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Abstract 1 

Large language models (LLMs) exhibit 2 

impressive capabilities but struggle with 3 

reasoning errors due to hallucinations and 4 

flawed logic. To investigate their internal 5 

representations of reasoning, we introduce 6 

ArrangementPuzzle, a novel puzzle 7 

dataset with structured solutions and 8 

automated stepwise correctness 9 

verification. We trained a classifier model 10 

on LLM activations on this dataset and 11 

found that it achieved over 80% accuracy 12 

in predicting reasoning correctness, 13 

implying that LLMs internally distinguish 14 

between correct and incorrect reasoning 15 

steps, with the strongest representations in 16 

middle-late Transformer layers. Further 17 

analysis reveals that LLMs encode abstract 18 

reasoning concepts within the middle 19 

activation layers of the transformer 20 

architecture, distinguishing logical from 21 

semantic equivalence. These findings 22 

provide insights into LLM reasoning 23 

mechanisms and contribute to improving 24 

AI reliability and interpretability, thereby 25 

offering the possibility to manipulate and 26 

refine LLM reasoning. 27 

1 Introduction 28 

Recently, large language models (LLMs) based on 29 

the Transformer architecture (Vaswani et al., 2017) 30 

have demonstrated competence across a wide 31 

range of domains, from reading comprehension to 32 

coding to mathematics. However, in domains such 33 

as these, LLMs can often generate incorrect 34 

responses due to hallucinations and incorrect 35 

reasoning (Rawte et al., 2023). Large reasoning 36 

models (LRMs) explicitly trained to produce 37 

accurate chains of thought such as o1 (OpenAI et 38 

al., 2024) and DeepSeek-R1 (DeepSeek-AI et al., 39 

2025) promise to increase the effectiveness of 40 

LLM reasoning. Even so, hallucinations and 41 

reasoning inaccuracies remain, preventing these 42 

models from exceling at more complex, multi-step 43 

tasks such as PlanBench (Valmeekam et al., 2023; 44 

Valmeekam et al., 2024) designed to evaluate the 45 

planning and reasoning capabilities of LLMs. 46 

As LLM adoption increases and they begin to 47 

be used in increasingly critical applications, it 48 

becomes more necessary to detect and prevent 49 

such mistakes. The field of Explainable AI  50 

(reviewed in Ferrando et al., 2024) seeks to tackle 51 

this problem by trying to understand the inner 52 

workings of LLMs, and using that information to 53 

gain insight into how and why they go wrong. 54 

For example, recent work suggests that LLMs 55 

understand the difference between truth and 56 

falsehood in factual statements (Azaria and 57 

Mitchell, 2023) internally. Specifically, the LLM 58 

contains representations of truthfulness that are 59 

strongest in its intermediate layers. Probing these 60 

layers for this representation can outperform 61 

directly prompting the LLM about the truthfulness 62 

of a statement (Liu et al., 2023). Interestingly, 63 

larger LLMs appear to have more capacity for 64 

abstraction, as their representations of truthfulness 65 

generalize better across different data modalities 66 

(Marks and Tegmark, 2024). Furthermore, 67 

understanding how truthfulness and other similar 68 

concepts are represented in the activations of 69 

LLMs can allow us to manipulate those 70 

representations to affect LLM behavior – for 71 

example, causing it to be more honest or less angry 72 

(Zou et al., 2023). 73 

The recent advances in reasoning LLMs pose 74 

the analogous questions for reasoning: do LLMs 75 

have an internal concept of reasoning, and if so 76 

how much abstraction are they capable of in 77 

reasoning tasks? These are  challenging questions 78 

to address with most publicly available reasoning 79 

datasets such as those used to train LRMs, which 80 
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typically contain a variety of solutions with 81 

different structures that makes analysis difficult. 82 

In this paper, we introduce ArrangementPuzzle, 83 

a dataset suitable for analyzing LLM internal 84 

representations of reasoning. We use it to discover 85 

that LLMs have an innate understanding of when 86 

their reasoning steps are accurate, and they also 87 

have an internal representation of abstraction that 88 

separates logical from semantic equivalence.  89 

2 ArrangementPuzzle Dataset 90 

To test LLM reasoning representations, we 91 

constructed ArrangementPuzzle, a customizable 92 

puzzle dataset. This dataset and the code for 93 

generating it are publicly available in our GitHub 94 

repository1. Each puzzle contains some clues as to 95 

how a certain number of people are arranged, and 96 

what colors they are wearing. The LLM (Llama-97 

3.1-8B-Instruct in our case) is then tasked with 98 

determining the full arrangement. An example 99 

puzzle is shown on the left of Figure 1. 100 

The puzzles are guaranteed to have a unique 101 

solution given the available clues, and they are 102 

guaranteed to not have any redundant clues (that 103 

is, removing any single clue would result in a non-104 

unique solution). Inspired by (Mirzadeh et al., 105 

2024) and (Jiang et al., 2024), the puzzles 106 

 
1 Link removed to preserve anonymity. 

randomize the exact names and colors used each 107 

time, as well as the correct arrangement and clues 108 

given. Our results differ from previous work in 109 

that our dataset allows statement-level (rather than 110 

solution-level) accuracy checking, and it contains 111 

a deterministic solution generator capable of 112 

generating full reasoning traces as it makes logical 113 

deductions to solve the puzzle  (see Figure 5 for 114 

examples and Solution Generator for more 115 

details). Additionally, our focus is on using LLM 116 

activations derived from our dataset to understand 117 

LLM internal representations of reasoning, rather 118 

than performance benchmarking. 119 

2.1 Reasoning Dataset 120 

To this end, we evaluate the LLM on 10,000 121 

prompts from puzzles with 𝑛 = 2  people, of 122 

which it gets 67.6% correct. We save its 123 

activations for each generated token in each puzzle 124 

to disk. Simultaneously, we use a regular 125 

expression-based parser (also available on 126 

GitHub) to extract reasoning statements from the 127 

LLM’s text output as it constructs partial claims 128 

about the correct arrangement (for example, 129 

Alice is not sitting on the right). This 130 

works because our prompting approach 131 

encourages the LLM to use very specific phrasing 132 

 
Figure 1: Diagram of how stepwise verification of LLM reasoning is used to train a classifier on the LLM’s 
activations over those steps. The classifier is trained to predict whether a particular reasoning step is accurate. 
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for its reasoning in line with the phrasing of the 133 

solution generator (see LLM Prompting).  134 

Once the parser has extracted such statements, 135 

it evaluates them for correctness against the 136 

ground-truth solution to the puzzle. This then 137 

creates a dataset of model activations labeled by 138 

whether they came from a correct reasoning step 139 

or incorrect reasoning step. 140 

3 Reasoning Classifier 141 

We then use this dataset to train a classifier model 142 

(Figure 1). The model takes as input the LLM 143 

activations at a particular set of layers (typically 1 144 

layer) at the last five token positions in a reasoning 145 

statement. It is trained to predict whether that 146 

reasoning statement was correct or incorrect. The 147 

classifier is a feedforward architecture that 148 

contains a single convolutional layer over token 149 

position followed by several fully-connected 150 

layers (more details in Classifier Architecture). It 151 

was trained on 7544 training puzzles and 1130 152 

validation puzzles for 50 epochs and evaluated on 153 

a withheld set of 1141 test puzzles. The source 154 

code is available in our GitHub repository. 155 

3.1 Isomorphic puzzles 156 

One important property of our dataset is that 157 

distinct puzzles can be generated by permuting 158 

some of the puzzle details (eg: names and colors). 159 

This, together with LLM output randomness, 160 

allow generating a variety of different data from a 161 

smaller set of distinct logic puzzles. However, to 162 

ensure our reasoning classifier learned 163 

information about actual logical reasoning and 164 

was not able to memorize patterns based on the 165 

exact clues given, we took steps to ensure that the 166 

validation and test datasets contained distinct sets 167 

of logical puzzles. To this end, we define two 168 

puzzles to be isomorphic if there exists a 169 

permutation of the clues, and substitutions of 170 

names and colors, to transform one puzzle into the 171 

other. Then we ensure our training, validation, and 172 

testing datasets contain disjoint isomorphism 173 

classes of puzzles.  174 

3.2 Classifier Performance 175 

The performance of the classifier as a function 176 

of the transformer layer it was trained on is shown 177 

in Figure 2. This high level of performance (>80% 178 

for most layers) demonstrates that the LLM does 179 

in fact contain distinct representations of correct 180 

and incorrect reasoning patterns. Additionally, 181 

these representations of reasoning appear to be 182 

strongest in the middle-late attention layers. This 183 

echoes previous findings (e.g. (Azaria and 184 

Mitchell, 2023)), which indicate that these layers 185 

also encode abstract representations of truth. We 186 

additionally ran an analysis where we trained a 187 

classifier on all of these top 5 performing layers 188 

(15, 17, 23, 25, and 30), but performance did not 189 

substantially increase (dashed red line), suggesting 190 

that these layers contain similar representations of 191 

the reasoning information. 192 

 193 

4 Reasoning Information Abstraction 194 

Since our classifier is a neural network, it does not 195 

readily yield information on how the reasoning 196 

information is stored. However, it did reveal that 197 

the reasoning representation was strongest in the 198 

middle-late attention layers. Based on this, we 199 

hypothesized that these layers might store more 200 

abstract representations of reasoning and logic. 201 

To test this hypothesis, we used our dataset to 202 

develop an abstraction test. Specifically, we 203 

algorithmically generated solutions for all our 204 

puzzles using our solution generator (see Solution 205 

Generator) and evaluated the LLM on these 206 

solutions and stored its layer activations. Notably, 207 

the LLM itself was not used to generate the text. 208 

We then used this dataset to compare the LLM’s 209 

activations across solutions. 210 

4.1 Information Abstraction in LLMs 211 

Running the solution generator on our set of 212 

10,000 puzzles, we identified two sets of puzzles 213 

of interest to studying abstraction in LLMs:  214 

1. Logically distinct puzzles with solutions 215 

that contain identical lines of text, but at 216 

different places in the logical sequence.  217 

2. Puzzles with isomorphic solutions – that is, 218 

where one solution can be transformed into 219 

Figure 2: Performance of the reasoning classifier 
trained on a specific layer evaluated on testing data. 
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the other by replacing details like names 220 

and colors. 221 

 222 

We randomly sampled 10,000 pairs of lines of 223 

text from each of these categories – that is, 224 

identical lines of text from logically distinct 225 

puzzles or corresponding but non-identical lines of 226 

text from isomorphic puzzle solutions (examples 227 

shown in Figure 3). For each pair of tokens in each 228 

pair of lines of text sampled in this way, we 229 

computed the correlation coefficient across hidden 230 

activations for a given layer between the two 231 

corresponding tokens. We then averaged this 232 

together across tokens in each line and then 233 

averaged it together across lines. We excluded 234 

pairs of lines with different numbers of tokens (eg: 235 

isomorphic lines where the token lengths of the 236 

substituted fields were not the same).  237 

 238 

In this manner, we were able to compute the 239 

“abstraction level” of each layer in the Llama 240 

model by comparing the concordance of its 241 

activations between the two conditions (Figure 4). 242 

Layers with high correlation in the “Identical” 243 

condition and low correlation in the “Isomorphic” 244 

condition, such as the 0th embedding layer, contain 245 

mostly token-specific information. On the other 246 

hand, layers where the reverse is true, such as 247 

layers 10-20, contain more abstract information 248 

about higher-level logical features of the puzzle. 249 

5 Discussion 250 

By leveraging ArrangementPuzzle, we trained a 251 

classifier that accurately distinguishes correct 252 

from incorrect reasoning steps, confirming that 253 

LLMs internally encode logical consistency. 254 

Specifically, our study demonstrates that LLMs 255 

possess internal representations of reasoning 256 

correctness, with the strongest signals emerging in 257 

middle-late Transformer layers. Additionally, our 258 

analysis of abstraction in model activations 259 

suggests that LLMs differentiate between logical 260 

and semantic equivalence. These findings 261 

contribute to a deeper understanding of LLM 262 

reasoning processes and may inform future efforts 263 

to enhance model reliability, interpretability, and 264 

trustworthiness. In particular, the fact that LLMs 265 

already encode an innate representation of 266 

reasoning may explain their ability to gain massive 267 

improvements in reasoning capability via 268 

distillation from LRMs, even without additional 269 

reinforcement learning (DeepSeek-AI et al., 2025) 270 

and even with as few as 1000 SFT samples for 271 

distillation (Muennighoff et al., 2025).  272 

 
Figure 3: Examples of puzzles with distinct logical 
structure but identical text (Puzzles 1 and 2), and 
isomorphic puzzles with identical logical structure 
but distinct text (Puzzles 1 and 3). LLM activations 
on highlighted text are compared via correlation. 
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Figure 4: Correlation of attention layer activations 
between lines of text in different puzzles. 
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6 Limitations and Ethical Concerns 273 

6.1 Limitations 274 

While our study provides insights into the internal 275 

representations of reasoning in large language 276 

models (LLMs), it has several limitations. First, 277 

our analysis is restricted to a specific class of 278 

structured logic puzzles, which may not fully 279 

capture the complexity of reasoning required in 280 

more diverse real-world scenarios. The 281 

constrained nature of our dataset, where solutions 282 

follow deterministic patterns, may not generalize 283 

to open-ended reasoning tasks that require 284 

commonsense knowledge, probabilistic inference, 285 

or multi-modal reasoning. Additionally, we did not 286 

examine whether our classifier’s success in 287 

distinguishing correct from incorrect reasoning 288 

steps generalizes to other types of reasoning 289 

problems, preventing us from making claims 290 

about the generalizability of the reasoning 291 

representations we uncovered. 292 

Another key limitation lies in our reliance on 293 

probing techniques to analyze model activations. 294 

While we demonstrate that certain Transformer 295 

layers encode representations of reasoning 296 

correctness and abstraction, our approach does not 297 

provide a mechanistic explanation of how these 298 

representations emerge or how they influence 299 

downstream reasoning behavior. Furthermore, our 300 

classifier is trained on activations from a single 301 

LLM architecture, and it remains unclear whether 302 

these findings generalize across different model 303 

families, sizes, or training paradigms. Future work 304 

should explore more diverse reasoning 305 

benchmarks, conduct broader cross-model 306 

analyses including LRM models, and develop 307 

methods for directly steering LLM reasoning 308 

based on these learned representations. 309 

7 Ethical Concerns 310 

We do not anticipate any immediate ethical impact 311 

arising from our work. However, our work does 312 

highlight the potential for LLMs to prioritize 313 

pattern-matching over accuracy, as we have 314 

demonstrated that LLMs have an internal 315 

representation of reasoning accuracy yet output 316 

incorrect reasoning anyway. Additionally, latent 317 

LLM abstraction capabilities highlighted in this 318 

work suggest that it may be relatively easy to 319 

“jailbreak” open-weight LLMs with a small 320 

amount of fine-tuning into producing potentially 321 

dangerous output. 322 

8 Use of AI Assistants 323 

We employed the use of AI assistants, primarily 324 

ChatGPT (versions 4o, o1, and o3-mini), to help 325 

generate some of the code and text of this 326 

manuscript. The authors have examined all output 327 

of these assistants to ensure accuracy. 328 
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A Solution Generator 415 

The algorithm begins by initializing all possible 416 

assignments for people, positions, and colors, 417 

effectively considering every permutation. For 418 

example, at the beginning it would initialize 419 

Andrew as being at one of positions left or 420 

right. It then iteratively applies the clues to 421 

eliminate invalid combinations, updating the sets 422 

of possibilities for each entity based on the 423 

constraints provided by the clues. Through 424 

constraint propagation, the algorithm refines 425 

these possibilities by intersecting sets and 426 

removing options when only one remains for a 427 

given entity. This iterative process continues until 428 

a unique solution is found, solving the puzzle. 429 

Importantly, every time the algorithm updates its 430 

internal possibilities, it outputs a reasoning step in 431 

text format. 432 

 433 

B LLM Prompting 434 

To prompt the LLM to solve our puzzles, we use 435 

a 3-shot approach where we append the actual 436 

puzzle (to be solved) to three example 437 

puzzle/solution pairs. These solutions were 438 

generated by our solution generator. This primes 439 

the LLM to reason through the puzzles using 440 

similar logic.  The full 3-shot prompt is available 441 

on our GitHub repository in the file 442 

prompt.txt. 443 

 444 

C Classifier Architecture 445 

Our classifier uses a convolutional layer with 128 446 

output channels and kernel size 3 that convolves 447 

over the five token positions, treating each 448 

individual activation (of the 4096 hidden units) 449 

and each layer as a different channel. These 450 

outputs are then fed through three fully-451 

connected layers with hidden sizes 256 and 128, 452 

before finally producing a single logit which is 453 

then passed through a sigmoid to produce the 454 

final prediction.  455 

 456 

 
Figure 5: Example puzzles with solutions from our deterministic solution generator. The left two puzzles are 
isomorphic to each other. 
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