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ABSTRACT

Recent advances in large language models (LLMs) have shown that foundation
models (FMs) can learn highly complex representations of sequences that can be
used for downstream generative and discriminative tasks such as text generation
and classification. While most FMs focus on text, recent work has shown FMs
can be learnt for sequential medical data, e.g. ICD-10 diagnosis codes associated
with specific patient visits. These FMs demonstrate improved performance on
downstream discriminative disease classification tasks. In this paper, we introduce
CHIRon, a decoder-only generative FM for sequential medical data. CHIRon
utilizes causal masking during pre-training, enabling generative applications, and
incorporates a number of architectural improvements and support for additional
medical data types (diagnoses, procedures, medications, lab results, place of ser-
vice, demographics). We introduce a new pre-training objective function that
incorporates tasks for predicting place of service and patient’s age at encounter in
addition to the next medical code prediction task. To incorporate lab results into
the model, we develop and evaluate several methods for embedding the continuous
lab values. Furthermore, we introduce a causal visit-based masking approach for
training CHIRon based on patient visits. We show empirically that CHIRon can be
used to generate realistic sequential medical data and also outperforms state of the
art FMs for sequential medical data on disease classification tasks.

1 INTRODUCTION

Foundation models (FMs) offer many improvements over traditional machine learning (ML) models,
including better predictive performance, requiring less labeled data, and simplifying model deploy-
ment (Wornow et al., 2023). However, most prior work using FMs in the healthcare setting focuses on
text such as clinical notes (Huang et al., 2019) or biomedical text (Lee et al., 2020), despite significant
amounts of healthcare data such as administrative claims or electronic health records (EHRs) being
stored in structured databases.

Several papers have developed FMs such as BERT (Devlin et al., 2019) using structured sequential
medical data (Rasmy et al., 2021; Li et al., 2020), such as ICD-10 diagnosis codes associated with
specific patient visits, and have shown promising improvements over traditional ML methods in
downstream prediction tasks such as disease classification. These BERT-based FMs, however, cannot
easily be used for generative purposes (Patel et al., 2023) – for example, generating synthetic visit
sequences to enable privacy-preserving data sharing applications or augmenting existing patient
data (Zhang et al., 2022). Given the recent success of generative FMs such as GPT-style models
for text (Radford et al., a;b; Brown et al., 2020), we propose a novel generative FM for structured
sequential patient data and investigate its performance on both generative and discriminative tasks.

In this work, we introduce CHIRon (Contextualized Healthcare Information RepresentatiON), a
decoder-only generative FM trained on structured sequential medical data (rather than text). CHI-
Ron includes a number of architectural improvements, support for additional data types, and a new
objective function for pre-training that incorporates additional tasks beyond next code prediction.
Unlike previous transformer-based models for sequential medical data that have focused specifically
on diagnosis codes, we expand to include procedure codes, medications, lab results, and patient de-
mographics for additional context. We also implement multiple methods for incorporating continuous
lab results into our model. By adding extra task heads to the model for predicting the place-of-service
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and age-at-encounter information, we enabled CHIRon to simultaneously generate these sequences
alongside the medical code sequences. Furthermore, we experiment with a new visit-based masking
approach (instead of the traditional causal masking approach) where only codes from the previous and
current visits can be used for predicting the codes in the next visit. Fine-tuning CHIRon for disease
onset and progression classification tasks shows it outperforms existing state-of-the-art discrimina-
tive FMs for sequential medical data. CHIRon also demonstrates strong generative capabilities, as
evaluated using several quantitative metrics, proving generative FMs are powerful for generating and
classifying sequential medical data.

Summary of contributions:

• We introduce CHIRon, a decoder-only generative FM trained on structured sequential
medical data. In addition to diagnosis codes, we include procedure codes, medications, lab
results, and patient demographics.

• We introduce a novel embedding for place-of-service information that adds useful context
to each medical code.

• We develop methods for handling continuous lab results including using a shared decile
embeddings as well as scaling the lab code embeddings using the continuous values.

• We incorporate additional task heads in the model architecture for predicting place-of-service
and age-at-encounter information during pretraining. We empirically show that this new
objective improves the performance of the model for sequential code generation.

• We propose a novel visit-based causal masking apprach that ensures only codes from the
current or previous visits are used to predict codes in the next visit.

• Fine-tuning our FM shows improvements over state-of-the-art models on downstream
disease onset and progression classification tasks.

• We demonstrate CHIRon’s generative capabilities for creating realistic patient records. We
are able to simultaneously generate important medical context such as place-of-service
and age-at-encounter information to augment the medical code sequence. We evaluate the
generative performance using metrics such as the BERTScore and the ROUGE score.

2 RELATED WORK

Language model pretraining LLM pre-training has shown remarkable success in a variety of
downstream tasks. These models efficiently use in-context information and eliminate the need for
task-specific architectures. One of the most widely used models, BERT (Devlin et al., 2019), is built
on the Transformer (Vaswani et al., 2017) architecture and uses bidirectional context for learning
representations. The core training objective employed by BERT is masked language modeling which
encourages the model to better understand word relationships. GPT-style models (Radford et al.,
a;b; Brown et al., 2020) similarly uses a Transformer architecture but emphasize auto-regressive
generation, which is useful in synthetic data generation. It scales up to billions of parameters and
can perform both conditional and unconditional text generation. Like BERT, it can also be adapted
for different NLP tasks by fine-tuning. Recent works have incorporated BERT and GPT for NLP
tasks using medical text such as Lee et al. (2020); Luo et al. (2022); Gu et al. (2021); Alsentzer et al.
(2019); Huang et al. (2019); Yang et al. (2022).

Representation learning frameworks in the clinical domain One successful model that lever-
aged the temporal dependencies in clinical events is RETAIN (Choi et al., 2016), which is an
RNN-based model that uses a two-level neural attention mechanism for learning visit representations.
Models such as BEHRT (Li et al., 2020) and G-BERT (Shang et al., 2019) have attempted to employ
contextualized pre-trained embeddings in the clinical domain. The former developed a model for
diagnosis code prediction in different time windows and the latter leveraged graph neural networks
for medication code prediction using a single-visit-level dataset. One of the most relevant works to
ours is Med-BERT (Rasmy et al., 2021). The authors train a BERT model to learn contextualized
diagnosis code embeddings to use for downstream disease prediction tasks. They utilize visit and/or
positional embeddings in addition to the codes embeddings in their architecture. While BERT models
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are able to effectively learn contextualized code representations, they are not explicitly optimized for
generation tasks like GPT-style transformer models.

CLMBR (Steinberg et al., 2021) proposed an auto-regressive Transformer-based (and also a GRU-
based) foundation model for EHR data which is pre-trained to predict a patient’s next day codes. The
model is then used to generate feature representations for downstream tasks using a logistic regression
head with the main purpose of comparing the in- and out-of-distribution performance to models
trained on count-based representations. One important distinction between the CLMBR model and
CHIRon is that the CLMBR model is applied to regularly-sampled data over a relatively short time
duration (e.g., at the granularity of a day during inpatient/ICU hospital stays) of patient history,
whereas CHIRon (and other methods such as Med-BERT) operate on irregularly-sampled data over
much longer time durations (e.g., encounter dates distributed throughout many months/years).

Recently, Yang et al. (2023) introduced TransformEHR, a generative encoder-decoder model that
predicts patients’ next visit diagnosis codes. Similar to our work, TransformEHR incorporates
temporal embeddings along with visit embeddings in their architecture. While the TransformEHR
model uses only diagnosis codes, our framework integrates additional medical data types such as
procedure codes and medications, continuous lab results, and contextual information such as place of
service. We also include extra tasks in our pre-training objective for predicting the place of service
and patient’s age at encounter. In this paper, we adapt the framework of GPT-style decoder-only
models and pre-train our model on structured health records (rather than clinical text).

3 METHODS

For our experiments we utilized a large healthcare institution’s de-identified data1 which contains
structured administrative claims and clinical data such as medical and pharmacy claims, lab results,
demographics, and enrollment records for 44 million patients. The protocol and supporting materials
representing this work were prospectively submitted to the [REDACTED] for IRB review and were
approved. We extracted demographics (age and sex), diagnosis codes, procedure codes, medications,
and lab results, along with their corresponding encounter dates and place-of-service information, to
build chronologically ordered lists of medical codes for each individual. See Appendix A for more
details.
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Figure 1: Diagram of embeddings used in CHIRon model.

CHIRon pre-training CHIRon is a GPT-style (Radford et al., a;b) model, where each medical
code is represented as an individual token. We augment the GPT architecture with several additional
embeddings to add healthcare-specific context to each code. In addition to the standard positional
embeddings, we include visit embeddings (similar to Rasmy et al. (2021); Li et al. (2020)), age
embeddings (similar to Li et al. (2020)), and place-of-service embeddings, a novel data type. Place of
service specifies where the service (code) took place, including these locations: outpatient, inpatient,

1To comply with the double-blind submission policy we withhold the name of the institution. We will reveal
it should the paper be accepted.
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emergency, custodial, independent lab, home (or unknown). This information adds important context
– e.g., a diagnosis code for chest pain should have a different representation if it occurred in a primary
care office versus an emergency room setting. Each of these embeddings are element-wise added to
the code embeddings before being used as input to the model. Figure 1 presents a comprehensive
diagram of all the embeddings used in the model. We also prepend two tokens to every code sequence:
one token indicating the sex of the patient and one token indicating the patient’s age (binned into
5-year groups – e.g., 20-24, 25-29, etc.). The model was pre-trained using the causal language
modeling objective as described in Radford et al. (b).

3.1 PREPROCESSING

3.1.1 TOKENIZATION:

We built a tokenizer similar to Rasmy et al. (2021), where each token corresponds to a unique
medical code, using the Combined Dataset. Rather than use a vocabulary that included all 60,817
unique medical codes in the combined dataset, we selected codes that occurred in at least 1/1000
individuals, given that many codes are rare and only occur in a small subset of patients. This
prevalence-based filtering left us with a tokenizer vocabulary of 7,922 unique medical codes. Any
medical code that did not pass this prevalence-based threshold was not discarded but instead renamed
as a “rare code” that was specific to the type of medical code (e.g., “DIAG ICD10 RARE CODE” or
“PROC CPT4 RARE CODE”).

3.1.2 LAB RESULTS:

Previous methods likely ignored lab results because they are noisy and need to be converted into
discrete tokens. However, lab results contain specific and objective information about patient state,
and can be used to more accurately phenotype patients for disease labeling. To incorporate the
continuous lab results into our modeling framework, we explored 3 different tokenization methods:

Tokenization per lab code per decile bin: In this approach, we select only LOINC codes with
at least 1000 observations to remove rare codes. We then compute deciles for each LOINC code
and drop LOINC codes where the max value for third decile is 0, to remove labs where a significant
number of results were zero-filled by an upstream data management process as the result data was
unavailable. We then fit an exponential function using the maximum values from first 9 deciles and
use this function to compute the 10th decile. Finally we drop observations (tokens) which are more
than 3⇥ the predicted 10th decile. Therefore, each lab result token used as input to our model denotes
the decile of the lab result for that specific test. For example, for a “Hemoglobin A1c/Hemoglobin -
total in Blood” lab result (LOINC 4548-4) that fell into the 7th decile of the population distribution,
we would denote the lab result token as “LABS LOINC 4548-4-7” where the decile is added as a
suffix to the token ID. Similar to the deciles, we experimented with choosing different percentile
ranges as bins for the lab tokens. Table 15 shows the bins corresponding to each percentile range
based on the number of observed records for each lab. The purpose of this experiment was to create
more meaningful ranges for each bin as extreme high/low lab results could potentially help pick up
on certain conditions.

Tokenization per lab code per bin with embedding scaling: Inspired by Golkar et al. (2023), we
propose a method for handling continuous lab values by scaling the lab code embeddings. In this
approach, in addition to the lab token (including the bin), we provide the model with the normalized
lab values as an additional input vector. The continuous lab values are min-max normalized based on
the low and high end values of the corresponding bin and then mapped to the interval [1,2]. Each
lab token embedding is then scaled element-wise by theses normalized values and used as input to
the pre-training task. In addition to the LM head in the model, we add a new head that predicts the
continuous value for each lab token and calculates the mean squared error (MSE) loss. The combined
loss is then optimized during the pre-training task.

Tokenization per lab code and with shared decile embeddings: We developed another method
to reduce the vocabulary size for tokenizing continuous values such as lab results using separate decile
embeddings. In this approach, we use two separate sets of embeddings: each lab code is represented
by a single token, and each individual decile is represented by a single token. The decile embeddings
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are shared across all lab codes. The decile bins are calculated based on the splits computed for the
pre-training set (similar to the per-lab-code per-decile bin tokenization scheme) and are given to the
model as a separate input vector. The final embedding used by the model for each lab code is the
sum of the lab code embedding and the decile bin embedding. Similar to the LM head, we add an
additional head to the FM to predict the decile bin token whenever the next predicted code is a lab
token. The model is optimized to minimize the sum of original LM loss and the cross-entropy loss
for predicting the decile token. A visualization of all three methods is presented in Figure 8 in the
appendix.

3.2 MODEL DEVELOPMENT

CHIRon is a GPT-based model and we adopt a similar architecture and pre-training techniques as
GPT-2 and build on top of them.

Input Representation: A patient record consists of a series of encounters (i.e. visits), each
containing several medical code tokens including diagnosis, procedure, and medication codes as
well as tokenized lab results as explained above. Let xc = (c11, · · · , c1n1 , · · · , cK1, · · · , cKnK ) be
the code sequence for patient X with K total visits where cij corresponds to the j-th code (token)
that occurred in visit i, i 2 [K], j 2 [ni] where ni is the total number of codes for visit i. For each
encounter, the information about its place of service (one of a total of 7 categories), its timestamp
which represents age of the patient in months at the time of encounter, and the visit number in clinical
history is available as well. Given the total code sequence has N codes, let the following denote the
context information sequences:

place of service: xs = (s1, · · · , s1| {z }
n1 count

, · · · , sK , · · · , sK| {z }
nK count

), age: xa = (a1, · · · , aN ),

visit number: xv = (1, · · · , 1| {z }
n1 count

, · · · ,K, · · · ,K| {z }
nK count

), position: xp = (1, · · · , N),

where xp corresponds to the position of codes in the sequence. Therefore, we represent a patient
X = {xc,xs,xv,xa,xp} as a collection of these sequences describing the medical record. Note
that the record is organized chronologically with random ordering of the codes inside a visit. The
tokenized code sequence is prepended with demographic tokens including a token ca for the patient
age (in years, binned into 5-year age groups – e.g., 20-24, 25-29, etc.) of the patient and a token cs
for patient sex (male or female): xc = (ca, cs, c11, . . . , cKnK ). Other context information sequences
are also padded at the beginning accordingly. We utilize five different embedding layers to construct
the final input sequence to the transformer model: (i) code embeddings Wc 2 R—vocab—⇥m, (ii) visit
embeddings Wv 2 Rmax visit size⇥m, (iii) place-of-service embeddings Ws 2 R|pos|⇥m, (iv) time/age
embeddings Wa 2 Rmax age⇥m and finally, (v) standard positional embeddings Wp 2 Rmax seq length⇥m,
where m is the embedding size. Each element of the padded xc,xs,xv,xa, and xp sequences are
then one-hot encoded to the desired dimensions —vocab—, —pos—, max visit size, max age, max
seq length, and passed through the embedding layers. The output of the embedding layers are then
added up together to construct the input to the CHIRon transformer model.

Visit-based causal masking: In addition to the traditional causal masking for training CHIRon,
we introduce a masking approach based on patient’s visits. In this approach, each code in the current
visit can only attend to the codes that occurred in the visits prior to the current visit. The attention
masks in this case will be custom 2-D matrices created based on the visit number vector. Figure 9 in
the appendix compares a regular causal attention mask and visit-based attention mask for a given
example of a visit number sequence.

Additional task heads for predicting place-of-service and age-at-encounter: By adding two
extra task heads to the model we enable prediction of next age-at-encounter and place-of-service for
each token. The final loss is a weighted sum of the CE loss for code prediction and the CE losses for
these extra heads. We used fixed weighting based on initial loss value to balance these losses during
pretraining. The pretrained CHIRon model with the extra heads is referred to as CHIRon+ in the rest
of this paper.
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Architecture and Hyperparameters for Pre-Training (PT): We implemented the CHIRon archi-
tecture using the HuggingFace transformers (Wolf et al., 2020) package (v.4.25.1) and Pytorch (Paszke
et al., 2019) (v2.0.1). The model contains a total of 6,392,832 parameters. For the transformer ar-
chitecture of the CHIRon we used 6 layers, 8 heads, and embedding dimensionality of 256. The
maximum sequence length is set to 512 and the inner feed forward layers have a dimension of 512.
We also used the default attention dropout ratio and initializer range. We used the AdamWeight decay
optimizer (Loshchilov & Hutter, 2019) with coefficient 0.01 and trained the model for 5e6 steps with
early stopping of patience 3 using 2 Nvidia Tesla V100 GPUs.

Architecture and Hyperparameters for Fine-Tuning (FT): In fine-tuning, the code sequence is
appended with a [CLS] token to use for classification. Our disease onset classification tasks are binary
classification and we put a logistic FFL prediction head on top of the final layer of CHIRon. The
fine-tuning transformer architecture is similar to the pretrain model. Starting from the pre-trained
model, we train a separate model for each condition for 20 epochs with early stopping of patience 3
and batch size 64 using a single Nvidia Tesla V100 GPU.

3.3 DISEASE CLASSIFICATION

The pre-trained CHIRon model is fine-tuned for five separate binary classification tasks: predicting
disease onset for chronic kidney disease (CKD), chronic obstructive pulmonary disease (COPD),
dementia, diabetes, and predicting CKD disease progression (CKD-P, from stage 1-3a to stage 3b+).
Cohort creation details can be found in Appendix A. Classification cohort sizes ranged from 382k
(CKD-P) to 3.3M (diabetes) individuals (see Appendix Table 4). To fine-tune the model, we append a
classification (CLS) token to the code sequence and add a feed-forward neural network layer on top
of the final layer’s classification token embedding. During fine-tuning, we allow the entire model to
be updated.

For comparison, we used state-of-the-art and other common classification methods: gradient-boosted
trees (GBT), RETAIN (Choi et al., 2017), Med-BERT (Rasmy et al., 2021), and TransformEHR (Yang
et al., 2023). While Med-BERT and TransformEHR originally only used diagnosis codes, we included
procedure codes and medications as input to the Med-BERT and TransformEHR model (plus lab
codes for TransformEHR) for a more fair comparison, and denote this with “Med-BERT*” and
“TransformEHR*” (see Appendix C for Med-BERT results using only diagnosis codes).

3.4 SEQUENTIAL MEDICAL DATA GENERATION

We used the HuggingFace transformers (Wolf et al., 2020) model.generate() function for auto-
regressive generation of new codes with the base CHIRon model. We used beam search
with num beams = 5 and do sample = True for generation and suppressed the rare codes
“[CODE TYPE RARE CODE]”. The generation of new codes takes place one code at a time, i.e. the
generated code at time t is used in the sequence for the generation of the code at time t+ 1. We also
make use of the other additional context information in the generation process and pad them at each
time step: place of service is padded with the unknown token and the other sequences such as visit
number and patient age at encounter are padded with their most recent value.

With the CHIRon+ model, we are able to also generate the next place-of-service and age-at-encounter
alongside the medical code. We use a modified version of the model.generate() for the CHIRon+ that
outputs the generated place-of-service and age-at-encounter information and use them as additional
context for generating the future codes. In this case, the visit number sequence is padded with its
most recent value unless the generated age-at-encounter value changes.

To estimate the generative performance of CHIRon, we use a truncation procedure to remove medical
codes from the end of a patient record, and evaluate how similar the generated codes are to the
truncated codes. Specifically, we filter the pre-training validation set to select patients who have
at least 50 codes. We truncate the last (most recent) T codes from each record, and these T codes
are used as our reference (ground truth) code sequences. Using the truncated records as input to
the model, the CHIRon model generates T additional codes for each record. We then compare the
reference code sequences with the generated code sequences to determine model performance for
this generative task. We empirically show that adding the additional task heads for place-of-services
and age-at-encounter prediction during pretraining improves the generation capabilities of CHIRon.
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Figure 2: Classification performance in terms of (a) area under the ROC curve (AUROC) and (b)
average precision (AP, or area under the precision-recall (PR) curve) for each model across all disease
outcomes. Error bars indicate bootstrapped 95% confidence intervals.

4 EXPERIMENTS

4.1 DISEASE CLASSIFICATION

The pre-trained CHIRon model was fine-tuned for five binary classification tasks and compared with
the baseline models. Figures 2 compare area under the ROC curve (AUROC) and average precision
(AP) metrics for all models across the five tasks. In four out of five classification tasks, the GBT
models were the strongest baseline, consistently outperforming both RETAIN and Med-BERT* in
terms of both AUROC and AP by a statistically significant difference. The fine-tuned CHIRon model
achieved the highest AUROC and AP in four of the five classification tasks (CKD, CKD-P, COPD,
diabetes) by a statistically significant margin, and did as well as the GBT model in the fifth task
(dementia). See Appendix Tables 5, 6, 7, 8 and 9 for numeric results.

4.2 EMBEDDING CONTINUOUS LAB RESULTS

We evaluated several methods for embedding continuous lab results into the CHIRon model: (1)
tokenization per lab code per decile/percentile-range bin, (2) tokenization per lab code per bin
with embedding scaling, and (3) tokenization per lab code and with shared decile embeddings, and
measured their effect on the downstream disease onset classification tasks. In Figure 3 we show
the AUROC and the AP for each lab embedding method across all disease outcomes. The results
show that (1) across all conditions the decile embedding method outperformed the embedding scaling
and the shared decile embedding method. In 4 out of 5 conditions this is statistically significant.
(2) Using the scaled embeddings for each lab token indeed resulted in improved performance over
these tasks, however this was only statistically significant for CKD, diabetes and COPD. This is
particularly promising given that in the CKD and diabetes outcomes, lab results are expected to be a
strong predictor of disease onset. (3) Using percentile range bins given in Table 15 did not improve
the performance of the model on these downstream classification tasks. And finally, (4) adding a
shared decile embedding vector to the original lab code embedding without partitioning for each
decile/percentile-range bin had the lowest performance across all conditions. Though for dementia
this was not significant compared to two of the baselines. See Appendix Tables 16, 17, 18, 19 and 20
for numeric results.

4.3 ADDITIONAL TASK HEADS AND VISIT-BASED CAUSAL MASKING

We pre-trained the CHIRon base model using the visit-based causal masking approach described in
Sec 3.2 with our pre-training cohort and fine-tuned the model using our five disease classification
cohorts. We also did the same experiment with CHIRon+ model – the base model with additional task
heads for predicting place-of-service and age-at-encounter information. The results are presented
in Figure 4. Interestingly, using visit-based attention masking deteriorated the performance of the
fine-tuned models on all of the conditions. This empirically indicates that even though having access
to the codes that previously occurred in the current visit could be considered a form of leakage during

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: Classification performance in terms of (a) area under the ROC curve (AUROC) and (b)
average precision (AP, or area under the precision-recall (PR) curve) for each model across all disease
outcomes. Error bars indicate bootstrapped 95% confidence intervals.

the pre-training, it helps in learning better representations. It is important to note that since no future
information is used by the “[CLS]” token, this does not result in leakage on the finetuning tasks
used for evaluation. The results on the performance of the CHIRon+ model shows no statistically
significant decline over the base CHIRon other than the CKD models. However, as we will see later,
the CHIRon+ model empirically performs better in conditional sequential code generation tasks. We
also provide the performance results for CHIRon+ using the scaled embeddings for lab codes in
Figure 10, Appendix C. See Appendix Tables 21, 22, 23, 24 and 25 for numeric results.

Figure 4: Classification performance in terms of (a) area under the ROC curve (AUROC) and (b)
average precision (AP, or area under the precision-recall (PR) curve) for each model across all disease
outcomes. Error bars indicate bootstrapped 95% confidence intervals.

4.4 SEQUENTIAL MEDICAL DATA GENERATION

Just as generative models for text can be used to generate synthetic text sequences based on an initial
prompt, we can similarly generate synthetic sequential medical data. For a given medical record, we
can use the generative capabilities of the pre-trained CHIRon model to sample additional synthetic
patient data.

To quantitatively evaluate the generative performance, we adopt two established metrics from the NLP
community: the ROUGE (Lin, 2004) score and the BERTScore (Zhang et al., 2020). The ROUGE-1
score measures the overlap of unigrams (single words/codes) between the reference sequence and
the generated sequence. The BERTScore is a method for computing the similarity between two
sequences as the mean cosine similarity between contextualized embeddings from the reference
sequence and the generated sequences. Compared to the ROUGE score, the BERTScore penalizes
a model less for generating codes that are very similar terms of medical taxonomy but not exact
matches – as an example, if the model generates an ICD code “S92.812A” for a fracture of the left
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Figure 5: BERTScore and ROUGE metrics for (a, left) CHIRon and (b, right) CHIRon+ as a
function of the number of truncated/generated codes. Error bars indicate bootstrapped 95% confidence
intervals.

foot versus “S92.901A” for a fracture of the right foot. Using these two metrics allows us to quantify
how well the model can generate medical codes both exactly and semantically.

In Figure 5, we show ROUGE scores and BERTScore metrics for CHIRon and CHIRon+ as we vary
the number of truncated codes. To calculate the metrics in this evaluation, we used 10,000 patient
records and the same truncated sequences were put into both models at each time step. Notably, for
both models the code generation is more precise than it is sensitive. We find that the accuracy of the
generated codes decreases as we truncate more codes from the record. This is expected – as more
codes are truncated, more context is removed. In general, it is also more difficult to predict codes that
occur farther in the future. Overall, CHIRon+ has both higher BERTScore and higher ROUGE-1 score
across the provided range of truncated codes compared to the base CHIRon. Numeric performance
metrics can be found in Appendix Tables 26 and 27.

As the CHIRon+ model also enables predicting place-of-service and age-at-encounter alongside the
codes, we evaluated the performance of the model on generating the sequences of place-of-service
and age-at-encounter in a similar manner. For more details see Appendix D.

Figure 6 shows a BERTScore cosine similarity heatmap comparing contextualized embeddings from
true and generated codes for an example patient using the CHIRon. BERTScore precision searches
for the highest similarity in each row, whereas BERTScore recall searches for the highest similarity
in each column. As expected, the similarity is highest when the codes are an exact match. However,
because the codes are contextualized, the same code at two different positions in the sequence can
have different embeddings (and therefore different similarity to the query code).

5 DISCUSSION

In this work we developed CHIRon and showed that given sequential medical data, the model is able
to effectively generate realistic synthetic sequences of additional medical codes. Additionally, we
found that fine-tuning this model for disease onset prediction achieves the best classification results
in four of the five outcomes compared to four strong baseline methods.

CHIRon as a foundation model: We consider CHIRon a foundation model because it provides
a robust base that generalizes to a diverse set of disease classififcation tasks without any task-
specific modifications. It achieves this by (i) having state-of-the-art performance on 5 distinct
disease onset/prediction tasks and (ii) offers realistic generation capabilities. We note that previous
foundation models for structured sequential medical data, e.g. Med-BERT, either only satisfy (i), or
they are evaluated on fewer tasks (2 vs. 5). While generalization to many different datasets may be
an expectation for some text-based foundation models, previous foundation models for structured

9
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sequential medical data were not evaluated using many such datasets, as access to high quality large
datasets of structured sequential medical data is typically limited. For example, both CHIRon and
Med-BERT are evaluated using two such datasets. We note, however, that the two datasets CHIRon is
trained on represent the largest amount of patient data used to train a foundation model for structured
sequential medical data to our knowledge.

Figure 6: BERTScore cosine similarity heatmap
comparing contextualized embeddings for T = 10
true (x-axis) and predicted (y-axis) codes from an
example patient.

Use of large private clinical/claims datasets

rather than well-known public MIMIC-IV

dataset: While we agree MIMIC-IV is a well-
known public resource for high quality patient
data from ICU stays, both CHIRon and related
foundational models focus on more general lon-
gitudinal healthcare data, not specific to ICU
stays. Since, to our knowledge, there are no
significant, high quality public sources of such
data, both CHIRon and related approaches like
Med-BERT use large private datasets. While we
agree there is a disadvantage from these datasets
not being public, we believe they are a better
data source to use for pre-training since (i) they
are much larger than MIMIC-IV, (ii) they offer
greater diversity in the type of healthcare data
included since it is not only from ICU stays,
and (iii) they are more consistent with the data
used originally used to evaluate the baselines we
compare CHIRon against.

CHIRon generation capabilities and full syn-

thetic data generation: Our experiments show
that CHIRon demonstrates strong generative per-
formance when used for conditional generation of additional codes given some existing patient history.
We believe this capability has use cases in precision medicine since these additional codes could
signal possible future clinical events. We believe unconditional generation of full synthetic patient
records is another interesting but different use case which requires additional research to ensure the
generated sequences represent the full diversity of patients included in the training set. One approach
we are considering is leveraging the CHIRon pretrained model with other unconditional synthetic
data generation approaches like diffusion models, but this alone is its own research topic.

We developed and evaluated several methods for embedding continuous lab values into the model.
Incorporating the continuous values into FMs typically poses a significant challenge due to the
variability in both scale and distribution of different lab tests. This makes it especially difficult to
also standardize the values across different lab tests for modeling. Previous work such as Golkar
et al. (2023) saw better improvements by scaling the embeddings. However, the dataset used in that
work was more balanced in terms of having numeric vs non-numeric tokens. While we specifically
focused on lab results as our continuous data type, this problem is more general, and this method
can be extended to other continuous data types such as vital signs or medication dosage. By adding
extra tasks for predicting the place-of-service and age-at-encounter information alongside the next
code, we improved the generative performance of CHIRon. Our experiments with the visit-based
attention masking approach show that having access to previously predicted codes inside each visit
can improve the learned representations during pre-training.

We note several limitations. We trained and validated the models on data from a single institution; in
future work, we hope to validate model generalization to external datasets for both the generation
and classification tasks. Additionally, due to the expensive nature of training large FMs, we were not
able to conduct extensive hyperparameter tuning – results may improve with further investigation.
Future work can explore the combination of synthetic sequential patient data generation with the
classification task: by generating additional codes and better estimating a patient’s trajectory, an
augmented patient record may improve downstream classification performance.
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