and embodied Al, the creation of 3D models
of articulated objects remains a manual endeavor, and existing datasets [92, 97, 65, 102, 47, 63, 15]

are often limited in both scope and scale. Human designers utilize strong prior knowledge of object
geometry and kinematic structures, a capability that automated systems have yet to fully replicate.
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While extensive research has been conducted on generative models for static 3D objects [78, 74,
50, 48, 35, 8, 39, 54, 2, 95, 103, 24, 68, 9, 88, 75, 93, 6, 85, 98, 77, 52] and scenes [38, 31, 17, 71,
84, 14,72, 53,7, 12, 107], integrating 3D part geometry with kinematic structures has received far
less attention. Generating articulated objects that are both geometrically detailed and kinematically
accurate presents unique challenges due to the complexity of modeling part interactions and motions.
Recent research efforts, such as Neural 3D Articulation Prior (NAP) [37] or Controllable Articulation
GEneration (CAGE) [46], started addressing this gap, pioneering direct end-to-end generation of
complete articulated assets using a denoising diffusion process acting on articulation graphs. However,
generating consistent objects with high-fidelity shapes remains a challenge. Identified shortcomings
of NAP [37] include 1) unnatural motion caused by unconstrained screw-like joint parametrization, 2)
limited controllability, 3) limited interpretability and 4) the generation of inconsistent or unidentifiable
shapes. Additionally, both NAP and related approaches lack part-level control due to the opaque
encoding as a latent within the graph, highlighting the need for enhanced interpretability.

In this work, we introduce MIDGATrD, a novel framework designed to generate interpretable and
simulatable 3D articulated assets in a controllable manner. MIDGArD addresses the limitations of
previous methods by offering: 1) improved consistency in joint motion, 2) enhanced controllability of
the generation process, 3) increased interpretability and 4) better overall asset quality. Furthermore,
the 3D assets generated by MIDGArD are fully simulatable and can be seamlessly integrated into
virtual environments or physics engines such as MuJoCo [86], significantly enhancing its utility
for digital content creation and robotics. MIDGArD employs a modular and sequential approach
based on two diffusion models: the structure generator and the shape generator (see Figure 1). The
structure generator denoises an articulation graph, unconditionally or from incomplete heterogenous
inputs. This articulation graph acts as an abstract, yet interpretable object representation, encoding
the structural and semantic information of every link, as well as kinematic attributes.

MIDGATrD overcomes the identified limitations of prior works by 1) leveraging categorical embed-
dings for improving consistency across the articulation graph; 2) representing nodes (i.e. unique
object parts) via latent image codes rather than direct mesh encoding; 3) diffusing on the Pliicker
manifold, thereby eliminating the need for discretizing the generated motion parameters, and 4)
accounting for the orientation of the parts for more consistent generations. As additional benefit, these
modifications yields an image representation, and asset-level, body-level, and joint-level categorical
data, that are human interpretable. Since the generation process is sequential, these quantities can
be adjusted by the user before generating proceeding with the part geometry generation. Crucially,
this interpretable structure enables the use of a multi-modal 3D generation model as the shape
generator. The shape generator, here represented by SDFusion [8], is queried multiple times to
produce high-quality geometries for each part of the object (see Figure 1). To enhance consistency,
we propose a constrained generation approach that enforces the part geometry to fit a given bounding
box, here provided by the structure generator.

We demonstrate MIDGArD’s capabilities by showcasing improved structural quality, consistency,
and part-level control compared to NAP. Furthermore, we show qualitative results of MIDGArD
generating diverse articulated objects dependent on the partial graph input and shape conditioning. To
further improve the consistency and quality of the generated shapes, we propose a to create oriented
bounding boxes that have a tighter fit to the ground truth while being properly aligned. The reduces
the overlapping volume by 17% on average. Our contributions can be summarized as:

1. MIDGATrD: A novel diffusion-based framework for generating high-quality, articulated,
and simulatable 3D assets with improved consistency between structure and shape.

2. Enhanced Interpretability, and Controllability: Providing human-interpretable interme-
diate outputs and allowing user adjustments at multiple levels of the generation process.

3. Enhanced Quality and Scalability: Relying on state-of-the-art 3D foundation models for
shape generation.

4. Improved part alignment: Introducing a bounding-box constrained shape generation
approach that improves alignment of kinematic links by 17% on average.

5. Simulatable Assets: Offering a pipeline to create fully simulatable assets compatible with
physics engines such as MuJoCo.

Code and models are available at https://quentin-leboutet.github.io/MIDGArD.
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2 Related Works

Structural Characterization and State Estimation of Articulated Objects Designing articulated
objects involves understanding both their geometry and kinematic properties. Traditional methods
often require extensive manual labor or rely on limited datasets, hindering scalability and applica-
bility [45]. Early work on morphable templates, such as SMPL for human bodies [55] and SMAL
for quadruped animals [114], demonstrated the potential of matching existing articulation structures
(i.e., skeletons) to a wide variety of inputs such as static meshes or monocular videos, thereby
substantially simplifying the rigging process. However, while effective within specific categories,
these templates lack the flexibility to generalize to arbitrary articulated mechanisms. To address these
limitations, recent approaches have enhanced templates by incorporating implicit representations
to model geometric deformations and appearances [40]. Robust neural rigging methods [61, 70]
leverage template priors while remaining flexible enough to handle mesh elements that deviate from
the template, such as clothing or hair. On the other hand, template-free methods [100, 101] rely solely
on input mesh geometry but are still primarily limited to humanoid characters due to the scarcity
of comprehensive datasets. Emerging approaches [27] aim to rig arbitrary static assets, potentially
paving the way for a unified, template-free rigging pipeline. Our research aligns with this direction
by learning articulation priors for arbitrary objects without depending on predefined templates.

Significant strides has also been made in estimating articulation joint states and parameters from
sensory observations. Early contributions such as [83] demonstrated that it is possible to learn compact
kinematic models of entire articulated objects solely based on pose observations. Probabilistic models
have enabled robots to learn their own kinematic structures through self-observation and motor
babbling [10, 81, 82]. Gaussian processes have been employed to model part connectivity and link
articulation in objects [87]. Interactive perception techniques further enhance this learning process
by allowing robots to interact with objects to obtain their kinematic model [69, 33, 64, 18, 66, 3,
22, 44, 25]. Deep learning techniques were also used to train dedicated architectures to directly
predict articulation models from sensory inputs [23, 104, 1, 41, 49, 94, 106, 34, 29, 28, 51, 102, 13,
99, 105, 43, 20, 109]. Interactive systems [67, 13] learn to predict potential motions of articulated
objects, aiding downstream motion planning and interaction, while reinforcement learning based
approaches [96] train policies to explore diverse interaction trajectories, contributing to actionable
visual representations. Our method diverges from traditional approaches by not relying on explicit
estimation pipelines; instead, we learn articulation priors implicitly within our model.

Articulated Object Generation Generating articulated objects involves synthesizing models
that accurately represent both geometric details and kinematic behaviors. Methods such as Self-
Supervised Category-Level Articulated Object Pose Estimation [51] and PD (Pose-aware Part Decom-
position) [34] address the generation of joint parameters and part poses, respectively, contributing
significantly to the field. Few generative frameworks address both aspects concurrently. Notable
among them is NAP [37], which generates complete articulated assets—including meshes—using
graph attention networks. CAGE [46], enhances controllability and interpretability, albeit with
limitations in mesh generation. More recently, [62] proposed a framework capable of reconstructing
articulated assets from image inputs by using a 3D shape completion model to generate the different
parts and a large language model (LLM) to predict the joint parameters. Progress was also made in
physics-aware shape generation; for instance, [58] introduces an improved loss mechanism to account
for internal collisions within generated articulated assets. In this work, we build up on NAP and
CAGE and design an approach to enhance the controllability of the generative process, and leverage
a multi-modal 3D generative model for improving the quality of the shape geometry.

3D Shape Generation and Completion Recent progress in diffusion models and 2D-guided
generation techniques have revolutionized 3D shape generation and completion. Two main types of
generative pipelines are currently being explored. The first one leverages 2D diffusion models to
optimize NeRFs [73, 42, 57], enabling high-quality 3D generation without the need for direct 3D
supervision. The second employs Latent Diffusion Models (LDMs) for different 3D representations,
including point clouds [59, 113, 112, 60, 88], voxels [111], SDFs[8, 76, 111, 48], shape2vecset[108,
110], and triplanes [16]. It should be emphasized that despite the predominant role of diffusion
models, other methodologies such as autoregressive models [78], have demonstrated potential in
producing high-fidelity 3D shapes from minimal inputs. Conditional diffusion models enable multi-
modal inputs. SDFusion [8], for instance, can generate 3D objects from text descriptions, images, or
partial 3D shapes. Building upon these capabilities, we have adapted SDFusion as the shape generator
within our framework. However, due to MIDGArD’s modular design, the shape generator can be
updated to incorporate the latest advancements in static 3D generation.



3 Synthesis of 3D Articulated Mechanisms

3.1 Method Overview

Both components of MIDGATrD, namely the structure and the shape generator, leverage a denoising
diffusion model [79, 80, 21]. Diffusion models operate by progressively degrading training data
through the systematic application of Gaussian noise, a method known as the forward process.
Subsequently, these models are trained to restore the original data by methodically removing this
noise in what is known as the reverse process. Please refer to Appendix A and [21], [79] for details.
As shown in Figure 1, the full MIDGATrD pipeline can be separated into the Structure Generator and
the Shape Generator. The Structure Generator (subsection 3.2) takes graph-based representation of
an articulated asset — which may be incomplete or affected by noise — and resolves this representation
through diffusion. The denoised graph features, decoded into suitable — human interpretable — text
prompts, images and bounding box information are then fed into the Shape Generator (subsection 3.3),
another diffusion-based model yielding the final articulated 3D object.

3.2 Structure Generator

Articulated Asset Representation and Parametrization Building upon [37], we encode the
structural and kinematic attributes of every articulated asset into the node and edge features of a
complete graph referred to as Gy. Our structure generation module leverages a Graph ATtention
(GAT) [90, 4, 32] denoising network to generate coherent and interpretable articulation features from
noisy or incomplete inputs (see Figure 1). To improve the quality, controllability, and interpretability
compared to [37], we modify the asset parametrization. Drawing on insights from [46], we incor-
porate a set of categorical variables to the nodes and edges features to enhance asset consistency,
interpretability and provide a more intuitive control interface over the generation process. Each asset
is represented as a complete graph G = {x, e}, that embodies the object’s links and joints in
its N nodes, and in its N(NN — 1)/2 edges respectively. Rather than directly denoising and then
decoding a low-dimensional shape latent f, € RPr for each link 4 into a 3D mesh [37, 36], we
propose a two-step approach that operates on a more manageable image latent g; € RP of the link.
This image latent is derived by training a Vector-Quantized Variational Auto Encoder (VQVAE) [89]
on various views of every rigid body in the dataset. In our method, the structure generator denoises a
latent representation of an image for each individual component of the articulated asset. This denoised
image, along with the categorical information extracted from the graph, facilitates the creation of
human-interpretable priors for each link, namely a text description and a front view image. These
prompts can then be utilized to condition a 3D shape generation model yielding consistent meshes.
Additionally, the graph itself encodes highly relevant structural features that act as supplementary
conditioning signals, further guiding the shape generation model.

Each node «; represents a link of the articulated asset and Vi, j € [0, N — 1] the edge e;; establishes
a connection between node x; and node «;. The node feature vector ; is comprised of multiple
components, specifically, z; = [0;, a;,b;,d;, i, t;,g;] € RPV, and the edge feature vector e;; is
formulated as e;; = [cq;j s Jijs Pijs lq;j] € RP=, where Dy and Dy refer to the node and edge feature
dimensions. To ensure a consistent graph size across various objects, IV is set to the maximum count
of parts anticipated, using o; € [0, 1] as a binary indicator to denote part existence. Similarly, the
edges denote symbolic existence and chirality through the indicator variable ¢;; € [0, 1]2. Joint types
are represented through j,, € [0, 1]P7, a one-hot encoding that in our design has a dimensionality of
three to signify the types — prismatic, revolute, or screw. Similarly, a; € [0,1]P4 and b; € [0, 1]P?
denote the one-hot encoding vectors of asset (resp. body) categories. Similar to [37], we use Pliicker
coordinates as joint parametrization as this provides a compact representation for joint types, such
as revolute, prismatic, and screw joints. The Pliicker joint parametrization, articulated as p; ; € RS,
provides a harmonious portrayal of the different joint types under consideration, and joint limits are
entailed by 1;; € RP~. Ultimately, the vectors d; € R?, r; € R® and ¢; € R? depict the bounding
box dimensions, orientation and position of each part. Note that ; and ¢; are defined for every part
relative to its parent reference frame.

Unlike previous approaches [37, 46], we do not assume that the parts of the dataset are provided
in a canonical orientation. Assuming that objects are in canonical orientation and not explicitly
considering the orientation leads to degrading performance due to misaligned orientations of the
dataset (see Figure 5, as well as Appendix B-Figure 10 and Appendix B-Figure 11). Instead, we



estimate this orientation for each body in the dataset by computing the corresponding Oriented
Bounding Box (OBB), which is then used to position the body in a canonical pose. The process
(see Appendix B) begins by generating a convex hull from the mesh. This step simplifies the
complex geometry into a more manageable form, reducing dependency on the internal structure
of the object. Next, we voxelize the convex hull to collect volumetric samples. We then execute a
Principal Component Analysis (PCA) to determine the primary axes of the mesh providing an initial
approximation of the object’s orientation. Following the PCA, we perform gradient descent on the
attitude quaternion of the OBB, using the PCA-based initial estimate as a starting point. The objective
of this optimization is to minimize the volume of the OBB. This approach allows for a more flexible
and accurate alignment of dataset bodies into canonical poses, thereby enhancing the overall quality
and consistency of the articulated objects generated by our framework (see Figure 5, Table 3).

Denoising Diffusion on the Pliicker Manifold To maintain the interpretability of the denoised
quantity as a Pliicker vector p;; = [wi;,v;;], our approach introduces a novel parametrization
allowing the diffusion process to be directly executed on the Pliicker manifold P. In contrast, the
approach proposed in [37], denoises within R®, thereby requiring a projection operation p : R — P
at every denoising step. We propose an alternative formulation k;; = [m;;, n;;] € R® of the joint
parameters where m;; = [0;;, ;] € R? represent the spherical parametrization of the Pliicker
axis w;;. This formulation yields u;; = [sin(6;;) cos(¢i;), sin(6;;) sin(p;;), cos(6;;)] € R? with
[wijl = 1. The vector n;; € R? is then defined such that v;; = m;; X w;;. This alternative
parametrization guarantees the normalization of u;; and enforces by construction the orthogonality
between u;; and v;;, which are key features of the Pliicker manifold [30]. Consequently, our approach
inherently satisfies the manifold’s constraints, thereby streamlining the computational workflow by
eliminating the necessity for iterative projections.

3.3 Shape Generator

The shape generator of MIDGArD aims to create the mesh for each component of an articulated
object using the denoised object graph, which contains both semantic (object category) and visual
(image latents) data. We leverage a multi-modal 3D generative model that is trained independently
from the structure generator. Our modular setup is designed to accommodate any generative model,
allowing for seamless integration of the latest advances in 3D generation. In this work, the SDFusion
model [8] is used, conditioned on image, text as well as graph features input, and enhanced with a
novel approach for bounding-box-constrained generation. The training pipeline is shown in Figure 2.

Multimodal Guidance for Consistent Shape Generation The core of SDFusion is a latent
diffusion model, see [8] for details. Object meshes are transformed into truncated signed distance
functions (TSDFs) and encoded using a pretrained and frozen 3D VQ-VAE [89] model. The diffused
latent representations, along with image and text condition signals, are denoised through a 3D U-Net
model. The resulting output latent is then decoded into a TSDF and converted back into a mesh using a
marching cube algorithm [56]. It is worth emphasizing that we train and apply the diffusion model on
the individual parts of each objects, querying the model multiple times at inference time to generate
a full articulated object (see Figure 1). The model is trained on the PartNet Mobility dataset [97] with
the same train-test split as the structure generator. We modified SDFusion’s conditioning [8] to align
it with the output of the structure generator. The model is conditioned through cross-attention on the
following modalities, either independently or in combination.

* Single view image: A pretrained ResNet-18 model [19] encodes images. During training,
the model uses renderings of the part mesh from a frontal view. At inference, the model
decodes the image from the node features of the articulation graph.

» Text: We employ BERT [11] for text encoding (similar to [84, 8]). The text is constructed
using the object category and asset type from the PartNet dataset in the format "A <asset
type> as part of a <object category>"; for instance, "A lid as part of a trash can".

* Graph: The output from the structure generator is encoded and concatenated with image-
and text embeddings to provide information about the part’s role within the object, such as
its expected size and its relation to other parts, i.e. joint types.

This multi-modal conditioning approach ensures the generation of consistent, high-quality parts that
can be seamlessly integrated to form complete articulated objects, enhancing the overall performance
and applicability of our framework.
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Figure 2: Architecture of the Shape Generator.

Enforcing Bounding Constraints Generating object parts independently offers increased flexibility
and quality but introduces challenges related to the size and orientation of the generated parts.
Intuitively, the shape generator must ensure that parts conform to r; and d; in the articulation graph.
To achieve the correct orientation, we generate links in a canonical pose and subsequently apply a
post-processing rotation based on 7;, the 3D orientation vector derived during structure generation.
To train the model accordingly, by estimating and adjusting the pose of parts to a canonical orientation,
as detailed in Appendix B.

To ensure that generated parts match the sizes specified within the graph node features, we introduce
a bounding-box constraint to the generative model (see Figure 2). Instead of generating the object
directly, the diffusion model is trained on the difference relative to a predefined bounding box. To
enable this schema for latent diffusion, we calculate the difference as za = z, — 23, Where z, is the
VQ-VAE-encoded latent of the object, and z; is the encoding of a simplified bounding-box TSDF
(values inside the box set to -0.01, and values outside set to 0.01). During inference, we provide the
denoiser with the bounding box information by concatenating z; to the noisy version of za. Other
conditioning inputs, such as images, text, and graph features encodings, are incorporated through
cross-attention mechanisms. The object’s TSDF is then computed by decoding za + 2z using the 3D
VQ-VAE. This method effectively guides the model to produce objects that are closely matching the
target bounding boxes even after a few training steps.

4 Experiments, Results and Discussion

4.1 Experiment Setup

Dataset All experiments were conducted using the PartNet Mobility dataset [97], which contains a
diverse set of articulated 3D objects with detailed geometric and kinematic annotations. Each mesh
in the dataset underwent a two-step preprocessing routine. First, we enforced the manifold property
as described in [26]. Second, we performed orientation estimation to establish a canonical pose for
each object and accurately compute the corresponding bounding boxes (see Appendix B for details).

Evaluation Metrics We adopt the evaluation framework from NAP [37], which introduces the
Instantiation Distance (ID) metric for comparing two articulated objects. ID measures the average
Chamfer distance over sampled joint states, accounting for both geometric and kinematic differences.
It is defined as:

1 . >
D(01,07) = M Z [qérélélg Ol,ql,Og,qQ))] +M Z [q?ggl (d(O1,Q1,02,Q2))], (1)
q1E€Q1 42€Q2

where @ is a set of M uniformly sampled joint poses and d is the minimum Chamfer distance
over all possible canonicalizations of the mesh. We use ID in conjunction with standard metrics
for unconditional generation, namely minimum matching distance (MMD), coverage (COV) and
1-nearest-neighbor accuracy (1-NNA).



Implementation Details We trained the structure generator and the image VQ-VAE on an NVIDIA
RTX 3090 GPU, while the shape generator was trained on an NVIDIA RTX 6000 GPU. Evalua-
tion took place on a single NVIDIA RTX 3090 GPU. The image VQ-VAE, which encodes latent
representations of objects in the shape generator, was trained on 256 x 256-pixel front renderings
of the the PartNet Mobility object meshes. The denoising model used in the structure generator
contains six graph attention blocks, with a latent embedding size of 512 and 32 attention heads. We
set the maximum number of nodes in the graph to NV = 8. Our training parameters closely follow
those in NAP, with the key difference being the use of an implicit denoising diffusion pipeline [80]
over 100 time steps, as opposed to a DDPM with 1,000 time steps. This modification significantly
accelerates inference speed. Our shape generator is adapted from SDFusion [8] and trained on the
PartNet Mobility dataset. We used the same hyperparameters as the multimodal model in SDFusion
and utilized their pre-trained VQ-VAE checkpoint. We excluded 10 categories from training due to
their objects containing numerous equally-shaped parts (e.g., keyboards with over 30 keys).

4.2 Results and Discussion

Unconditional Articulated Asset Generation To the best of our knowledge, NAP is the only ap-
proach for generating articulated 3D objects without prior knowledge about their geometric structure.
We first evaluate MIDGATD in an unconditional generation setting, comparing its performance to
NAP. For a fair comparison, we retrained NAP on our preprocessed version of the PartNet Mobility
dataset. The results are presented in Table 1. MIDGArD outperforms NAP in terms of MMD and
COV metrics, indicating better diversity and coverage of the generated samples. Specifically, we
observe a 6.4% improvement in MMD and a 3.7% improvement in COV. The 1-NNA metric is
comparable between both methods. We also perform an ablation study on the effect of the Pliicker
manifold parameterization. As shown in Table 1 using the Pliicker manifold improves the MMD and
COV metrics, suggesting enhanced consistency and diversity in the generated assets.

Table 1: Comparison to NAP in an unconditional generation setting.

Unconditional ID
MMD | COV1t 1-NNA |

NAP 0.0282  0.4675 0.5831
Ours (Pliicker manifold) 0.0264  0.4857 0.5831
Ours (No Pliicker manifold) 0.0270  0.4779 0.6221

Generative Paradigm/Method

To further evaluate the physical plausibility of the generated assets, we analyze the distribution of joint
types in the training data and compare it with those in samples generated by NAP and MIDGATrD.
We sampled 400 objects generated by each method and counted each joint type only once per object
to minimize the impact of objects with multiple joints of the same type.

Table 2: Distribution of joint categories in real data vs generated data from NAP and our approach.

Screw  Revolute Prismatic

Training data 6% 62% 32%
NAP-generated 95% 1% 4%
MIDGArD-generated 2% 62 % 36%

The results in Table 2 show that NAP predominantly produces screw joints, which are rare in
the training data. In contrast, MIDGArD generates objects with a joint type distribution closely
matching that of the training data, thereby enhancing the plausibility of the generated assets. We
computed the Chi-Square statistic to quantify the deviation from the expected joint type distribution.
NAP’s generated data yielded a high x? value of 5618, indicating a significant difference from the
training data distribution. In contrast, MIDGArD’s generated data resulted in a low x? value of 12.7,
demonstrating close alignment with the expected distribution.

Figure 3.B provides a side-by-side qualitative comparison between MIDGArD and NAP. MIDGArD
generates objects with higher geometric quality and more realistic motion compared to NAP. For
instance, the fan generated by MIDGArD exhibits detailed geometry, and the laptop displays realistic
opening motion, whereas NAP’s outputs often show unnatural joint motions and inconsistent shapes.
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Additionally, as shown in Figure 3.C, the absence of categorical information in NAP leads to the
generation of objects composed of mismatched parts that do not cohesively fit together. In our
approach, while there may be occasional issues with geometry or kinematics, the object parts remain
semantically consistent, preserving the integrity of the overall structure. Finally, as illustrated in
Figure 3.D, our conditional part-generation proves to be robust to images from different viewpoints,
yielding enhanced flexibility and generalization capability of our method.

Conditional Generation and Controllability One of the key advantages of MIDGArD over
existing approaches is its enhanced controllability, enabling users to guide the generation process using
human-understandable graph attributes such as articulated asset types and body types. We showcase
this capability in a " (Image+Text) -To-Object" setup (see Figure 3.A1), and a "Part-To-Motion"
setup (see Figure 3.A2), where the model is provided with part features only (i.e., no joint data) and
outputs consistent articulated assets. Notably, MIDGATrD can also be controlled using only asset-
level data; for instance, users can query for specific categories such as "storage furniture" or
"fan" without needing to provide detailed information for each node (see Appendix C for additional
qualitative results). Furthermore, the modular structure of our generation pipeline enables fine-
grained, part-level control. Users can specify the desired appearance or attributes of individual parts
by adjusting the human-interpretable articulation solutions synthesized by the structure generator
accordingly. The resulting images and text description will then be used as conditioning signals for
the shape generation module. As illustrated in Figure 4, varying the image inputs while keeping
other attributes fixed results in generated parts that adapt accordingly, demonstrating the flexibility
and responsiveness of our approach. This level of control allows for precise customization of
generated assets, facilitating applications that require specific design features or aesthetic qualities
(see Appendix D for additional qualitative results).

From decoded images Conditioned on sampled images (1) Conditioned on sampled images (2)

@ |- s”

IF

'S

Figure 4: Image guidance of the shape generation process
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Constrained Shape Generation We conducted an ablation study to evaluate the effectiveness of
our bounding-box constrained shape generation approach introduced in section 3.3. The experiments
were performed on part-samples from PartNet Mobility. We randomly sampled ten objects per
category from the test data, including all their parts, resulting in 1044 samples across 32 categories.
First, we measure whether the generated object fits within the bounding box. The model output Y 9¢"
is a sampled TSDF of resolution 64, Y 9¢7 € R64*64x64 \where negative values indicate the object’s
interior. We compare Y9¢" with the TSDF of the bounding box Y ** and compute the count of all
cells outside of the bounding box (OB B, oyr:) and their sum of SDF values (OB Bgy,):

OBBcount (Obb7 Ogen) = Z ]]-[Y;I;I;q > (U Y;?in < 0]7 (2)
ijk
OBBaum(Oph, Ogen) = Y Y- 1V > 0A Y < 0], 3)
ijk

Secondly, we evaluate the generation quality after transforming the TSDF into a mesh, computing
the Chamfer distance (CD) between generated and real objects based on 5000 sampled points.
Table 3 compares our bb prior approach to the original SDFusion model trained on PartNet Mobility.
For encoding the part dimensions, we use an MLP with three hidden layers (size 16, 64 and 256
respectively). For a comparison to a GAT-encoding, see Appendix E. Our first modification of
preprocessing the dataset to rectify objects into canonical pose, dubbed "original + bb MLP + oriented
dataset", already improves the generation results significantly, leading to lower O BB ¢oynt, OBBgsum
and CD. The bb prior method, however, consistently ensures accurate proportions and sizes for the
generated links, diminishing erroneous volume. Additionally, bb prior + bb MLP method secures
the best Chamfer Distance at 0.072. An alternative technique involves resizing generated objects to
suit the bounding box dimensions. Such postprocessing of the model outputs reduces the average
CD to 0.0061, close to matching that of the bb prior method. Nonetheless, such resizing may lead
to significant distortions in object proportions, thereby underscoring the superiority of the bb prior
method.

Analysis of Oriented Bounding Boxes As Table 3 shows, using oriented bounding boxes drastically
improves the reconstruction performance. To quantify the change to the dataset, we measured the
volume reduction of the bounding boxes after applying our PCA-based rectification approach. On
average, the bounding box volume decreased by 17.4%, with one-third of the samples experiencing

Table 3: Ablation of bounding-box constrained shape generation. The original SDFusion pipeline,
only enhanced with bounding-box conditioning, is compared to our approach. Training on a prepro-
cessed dataset and post-processing the generated shapes afterwards already improves the performance
significantly. The best results are achieved using our bounding-box SDF prior with post-processing.

OBB.ount OBBgy, CD (generated) CD (scaled)

bb prior + bb MLP (Ours) 1146 10.89 0.0072 0.0043
original + bb MLP + oriented dataset 1490 37.15 0.0152 0.0061
original (SDFusion) + bb MLP 3795 183.5 0.0307 0.008




a volume decrease of more than 10% and 20% of the samples experiencing a volume decrease of
more than 30%. Figure 5 illustrates failure cases where using axis-aligned bounding boxes leads to
unrealistic part shapes, such as a thick cabinet door.

5 Conclusions

In this work, we introduced MIDGATrD, a novel framework for generating 3D articulated objects.
MIDGATrD employs a modular approach, combining interpretable articulation graph generation with
high-quality shape generation. By leveraging categorical parametrization, MIDGArD enhances the
consistency and plausibility of articulated objects, producing high-quality meshes with accurate
dimensions through a constrained shape generation mechanism. The human-interpretable representa-
tion of images and text within the articulation graph allows for part-level and multi-modal control
over the generation process. The models produced by MIDGATrD are fully simulatable, paving the
way for applications in text-guided or image-guided content creation.

MIDGATrD addresses several issues identified in Neural 3D Articulation Prior (NAP) by improving
joint conditioning with categorical embeddings, enforcing physical constraints via bounding-box
constrained generation, and providing part-level control using latent image codes. Our results
demonstrate MIDGArD’s superior performance in terms of structural quality, consistency, and
interpretability compared to existing methods. The framework’s ability to generate diverse articulated
objects based on partial graph inputs and shape conditioning underscores its potential for broad
applications in digital content creation and robotics.

Despite the advancements introduced by MIDGATD, there are several limitations and areas for future
improvement: 1) We observe that the current metrics for articulated generation are still very limited
and benchmarks as well as evaluation frameworks must be developed for this field. For instance,
Instantiation Distance is still based on point clouds, which ignores cases of small parts of the object
with unrealstic motion, such as a cart wheel moving up to a meter away from the cart. 2) Overcoming
limitations of graph scalability posed by node number constraints remains an important challenge.
3) Furthermore, it would be interesting to investigate the use of mixed integer noise methods such
as MiDi [91] in the articulation graph generation pipeline to process the continuous and discrete
variables. 4) Enhanced conditioning of the structure generation process using natural language or
image data represents a highly promising avenue for future research. Foundational efforts in this
area, such as those by Cai et al. [5], have laid the groundwork for further exploration. 5) Integrating
specialized templates, such as human body poses, could significantly enhance MIDGArD’s modelling
versatility. Lastly, 6) testing alternative 3D generation models and adapting MIDGATrD to handle
different geometric primitives could broaden its generalization capabilities.
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A Details of the Training and Inference Process

A.1 Training and Inference of the Structure Generator

As highlighted in [37, 46], the different characteristics of an articulated asset can be represented as
features of a complete graph G = {x, e}, with N nodes, and N(N — 1)/2 edges. We train an
image VQVAE [89] using different views of every single object of the dataset. The latent code of
every object ¢ composing an articulated asset is of dimension 8 x 8. This latent code is vectorized in
an array f,; € R% before being concatenated to the reference node feature vector z; (see Figure 6).
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Figure 6: Detail of the structure generation training pipeline.

Articulation Graph

The node and edge features of the obtained asset graph Gy are then iteratively corrupted by Gaussian
noise that a Graph ATtention network (GAT) learns to predict (see Figure 7).
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Figure 7: Detail of the structure generation training pipeline.

The denoised graph Gy obtained at the output of the pipeline can then be post-processed into a
human interpretable form, the node, joint and asset categorical information being converted into text
while the denoised image latents f, of every node ¢ are decoded into corresponding images. This
human interpretable content can then be passed as a condition signal to the shape generator (see
Figure 8).

A.2 Denoising Diffusion Probabilistic Model (DDPM)
A.2.1 Forward Process

Given a sample x( drawn from a distribution ¢ (x¢), a series of noisy samples x;, V¢t € [1,--- , T
can be obtained by gradually corrupting ¢ with Gaussian noise € ~ N (0, I') following a variance
schedule 81 < --- < Br:

T

a@ rlzo) = [Ja(@ilz), a@lwr) =N (VI=Baa,BI). @

t=1
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Figure 8: Detail of the structure generation inference pipeline.

A relevant property of such a diffusion process is that x; can be sampled from x( through
qa(@i|zo) = N (Vauzo, (1 — a) I), €
where a; := 1 — §; and &y = Hi:l a, eventually yielding x; = v/arxo + /1 — €.

~

A.2.2 Reverse Process.

Initiating from a standard Gaussian distribution, 1 ~ N(0, I'), a denoising model py parameterized
by trainable weights 6, learns to approximate a series of Gaussian transitions py (z:—1|x:). These
transitions incrementally denoise the signal such that

T

po (zor) = po(xr) [ o (mialz), (©)
t=1

po (Ti—1lz) = N (pg (z,t), g (@4,1)) - N

Following the approach from [21], previous work on articulated asset generation [37] [46] define

B = \/}Tt (a:t — \/%69 (4, t)) and Xy (xy, t) = 021 yielding the following Langevin dynamics

1
T = \/_Ol_t (wt - 16—:0_%50 (wt,t)) +oz, z~N(0,I), (8

where ¢ (4, t) is a learnable network approximating the per-step noise on .

A.2.3 Loss Function

The variational lower bound is used to optimize the negative log-likelihood. Following the simplified
training objective outlined in DDPM [21], the training loss can be simplified to the following
expression

L=Ege, [H5t — €9 (\/Oé_two-i-\/l —dtf’?t,t)Hz} . 9
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B Data Preprocessing

B.1 Mesh Preprocessing

High-quality meshes are essential for applications such as generating Truncated Signed Distance
Functions (TSDFs), which are in turn widely used within advanced 3D latent diffusion models such as
SDFusion [8]. However, many meshes in popular datasets, including PartNet-Mobility [97], contain
inconsistencies and errors that render them unsuitable for such purposes. To address these issues, we
incorporate a preprocessing routine that includes a manifoldization process [26] to repair and convert
flawed meshes into watertight, manifold counterparts (see Figure 9).

(a) Original mesh with inconsistencies (b) Repaired watertight manifold mesh

Figure 9: Mesh repair pipeline: (a) The original mesh exhibits holes and non-manifold edges; (b)
After preprocessing, the mesh is converted into a watertight manifold suitable for TSDF generation.
B.2 Orientation Estimation and OBB Computation

Unlike previous approaches [37, 46], we do not assume that the dataset meshes are already provided
in a canonical orientation. Our method hence involves an orientation estimation process for each

individual mesh, performed through the calculation of its Oriented Bounding Box (OBB). This OBB
is subsequently utilized to align each body into a standard pose. The orientation estimation begins by

548

(a) Original mesh (b) Mesh with computed OBBs (c) Mesh with original AABBs

Figure 10: Comparison of bounding boxes: (a) The original mesh; (b) The mesh enclosed by Oriented
Bounding Boxes (OBBs), providing a tight and accurate fit; (c) The mesh enclosed by original
Axis-Aligned Bounding Boxes (AABBs).

applying Principal Component Analysis (PCA) to the mesh data. To mitigate the influence of complex
internal geometries, such as shelves within furniture models, we first compute the convex hull of the
mesh. This step simplifies the geometry while preserving the overall shape. We then voxelize the
convex hull and uniformly sample 10,000 volumetric points from it. Applying PCA to these sampled
points provides an initial estimate of the mesh’s principal axes and orientation. Building upon this
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initial estimate, we refine the attitude quaternion of the OBB through gradient descent optimization.
The objective is to minimize the volume of the OBB, achieving a tighter fit around the mesh. During
optimization, we iteratively adjust the orientation by recalculating the OBB volume along the oriented
principal axes. To reliably navigate the solution space and avoid local minima, we incorporate a
heuristic that explores potential orientations within a cone defined by an angle ¢ centered around
the current best estimate. This approach allows for nuanced adjustments and aids in converging to a
global minimum, thereby enhancing the precision of the orientation estimation. By combining PCA
for initial alignment with heuristic-augmented gradient descent for volume minimization, our method
ensures accurate and robust alignment of dataset meshes into their canonical poses (see Figure 10).
This preprocessing step significantly enhances the overall quality and consistency of the articulated
objects generated by our framework.

e
—

(a) Oriented Bounding Boxes (b) Generated asset with Oriented (c) Generated asset
Bounding Boxes

Figure 11: An articulated asset simulated in the MuJoCo[86] physics engine.

C Controlling Generation with Asset Labels

MIDGATrD incorporates categorical embeddings for asset types and object categories directly into
the node features of the articulation graph. These embeddings enable the model to understand and
generate objects that belong to a specified category, capturing the common structural and kinematic
features associated with that category. The model is trained on a diverse dataset that includes
various object categories with different articulation patterns. By learning statistical priors over these
categories, MIDGATD can infer plausible structures and motions for new objects within the same
category. The structure generator is designed to handle incomplete or partial inputs, allowing it to fill
in missing details based on learned patterns. In the absence of detailed node-level information, the
model can perform unconditional generation, producing coherent articulation graphs solely based on
the provided asset category. The use of categorical embeddings and latent codes that correspond to
human-understandable concepts (like “storage furniture’) makes it easier for users to interact with
and guide the generation process.

“

(a) Controlled generations with asset label (b) Controlled generations with asset label "fan"
"storage furniture”

\!
L

Figure 12: Controlled Generation with Asset Labels.
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D Controlling Generation with Image Input

A key advantage of MIDGArD’s modular setup is the controllability of the generative process, not
only on a graph level (by supplying partial graphs) but also on a part-level, by replacing the generated
image or text information. In Figure 13, we provide examples how modifying the input image to the
shape generator (SDFusion) changes the object appearance. Here, we randomly choose images from
PartNet Mobility, sampling among all parts with the same category. For example, we sample from
from all meshes with the descriptions "A wheel as part of a cart" to generate the wheel in the fifth
row of Figure 13.

From decoded images Conditioned on sampled images (1) Conditioned on sampled images (2)

R oy | we | WOW | oo e
\ e Y wo |
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0 2 0]
o f ol "
szt | P R ]

ppel [Lle

l/‘r %

NAP (closest sample in unconditional generation)

Figure 13: Controlling the shape appearance of object parts via image conditioning. Top: Image
inputs allow to control the object design on a part-level. Bottom: NAP struggles to generate objects
with many parts and yields unrealistic motion.
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E Encoding object-level information with Graph Attention Networks

For capturing the relationships between parts, we experiment with graph encodings as input to the
conditional shape generation process. To generate the geometry for a specific part ¢, we construct
a simplified graph from the articulation graph that provides information about the size of the ¢
in comparison to other parts, as well as the joints between ¢ and other parts. Specifically, let
Gy = (v4,€4) be a graph with ¢; as the node feature vector for the i-th node and the Pliicker
coordinates p;; serving as edge features. We test two options to mark ¢ as the part to be generated:
(1) a tree structure where v,,,; is constructed by reducing the graph to the parts adjacent to ¢, and (2)
a complete graph (v4 = v) where the node features are augmented with a binary indicator that equals
1 for the node representing ¢. These structures are processed with a Graph Attention Network (GAT),
which is trained concurrently with the diffusion model. As shown in Table 4, the results do not match
the ones of a simple MLP embedding, neither with nor without our bb prior method. We hypothesize
that this is due to concurrently training the GAT with the diffusion model, possibly converging slower
than an MLP. Furthermore, many objects in PartNet Mobility have few parts, leading to small graphs
of less than 4 nodes. Future work could try to pretrain a GAT on graph-encoding to improve the
conditional generation with object-level information.

Table 4: Shape generation results contrasting an MLP-based embedding to a GAT encoder.

OBB.oynt OBBgyu, CD (generated) CD (scaled)

bb prior + bb MLP 1146 10.89 0.0072 0.0043
bb prior + tree GAT 1246 10.97 0.0076 0.0044
bb prior + graph GAT 1226 13.12 0.0084 0.0046
original + bb MLP + oriented dataset 1490 37.15 0.0152 0.0061
original + oriented dataset + tree GAT 1994 69.66 0.0203 0.0051
original + oriented dataset + graph GAT 1710 49.42 0.0218 0.0052
original + bb MLP 3795 183.5 0.0307 0.008
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paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims are support by detailed results, comparison to State of the Art,
open-source code upon acceptance, explicit mention of limitations, and a detailed method
section, and thorough steps to reproduce our results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: please find our limitations of the work in the Conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This work das not include theoretical results, proofs, or theorems.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: we rigorously outlined the dataset, training method, implementation detail in
the Result section and will enable reproducibility of results through open-source code upon
acceptance.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Data of the results is provided at https://quentin-leboutet.github.
io/MIDGArD/. Opensource code will be provided upon acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: we rigorously outlined the dataset, training method, implementation detail in
the Result section and will enable reproducibility of results through open-source code upon
acceptance.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: no experiments that produce error bars or similar.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: yes, details are provided in the implementation details section of results.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: we follow the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: no societal impact of the work is apparent.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
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Answer: [NA]
Justification: the paper poses no such risks.
Guidelines:
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that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: we produced all codes and are original owner of assets. For third-party code,
we explicitely cite and mark the dependency to those and credit the authors accordingly.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provided detailed explanation in the paper, will have a documentation in
the open-source code, and provide a detailed Supplementary Materials pdf with additional
info.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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