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ABSTRACT

We study the privacy of reinforcement learning from human feedback. In partic-
ular, we focus on solving the problem of reinforcement learning from preference
rankings, subject to the constraint of differential privacy, in MDPs where true re-
wards are given by linear functions. To achieve this, we analyze (ϵ, δ)-differential
privacy (DP) for both the Bradley-Terry-Luce (BTL) model and the Plackett-Luce
(PL) model. We provide a differentially private algorithm for learning rewards
from human rankings. We further show that the privately learned rewards can be
used to train policies achieving statistical performance guarantees that asymptot-
ically match the best known algorithms in the non-private setting, which are in
some cases minimax optimal.

1 INTRODUCTION

With the rise of large pretrained machine learning models that flexibly interact with humans, there is
an increasing need to ensure that the models do not exhibit harmful behaviour or ethical violations
that can cause unsafe circumstances for humans. Reinforcement Learning from Human Feedback
(RLHF) is currently the standard method targeting this problem, and has achieved significant suc-
cess introducing several behavioral skills to language models (i.e. probability distributions over
sequences of tokens (Shannon, 1948)) from refusing to act on improper requests to simply interact-
ing with humans by responding to questions (Ziegler et al., 2019; Wu et al., 2021; Nakano et al.,
2021; Stiennon et al., 2020; Abramson et al., 2022; Glaese et al., 2022; Bai et al., 2022; Ganguli
et al., 2022; Menick et al., 2022; Ouyang et al., 2022; Gao et al., 2023; Ramamurthy et al., 2023).
Yet there are still problems with large language models where recent work demonstrates the uneth-
ical behaviour that they can exhibit when they interact with humans (Ganguli et al., 2022; Perez
et al., 2022).

While improving the safety and harmlessness of LLMs remains an active area of research, the use
of RLHF introduces an orthogonal set of problems relating to human interactions. In particular, the
input data used for RLHF training is human ratings of model responses to prompts. In particular,
current language models record data when interacting with humans via chat interfaces, and this
data can be used for future training (OpenAI, 2023). As large language models continue to scale
to interact with millions of people in more complex ways, the necessity of maintaining the privacy
of individual interactions becomes even more significant. To mitigate the privacy risks associated
with machine learning, the framework of differential privacy is the primary approach to the design
of algorithms with rigorous privacy guarantees (Dwork & Roth, 2014; Dwork et al., 2006).

The standard approach to RLHF starts with a pretrained language model and fixed dataset of
prompts. A prompt is sampled from the dataset, and K outputs from the language model are sam-
pled conditioned on the prompt. A human rater then gives a preference ranking of the K outputs.
This process is repeated until a dataset D containing n human preference rankings over model re-
sponses is collected. Following this a reward model rθ is trained to match the human preference
rankings in D. Finally, the original pretrained language model is further trained via reinforcement
learning to maximize the learned rewards rθ. Both the human ratings and prompts in the dataset D
are generated by humans interacting with the model, and thus may contain information that should
be kept private even when the final trained model is released to the public.

Recent work of Zhu et al. (2023) studies the sample complexity of RLHF, and gives an algorithm
achieving minimax optimal rates for RLHF in the setting where rewards are linearly parametrized
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in some feature space. In this paper we will prove that, in the same setting, it is possible to achieve
minimax optimal sample complexity and differential privacy simultaneously. In particular, our dif-
ferential privacy guarantees imply that even if n−1 of the human ratings in the dataset are revealed,
it will be statistically infeasible to learn the private information of the one remaining rating, when
given access to the final trained model.

1.1 OUR RESULTS

We begin by introducing the basic setting for RLHF. There are a set of states S and actions A
corresponding to prompts and language model responses respectively. First a state s is sampled
from a distribution ρ, then K actions a1, . . . , aK are sampled from the model conditioned on the
state s giving a tuple (s, a1, . . . , aK). Human preference rankings over a1, . . . , aK are given by
a permutation σ : [K] → [K], where aσ(1) is the most preferred action, and aσ(K) is the least
preferred action. We assume that there is a feature map ϕ : S × A → Rd, and a reward modelled
as a linear function rθ(s, a) = ⟨θ, ϕ(s, a)⟩. Human preference rankings over model responses are
assumed to follow a Plackett-Luce model (Plackett, 1975; Luce, 2012) for some true reward rθ∗ .
That is the probability that an action ai is selected as the “best” from a list of K alternative actions
is proportional to

P[ai|s, a1, . . . aK ] =
exp(rθ∗(s, ai))∑K
j=1 exp(rθ∗(s, aj))

.

This naturally implies a distribution on full rankings of actions σ : [K] → [K], by first selecting the
best action from the full list of K actions, then recursively selecting the next best from the remaining
K − 1, and so on. When K = 2 this is equivalent to the Bradley-Terry-Luce model. We denote by
D the dataset of n human ranking tuples (s, a1, . . . aK , σ). In order to accurately estimate uncer-
tainty in the rewards given the dataset D, one typically uses the dataset-dependent covariance matrix
given by ΣD = 2

nK(K−1)

∑n
i=1

∑K
j=1

∑K
j=k+1

(
(ϕ(si, aij)− ϕ(si, aik))(ϕ(s

i, aij)− ϕ(si, aik))
⊤).

In particular, the pessimistic policy optimization algorithm in our paper (as well as in Zhu et al.
(2023)) depends on access to a sufficiently accurate approximation of ΣD.

RLHF for Contextual Bandits. Our first results are in the contextual bandit setting, where states
s are sampled from some fixed distribution ρ. This is the closest to the standard setup of RLHF
applied to LLM alignment. Under certain regularity assumptions the results of Zhu et al. (2023)
show that computing the maximum likelihood estimator (MLE) θ̂MLE for the reward parameters,
followed by a pessimistic policy optimization algorithm with respect to rθ̂MLE

yields a policy π̂PE

achieving expected rewards that are at most O
(√

d
n

)
worse than those of the optimal policy. Our

main result matches this performance while simultaneously achieving differential privacy for the
dataset D.
Theorem 1.1. (Informal) Let D be a dataset of K-wise human rankings of the form (s, a1, . . . ak, σ).
Under appropriate regularity assumptions, there is an (ϵ, δ)-differentially private algorithm that
learns a reward model rθ̃MLE

and a perturbed data covariance Σ̃D from D. Both θ̃MLE and Σ̃D
are close (under appropriate metrics) to the true parameter θ∗ and the true data covariance ΣD
respectively.
Theorem 1.2. (Informal) Under appropriate regularity assumptions, there is pessimistic policy op-
timization algorithm that, when trained with the reward model rθ̃MLE

and data covariance estimate

Σ̃D outputs a policy π̃PE achieving rewards that are worse than the optimal policy by at most

O

(√
d

n
+

(d log(1/δ))
1/4

√
ϵn

)

In the typical differential privacy setting ϵ is a constant and δ is inverse polynomial in n, and so
the first term above dominates. Thus, in the typical setting our results match the minimax optimal

rate O

(√
d
n

)
up to constant factors. Also notable in our results is the fact that privacy holds for

the estimated reward function rθ̃MLE
and the perturbed data covariance Σ̃D. This makes our results
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modular, and means that privacy will be maintained under follow-up post-processing by any policy
learning algorithm. In particular, it is even possible to publicly release the weights θ̃MLE of the
learned reward model rθ̃MLE

, along with the perturbed data covariance Σ̃D.

RLHF for general MDPs. We extend our results to RLHF in general MDPs, where human pref-
erences are given over pairs of trajectories. In this setting we also simultaneously obtain (ϵ, δ)-
differential privacy and performance matching the non-private algorithm.

Theorem 1.3. (Informal) Let Dτ be a dataset of pairwise trajectory comparisons from an MDP
M . Under appropriate regularity assumptions, there is an (ϵ, δ)-differentially private algorithm
that learns a reward model rθ̃MLEτ

and a perturbed data covariance Σ̃Dτ from Dτ . Both θ̃MLEτ and

Σ̃Dτ
are close in an appropriate metric to the true parameter θ∗ and the true data covariance ΣDτ

respectively.

Theorem 1.4. (Informal) Under appropriate regularity assumptions, there is pessimistic policy op-
timization algorithm that, when trained in the MDP M with the reward model rθ̃MLEτ

and data

covariance estimate Σ̃Dτ outputs a policy π̃PE achieving expected rewards that are worse than those
of the optimal policy by at most

O

(√
d

n
+

(d log(1/δ))
1/4

√
ϵn

)

Again in the typical setting where ϵ is constant and δ is inverse polynomial in n, these results match
the non-private algorithm of Zhu et al. (2023) up to logarithmic factors.

2 PRELIMINARIES

Notation. We use the notation [K] = {1, . . . ,K}. We write N (µ, σ2)d to denote the distribu-
tion of random vector whose entries are independent Gaussian random variables with mean µ and
variance σ2. We use ∥·∥2 to denote the standard ℓ2-norm on Rd. For a positive semidefinite matrix
M ∈ Rd×d we define the semi-norm ∥v∥M =

√
v⊤Mv for any vector v ∈ Rd. For a pair of

matrices A and B we write A ≽ B if and only if A−B is positive semidefinite.

2.1 REINFORCEMENT LEARNING

A finite-horizon Markov Decision Process (MDP) with horizon H is represented by a tuple
(S,A, {rh}Hh=1, {Th}hh=1, ρ0). Here, S represents the state space, A represents the action space,
and ρ represents the initial state distribution. For each h ∈ [H] there is a reward function
rh : S × A → R assigning a real-valued reward to each state-action pair, and a transition func-
tion Th : S ×H → ∆(S) taking a state-action pair to a distribution over states.

A deterministic policy π = {πh}Hh=1 is a collection of functions πh : S → A giving an action a to
be taken in state s. A policy π in an MDP M induces a distribution over sequences of states and
actions. In particular, first s1 ∼ ρ0 and a1 = π1(s1), and then subsequently sh ∼ T (sh−1, ah−1)
and ah = πh(sh) for each h ∈ [H]. The value function V π : S → R for the policy π is then the
expected cumulative rewards obtained when starting in state s,

V π(s) = Esh∼T (sh−1,ah−1),ah=πh(sh)

[
H∑

h=1

r(sh, ah)|s1 = s

]
.

We further define the occupancy measure ρπ of a policy π to be the probability distribution over
state-action pairs encountered when utilizing the policy π in the MDP M ,

ρπ(s, a) = P
s1∼ρ0,sh∼T (sh−1,ah−1),ah=πh(sh)

[sh = s, ah = a].

We use π∗ = argmaxπ V
π to denote the optimal policy i.e. the policy that maximizes the expected

cumulative rewards. The objective in reinforcement learning is to learn a policy π̂ that obtains
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rewards that are close to those obtained by the optimal policy π∗. Formally, we define the subopti-
mality of a policy π̂ by

SubOpt(π̂) = Es∼ρ0
[V π∗

(s)− V π̂(s)].

The setting where the horizon H = 1 is referred to as the contextual bandit setting. In particular,
in this setting there are no transitions, and the state s is always sampled from the fixed initial state
distribution ρ0. This is the setting that most accurately models the RLHF as it is typically applied to
language models.

2.2 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

In reinforcement learning from human feedback the humans provide preference rankings over ac-
tions. Given a state s and K possible actions (a1, . . . aK), the ranking over the actions is given by
a permutation σ : [K] → [K] that ranks the actions from the most preferred aσ(1), to the least
preferred aσ(K). In RLHF these preference rankings are assumed to arise as samples from the
Plackett-Luce model.

P(σ|s, a0, a1, . . . aK) =

K∏
k=1

exp(r∗(s, aσ(k)))∑K
j=m exp(r∗(s, aσ(j)))

.

where r∗(s, a) is a ground-truth reward function corresponding to underlying human preferences.
The input to RLHF is then a data-set of human preference rankings D = {(si, ai1, . . . , aik, σi)}ni=1,
where the state si and tuple of actions ai1, . . . , a

i
K can be arbitrary, but the preference ranking σi is

assumed to be sampled from the Plackett-Luce model.

Throughout the paper, we make the following assumption regarding the parameterization of the
reward function r∗, which is the same as that made in prior work (Zhu et al., 2023).

Assumption 2.1. The reward function comes from a class of linear functions rθ(s, a) =
⟨θ), ϕ(s, a)⟩ with a known feature map ϕ : S × A → Rd satisfying ∥ϕ(s, a)∥2 ≤ L for all (s, a).
Further, we assume that the true parameter θ∗ for the reward satisfies

θ∗ ∈ ΘB = {θ | ∥θ∥2 ≤ B}

We denote ground-truth linear parameter vector θ∗, so that r∗(s, a) = rθ∗(s, a). In reinforcement
learning from human feedback one first uses the dataset D to learn an estimated reward parameter θ̂,
and then trains a policy π̂ in the MDP M using the learned reward rθ̂. Critically, the objective is to
obtain good performance relative to the ground-truth rewards rθ∗ , despite training with an estimated
reward function rθ̂.

2.3 DIFFERENTIAL PRIVACY

Our results are stated in terms of the rigorous notion of differential privacy. Let D be a dataset
containing n items. In our case each item is a tuple (s, a1, . . . , aK , σ) representing human preference
rankings. For another dataset D′ we use the notation ∥D−D′∥1 = 1 to indicate that D and D′ differ
in exactly one item, and are otherwise identical. The formal definition of differential privacy is then,

Definition 2.2. ((ϵ, δ)-differential privacy (Dwork & Roth, 2014)) A randomized algorithm A is
(ϵ, δ)-differentially private if for all O ⊆ Range(A) such that ∥D − D′∥1 ≤ 1:

P[A(D) ∈ O] ≤ eϵ P[A(D′) ∈ O] + δ (1)

where the probability space is over the coin flips of the mechanism A. When δ = 0, we say that A
satisfies ϵ-differential privacy.

Intuitively, differential privacy ensures that if one of the items in D contains private data for some
person, even if all the other items in D are revealed, the output of the algorithm A leaks a negligible
amount of information about the user. In particular, the distribution of the output is approximately
equal to what it would be if that user’s item were not present at all.
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3 RELATED WORK

Learning from Ranking in Bandits and Reinforcement Learning: The most closely relate work
is the paper of Zhu et al. (2023), which recently gave minimax optimal bounds for the suboptimality
of policies trained via RLHF when the rewards are assumed to be linearly parametrized. We con-
sider the same setting in our paper, but additionally achieve differential privacy for RLHF, while
asymptotically maintaining the same bounds on the suboptimality of the learned policy.

Privacy in Bandits and Reinforcement Learning: Differential privacy has been explored in linear
contextual bandits (Shariff & Sheffet, 2018; Neel & Roth, 2018; Huang et al., 2023), in stochastic
bandits with a central trust model1 (Mishra & Thakurta, 2015; Tossou & Dimitrakakis, 2016; Sajed
& Sheffet, 2019; Azize & Basu, 2022; Charisopoulos et al., 2023), with the local model of trust
(Kasiviswanathan et al., 2011; Tenenbaum et al., 2021; Chowdhury & Zhou, 2023), in adversarial
bandits (Tossou & Dimitrakakis, 2017), and in tabular MDPs Vietri et al. (2020). Wang & Hegde
(2019) uses reproducing kernel Hilbert space norm-bounded noise to ensure private value function
approximation with respect to the number of states queried. The notion of joint differential privacy
in tabular MDPs was later extended to the linear MDP setting where the transitions and the reward
functions parameterized by linear functions (Luyo et al., 2021; Ngo et al., 2022). Garcelon et al.
(2021) provides a lower bound for regret minimization in finite-horizon MDPs with local differential
privacy (LDP) guarantees. However, in all of the aforementioned settings, the rewards are assumed
to be part of the private input, and do not need to be learned from data as is necessary in the setting
we consider.

4 PRIVATE RLHF FOR CONTEXTUAL BANDITS

In this section we give our main results for private RLHF in the contextual bandit setting. For clarity
of presentation we begin with the case of pairwise comparisons (i.e. K = 2 in the Plackett-Luce
model). We then describe how to extend these results to general K.

4.1 PAIRWISE COMPARISONS

In this setting the dataset D consists of n tuples (si, ai0, a
i
1, y

i) where yi ∈ {0, 1} is an indicator
variable with yi = 0 if the human rater preferred ai0 in state s and yi = 1 if ai1 was preferred. Given
a true reward parameter vector θ∗, the Plackett-Luce model for K = 2 reduces to the Bradley-Terry-
Luce model,

P[y = l | s, a0, a1] =
exp(rθ∗(s, al))

exp(rθ∗(s, a0)) + exp(rθ∗(s, a1))
.

In this case, the log-likelihood of a parameter vector θ is given by,

ℓD(θ) =− 1

n

n∑
i=1

log

(
(1[yi = 1]

1

1 + exp(−
〈
θ, ϕ(si, ai1)− ϕ(si, ai0)

〉
)

+ 1[yi = 0]

(
1− 1

1 + exp(−
〈
θ, ϕ(si, ai1)− ϕ(si, ai0)

〉
)

))

Furthermore, for pairwise comparisons we define the data covariance matrix ΣD by

ΣD =
1

n

n∑
i=1

(
ϕ(si, ai1)− ϕ(si, ai0)

) (
ϕ(si, ai1)− ϕ(si, ai0)

)⊤
In order to privately estimate the rewards we utilize a version of objective-perturbed MLE Algo-
rithm 1, which was shown to achieve (ϵ, δ)-differential privacy in Bassily et al. (2019a) with the
bulk of the analysis coming from a theorem of Kifer et al. (2012). While the privacy analysis of
Kifer et al. (2012) applies quite generally, achieving tight error bounds on the distance of θ̃MLE from

1In the central model of trust the users are trust a central database curator who has access the raw user data
(Dwork & Roth, 2014).
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the unperturbed MLE θ̂MLE = argminθ∈ΘB
ℓD(θ) is more complex. For general convex MLE,

usually one requires strong convexity of the loss to achieve tight error bounds on the ℓ2-distance
∥θ̃MLE − θ̂MLE∥2. In the RLHF setting that we consider, we instead have strong convexity with
respect to the dataset-dependent seminorm ∥·∥ΣD . Further, in order for pessimistic policy optimiza-
tion to succeed we must bound the error in terms of the noise-perturbed dataset dependent norm
∥·∥Σ̃D+λI for some λ > 0.

This is a significant difference, because the noise perturbation added in Algorithm 1 in order to
achieve differential privacy is from a standard, spherical Gaussian. In particular, it turns out the
error introduced by adding such noise will scale with the norm of a spherical Gaussian under
∥·∥(ΣD+λI)−1 , which may be much larger than the standard ℓ2-norm. Thus, a more delicate analysis
is required which trades-off the perturbations need for privacy (which must be standard Gaussians)
versus the norm which is actually useful in measuring the error of the MLE for the RLHF setting.

Algorithm 1 Private MLE for ℓD
Input: Dataset D, privacy parameters ϵ ≤ 1, δ ≤ 1

n2 , optimization accuracy parameter 0 < β < 1
n ,

failure probability η.
1: Sample b ∼ N (0, σ2)d, for σ2 =

40L2 log( 1
δ )

ϵ2

2: Sample w ∼ N (0, ν2)d, for ν2 =
40β log( 1

δ )

αϵ2 .

3: Set α = 2Cγ

√
d log(1/δ) log(1/η)

ϵn .
4: Define ℓ̃D(θ) = ℓD(θ) + α∥θ∥22 +

⟨b,θ⟩
n

5: Compute an approximate solution θ̂ satisfying

ℓ̃D(θ̂)− min
θ∈ΘB

ℓ̃D(θ) < β

6: return θ̃MLE = θ̂ + w

Privacy for the estimated covariance matrix Σ̃D follows from a straightforward application of the
standard Gaussian mechanism.

Algorithm 2 Private ΣD

Input: Dataset D = {(si, ai0, ai1, yi)}ni=1}, privacy parameters ϵ ≤ 1, δ ≤ 1
n2 .

1: Set ΣD = 1
n

∑n
i=1

(
ϕ(si, ai1)− ϕ(si, ai0)

) (
ϕ(si, ai1)− ϕ(si, ai0)

)⊤
.

2: Sample G ∼ N (0, σ2)d×d, for σ2 =
64 log( 1

δ )L
4

ϵ2n2

3: return Σ̃D = ΣD +G.

We can now state our main theorem regarding privacy of the reward parameters θ̃MLE and the data
covariance Σ̃D.

Theorem 4.1. Let ϵ, δ > 0, and θ̃MLE be the output of Algorithm 1 and Σ̃D the output of Algorithm 2.
Then the pair (θ̃MLE, Σ̃D) satisfies (ϵ, δ)-differential privacy.

The proof appears in Section A.3.

To state the pessimistic policy optimization algorithm that will be applied to the private outputs θ̃MLE

and Σ̃D we define the confidence set of parameters

Θ(θ̃MLE, λ) =
{
θ ∈ ΘB | ∥θ̃MLE − θ∥Σ̃D+λI ≤ F (n, d, η, ϵ, δ)

}
(2)

where,

F (n, d, η, ϵ, δ) = O

(√
d

n
+

(d log(1/η) log(1/δ))
1/4

√
ϵn

)
. (3)
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We also set λ once and for all as

λ = C ·
√
d log(1/η) log(1/δ)

ϵn
(4)

where the constant C is the one provided by Lemma A.9.

Algorithm 3 gives the pessimistic policy optimization algorithm that we apply to the learned rewards
and data covariance. Note that the algorithm takes the perturbed reward parameter θ̃MLE and covari-
ance Σ̃D as inputs, but does not access the private dataset D at all. Thus by standard post-processing,
the output of Algorithm 3 also satisfies (ϵ, δ)-differential privacy.

Algorithm 3 Pessimistic policy optimization

Input: Error tolerance η, reward parameters θ̃MLE, perturbed data covariance Σ̃D, confidence set
Θ(θ̃MLE, λ), reference vector v ∈ Rd, and state distribution ρ.

1: Set Ĵ(π) = minθ∈Θ(θ̃MLE,λ)
Es∼ρ[⟨θ, ϕ(s, π(s))− v⟩].

2: return π̂PE = argmaxπ Ĵ(π).

Theorem 4.2. Let π̂PE be the output of Algorithm 3, and F (n, d, η, ϵ, δ) be as in (3). Then with
probability at least 1− η,

SubOpt(π̂PE) ≤ F (n, d, η, ϵ, δ) · ∥(ΣD + λI)
−1

(Es∼ρ[ϕ(s, π
∗(s))− v])∥2

where the O(·) hides factors depending only on L and B. In particular, when ϵ is constant and δ is
inverse polynomial in n,

SubOpt(π̂PE) ≤ Õ

(√
d

n

)
· ∥(ΣD + λI)

−1
(Es∼ρ[ϕ(s, π

∗(s))− v])∥2.

The proof appears in Section A.5. The factor ∥(ΣD + λI)
−1

(Es∼ρ[ϕ(s, π
∗(s))−v])∥2 is known as

the single concentratability coefficient, and is a measure of how well the offline dataset covers the
average feature vector Es∼ρ[ϕ(s, π

∗(s))]. The same factor appears in Zhu et al. (2023) and other
related work on offline reinforcement learning. In particular, it is standard practice to assume that the
single concentratability coefficient is bounded by a constant independent of d and n. The vector v is
free to be chosen by the algorithm designer, and can make a significant difference in the magnitude
of the bound. See Zhu et al. (2023) for an example of a simple multiarmed bandit setting where
Es∼ρ[ϕ(s, π

∗(s))] is in the null space of ΣD, and hence ∥(ΣD + λI)
−1

(Es∼ρ[ϕ(s, π
∗(s))])∥2 → ∞

as λ → 0. However, for the same MDP there exists a v such that ∥(ΣD + λI)
−1

(Es∼ρ[ϕ(s, π
∗(s))−

v])∥2 ≤ 1.

It is also critical to note that the error bound is given in terms of (ΣD + λI)
−1 and not(

Σ̃D + λI
)−1

. That is, even though the pessimistic policy optimization algorithm only has ac-

cess to Σ̃D the error depends on the true value of the single concentratability coefficient determined
by ΣD, and thus makes our results directly comparable to the non-private algorithm. This introduces
additional subtleties in our proof, which do not appear in the non-private case where the pessimistic
policy algorithm has access to the unperturbed ΣD.

4.2 K-WISE COMPARISONS

For the case of K-wise comparisons the dataset DK consists of n tuples of the form
(si, ai1, . . . , a

i
K , σ), where σ is a permutation on K elements representing a human preference rank-

ing. The log likelihood for the Plackett-Luce model with general K takes the form,

ℓDK
(θ) = − 1

n

n∑
i=1

K∑
j=1

log

 exp
(〈

θ, ϕ(si, aiσi(j)

〉)
∑K

k=j exp
(〈

θ, ϕ(si, aiσi(k)

〉)
 .
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In this case the data covariance matrix is given by

ΣDK
=

2

nK(K − 1)

n∑
i=1

K∑
j=1

K∑
j=k+1

(
(ϕ(si, aij)− ϕ(si, aik))(ϕ(s

i, aij)− ϕ(si, aik))
⊤)

The main subtlety in extending our main privacy result Theorem 4.1 to the setting of K-wise compar-
isons relates to the assumptions required for objective-perturbed MLE as in Algorithm 1 to maintain
privacy. In particular, the loss takes the form of a sum of n terms ℓDK

(θ) =
∑n

i=1 ℓ
i
DK

(θ), where
ℓiDK

is determined by the tuple (si, ai1, . . . a
i
K , σi) ∈ DK . By linearity, the Hessian is given by

∇2ℓDK
(θ) =

∑n
i=1 ∇2ℓiDK

(θ). As stated, the original privacy theorem of Kifer et al. (2012) only
applies under the assumption that each such term ∇2ℓiDK

(θ) has rank one. Unfortunately, this is
false for our case, as ∇2ℓiDK

(θ) may actually have rank as large as K3. Luckily, as shown in Bass-
ily et al. (2019b), the results of Iyengar et al. (2019) can be applied to allow for constant rank for
the individual Hessians ∇2ℓiDK

(θ) to achieve differential privacy. In particular, we show that we
can adjust α by a constant factor depending on K in order to satisfy the appropriate assumptions
to achieve privacy. Further, privacy for Σ̃DK

output by Algorithm 2 applied to the dataset DK fol-
lows again from the standard Gaussian mechanism. Thus, altogether we can prove our main privacy
theorem.

Theorem 4.3. Let ϵ, δ > 0, and θ̃MLEK
be the output of Algorithm 1 (with parameters modified by

a constant factor) and Σ̃DK
the output of Algorithm 2, when applied to the dataset DK . Then the

pair (θ̃MLEK
, Σ̃DK

) satisfies (ϵ, δ)-differential privacy.

The proof appears in Section B.3. For the pessimistic policy optimization algorithm applied to
K-wise comparisons, we define a similar confidence set

ΘK(θ̃MLEK
, λ) =

{
θ ∈ ΘB | ∥θ̃MLE − θ∥Σ̃D+λIF (n, d, η, ϵ, δ)

}
(5)

where F (n, d, η, ϵ, δ) is given by (3). Finally, our main theorem on the performance of pessimistic
policy optimization follows by running Algorithm 3 on DK with confidence set Θ(θ̃MLEK

, λ).

Theorem 4.4. Let π̂PE be the output of Algorithm 3 when run with input θ̃MLEK
, Σ̃DK

, and confi-
dence set ΘK(θ̃MLEK

, λ). Let F (n, d, η, ϵ, δ) be as in (3). Then with probability at least 1− η,

SubOpt(π̂PE) ≤ F (n, d, η, ϵ, δ) · ∥(ΣD + λI)
−1

(Es∼ρ[ϕ(s, π
∗(s))− v])∥2

where the O(·) hides factors depending only on L, B, and K. In particular, when ϵ is constant and
δ is inverse polynomial in n,

SubOpt(π̂PE) ≤ Õ

(√
d

n

)
· ∥(ΣD + λI)

−1
(Es∼ρ[ϕ(s, π

∗(s))− v])∥2.

The proof appears in Section B.

5 PRIVATE RLHF FOR GENERAL MDPS

In this section we extend our results to private RLHF in finite-horizon MDPs. In this
case we start with a set of trajectories i.e. length H sequences of state-action pairs τ i =
((si1, a

i
1), (s

i
2, a

i
2), . . . (s

i
H , aiH)). Then human ratings of pairs of trajectories are made to produce a

dataset Dτ = {τ i0, τ i1, yi}ni=1, where yi = l for l ∈ {0, 1} implies that the human preferred trajectory
τ il . Here τ i0 and τ i1 both start with the same state. Once again we assume that given a ground-truth
parameter vector θ∗, the human preference ratings follow a Bradley-Terry-Luce model of the form,

P[y = 1 | s, τ0, τ1] =
exp

(∑H
h=1 rθ∗(sh1, ah1)

)
exp

(∑H
h=1 rθ∗(sh0, ah0)

)
+ exp

(∑H
h=1 rθ∗(sh1, ah1)

) ,
8
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where above τ0 = ((s10, a10), (s20, a20), . . . (sH0, aH0)) and τ1 =
((s11, a11), (s21, a21), . . . (sH1, aH1)). In this setting the log-likelihood is given by

ℓDτ (θ) = − 1

n

n∑
i=1

log

1[yi = 1]
exp

(∑H
h=1 rθ∗(sih1, a

i
h1)
)

exp
(∑H

h=1 rθ∗(sih0, a
i
h0)
)
+ exp

(∑H
h=1 rθ∗(sih1, a

i
h1)
)

+1[yi = 0]
exp

(∑H
h=1 rθ∗(sh0, ah0)

)
exp

(∑H
h=1 rθ∗(sh0, ah0)

)
+ exp

(∑H
h=1 rθ∗(sh1, ah1)

)
 .

The relevant data covariance matrix is

ΣDτ
=

1

n

n∑
i=1

(
H∑

h=1

(
ϕ(sih0, a

i
h0)− ϕ(sih1, a

i
h1)
) (

ϕ(sih0, a
i
h0)− ϕ(sih1, a

i
h1)
)⊤)

.

As in the contextual bandit case, we run Algorithm 1 with the dataset of trajectories Dτ to produce a
parameter estimate θ̃MLEτ

. Further, we modify Algorithm 2 to use the trajectory covariance matrix
ΣDτ given above, resulting in private trajectory covariance output Σ̃Dτ . We then have the following
theorem.
Theorem 5.1. Let ϵ, δ > 0, and θ̃MLEτ

be the output of Algorithm 1 and Σ̃Dτ
the output of Algo-

rithm 2 when run on the trajectory dataset D. Then the pair (θ̃MLEτ
, Σ̃Dτ

) satisfies (ϵ, δ)-differential
privacy.

The proof appears in C.3.

In order to utilize Algorithm 3 for the general MDP setting, one needs to consider the distribution
ρπ on states induced by the utilization of the policy π in the MDP M . In this case the pessimistic
policy loss function in Algorithm 3 becomes

Ĵ(π) = min
θ∈Θ(θ̃MLEτ ,λ)

Es∼ρπ
[rθ̃MLEτ

(s, π(s))].

Slightly abusing notation, we will refer to the use of this loss function as running Algorithm 3 with
input ρ = ρπ .

Theorem 5.2. Let θ̃MLEτ and Σ̃Dτ be as in Theorem 5.1. Let π̂PE be the output of Algorithm 3 when
run with ρ = ρπ , and F (n, d, η, ϵ, δ) as in (3). Then with probability at least 1− η,

SubOpt(π̂PE) ≤ F (n, d, η, ϵ, δ) · ∥(ΣD + λI)
−1

(Es∼ρπ [ϕ(s, π
∗(s))− v])∥2

where the O(·) hides factors depending only on L,H , and B. In particular, when ϵ is constant and
δ is inverse polynomial in n,

SubOpt(π̂PE) ≤ Õ

(√
d

n

)
· ∥(ΣD + λI)

−1
(Es∼ρπ [ϕ(s, π

∗(s))− v])∥2.

The proof appears in Section C.

6 CONCLUSION AND OPEN PROBLEMS

We have shown that it is possible to perform reinforcement learning from human feedback with
minimax optimal rates and differential privacy when rewards are linearly parametrized. The setting
of linear parametrization in a fixed feature space is often used as a theoretical model in order to give
qualitative insight into real-world machine learning algorithms. We view our results as qualitatively
suggesting that it may be possible to simultaneously align large language models using RLHF while
simultaneously protecting the privacy of the humans whose preference rankings are used during
training.

A natural avenue for future work is to see if these theoretical results can be extended beyond linear
parameterization. For instance, it would be interesting to study the setting where the rewards r lie in
a general PAC-learnable function class, and then attempt to achieve statistical efficiency alongside
differential privacy in such a setting.

9
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pp. 4301–4311, 2018.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F. Christiano. Learning to summarize with human feedback.
In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Jay Tenenbaum, Haim Kaplan, Yishay Mansour, and Uri Stemmer. Differentially private multi-
armed bandits in the shuffle model. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pp. 24956–24967, 2021.

Aristide C. Y. Tossou and Christos Dimitrakakis. Algorithms for differentially private multi-armed
bandits. In Dale Schuurmans and Michael P. Wellman (eds.), Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, pp. 2087–
2093. AAAI Press, 2016.

Aristide Charles Yedia Tossou and Christos Dimitrakakis. Achieving privacy in the adversarial
multi-armed bandit. In Satinder Singh and Shaul Markovitch (eds.), Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California,
USA, pp. 2653–2659. AAAI Press, 2017.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Giuseppe Vietri, Borja Balle, Akshay Krishnamurthy, and Zhiwei Steven Wu. Private reinforcement
learning with PAC and regret guarantees. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of
Machine Learning Research, pp. 9754–9764. PMLR, 2020.

Baoxiang Wang and Nidhi Hegde. Privacy-preserving q-learning with functional noise in continu-
ous spaces. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
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A PROOFS FOR CONTEXTUAL BANDITS WITH PAIRWISE COMPARISONS

A.1 BASIC PROPERTIES OF ℓD AND ΣD

We begin with the basic properties of ℓD and ΣD necessary for the analysis. Throughout we will
use the notation xi = ϕ(si, ai1)− ϕ(si, ai0). With this notation the loss function ℓD becomes

ℓD(θ) = − 1

n

n∑
i=1

log

(
(1[yi = 1]

1

1 + exp(−⟨θ, xi⟩)
+ 1[yi = 0]

(
1− 1

1 + exp(−⟨θ, xi⟩)

))
(6)

The gradient and Hessian of ℓD are given by the following formulas.
Claim A.1.

∇ℓD(θ) = − 1

n

n∑
i=1

(
1[yi = 1]

exp(−⟨θ, xi⟩)
1 + exp(−⟨θ, xi⟩)

− 1[yi = 0]
1

1 + exp(−⟨θ, xi⟩)

)
xi

Claim A.2.

∇2ℓD(θ) =
1

n

n∑
i=1

exp(−⟨θ, xi⟩)
(1 + exp(−⟨θ, xi⟩))2

xix
⊤
i

Proof.

∇2ℓD(θ) =
1

n

n∑
i=1

(
1[yi = 1]

exp(−⟨θ, xi⟩)
(1 + exp(−⟨θ, xi⟩))2

+ 1[yi = 0]
exp(−⟨θ, xi⟩)

(1 + exp(−⟨θ, xi⟩))2

)
xix

⊤
i

=
1

n

n∑
i=1

exp(−⟨θ, xi⟩)
(1 + exp(−⟨θ, xi⟩))2

xix
⊤
i

These formulas lead directly to an upper bound on the norm of the gradient and the operator norm
of the Hessian of ℓD.

Lemma A.3. For all θ,

1. ∥∇ℓD(θ)∥2 ≤ 2L

2. ∥∇2ℓD(θ)∥op ≤ 4L2

Proof. Observe first that ∥xi∥2 ≤ 2L because ∥ϕ(s, a)∥ ≤ L. By Claim A.1, the gradient ∇ℓD(θ) is
the average of n vectors each of length at most 2L. Similarly by Claim A.2, ∇2ℓD(θ) is the average
of n rank-one matrices, each of operator norm at most ∥xi∥22 ≤ 4L2.

The proof Lemma 3.1 in Zhu et al. (2023) implies that for all θ ∈ ΘB and v ∈ Rd

v⊤∇2ℓD(θ)v ≥ γv⊤ΣDv = γ∥v∥2ΣD
. (7)

where γ = 1/(2 + exp(2LB) + exp(−2LB)). In particular, we have the following lemma,
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Lemma A.4. ℓD is strongly convex on the set ΘB with respect to the semi-norm ∥·∥ΣD . That is,
there exists a constant γ > 0 such that,

ℓD(θ +∆)− ℓD(θ)− ⟨∇ℓD(θ), θ⟩ ≥
γ

2
∥∆∥2ΣD

(8)

for all θ ∈ ΘB , and ∆ such that (θ +∆) ∈ ΘB .

We will need the following standard fact regarding optimizers of strongly convex functions over
convex sets.

Lemma A.5. Let C ⊆ Rd be a convex set, let M ∈ Rd×d be a positive semidefinite matrix, and let
f : Rd → R be γ-strongly convex with respect to the seminorm ∥·∥M on C. Let θ̂ be the minimum of
f in C. Then f(θ̂)− f(θ) ≥ γ

2 ∥θ̂ − θ∥2M for any point θ ∈ C.

Proof. Follows from the second-order Taylor expansion of f and the optimality conditions for opti-
mization over a convex set. Then (7) implies the desired result.

The following lemma allows us to quantify the effect of adding an ℓ2-norm regularizer to a function
that is strongly convex with respect to a seminorm of the form ∥·∥M .

Lemma A.6. Let M ∈ Rd×d be a positive semidefinite matrix. Suppose f : Rd → R is γ-strongly
convex with respect to ∥·∥M . Then the function g(θ) = f(θ) + c

2∥θ∥
2
2 is γ-stongly convex with

respect to ∥·∥M+c/γI .

Proof.

∇2g(θ) = ∇2f(θ) + cI ≽ γ

(
M +

c

γ
I

)

A.2 PRIVATE COVARIANCE

We obtain privacy for the feature covariance matrix via the Gaussian mechanism.

Lemma A.7. Let σ2 =
64 log( 1

δ )L
4

ϵ2n2 and G ∼ N (0, σ2)d×d. Then Σ̃D = ΣD + G is (ϵ/2, δ/2)-
differentially private.

Proof. For a dataset D′ differing in one query (s, a0, a1) from D we have

∥ΣD−ΣD′∥2 ≤ 1

n
∥(ϕ(s, a1)− ϕ(s, a0)) (ϕ(s, a1)− ϕ(s, a0))

⊤∥2 =
1

n
∥ϕ(s, a1)−ϕ(s, a0)∥22 ≤ 4L2

n
.

The standard analysis of the Gaussian mechanism (Dwork & Roth, 2014) then implies that Σ̃D is
(ϵ/2, δ/2)-differentially private when setting σ2 =

64 log( 1
δ )L

4

ϵ2n2 .

The parameter estimation error is asymptotically the same when measuring with respect to the dif-
ferentially private covariance matrix Σ̃D.

Lemma A.8. Let z ∈ Rd. With probability at least 1− η,

∥z∥Σ̃D+λI <

√√√√1 +O

(√
log(1/δ) log(1/η)

ϵ2n2λ

)
∥z∥ΣD+λI

Proof. Since Σ̃D = ΣD +G for G ∼ N (0, σ2)d×d,

∥z∥2
Σ̃D+λI

= ∥z∥2ΣD+λI + z⊤Gz (9)
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Further z⊤Gz is a linear function of the independent N (0, σ2) entries of G, and thus is distributed
as a Gaussian with mean 0 and variance σ2∥z∥42. Next note that since ΣD is positive semidefinite,

λ∥z∥22 = z⊤λIz

≤ z⊤ (ΣD + λI) z = ∥z∥2ΣD+λI . (10)

Thus by (10) and standard Gaussian concentration, with probability at least 1− η,

z⊤Gz <

√
log

(
1

η

)
σ∥z∥22

≤

√
log

(
1

η

)
σ

λ
∥z∥2ΣD+λI

≤ O

(√
log(1/δ) log(1/η)

ϵ2n2λ

)
∥z∥2ΣD+λI

Plugging into (9) and taking square roots yields the desired result.

We next prove bounds relating (ΣD + λI)−1 to (Σ̃D + λI)−1.

Lemma A.9. There is a constant C > 0 such that for λ ≥ C

√
d log(1/η) log(1/δ)

ϵn we have

∥(Σ̃D + λI)−1/2z∥2 ≤

∥∥∥∥∥
(
ΣD +

λ

2
I

)−1/2

z

∥∥∥∥∥
2

Proof. Note that Σ̃D = ΣD + G where G ∼ N (0, σ2)d×d, for σ2 =
64 log( 1

δ )L
4

ϵ2n2 . Therefore by
standard concentration bounds for the operator norm of a matrix with independent Gaussian entries
Vershynin (2018) we have that with probability at least 1− η,

∥G∥op ≤ C ′σ(
√
d+

√
log(1/η)

≤ C ′′
√
d log(1/δ) log(1/η)

ϵn
.

Next set C = 2C ′′, and let µ = ∥G∥op. Then, with probability at least 1− η,

Σ̃D + λI = ΣD +G+ λI ≽ ΣD + (λ− µ)I = ΣD +
λ

2
I.

Therefore,

z⊤(Σ̃D + λI)−1z ≤ z⊤(ΣD +
λ

2
I)−1z.

Taking square roots yields the desired result.

A.3 PRIVACY OF OBJECTIVE-PERTURBED MLE

Lemma A.10. Algorithm 1 satisfies (ϵ/2, δ/2)-differential privacy.

Proof. For the chosen values of α, σ, and ν given in Algorithm 1, the function ℓD satsifies the
assumptions of Theorem 5.6 of Bassily et al. (2019b) which is the full version of Bassily et al.
(2019a). Further note that Theorem 5.6 of Bassily et al. (2019b) is just output perturbation applied
to the objective perturbation from Theorem 2 in Kifer et al. (2012).

We now have all the ingredients necessary to prove our main result on differential privacy for the
setting of contextual bandits with pairwise comparisons.

Proof of Theorem 4.1. θ̃MLE is (ϵ/2, δ/2)-differentially private by Lemma A.10, and Σ̃D is
(ϵ/2, δ/2)-differentially private by Lemma A.7. Thus, standard composition implies that the pair
(θ̃MLE, Σ̃D) is (ϵ, δ)-differentially private.
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A.4 APPROXIMATION ERROR OF OBJECTIVE-PERTURBED MLE

We now prove an upper bound on the distance between the output of Algorithm 1 and the true MLE
solution.

Lemma A.11. Let λ = C

√
d log(1/η) log(1/δ)

ϵn , with probability at least 1− η,

∥θ̂MLE − θ̃MLE∥Σ̃D+λI ≤ O

(
(d log(1/η) log(1/δ))1/4√

ϵn

)
where the O(·) hides factors depending only on L and B.

Proof. Let α, σ2, and b be as in Algorithm 1. First, define the ℓ2-regularized and objective-perturbed
loss functions as follows:

ℓ′D(θ) = ℓD(θ) + α∥θ∥22 (11)

ℓ̃D(θ) = ℓD(θ) + α∥θ∥22 +
⟨b, θ⟩
n

(12)

Further let θ̂MLE = argminθ∈ΘB
ℓD(θ), θ′ = argminθ∈ΘB

ℓ′D(θ), and θ̂ = argminθ∈ΘB
ℓ̃D(θ).

An upper bound for ∥θ̂MLE − θ′∥. By Lemma A.4 and Lemma A.6 the loss ℓ′D(θ) is γ-strongly
convex with respect to ∥·∥ΣD+α

γ I . Thus, Lemma A.5 implies that

ℓ′D(θ̂MLE) ≥ ℓ′D(θ
′) +

γ

2
∥θ̂MLE − θ′∥2ΣD+α

γ I

=⇒ ℓD(θ̂MLE) + α∥θ̂MLE∥22 ≥ ℓD(θ
′) + α∥θ′∥22 +

γ

2
∥θ̂MLE − θ′∥2ΣD+α

γ I

Observe that ℓD(θ̂MLE) ≤ ℓD(θ
′) by optimality of θ̂MLE. Thus,

α∥θ̂MLE∥22 ≥ α∥θ′∥22 +
γ

2
∥θ̂MLE − θ′∥2ΣD+α

γ I

≥ γ

2
∥θ̂MLE − θ′∥2ΣD+α

γ I

Rearranging and using the fact that ∥θ̂MLE∥2 ≤ B yields

∥θ̂MLE − θ′∥ΣD+α
γ I ≤

√
2αB

γ
(13)

An upper bound for ∥θ̂ − θ′∥. Adding a linear term has no affect on strong convexity, thus by
Lemma A.4 and Lemma A.6 the function ℓ̃D(θ) is γ-strongly convex with respect to ∥·∥ΣD+α

γ I .
Again Lemma A.5 implies

ℓ̃D(θ
′) ≥ ℓ̃D(θ̂) +

γ

2
∥θ̂ − θ′∥2ΣD+α

γ I

=⇒ ℓ′D(θ
′) +

⟨b, θ′⟩
n

≥ ℓ′D(θ̂) +

〈
b, θ̂
〉

n
+

γ

2
∥θ̂ − θ′∥2ΣD+α

γ I

By the optimality of θ′ for ℓ′D, we have ℓ′D(θ̂MLE) ≥ ℓ′D(θ
′). Hence,

⟨b, θ′⟩
n

≥

〈
b, θ̂
〉

n
+

γ

2
∥θ̂ − θ′∥2ΣD+α

γ I

=⇒
〈
b, θ′ − θ̂

〉
≥ nγ

2
∥θ̂ − θ′∥2ΣD+α

γ I .

Therefore by Cauchy-Schwarz,

∥b∥(ΣD+α
γ I)−1∥θ̂ − θ′∥2ΣD+α

γ I ≥ nγ

2
∥θ̂ − θ′∥2ΣD+α

γ I .
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Rearranging yields,

∥θ̂ − θ′∥ΣD+α
γ I ≤

2∥b∥(ΣD+α
γ I)−1

nγ
.

The largest eigenvalue of (ΣD + α
γ I)

−1 is at most γ
α and therefore ∥b∥(ΣD+α

γ I)−1 ≤ ∥b∥2
√

γ
α .

Therefore we conclude,

∥θ̂ − θ′∥ΣD+α
γ I ≤ ∥b∥2

n

1
√
γα

.

Standard Gaussian concentration bounds then imply that with probability at least 1− η,

∥θ̂ − θ′∥ΣD+α
γ I ≤ σ

n

√√√√2dγ log
(

2
η

)
α

. (14)

An upper bound for ∥θ̃MLE − θ̂∥. For w defined as in Algorithm 1, the operator norm bound of
Lemma A.3 implies

∥θ̃MLE − θ̂∥ΣD+λI = ∥w∥ΣD+λI ≤ (4L2 + λ)∥w∥2.

Again standard Guassian concentration bounds imply that with probability at least 1− η,

∥θ̃MLE − θ̂∥ΣD+λI ≤ (4L2 + λ)ν
√

2d log(2/η). (15)

Putting it all together. Observe that by our choice of λ and α we have that λ ≤ α
γ . Hence

∥v∥ΣD+λI ≤ ∥v∥ΣD+α
γ I for all v ∈ Rd. The result now follows by applying the triangle inequality

to (13), (14), and (15), applying Lemma A.8 to upper bound ∥·∥ΣD+λI by ∥·∥Σ̃D+λI , and plugging
in the values for α, β, ν, and σ from Algorithm 1.

A.5 PESSIMISTIC POLICY OPTIMIZATION

We now utilize the bounds proved earlier in this section on the estimation error of Algorithm 1 and
Algorithm 3 in order to complete the proof of Theorem 4.2.

Proof of Theorem 4.2. Let λ = C

√
d log(1/η) log(1/δ)

ϵn . By Lemma 3.1 in Zhu et al. (2023) we have
that with probability 1− η,

∥θ̂MLE − θ∗∥ΣD+λI ≤ O

(√
d+ log(1/η)

n
+ λ

)
.

Thus, by Lemma A.11, Lemma A.8, and the triangle inequality, we have that with probability 1− η

∥θ∗ − θ̃MLE∥Σ̃D+λI ≤ F (n, d, η, ϵ, δ) (16)

where

F (n, d, η, ϵ, δ) = O

(√
d

n
+

(d log(1/η) log(1/δ))
1/4

√
ϵn

)
.

Recalling the notation Θ(θ̃MLE, λ) from (2), this implies that θ∗ ∈ Θ(θ̃MLE, λ).

Next define J∗(π) = Es∼ρ[⟨θ∗, ϕ(s, π(s))⟩] and J ′(π) = J∗(π) − ⟨θ∗, v⟩. Let π∗ =
argminπ J

∗(π). Note that by optimality of π̂PE we have

Ĵ(π̂PE) ≤ Ĵ(π∗) (17)

Since θ∗ ∈ Θ(θ̃MLE, λ) with probability 1− η, we have

Ĵ(π̂PE)− J ′(π̂PE) = min
θ∈Θ(θ̃MLE,λ)

Es∼ρ[⟨θ, ϕ(s, π̂PE(s))− v⟩]− Es∼ρ[⟨θ∗, ϕ(s, π̂PE(s))− v⟩]

≤ 0. (18)
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Then we can decompose the suboptimality for the output π̂PE of Algorithm 3 as follows,

SubOpt(π̂PE) = J∗(π∗)− J∗(π̂PE)

= J ′(π∗)− J ′(π̂PE)

= (J ′(π∗)− Ĵ(π∗)) + (Ĵ(π∗)− Ĵ(π̂PE)) + (Ĵ(π̂PE)− J ′(π̂PE))

By (17) and (18) the latter two differences above are less than zero, hence

SubOpt(π̂PE) ≤ J ′(π∗)− Ĵ(π∗)

= sup
θ∈Θ(θ̃MLE,λ)

Es∼ρ[⟨θ∗ − θ, ϕ(s, π∗(s))− v⟩]

= Es∼ρ[
〈
θ∗ − θ̃MLE, ϕ(s, π

∗(s))− v
〉
] + sup

θ∈Θ(θ̃MLE,λ)

Es∼ρ[
〈
θ̃MLE − θ, ϕ(s, π∗(s))− v

〉
]

(19)

By construction we have that for all θ ∈ Θ(θ̃MLE, λ) the Cauchy-Schwarz inequality implies

Es∼ρ

[〈
θ̃MLE − θ, ϕ(s, π∗(s))− v

〉]
≤ ∥θ̃MLE − θ∥Σ̃D+λI∥(Σ̃D + λI)−1/2(ϕ(s, π∗(s))− v)∥2

≤ F (n, d, η, ϵ, δ) · ∥(Σ̃D + λI)−1/2(ϕ(s, π∗(s))− v)∥2

As θ∗ ∈ Θ(θ̃MLE, λ) with probability 1 − η, we have that both terms in (19) take the form
Es∼ρ

[〈
θ̃MLE − θ, ϕ(s, π∗(s))− v

〉]
for some θ ∈ Θ(θ̃MLE, λ). Finally, substituting 2λ for λ and

applying Lemma A.9 implies the desired result.

B PROOFS FOR CONTEXTUAL BANDITS WITH K-WISE COMPARISONS

We begin, as in the pairwise case, with some basic properties of the loss and covariance in the
K-wise setting.

B.1 BASIC PROPERTIES OF ℓDK
AND ΣDK

The loss for the K-wise Plackett-Luce model is given by

ℓDK
(θ) = − 1

n

n∑
i=1

K∑
j=1

log

 exp
(〈

θ, ϕ(si, aiσi(j)
)
〉)

∑K
k=j exp

(〈
θ, ϕ(si, aiσi(k)

)
〉)
 .

We will use the following notation throughout this section,

xi
jk = ϕ(si, aiσi(j)

)− ϕ(si, aiσi(k)
).

The gradient and Hessian of ℓDK
are given by the following formulas.

Claim B.1.

∇ℓDK
(θ) = − 1

n

n∑
i=1

K∑
j=1

K∑
k=j

exp
(〈

θ, ϕ(si, aiσi(j)

〉)
∑K

l=j exp
(〈

θ, ϕ(si, aiσi(l)

〉) · xi
jk.

Claim B.2.

∇2ℓDK
(θ) =

1

n

n∑
i=1

K∑
j=1

K∑
k=j

K∑
l=j

exp
(〈

θ, ϕ(si, aiσi(j)

〉)
∑K

l=j exp
(〈

θ, ϕ(si, aiσi(l)

〉) · xi
klx

i⊤
kl .

These formulas lead directly to an upper bound on the norm of the gradient and the operator norm
of the Hessian of ℓDK

.

Lemma B.3. For all θ,
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1. ∥∇ℓDK
(θ)∥2 ≤ 2K2L

2. ∥∇2ℓDK
(θ)∥op ≤ 4K3L2

Proof. Observe first that ∥xi∥2 ≤ 2L because ∥ϕ(s, a)∥ ≤ L. By Claim B.1, the gradient ∇ℓDK
(θ)

is the average of n sums of K2 vectors each of length at most 2L. Similarly by Claim B.2, ∇2ℓDK
(θ)

is the average of n sums of K3 rank-one matrices, each of operator norm at most ∥xi∥22 ≤ 4L2.

The proof Theorem 4.1 in Zhu et al. (2023) implies that for all θ ∈ ΘB and v ∈ Rd

v⊤∇2ℓDK
(θ)v ≥ γKv⊤ΣDK

v = γK∥v∥2ΣDK
. (20)

where γK = 1
2 exp(−4LB). In particular, we have the following lemma,

Lemma B.4. ℓDK
is strongly convex on the set ΘB with respect to the semi-norm ∥·∥ΣDK

. That is,
there exists a constant γK > 0 such that,

ℓDK
(θ +∆)− ℓDK

(θ)− ⟨∇ℓD(θ), θ⟩ ≥
γK
2

∥∆∥2ΣDK
(21)

for all θ ∈ ΘB , and ∆ such that (θ +∆) ∈ ΘB .

B.2 PRIVATE COVARIANCE FOR K-WISE COMPARISONS

We obtain privacy for the feature covariance matrix ΣDK
via the Gaussian mechanism. The main

point is use Algorithm 2 with the variance of the Gaussian mechanism increased by a constant factor
depending only on K.

Lemma B.5. Let σ2 =
64 log( 1

δ )K
6L4

ϵ2n2 and G ∼ N (0, σ2)d×d. Then Σ̃DK
= ΣDK

+G is (ϵ/2, δ/2)-
differentially private.

Proof. For a dataset D′
K differing in one query (s, a1, . . . aK , σ) from DK we have

∥ΣDK
− ΣD′

k
∥2 ≤ 1

n
K3∥xi

klx
i⊤
kl ∥2 =

1

n
K3∥xi

kl∥22 ≤ 4K3L2

n
.

The standard analysis of the Gaussian mechanism (Dwork & Roth, 2014) then implies that Σ̃DK
is

(ϵ/2, δ/2)-differentially private when setting σ2 =
64 log( 1

δ )K
6L4

ϵ2n2 .

B.3 PRIVACY OF OBJECTIVE-PERTURBED MLE FOR K-WISE COMPARISONS

Lemma B.6. Algorithm 1 applied to ℓDK
and DK satisfies (ϵ/2, δ/2)-differential privacy, when α

is adjusted by a constant factor.

Proof. First define

ℓiDK
(θ) =

K∑
j=1

log

 exp
(〈

θ, ϕ(si, aiσi(j)

〉)
∑K

k=j exp
(〈

θ, ϕ(si, aiσi(k)

〉)
 .

As pointed out in the discussion after Theorem 5.6 Bassily et al. (2019b), the analysis of objective
perturbation by Iyengar et al. (2019) implies that one can still achieve differential privacy when the
rank of ∇2ℓiDK

(θ) is larger than one. In particular, by Claim B.2,

∇2ℓiDK
(θ) =

K∑
j=1

K∑
k=j

K∑
l=j

exp
(〈

θ, ϕ(si, aiσi(j)

〉)
∑K

l=j exp
(〈

θ, ϕ(si, aiσi(l)

〉) · xi
klx

i⊤
kl ,

which evidently has rank at most K3. Thus the analysis of Iyengar et al. (2019) implies that we need
only increase α by a constant factor (depending only on K) in order to achieve (ϵ, δ)-differential
privacy.
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We now can conclude with our main privacy theorem for K-wise comparisons.

Proof of Theorem 4.3. θ̃MLEK
is (ϵ/2, δ/2)-differentially private by Lemma B.6, and Σ̃DK

is
(ϵ/2, δ/2)-differentially private by Lemma B.5. Thus, standard composition implies that the pair
(θ̃MLEK

, Σ̃DK
) is (ϵ, δ)-differentially private.

B.4 APPROXIMATION ERROR AND PESSIMISTIC POLICY OPTIMIZATION FOR K-WISE
COMPARISONS

At this point, one can check that the proofs of Lemma A.8 and Lemma A.9, as well as those of all
the results in Section A.4 and Section A.5 go through, with the only change being an adjustment of
the parameters by constant factors depending only on K. Thus, following these proofs with ΣDK

substituted for ΣD and θ̂MLEK
substituted for θ̂MLE yields Theorem 4.4.

C PROOFS FOR GENERAL MDPS

C.1 BASIC PROPERTIES OF ℓDτ
AND ΣDτ

For each tuple (τ i1, τ
i
0, y

i) ∈ Dτ we denote the two sequences of states and actions by τ i1 =
(sih1, a

i
h1)

H
h=1 and τ i0 = (sih0, a

i
h0)

H
h=1. The loss for general MDPs is given by the log likelihood of

the Bradley-Terry-Luce model applied to trajectory comparisons,

ℓDτ (θ) = − 1

n

n∑
i=1

log

1[yi = 1]
exp

(∑H
h=1 rθ∗(sih1, a

i
h1)
)

exp
(∑H

h=1 rθ∗(sih0, a
i
h0)
)
+ exp

(∑H
h=1 rθ∗(sih1, a

i
h1)
)

+1[yi = 0]
exp

(∑H
h=1 rθ∗(sih0, a

i
h0)
)

exp
(∑H

h=1 rθ∗(sih0, a
i
h0)
)
+ exp

(∑H
h=1 rθ∗(sih1, a

i
h1)
)
 .

We will use the following notation throughout this section,

xi =

H∑
h=1

ϕ(sih1, a
i
h1)− ϕ(sih0, a

i
h0).

The gradient and Hessian of ℓDτ
are given by the following formulas.

Claim C.1.

∇ℓDτ (θ) = − 1

n

n∑
i=1

(
1[yi = 1]

exp(−⟨θ, xi⟩)
1 + exp(−⟨θ, xi⟩)

− 1[yi = 0]
1

1 + exp(−⟨θ, xi⟩)

)
xi

Claim C.2.

∇2ℓDτ (θ) =
1

n

n∑
i=1

exp(−⟨θ, xi⟩)
(1 + exp(−⟨θ, xi⟩))2

xix
⊤
i

These formulas lead directly to an upper bound on the norm of the gradient and the operator norm
of the Hessian of ℓDτ

.
Lemma C.3. For all θ,

1. ∥∇ℓDτ (θ)∥2 ≤ 2HL

2. ∥∇2ℓDτ
(θ)∥op ≤ 4H2L2

Proof. Observe first that ∥xi∥2 ≤ 2HL because it is the sum of H vectors each of norm at most
2∥ϕ(s, a)∥ ≤ 2L. By Claim C.1, the gradient ∇ℓDτ

(θ) is the average of n vectors each of length at
most 2HL. Similarly by Claim C.2, ∇2ℓDτ

(θ) is the average of n vectors, each of operator norm at
most ∥xi∥22 ≤ 4H2L2.
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The proof Lemma 5.1 in Zhu et al. (2023) implies that for all θ ∈ ΘB and v ∈ Rd

v⊤∇2ℓDτ (θ)v ≥ γτv
⊤ΣDτ v = γτ∥v∥2ΣDτ

. (22)

where γτ = 1
2+exp(−2HLB)+exp(2HLB) . In particular, we have the following lemma,

Lemma C.4. ℓDτ
is strongly convex on the set ΘB with respect to the semi-norm ∥·∥ΣDτ

. That is,
there exists a constant γτ > 0 such that,

ℓD(θ +∆)− ℓDτ
(θ)− ⟨∇ℓDτ

(θ), θ⟩ ≥ γτ
2
∥∆∥2ΣD

(23)

for all θ ∈ ΘB , and ∆ such that (θ +∆) ∈ ΘB .

C.2 PRIVATE COVARIANCE FOR GENERAL MDPS

We obtain privacy for the feature covariance matrix ΣDτ via the Gaussian mechanism. The main
point is to use Algorithm 2 with the variance of the Gaussian mechanism increased by a constant
factor depending only on H .

Lemma C.5. Let σ2 =
64 log( 1

δ )H
4L4

ϵ2n2 and G ∼ N (0, σ2)d×d. Then Σ̃Dτ
= ΣDτ

+G is (ϵ/2, δ/2)-
differentially private.

Proof. For a dataset D′
τ differing in one query (s, a1, . . . aK , σ) from Dτ we have

∥ΣDK
− ΣD′

τ
∥2 ≤ 1

n
∥xix

⊤
i ∥2 =

1

n
∥xi∥22 ≤ 4H2L2

n
.

The standard analysis of the Gaussian mechanism (Dwork & Roth, 2014) then implies that ΣDτ
is

(ϵ/2, δ/2)-differentially private when setting σ2 =
64 log( 1

δ )H
4L4

ϵ2n2 .

C.3 PRIVACY OF OBJECTIVE-PERTURBED MLE FOR GENERAL MDPS

Lemma C.6. Algorithm 1 applied to ℓDτ
and Dτ satisfies (ϵ/2, δ/2)-differential privacy, when the

input parameters are adjusted by at most a constant factor depending only on H .

Proof. Similarly to the case of pairwise comparisons for contextual bandits in Lemma C.6, the
Hessian ∇2ℓDτ

(θ) is the sum of n rank-one terms. Thus, after adjusting the parameters by a constant
factor depending on H , Theorem 5.6 of Bassily et al. (2019b) implies that θ̃MLEτ is (ϵ/2, δ/2)-
differentially private.

We now can conclude with our main privacy theorem for the general MDP setting.

Proof of Theorem 5.1. θ̃MLEτ is (ϵ/2, δ/2)-differentially private by Lemma C.6, and Σ̃Dτ is
(ϵ/2, δ/2)-differentially private by Lemma C.5. Thus, standard composition implies that the pair
(θ̃MLEτ , Σ̃Dτ ) is (ϵ, δ)-differentially private.

C.4 APPROXIMATION ERROR AND PESSIMISTIC POLICY OPTIMIZATION FOR GENERAL
MDPS

As in the case of K-wise comparisons, the proofs of Lemma A.8 and Lemma A.9, as well as those
of all the results in Section A.4 and Section A.5 go through, with the only change being an adjust-
ment of the parameters by constant factors depending only on H , L, and B. The only additional
modification necessary for the general MDP setting is to use the policy-dependent distribution on
states and actions ρπ in the place of the fixed distribution on states ρ in the proof from Section A.5.
Thus, following these proofs with ΣDτ

substituted for ΣD and θ̂MLEτ
substituted for θ̂MLE yields

Theorem 5.2.
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