Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

WATTS: INFRASTRUCTURE FOR OPEN-ENDED
LEARNING

Aaron Dharna Charlie Summers Rohin Dasari
New Jersey Institute of Technology Columbia University New York University
aadharna@gmail.com cgs2l6l@columbia.edu rd2893@nyu.edu
Julian Togelius Amy K. Hoover
New York University New Jersey Institute of Technology
julian@togelius.com ahoover@nijit.edu

ABSTRACT

This paper proposes a framework called Watts for implementing, comparing, and
recombining open-ended learning (OEL) algorithms. Motivated by modularity
and algorithmic flexibility, Watts atomizes the components of OEL systems to
promote the study of and direct comparisons between approaches. Examining
implementations of three OEL algorithms, the paper introduces the modules of
the framework. The hope is for Watts to enable benchmarking and to explore new
types of OEL algorithms. The repo is available at https://github.com/
aadharna/watts

1 INTRODUCTION

One approach to designing systems that continue to produce interesting or novel forms (i.e., open-
ended evolution or learning; (OEL)) (STANDISH, [2003} Team et al.| 2021 |Lehman & Stanley),
2011 |Schmidhuber, |2013) is co-evolving agents and the problems that they are trying to solve. The
paired open-ended trailblazer algorithm (POET) |Wang et al|(2019;[2020); Dharna et al.[(2020) co-
evolves bipedal agents and their environments, represented as terrains that the agents must learn to
navigate. Through open-ended evolution, environments are proposed that POET-agents can solve
more efficiently than agents trained through standard optimization techniques like Proximal Policy
Optimization (PPO) (Schulman et al.l, 2017). In PAIRED (Dennis et al., |2020) game-playing and
game-building agents co-optimize together creating a curriculum of 2D mazes resulting in agents
that generalize better than agents trained with Minimax or Domain Randomization techniques for
curriculum generation. [Team et al.|(2021) recently proposed some methods where a single artificial
agent can solve 37 games it has never seen before with behavior that generalizes even to held-out
tasks.

While measures aim to quantify the open-endedness of such systems (Wang et al., |2020), at a min-
imum directly comparing the algorithms first requires testing them in the same domain. Bipedal
agents in POET navigate 2-D terrains in the Hardcore BipedalWalker-v3 environment, where
stumps, gaps, and stairs create obstacles for the agent to maneuver around (Brockman et al., | 2016).
PAIRED (Dennis et al., 2020) trains agents to solve 2-D mazes from the MiniGrid suite (Chevalier-
Boisvert et al.| 2018)) and DeepMind trains agents to solve game rules and environment topologies
in their proprietary XLand Universe [Team et al. (2021). Decoupling these algorithms from their
environments is often challenging. Beyond that, research code is hard to read which can lead to
algorithmic misunderstandings (Dharna et al., [2020; Dennis et al., [2020).

Some little accidents are indeed happy (Ross, [2017); PAIRED (Dennis et al., 2020) proposes
a novel, adversarial framework for simultaneously optimizing game-playing and game-building
agents. Rather than implementing a filtering mechanism for candidate levels based on a minimal
threshold of quality (i.e., the minimal criterion), PAIRED re-conceptualizes the notion as that of the
Min player in a game of Minimax Regret (Dennis et al., [2020; Jiang et al.| [2021bfa; |Parker-Holder
et al.,[2022)) but also incorrectly casts POET as a minimax algorithm. In/Team et al.|(2021) candidate
environments are filtered based on satisfying a minimal threshold of quality similar to the minimal

https://github.com/aadharna/watts
https://github.com/aadharna/watts

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

criterion described in POET. Like PAIRED, the feedback from multiple agents are considered when
filtering candidate levels. However, code from (Team et al., [2021)) is not yet publicly available, and
could prove susceptible to reinterpretations if it were.

This paper proposes a framework called Watts for designing reproducible and comparable experi-
ments in open-ended learning. Motivated by modularity and algorithmic flexibility, Watts atomizes
the components of OEL systems to promote the study of and the direct comparisons between OEL
approaches. Grid-world learning environments can be developed and customized with the game-
engine, Griddly (Bamford et al.} [2020), designed with single and multiple agents in mind. Experi-
ments can also be run on any of the learning environments already available in Open AI Gym (Brock-
man et al.,|2016). A distributed library for agent optimization called RLIib is used for single or multi-
agent learning (Liang et al.||2018)), which facilitates the design of custom algorithms or use of any of
those currently available at https://docs.ray.io/en/latest/rllib-algorithms.
html(Liang et al., |2018). While the innovation sought after in all of these open-ended learning
paradigms can arise from cooperative or competitive interactions between agents and/or their envi-
ronments, the challenge of open-ended learning lies in designing systems that can push search away
from the boundaries of convergence toward areas of divergent intrinsic dynamics. To promote this
research direction, we have open-sourced Watts and encourage the community to contribute.

To summarize our contributions:

* We propose a modular framework - Watts - to build OEL algorithms with re-usable sub-
components.

* We implement POET and PAIRED in Watts and compare them with one another.

Section 2 details design considerations. Section 3 describes Watts’ current modules. Section 4
describes how section 3’s components can combine into OEL algorithms and how interpreting these
pieces in different lights can result in related new algorithms. Section 5 compares these algorithms
in a common suite of environments and section 6 discusses initial performance. Section 7 is results
and future directions for Watts.

2 DESIGN CONSIDERATIONS AND MOTIVATIONS

At the heart of popular frameworks like Open Al Gym is the notion that standardization enables
good science (Brockman et al., 2016)). In software engineering and in particular in reinforcement
learning, encapsulation can promote code reuse and encourage readability such that errors in these
complicated, stochastic, and distributed algorithms are quickly noticed and corrected (Liang et al.,
2018). One source of programmatic complexity in designing OEL systems is the large number of
distinct modules with interlocking parts. When (co)evolutionary systems manage large populations
of learners, they often have components for optimizing agents (Salimans et al., 2017} [Schulman
et al.l [2017)), generating environments (Khalifa et al.l [2020), evolving tasks dynamically (Team
et al.| [2021)), filtering which candidate individuals can enter the population (i.e., minimal criterion
(Brant & Stanley, 2017)), and transferring knowledge from a source learner to a target learner (Wang
et al.,[2019). Each of these components represent modules that are candidates for code reuse.

Good encapsulation can also promote good code structure, enabling a model of these algorithms as
arrangements of their basic building blocks. Designing algorithms is an inherently creative process
(Stanley, [2018)), and distilling these algorithms into their component blocks can enable combinato-
rial creativity (Boden, 2009; |Paszke et al.,[2019). Accessing multiple OEL approaches in a common
framework helps illuminate the combinations of algorithmic elements yet to be imagined. Watts
provides an abstraction that allows developers and researchers to focus on defining new modules
without worrying about the complexity of the rest of the OEL algorithm.

3 THE WATTS FRAMEWORK

Watts is designed to conceptualize algorithms as modular pieces that can be mixed, matched, and
recombined in novel ways. Shown in Figure [I] are modularized components of OEL algorithms.
Components for generating environments are called Generators. Components that implement fil-
tering are called Validators. Solvers define how agents are optimized in Watts. Components that

https://docs.ray.io/en/latest/rllib-algorithms.html
https://docs.ray.io/en/latest/rllib-algorithms.html

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

interact with other elements of the outer loop are implemented as Strategies, like an Evolutionary
Strategy or Transfer Strategy. Such modularity enables a “separation of responsibilities” in imple-
mentation details to isolate hypotheses.

3.1 ENVIRONMENT GENERATION

Environments in Watts are created with Generators. These generators are modules that enable any
number of environment representations (e.g., indirect encodings, direct encodings, wave function
collapse). Encapsulating environment generation to its own module enables a common API between
new but algorithmically unrelated approaches to procedural content generation in OEL systems.

A generator that creates 2D grid-worlds could store direct (x, y) locations of the objects in the
environment (e.g. player locations, wall tiles, traps, and treasure locations, etc.) and the rules that
govern increase or decreasing amounts of these objects and/or rearrange their locations (e.g. remove
a treasure; move the exit) — this is how POET and PINSKY work (Wang et al.,2019; Dharna et al.,
2020). When a generator is queried, a level is produced and variety is obtained by maintaining a
population of distinct generators.

Alternatively, generators could store neural networks that sequentially place objects on a blank can-
vas, such that a new level is created every time the generator is queried (e.g., a new maze) — this is
how PAIRED and PCGRL handle level generation (Dennis et al., [2020; Khalifa et al., 2020). And
generators can operate on anything between these two extremes. A hypothetical generator from
(Team et al., 2021) could create a level topology with Wave Function Collapse (Gumin, 2016) and
then query compositional pattern producing networks to place the remaining game-objects. In gen-
eral, the environment generators can be thought of as parameterizing the missing information of an
Underspecified Partially Observable Markov Decision Process (UPOMDP) (Dennis et al., 2020).

3.2 EVOLUTION AND MINIMAL CRITERIA

An open-ended learning process should be able to shift the training distributions and objectives, and
the field of evolutionary computation provides a natural approach to incrementally shifting distribu-
tions. The traditional view of an evolution strategy (ES) is one of being a zeroth order optimization
algorithm for real-valued parameter-vectors. In an ES rather than calculate (stochastic) gradients
of a loss function with respect to the model parameters, gradients are estimated from stochastic
perturbations (sampled from an underlying noise distribution, usually a Normal) around the current
parameter value. The key insight of this view is that the noise distribution itself can also be learned
using feedback of the reward/fitness function e.g. CMA-ES (Hansen, 2007). Because an ES can
contain a tunable representation of the underlying probability distribution, ES’s are also generative
algorithms.

An ES functioning as a generative algorithm provides a method of shifting agent training distri-
butions (e.g. levels in a game). However, unlike using an ES to solve a black-box optimization
problem, open-ended systems might require that the training distribution drift through parameter
space without a target to optimize towards. Such schemes are called minimal criteria (MC) and rep-
resent an alternative to conventional fitness-based paradigms (Soros| 2018)) since the MC encodes
a task-agnostic measure e.g. how similar is an agent to its neighbor (Soros et al.l [2016)). In Watts,
MCs are represented as Validators. Under this premise, so long as a minimum threshold on the qual-
ity of samples drawn from the training distribution is met, a candidate solution is accepted into the
population of potential answers; the distribution does not change to explicitly optimize with respect
to an evaluation metric.

MC:s are of particular interest because they encode an undirected method of slow learning (i.e. evolu-
tion) to complement the fast learning of agent optimization (Botvinick et al.,[2019) resulting in easy
to implement world-agent coevolutionary structures. To act as an outer-loop and shift populations,
Watts provides an evolutionary API. The evolutionary API accepts and returns a population, exe-
cuting logic that selects parents (i.e., select k¥ random parents; select the £ highest performers, etc.),
mutates members of the population, and kills population members (i.e., kill the k oldest members of
the population if population size is exceeded). The evolutionary API can explore both traditional-
and MC-based evolutionary structures as outer-loops on agent-learning.

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

3.3 AGENT LEARNING

In Watts the class that decouples the specific OEL implementations from the optimization algorithm
is the Solver. A Solver specifies the algorithm to optimize agent performance. The Solver has two
functions that must be implemented: the optimize function and the evaluate function. The evaluate
function returns the agent’s fitness, and the optimize function defines a single step of optimization.
For example, if the agents were optimized by David Ha’s SimpleES (Hal 2017}, the optimize func-
tion would first ask for potential solutions, evaluate them, return the answer to the optimizer and
return the best agent found so far. However, there are other ways to define the optimization function
as well. The default Single Agent Solver uses RLIib’s (Liang et al.| 2018]) optimization algorithms
(PPO, DDPG, OpenAlI-ES, etc.).

Solvers are also our core unit of distribution for parallelizing work within Watts. Since OEL systems
such as (Wang et al.| [2019;|Team et al.,|2021)), and (Dharna et al., |2020) optimize a large population
of agent/environment pairs, we define each Solver as a Ray Actor ((Moritz et al., |2018)) so that
each can optimize their models using separate cores, or even separate servers in a distributed setting.
Providing a common distribution pattern allows researchers using Watts to ignore the complicated
details of distributing work while keeping the performance benefits achieved through parallelization.

3.4 TRANSFER STRATEGIES

One of the bottlenecks of algorithms like POET is that the transfer-learning step contains a combi-
natorial explosion of work to estimate a statistical ranking problem (i.e. what is the best agent for
a given environment?). For increased code-modularity and re-use, Watts breaks down the ranking
problem into two linked strategies: Scoring and Ranking. Scoring and ranking are separated to al-
low for careful study of how structuring the interaction (e.g., different types of ranking schemes) of
individuals within a population affects learning (Jiang et al., 2009} |Garnelo et al.,[2021)). Separating
ranking and scoring allows us to define what best means in multiple ways. For example, we could
select the agent that scores the highest on a given task, or we could measure which environment in-
duced the highest amount of information gain to pick a “best” agent even if it did not get the highest
reward.

So far in POET-style algorithms, two ranking algorithms that have been considered. First is scoring
the agents in zero-shot evaluations on every environment and selecting the single best agent for each
environment (Dharna et al., |2020). A zero-shot evaluation scores an agent on a new environment
without any additional optimization. The second ranking algorithm explored in POET is scoring
zero-and-one-shot evaluations and selecting the single best agent for each environment (Wang et al.}
2019).

For example, a zero-shot scoring strategy takes a Cartesian product of the current agents and envi-
ronments returning a score for each agent in each environment (all evaluated in parallel). Then the
rank strategy accepts the score matrix and takes an argmaz over the columns to pick new weights
for each agent and environment pair. That is, the new weights for environment k are picked via:
arg maxy([R(01, Ex), ..., R(Om, Ex)]) where R(0,,, Ey,) is the zero-shot score of the mth agent on
environment k.

Similarly, to implement the transfer strategy explored in (Wang et al., 2019), a new transfer strat-
egy to pick weights for each agent-and-environment pair needs only wrap the zero-shot trans-
fer strategy defined above and 1) perform a zero-shot evaluation 2) take one step of optimiza-
tion for each agent 3) perform a one-shot evaluation and 4) take an argmax over the columns
of the stacked evaluation matrices. That is, the new weights for environment k are picked via:
argmaxy([R(01, Ex), ..., R(Om, Ex), R(0, Ex), ..., R(0.,, Ex)]) where R(6,,, E,) is the score of
the mth agent after one-step of optimization evaluated on the kth environment.

4 PUTTING THE PIECES TOGETHER

Figure (1| shows an example of the Manager class in Watts, which stores a population of agent-
environment pairs. While the Manager class is itself algorithm agnostic, POET is diagrammed
for the purpose of illustration. Implementation details for any given algorithm are specified in the
component abstractions.

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Evolutlon
Palr /

Ay

E
|E—

7Dpt|m|zatlon \\

Solve
Az

E
g

Transfer

o 1 4’

Figure 1: Watts: The (POET)Manager Class The POETManager stores an archive of agent and
environment-generator pairs managed by Evolution, Optimization, and Transfer Components. Each
of these components are further atomized and can be recombined to fit many different algorithms.

(2]
2]
g

3

v)

[2]
(2]
:

)

opulation|

4.1 DIAGRAMMING POET

The POETManager is responsible for managing the inner-outer meta-learning loop of POET
through components shown in Figure[I] The box of agent-environment pairs on the left is an archive
of agent-environment pairs that represent the active population. The Evolution unit mutates the
distribution of learning environments through a minimum criterion (MC)-based Evolution Strategy
outlined as Evolution at the top of Figure[l] This collection of evolutionary components defines how
to select parents from the meta-population, that are then evaluated by the Optimization components
in the middle (i.e., a Solver). The Solver is where the algorithm for inner-loop learning is specified.
The Transfer components at the bottom of Figure [T] scores, ranks, and selects the best agents for a
given environment (pseudocode shown in Appendix [A.T)). So long as newly defined strategies (evo-
lution, transfer, or optimization) follow their required APIs, new strategies can be slotted into the
POETManager to experiment with creating new POET-like algorithms.

4.2 PAIRED

While designed initially for POET-like algorithms, Watts also supports multi-agent reinforcement
learning (MARL) (Dennis et al.,2020) for open-ended learning. Rather than keeping an archive of
agent-environment pairs, PAIRED (Dennis et al 2020) trains a triple of agents to both build and
solve 2-D mazes from the MiniGrid suite (Chevalier-Boisvert et al., 2018). Agent training is instead
framed as an adversarial competition between a protagonist agent who wants to solve a maze and
its asymmetric antagonist duo, which is an agent-environment pair. This adversarial duo includes a
Generator artificial neural network (ANN), that takes feedback from its adversarial agent about the
quality of the level that it has created. Together the goal is that the generator creates solvable levels
as indicated by the performance of the antagonist agent, but that the protagonist will struggle to solve
(Dennis et al., 2020) shown in Figure |2} Formally, optimizing the minimax regret is performed by
the adversary game-builder and the antagonist game-player who maximize the positive regret while
the protagonist maximizes negative regret. For convenience, since the adversary and antagonist
networks share a loss function, they will be denoted 6 4 and the protagonist agent will be denoted
fp. The joint optimization of all three networks will continue until the networks arrive at a Nash
Equilibrium — a point in policy-space where no player has anything to gain by changing only their
own strategy.

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Antagonist
Solver U
Adversary <—Maxxj R(—_:-gret
Generator la—MinS Validator
. (Loss)
Protagonist —J’—>
Solver

Figure 2: A potential diagram of PAIRED in Watts. In PAIRED, the adversary, antagonist, and
protagonist are all parameterized by trainable neural networks and will require Validators and Gen-
erators to be differentiable objects. Black arrows are forward propagation and red arrows denote
backwards gradient flow.

4.3 UNIFYING POET & PAIRED

Like any stochastic based population training, the active population in POET is controlled by evo-
lutionary mechanics. Specifically in POET parents are selected randomly from the archive and
removed based on their age in the archive. The MC filtering evolves the population according to the
following update rule: WLOG, select an environment, F; to mutate,

Eehita ~ E;
MC = Mcmzn S R(oparenta Echild) S Mcmax
Ei+1 <]l(MC)

Because the MC is an indicator function, it can only impart minimal geometric knowledge regarding
how to move in the latent search space. However, PAIRED optimizes following the gradients of their
formulation of the MC, where loss is calculated as the minimax regret between the antagonist and
protagonist agents. Let E/g, be the environment created by the adversary. Then a regret-based MC
is defined as:

MC := R(04,Ey,) — R(6p,Ep,)

It follows then that agents following the loss function in PAIRED are following the directional
gradients of the MC:
arg min arg max(VMC)
Op Oa
where 0 4 seeks to maximize the regret signal while 6 p seeks to minimize the regret signal. Such for-
mulation of the MC, while antithetical to the original formulation of an MC, may provide inspiration
for new OEL designs and incorporating regret-based MCs into POET.

5 COMPARATIVE STUDY

To show how Watts can incorporate different algorithms, a POETManager runs the POET algo-
rithm on the HardcoreBipedalWalker environment and the PINSKY algorithm on a port of the 2-D
maze environment from the MiniGrid suite (Chevalier-Boisvert et al., [2018)) using the same Man-
ager. Similar to the MiniGrid suite mazes, the maze environment shown is written in Griddly. The
PAIRED algorithm is implemented in Watts and runs on the same port.

5.1 ORIGINAL POET IN WALKER AND MAZE

The first experiment verifies that the POET-in-walker implementation is correct. As much of the
walker-specific POET code is adapted from (Wang et al.l 2019), it is unsurprising that the popu-
lation behavior and generated terrains (Figure [3) resemble those reported in (Wang et al 2019).
Interestingly when the terrain in the HardcoreBipedal walking environment was flat, a deterministic
policy trained with the OpenAI-ES algorithm quickly converged to weights that resulted in rewards
over the M C,,,,,, threshold. However, the same policy did not score well when transferring to more
complicated levels, struggling to perform better than M C),;,. Because the agent was rewarded
without learning in its environment, the algorithm stopped challenging the agent with difficult levels

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

(a) Initial flat terrain that seeds POET

(b) Example POET Generated Level

Figure 3: Controllable Hardcore Bipedal Walker Environments integrated in Watts. Bipedal
agents in the Hardcore Bipedal Walker Environments start on the left hand side of the screen indi-
cated by a flag shown in a) and b). While the terrain in a) is flat, the first obstacle the agent in b)
encounters is a stair that it must step on or over to continue walking. The agent must then navigate
over three stumps and a stair before encountering five pits and a stump at the rightmost portion of
the environment.

it would normally add to the active population. However, training stochastic policies for the walker
restored the expected behavior.

A useful experiment that can be run with Watts is to validate the assumptions made in
2020). When translating POET to work in the space of grid-worlds the authors made as-
sumptions about how the sparsity of rewards in “game”-style settings — where agents are only re-
warded for completing specific tasks (e.g. picking up a key, killing a monster) — would be too
sparse to allow for the MC first explored in POET to work, as the MC requires a well-aligned
and reward-dense signal (Dharna et al [2020). Therefore, by only changing the game envi-
ronment and neural network structure, Watts can run the experiment of “what would happen if
MChrin < R(bparent; Echita) < MClyqq from POET were used in the maze domain™? In the
Maze domain, if the agent reaches the goal, the agent receives a reward of R = 1 — (M /T), where
M is the timestep on which the agent found the goal and T is the timestep horizon (500). In POET,
the M C\,;n, and M C,,, 4, are hyperparameters denoting an acceptable range of reward defining if
levels are too-easy and too-hard. After 10,000 loops, Maze-based POET with M C,,,;,, = 0.1 and
MCipaz = 0.9 had a successful reproduction rate of ﬁlo with virtually all of the proposed levels
being rejected due to being “too hard” because the agent scores a reward of less than 0.1 — validating
the assumptions. Such strict criteria (in the space of sparse-rewarding games) filtered out all chances
for the coevolution to bootstrap itself as desired.

5.2 PAIRED IN MAZE

Watts seeks to remedy the fact that until now attempts to compare POET against MARL algorithms
have not been possible due to the high coupling of POET to the walker environment. To start
this process, Watts provides environment wrappers that when combined with multi-agent learning
algorithms in RLIib recreates the PAIRED algorithm defined in (Dennis et al,[2020) for any single-
agent game that is defined in Griddly.

As implemented in (Dennis et al., [2020), the adversary is constrained such that, at every time step,
it chooses where to place a prespecified sequence of objects at available (X, y) locations. Relaxing
the sequencing constraint by altering the Generator requires the adversary to also decide whether to

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

place an object and if so to decide the type (i.e., “[place/not-place] [object type] at ([x], [y])”). With
this loosened constraint and assuming that PAIRED converges to the Nash Equilibrium (Dennis
et al., 2020), its learned behavior is characterized as a blank level without a goal, agent, or maze
structure. Without these structural components, all agents receive zero reward.

6 PERFORMANCE

While performance is particularly important in OEL frameworks given the large amount of compu-
tational resources necessary to run experiments, often a significant portion of the distributed commu-
nication and execution code is rewritten when implementing algorithms for reinforcement learning
(Liang et al.l 2018)). For example, |Dharna et al.|(2020) implement custom code for distributed com-
puting to run experiments on their POET-like algorithm, PINSKY (Dharna et al.} 2020). Written in
Python, experiments in grid-world environments completed a total of 5000 iterations in ~2 weeks.
On the other hand, the same experiments ran more quickly in Watts, with a total of 10000 iterations
in ~24 hours. Whether it is run locally or remotely on a cluster, computation in Watts is distributed
through the Ray library (Moritz et al.| | 2018)). Well-reasoned modules can promote comparison, and
Watts implements some of the patterns common in distributed computing to ease implementing new
OEL algorithms.

Interestingly, optimizing with the Open-Al ES (Salimans et al., 2017) algorithm Watts runs about
10000 iterations in ~3.5 days on 18 CPU cores. Optimizing the same HardcoreBipedalWalker
environment, Wang et al.| (2019) report 60,000 iterations in 12 days (Wang et al., 2019; [2020)) on
750 CPU cores. Shown in Table [I] when Watts optimizes agent performance with PPO (Schulman
et al.| |2017) it completes a total of 10000 POET iterations in ~28 hours. It is hypothesized that
Watts’ ES POET runs more slowly than the original POET due to the number of compute cores the
original algorithm used and additional experiments scaling up Watts are needed to test this.

|

Toops

H Algorithm Implementation Environment

cpu hr

Pinsky Original GVGAI 0.47
Pinsky Watts Griddly 26.06
ES POET Original Walker 0.28
ES POET Watts Walker 6.61
PPO POET Watts Walker 22.31

Table 1: Algorithm runtime comparisons.

7 DISCUSSION AND FUTURE WORK

The experiments show that we fulfilled our original design goal: an atomized framework for OEL
algorithms such that only modular substitutions are needed to implement different algorithms. In
Watts, POET and PINSKY only differ in how three modules are implemented. The Validator in
POET requires that an agent performs within a given range of fitness on a candidate level. Whereas
in PINSKY, the Validator checks for the existence of solutions to the level. For the Generator object,
the environment encoding is changed based on the experimental domain. For PINSKY, the Ranking
object performs zero-shot evaluations on the existing levels in the active population. Furthermore,
the same POETManager can run on different domains with only changes to the Generator and rep-
resentation of the agent in the Solver. In both cases only small implementation changes are required
to run the algorithms in Watts. The goal of Watts is to explore the space of OEL algorithms, and
Watts is a simple, flexible, and composable library.

A consequence of modularity is illustrated in the head-to-head comparison of POET and PAIRED
in Section[5] We provide a hypothetical Manager to implement the recent ACCEL algorithm [Parker-
Holder et al.|(2022) in Figure[d To improve the framework and its contribution to the community, we
plan to add components for more OEL algorithms (Jiang et al., 2021b} [Parker-Holder et al.| [2022;
Bontrager & Togelius, 2021} [Team et al} 2021). Interestingly, even just thinking about running
PAIRED in the HardcoreBipedalWalker environment inspires the notion of differentiable Generators

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Uniform Mean
Level Positive GAE Replace
Generator L Validator

A

Agent

PPO-Solver

Positive GAE

Validator Evolutionary
Level
Generator

O
o
A

Replace

A

Figure 4: A hypothetical ACCELManager implemented out of Watts modules. For any given loop,
sample case A or case B from a Bernoulli Random Variable. Case B is a two step process with one
optimization step and one evolutionary-MC step. Note each individual component has been created
just not strung together yet.

and Validators. Furthermore, something like a Generator API could provide more functionality, like
the ability to sequentially build levels. With more functionality, the aim is to build an active core
community of people interested in all aspects of OEL (including procedurally generated content).

Going beyond the comparison of existing algorithms, Watts can potentially enable the invention
of new and more capable open-ended learning methods. One aim of Watts is to enable the easy
testing of new algorithmic ideas through its modularity, like the recent population-based extension
to PAIRED (Du et al., [2022)) that pushes the algorithm even closer to POET. Pushing POET more
toward PAIRED, we aim to explore incorporating a multi-agent minimax regret signal like that in
PAIRED. Both innovations to these algorithms are conceivable in the Watts framework.

Finally, the goal of Watts is to explore the space of OEL algorithms therefore designing simple,
flexible, and composable algorithmic interfaces are a must; in order for others to use Watts, we must
have documentation instructing how to setup and easily use the system. It must be able to be run on
a variety of operating systems without performance disparity. And there must be a community of
active users and contributors guiding and encouraging any newcomers.

8 CONCLUSIONS

We presented Watts, a framework for comparing existing open-ended learning methods and in-
venting new ones. In the experiments described here, we implemented the well-known POET and
PAIRED algorithms and compared them, showing that they are each dependent on the particular
problem domain they are applied to. We believe that breaking existing methods into their con-
stituent components and recomposing them in a common framework will enable us and others to
more rapidly iterate on novel OEL methods.

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

REFERENCES

Chris Bamford, Shengyi Huang, and Simon Lucas. Griddly: A platform for ai research in games,
2020.

Margaret A. Boden. Computer models of creativity. Al Magazine, 30(3):23, July 2009. doi: 10.
1609/aimag.v30i3.2254. URL https://doi.org/10.1609/aimag.v3013.2254,

Philip Bontrager and Julian Togelius. Learning to generate levels from nothing. In 2021 IEEE
Conference on Games (CoG), pp. 1-8. IEEE, 2021.

Matthew Botvinick, Sam Ritter, Jane X. Wang, Zeb Kurth-Nelson, Charles Blundell, and Demis
Hassabis. Reinforcement learning, fast and slow. Trends in Cognitive Sciences, 23(5):408-422,
May 2019. doi: 10.1016/j.tics.2019.02.006. URL https://doi.org/10.1016/j.tics.
2019.02.006.

Jonathan C Brant and Kenneth O Stanley. Minimal criterion coevolution: a new approach to open-
ended search. In Proceedings of the Genetic and Evolutionary Computation Conference, pp.
67-74, 2017.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design, 2020.

Aaron Dharna, Julian Togelius, and L. B. Soros. Co-generation of game levels and game-playing
agents. Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, 16(1):203-209, Oct. 2020. URL https://ojs.aaai.org/index.php/
AIIDE/article/view/7431.

Yuqing Du, Pieter Abbeel, and Aditya Grover. It takes four to tango: Multiagent selfplay for auto-
matic curriculum generation, 2022.

Marta Garnelo, Wojciech Marian Czarnecki, Siqi Liu, Dhruva Tirumala, Junhyuk Oh, Gauthier
Gidel, Hado van Hasselt, and David Balduzzi. Pick your battles: Interaction graphs as population-
level objectives for strategic diversity, 2021.

Maxim Gumin. Wave Function Collapse Algorithm, 9 2016. URL https://github.com/
mxgmn/WaveFunctionCollapse.

David Ha. Evolving stable strategies. blog.otoro.net, 2017. URL http://blog.otoro.net/
2017/11/12/evolving—-stable-strategies/.

Nikolaus Hansen. The cma evolution strategy: A comparing review. Towards a new evolutionary
computation. Studies in Fuzziness and Soft Computing, 192:75-102, 06 2007. doi: 10.1007/
3-540-32494-1_4.

Mingqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward Grefenstette, and Tim
Rocktédschel. Replay-guided adversarial environment design, 2021a.

Minqi Jiang, Edward Grefenstette, and Tim Rocktischel. Prioritized level replay, 2021b.

Xiaoye Jiang, Lek-Heng Lim, Yuan Yao, and Yinyu Ye. Statistical ranking and combinatorial hodge
theory, 2009.

Ahmed Khalifa, Philip Bontrager, Sam Earle, and Julian Togelius. Pcgrl: Procedural content gener-
ation via reinforcement learning. In Proceedings of the Sixteenth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, AIIDE’20. AAAI Press, 2020. ISBN 978-1-
57735-849-7.

10

https://doi.org/10.1609/aimag.v30i3.2254
https://doi.org/10.1016/j.tics.2019.02.006
https://doi.org/10.1016/j.tics.2019.02.006
https://github.com/maximecb/gym-minigrid
https://ojs.aaai.org/index.php/AIIDE/article/view/7431
https://ojs.aaai.org/index.php/AIIDE/article/view/7431
https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/mxgmn/WaveFunctionCollapse
http://blog.otoro.net/2017/11/12/evolving-stable-strategies/
http://blog.otoro.net/2017/11/12/evolving-stable-strategies/

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Joel Lehman and Kenneth O Stanley. Abandoning objectives: Evolution through the search for
novelty alone. Evolutionary computation, 19(2):189-223, 2011.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph Gon-
zalez, Michael Jordan, and Ion Stoica. RLIib: Abstractions for distributed reinforcement learning.
In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 3053-3062.
PMLR, 10-15 Jul 2018. URL https://proceedings.mlr.press/v80/1liangl8b.
htmll

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and Ion Stoica. Ray: A distributed
framework for emerging Al applications. In I3th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pp. 561-577, Carlsbad, CA, October 2018. USENIX
Association. ISBN 978-1-939133-08-3. URL https://www.usenix.org/conference/
osdil8/presentation/moritzl

Jack Parker-Holder, Minqgi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward
Grefenstette, and Tim Rocktaschel. Evolving curricula with regret-based environment design,
2022. URL https://arxiv.org/abs/2203.01302.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp.
8024-8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning—-library.
pdf.

Bob Ross. Happy Little Accidents: The Wit & Wisdom of Bob Ross. Running Press Adult, 2017.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as
a scalable alternative to reinforcement learning, 2017. URL https://arxiv.org/abs/
1703.03864.

Jiirgen Schmidhuber. Powerplay: Training an increasingly general problem solver by continually
searching for the simplest still unsolvable problem. Frontiers in Psychology, 4, 2013. ISSN
1664-1078. doi: 10.3389/fpsyg.2013.00313. URL https://www.frontiersin.org/
article/10.3389/fpsyg.2013.00313.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

L. B. Soros, Nick Cheney, and Kenneth O. Stanley. How the strictness of the minimal criterion
impacts open-ended evolution. In Proceedings of the Artificial Life Conference 2016. MIT Press,
2016.

Lisa Soros. Necessary Conditions for Open-Ended Evolution. PhD thesis, University of Central
Florida, 08 2018.

RUSSELL K. STANDISH. OPEN-ENDED ARTIFICIAL EVOLUTION. International Journal
of Computational Intelligence and Applications, 03(02):167-175, June 2003. doi: 10.1142/
$1469026803000914. URL https://doi.org/10.1142/s1469026803000914.

Kenneth O. Stanley. Art in the sciences of the artificial. Leonardo, 51(2):165-172, 2018.

Open Ended Learning Team, Adam Stooke, Anuj Mahajan, Catarina Barros, Charlie Deck, Jakob
Bauer, Jakub Sygnowski, Maja Trebacz, Max Jaderberg, Michael Mathieu, Nat McAleese,
Nathalie Bradley-Schmieg, Nathaniel Wong, Nicolas Porcel, Roberta Raileanu, Steph Hughes-
Fitt, Valentin Dalibard, and Wojciech Marian Czarnecki. Open-ended learning leads to generally
capable agents, 2021. URL https://arxiv.org/abs/2107.12808/,

11

https://proceedings.mlr.press/v80/liang18b.html
https://proceedings.mlr.press/v80/liang18b.html
https://www.usenix.org/conference/osdi18/presentation/moritz
https://www.usenix.org/conference/osdi18/presentation/moritz
https://arxiv.org/abs/2203.01302
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/1703.03864
https://arxiv.org/abs/1703.03864
https://www.frontiersin.org/article/10.3389/fpsyg.2013.00313
https://www.frontiersin.org/article/10.3389/fpsyg.2013.00313
https://doi.org/10.1142/s1469026803000914
https://arxiv.org/abs/2107.12808/

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O. Stanley. POET: Open-ended coevolution of
environments and their optimized solutions. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’19, pp. 142-151. ACM, 2019.

Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeffrey Clune, and Kenneth O. Stanley.
Enhanced POET: open-ended reinforcement learning through unbounded invention of learning
challenges and their solutions. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pp. 9940-9951. PMLR, 2020.

A APPENDIX
A.1 PSEUDOCODE

class BirthThenkillStrategy(EvolutionStrategy):
def __init_ (
self,
level validator: Levelvalidator,
replacement_strategy: ReplacementStrategy,
selection_strategy: SelectionStrategy,
mutation_rate:; float = 0.8,

self._level_validator = level validator
self._replacement_strategy = replacement_strategy
self. selection_strategy = selection_strategy
self. mutation_rate = mutation_rate

def evolve(self, active_population: list, birth_func: Callable[[List[Tuple]], List]) -> list:
children = []
potential parents = self. selection_strategy.select(active population)

for parent in potential_parents:
new_generator = parent.generator.mutate(self. mutation_rate)
is_valid, data = self._ level validator.validate level(generators=[new_generator],
solvers=[parent.solver])
if is_valid:
children.append((parent.solver, new_generator, parent.id, 0))
children = birth_func(children)
active_population.extend(children)
return self._replacement_strategy.update(active_population)

Figure 5: Evolution Strategy Pseudocode for an MC-guided Outer-Loop

12

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

@ray.remote
class Solver:
def __init_ (self, trainer, agent, env, ...):
self.trainer = trainer(agent, env)
self.agent = agent
self.env = env

def optimize(self):
metrics = self.trainer.train(self.agent, self.env)

return metrics

. other helper functions

Figure 6: Example Solver that implements an optimization algorithm (trainer) on a remote process.

13

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

class GetBestSolver(RankStrategy):
def __init_ (self, scorer):
self.scorer = scorer

def transfer(self, solver_list, generator_list) -> dict:
"""Run the transfer tournament; take in a solver list and a generator list.
:param solver_list:
:param generator_list:
:param id_map:
rreturn: dict of new weights indexed by a pair_id.

nnn

self.t += 1

solvers, solver_idxs = zip(*solver_list)

generators, generator_idxs = zip(*generator_list)

solver_generator_combo_id = list(product(solver_idxs, generator_idxs))

tournament_results = self.scorer.score(solvers=solvers,
generators=generators,
id_map=solver_generator_combo_id)

self.tournaments[self.t] = tournament_results
generator_id_matrix = tournament_results[..., 0]
solver_id_matrix = tournament_results[..., 1]
best_indicies = np.argmax(tournament_results[..., 2], axis=0)
get the new weights
new_weights = {}
for i, g_id in enumerate(generator_idxs):
for j, s_id in enumerate(solver_idxs):
best_solver_id = solver_id _matrix.T[i, best_indicies[i]].item()
if s_id == best_solver_id:
new_weights[g_id] = (
ray.get(solvers[j].get_weights.remote()),
best_solver_id

return new_weights

Figure 7: Transfer Strategy Pseudocode: Picking the best zero-shot agent for each env

14

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

class POETManager:
def _ init_ (self,
exp_name: str,
initial_pair,
evolution_strategy: EvolutionStrategy,
transfer_strateqy: RankStrateqy):

self._evolution_strategy = evolution_strategy
self._transfer_strategy = transfer_strategy
self.active_population = [initial pair]

def run(self):
while self.i <= self.args.num_poet_loops:

if self.i % self.args.evolution_timer == 0.
self.active_population = self._evolution_strategy.evolve(
active_population=self.active_population,
birth_func=self.build_children # how to instanciate new POET-PAIRS

)

pop_opt_results = self.optimize_each_pair()

if self.i % self.args.transfer_timer == 0.
nets = [(p.solver, p.id) for j, p in enumerate(self.active_population)]
1vls = [(p.generator, p.id) for j, p in enumerate(self.active_population)]
new_weights = self,_transfer_strategy.transfer(nets, 1lvls)

for j, (best_w, best id) in new weights.items():
self.active_population[j].update_solver_weights(best_w)

self.i +=1

Figure 8: The POET algorithm modular form

15

	Introduction
	Design Considerations and Motivations
	The Watts Framework
	Environment Generation
	Evolution and Minimal Criteria
	Agent Learning
	Transfer Strategies

	Putting the pieces together
	Diagramming POET
	PAIRED
	Unifying POET & PAIRED

	Comparative Study
	Original POET in Walker and Maze
	PAIRED in Maze

	Performance
	Discussion and Future Work
	Conclusions
	Appendix
	Pseudocode

