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Figure 1: We propose a simple yet effective sampling method without any training to generate new
and meaningful combinations from two given object texts in text-to-image synthesis. The original
images of each object text using Stable-Diffusion2 (Rombach et al., 2022) are displayed in the bottom
row, while the top row showcases the amazing combinations produced by our sampling algorithm.

ABSTRACT

Exploring a machine learning system to generate meaningful combinatorial ob-
ject images from multiple textual descriptions, emulating human creativity, is a
significant challenge as humans are able to construct amazing combinatorial ob-
jects, but machines strive to emulate data distribution. In this paper, we develop a
straightforward yet highly effective technique called acceptable swap-sampling to
generate a combinatorial object image that exhibits novelty and surprise, utilizing
text concepts of different objects. Initially, we propose a swapping mechanism that
constructs a novel embedding by exchanging column vectors of two text embed-
dings for generating a new combinatorial image through a cutting-edge diffusion
model. Furthermore, we design an acceptable region by managing suitable CLIP
distances between the new image and the original concept generations, increasing
the likelihood of accepting the new image with a high-quality combination. This re-
gion allows us to efficiently sample a small subset from a new image pool generated
by using randomly exchanging column vectors. Lastly, we employ a segmentation
method to compare CLIP distances among the segmented components, ultimately
selecting the most promising image from the sampled subset. Our experiments
focus on text pairs of objects from ImageNet, and our results demonstrate that
our approach outperforms recent methods such as Stable-Diffusion2, DALLE2,
ERNIE-ViLG2 and Bing in generating novel and surprising object images, even
when the associated concepts appear to be implausible, such as lionfish-abacus and
kangaroo-pears (see Figs. 1 and 5). Furthermore, during the sampling process, our
approach without training and human preference is also comparable to PickScore
(Kirstain et al., 2023) and HPSv2 (Wu et al., 2023) trained using human preference
datasets. Anonymous Project page: https://asst2i.github.io/anon/

1 INTRODUCTION

Human creativity plays a crucial role in the innovative visual generation from textual concepts,
known as text-to-image (T2I) synthesis. However, this task poses a significant challenge for most
existing methods in computer vision and machine learning, including DALLE2 (Ramesh et al., 2022),
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Stable-Diffusion2 (Rombach et al., 2022), and ERNIE-ViLG2 (Feng et al., 2023b). These methods
aim to generate images that emulate a given training distribution (Elgammal et al., 2017), but they
often lack the potential for novelty and surprise (Das & Varshney, 2022). Consequently, there is a
need to develop machine learning systems with enhanced novel and surprising capabilities.

Recent efforts have primarily focused on compositional objects, aiming to directly generate new
and intricate images by composing textual descriptions of multiple known objects. One example is
the application of composable diffusion models (CDMs) (Liu et al., 2022b), which generate images
containing multiple objects at specified positions. Another approach, known as Structure-Diffusion
(Feng et al., 2023a), incorporates linguistic structures to generate image layouts that are plausible and
do not omit any objects. Additionally, Custom-Diffusion (Kumari et al., 2023) enables the generation
of new and reasonable compositions of multi-objects in previously unseen contexts. However, these
compositional methods only produce generations with independent objects, lacking the element of
novelty and surprise (see Fig. 1 (Feng et al., 2023a), Fig. 2 (Saharia et al., 2022), and Fig. 1 (Kumari
et al., 2023)). This raises an important question: How can we produce a new and meaningful object
by combining two object concepts, such as ”lionfish” and ”abacus”?

In this work, we present a novel technique called acceptable swap-sampling (ASS) that generates
unique and surprising combinatorial objects by combining the prompt embeddings of two seemingly
unrelated object concepts. Our approach comprises a text encoder, a swapping mechanism, an image
generator, and an acceptable region using a CLIP metric (Radford et al., 2021). To start, the text
encoder and image generator can be pretrained using state-of-the-art T2I models, such as Stable-
Diffusion2 (Rombach et al., 2022). Initially, we obtain two original embeddings by inputting the
prompts of two object texts into the text encoder. Then, two original images are generated by using
these embeddings in the image generator. Next, we propose a swapping mechanism that interchange
column vectors of the prompt embeddings. This operation results in a novel embedding, allowing the
image generator to create a fresh and distinctive combinatorial image. Furthermore, we establish an
acceptable region within which the newly created image likely exhibits a high-quality fusion of the
two original concepts. This is achieved by carefully managing the CLIP distances between the newly
creations and the two originally generations. The acceptable region allows us to efficiently sample a
small subset of the newly created images from a pool of randomly exchanging column vectors. Lastly,
we employ a segmentation method to compare CLIP distances among the segmented components,
ultimately selecting the most promising combinatorial image from the sampled subset.

To demonstrate the feasibility of our ASS technique, we randomly select object pairs from ImageNet
(Russakovsky et al., 2015). Experimental results demonstrate that our strategy can generate novel and
surprising object images surpassing most SOTA T2I methods, including Stable-Diffusion2, DALLE2,
ERNIE-ViLG2, and Bing, even when the associated object concepts appear implausible. For instance,
in Fig. 1, the second column showcases an amazing and surprising artwork that abstractly combines
characteristics of lionfish and an abacus. Overall, our contributions are summarized as follows:

• We propose a swapping technique that exchanges column vectors of prompt embeddings
between two given object texts. This constructs a new prompt embedding that significantly
deviates from the data distribution, resulting in novel combinatorial object generations.

• We define an acceptable region by controlling the CLIP distances between the newly
generated image and the two originally created images. Within this defined range, the
generated image using two original concepts likely exhibits their high-quality fusion.

• By combining the swapping technique with the acceptable region, we explore an acceptable
swap-sampling approach to produce amazing combinatorial object image generations with-
out any training. To the best of our knowledge, we are the pioneers in developing a machine
learning system with exceptional combination capabilities in text-to-image synthesis.

• Experimental results demonstrate the effectiveness of our approach in generating previously
unseen and unexpected object images in Figs. 1 and 5. Our method surpasses the object
images generated by the current SOTA T2I techniques. More results, see the appendix F.

2 METHODOLOGY

In this section, we introduce an acceptable swap-sampling (ASS) approach for generating a new and
surprising object image using two given concept texts, as shown in Fig. 2. It includes a swapping
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Figure 2: The pipeline of our acceptable swap-sampling method. Starting from text embeddings by
inputting two given texts into the text encoder, we introduce a swapping operation to collect a set F
of randomly swapping vectors for novel embeddings, then generate a new image set I, and propose
an acceptable region to build a sampling method for selecting an optimal combinatorial object image.

mechanism, an acceptable region and our ASS method. Before delving into the details of our method,
we provide an overview of the unified generation process using the T2I models (e.g., Stable-Diffusion2
(Rombach et al., 2022), DALLE2 (Ramesh et al., 2022), and Imagic (Saharia et al., 2022)).

T2I: For a text t and its associated prompt p, a generated image is described as G = G(E), where
E = E(p) ∈ Rh×w is a text encoder with dimensions h and w, and G(·) ∈ RH×W is an image
generator with dimensions H and W .

Given a text pair (t1, t2), we use the T2I model to generate their original images I1 = G(E(p1)) and
I2 = G(E(p2)), where p1 and p2 are the prompts of t1 and t2, respectively. For example, for a text
pair (lobster, sea slug), we use its prompt pair (A photo of lobster,A photo of sea slug), to produce
two images, please refer to the two below figures in the first column of the Fig. 1. Note that the text
encoder E(·) and the image generator G(·) can be pretrained using Stable-Diffusion2 (Rombach et al.,
2022), as our baseline. Alternatively, any other diffusion model can also be utilized in our approach.

2.1 DEVELOPING A SWAPPING MECHANISM TO GENERATE NEW COMPOSITE IMAGES

Following the generation process of the T2I model, we propose a swapping operation to mix well the
prompt embeddings of a given prompt pair for a new image generation, as shown in the left part of
Fig. 2. The swapping process is formalized as the following three steps:

• Encoding a prompt pair (p1, p2) by using a text encoder,

E1 = E(p1) ∈ Rh×w and E2 = E(p2) ∈ Rh×w, (1)

• Swapping their column vectors by using an exchanging vector f ∈ {0, 1}w×1,

Ef = E1diag(f) + E2diag(1− f) ∈ Rh×w, (2)

• Generating a novel image by using an image generator,

If = G(Ef ) ∈ RH×W , (3)

where diag(·) is an operation to diagonalize a vector, and f ∈ {0, 1}w×1 is a binary vector to swap
the column vectors of the prompt embeddings E1 and E2. (The neural swapping in Appendix A)

Why swapping column vectors of prompt embeddingsE1 andE2? The swapping process revolves
around effectively and thoughtfully combining meaningful characteristics of the prompt embeddings
E1 and E2. Firstly, a simple combination approach involves linear interpolation, represented by the
purple line in Fig. 3, where a linear embedding space is spanned using the formula αE1+(1−α)E2,
with α ranging between 0 and 1. However, this method often produces expected and unsurprising
embeddings. For example, while Magicmix (Liew et al., 2022) employs linear interpolation to
blend two concepts, such as creating a corgi-alike coffee machine, the results may appear somewhat
unnatural and lack artistic merit. Secondly, to achieve a more surprising combination, an effective
method is to swap the corresponding elements of E1 and E2. However, finding the swapping matrix
can be computationally expensive due to its size. Moreover, extensive experimentation shows that
when swapping their row vectors multiple times, the generated images often lack meaning.

Thirdly, certain experiments have demonstrated meaningful results by swapping the column vectors
multiple times. Importantly, the resulting embedding Ef created through column vector swapping
is novel because it samples from a combination distribution that mixes the column embedding
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Figure 3: An example of swapping vec-
tors based on kangaroo and pears. The
red point and the green cross showcase
meaningful and meaningless objects, re-
spectively. The purple line shows unsur-
prising objects using liner interpolation.

distributions of E1 and E2. As shown in Figs. 1 and
5 (Stable-Diffusion2 and Ours), the difference between
Ef and E1&E2 is significant. Additionally, the com-
binational embedding differs from the embedding dis-
tribution of the entire dataset, as illustrated in Fig. 5
(Dataset-Retieval and Ours).

2.2 ESTABLISHING AN ACCEPTABLE REGION
FOR SAMPLING POTENTIALLY HIGH-QUALITY
COMPOSITE IMAGES

Using the above swapping technique in Eqs. 1-3, a new
image If is created by combining the text prompts p1
and p2. In this context, we establish an acceptable region
to sample potentially high-quality composite images de-
pending on only the images, I1 and I2, generated using
p1 and p2 as anchor points, excluding human priors.
This region adheres to a fundamental sense:

A new image If can be considered of potential high-quality in a combinatorial sense
if it maintains an appropriate balance in distance from the anchor images I1 and I2.

This distance must adhere to three key rules. The first rule entails maintaining a balance between the
distances from If to I1 and from If to I2, demonstrating an equilibrium between them. The second
rule highlights that a substantial separation between these distances signals a higher likelihood of
generating content that is disordered, devoid of meaningful. The third rule underscores that a minimal
distance indicates that the generated image closely resembles the input data, potentially lacking
novelty and surprise. In mathematical terms, we can formalize them into two distance criteria:

• Balancing Distances: Achieving a balance between the distances d(If , I1) and d(If , I2)
through an inequality involving a constant α,

|d(If , I1)− d(If , I2)| ≤ α, (4)

• Controlling Bounds: Constraining the upper bound of the average distance between
d(If , I1) and d(If , I2) by using an inequality with a constant β,

d(If , I1) + d(If , I2) ≤ 2β, (5)

where α ≥ 0, β ≥ d(I1, I2)/2 ≥ 0, d(I1, I2) is the distance between the anchor images I1 and I2, | · |
is the absolute value function, and d(a, b) ≥ 0 is a positive function to compute the distance between
a and b. These two criteria in the Eqs. 4 and 5 govern a region in within which the combinatorial
image If has the potential to be potential high-quality. Now, let’s delve into a geometrical analysis.

𝐼1: sea slug

𝐼𝑓

𝑟 𝐼𝑓 , 𝐼1 − 𝑟(𝐼𝑓 , 𝐼2) ≤ 𝛼

𝐼2: lobster

Figure 4: Geometrical visualization of the
high-quality composite image’s potential
orange region by balancing the distances
between If and the anchor images I1, I2.

Geometrical Explanations. Using the above criteria,
we define the potential combinatorial space for the im-
age If using geometric shapes, specifically a hyperbola
and an ellipse in Fig. 4. Within the context of Eq. 4, the
combinatorial images are constrained by the hyperbola,
expressed as |d(If , I1)− d(If , I2)| = α, where α is a
constant, and I1 and I2 are fixed points. This condition
delineates the grey-shaded area. When α = 0, it results
in a balanced line perpendicular to the line connecting
I1 and I2. Similarly, the inequality in Eq. 5 defines
an upper boundary within an elliptical curve, given by
(d(If , I1) + d(If , I2)) = 2β with I1 and I2 as fixed
points and a constant β. This condition defines the
blue-shaded areas. When β = d(I1, I2)/2, it results in
a single line connecting I1 and I2. When considering
both the hyperbola and the ellipse simultaneously, the
resulting image If falls within the overlapping orange

4



Under review as a conference paper at ICLR 2024

region, indicating its potential for creating high-quality blended images. The circle and fork points
represent the acceptable and rejection images, respectively. It is important to note that while this
acceptable region is not flawless, it provides a means to control over the qualities of the combinatorial
image If to a certain extent in Fig. 4.

Furthermore, the green areas indicate the distributions of the original images I1 and I2. They
stand in contrast to the orange region shown in Fig. 4. This schematic diagram illustrates that the
generated images within our acceptable region fall outside the data distribution (out-of-distribution),
as demonstrated by comparing our created images with their the dataset retrievals presented in Fig. 5.

2.3 ACCEPTABLE SWAP-SAMPLING Algorithm 1 Acceptable Swap-Sampling (ASS).

1: input: prompt pair (p1, p2), their images I1, I2;
2: initialize: θ = 0.05, α = 0.4, β = 0.1, N = 200;
3: Generate a set F of N randomly swapping vectors;
4: Produce an image set I using Eqs. 1-3 and f ∈ F ;
5: Sample a coarse subset Icoarse using Eq. 6 with θ;
6: Sample a fine subset Ifine using Eq. 7 with α, β;
7: Choose the optimal image I(p1,p2)

opt using Eq. 8;

8: output: I(p1,p2)
opt .

Here, by combining the swapping technique
with the acceptable region, we propose an
acceptable swap-sampling method to sam-
ple a promising blend image If on the
prompt pair (p1, p2). We first generate a
set of N random swapping vectors F , and
correspondingly produce an image set I us-
ing Eqs. 1-3. Note that f ∈ F corresponds
to If ∈ I one by one. Depending on the
prompts p1, p2, and their generated images
I1, I2, we introduce a coarse-to-fine sampling method as follows.

Coarse Sampling Using Semantic Distance. We select a coarse subset Icoarse from the set I by
using a semantic balance, similar to the Eq. 4. This helps us maintain a balanced semantic content
between the image If and the text prompts p1 and p2. The coarse sampling is defined as follows:

Icoarse = {If | |d(If , p1)− d(If , p2)| ≤ θ, If ∈ I} , (6)

where θ is a width threshold of the semantic balance area. It is set to θ = 0.05 in this paper.

Fine Sampling Using Image Distances. We further choose a fine subset Ifine from Icoarse by using
the acceptable region in Eqs. 4 and 5, ensuring a balanced relationship among If , I1 and I2. This
leads to potential high-quality combinations. The fine sampling is expressed as:

Ifine = {If | |d(If , I1)− d(If , I2)| ≤ α & d(If , I1) + d(If , I2) ≤ 2β, If ∈ Icoarse} . (7)

where α = dd⌈|Icoarse|·α⌉, β = ds⌈|Icoarse|·β⌉
, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, ⌈·⌉ denotes rounding up to

the nearest integer, |Icoarse| represents the cardinality of the set Icoarse, and ddi and dsi refer to the
i-th element of the descendingly sorted sets Dd =

{
dd = |d(If , I1)− d(If , I2)| , If ∈ Icoarse

}
and

Ds = {ds = d(If , I1) + d(If , I2), If ∈ Icoarse}, respectively. In this paper, we set α = 0.4, and
β = 0.1. The subset Ifine indicates images that may exhibit excellent mixing characteristics, denoted
as black points within the orange region in Fig. 4.

Choosing the Optimal Image Using Segmentation Methods. Unfortunately, Ifine is not directly
employed for the ideal selection. Instead, we adopt the Segment Anything Model (SAM) (Kirillov
et al., 2023) to enhance the visual semantic components, thereby facilitating the selection of the
optimal combinatorial image. The final selection is made by maximizing the following objective:

I
(p1,p2)
opt = argmax

If∈Ifine

{r(If , I1, I2)} with r(If , I1, I2) = (s(If , I1) + s(If , I2)) /2, (8)

where s(If , Ii) = 1
|Ci|×|Cf |

∑
cf∈Cf ,ci∈Ci

d(cf , ci), Ci = SAM(Ii)(i = 1, 2), Cf = SAM(If ), and

SAM(I) represents a collection of segmented components extracted from the image I using SAM
(Kirillov et al., 2023). Using Eq. 8, we identify the optimal image from the Ifine, as depicted by
the red point in Fig. 4. This process culminates in the creation of a combinatorial object image
that is both promising and amazing. Overall, our acceptable swap-sampling process is outlined in
Algorithm 1.

Note that in this paper, we define the distance function as d(a, b) = cos(ϕ(a), ϕ(b)), where cos(·, ·)
represents a cosine similarity function, and ϕ(·) corresponds to the CLIP model (Radford et al.,
2021).
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Figure 5: Visual comparisons of combinatorial object generations. We compare our ASS method with
the SOTA T2I models, Stable-Diffusion2 (Rombach et al., 2022), DALLE2 (Ramesh et al., 2022),
ERNIE-ViLG2 (Baidu) (Feng et al., 2023b) and Bing (Microsoft). Our findings indicate that our model
demonstrates greater creative potential compared to these counterparts. Furthermore, our results
exhibit significant dissimilarity from images retrieved from the LAION-5B dataset (Schuhmann et al.,
2022) and the complex text generations in the last two rows. This directly illustrates that our approach
has the ability to generate out-of-distribution images.
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3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

Dataset. To showcase the power of combinational creativity in T2I synthesis, we have curated a
novel dataset comprising prompt pairs. We leveraged the vast vocabulary of ImageNet (Russakovsky
et al., 2015), consisting of 1,000 categories, to form our text set. From this collection, we randomly
selected two distinct words to construct each prompt pair, such as macaque-timber wolf. Our dataset
encompasses a total of 5075 prompt pairs, representing a fraction of the possible combinations.

Sampling Settings. For the sampling process, the text encoder E(·) and the image generator G(·)
were pretrained using the CLIP model with ViT-L/14@336p backbone (Radford et al., 2021) and
Stable-Diffusion2 (Rombach et al., 2022), respectively. This same CLIP model (Radford et al., 2021)
was also employed in the distance function. The Segment Anything Model (SAM) (Kirillov et al.,
2023) served as the pre-trained segmentation method. We conducted our experiments using four
NVIDIA GeForce RTX 3090 GPUs, with a batch size of 64 per GPU.

Evaluation metrics. We assess our method on (1) text-alignment by calculating the cosine similarity
between the image and the ”hybrid of [prompt1] and [prompt2]” and (2) image-alignment by
computing the average cosine similarity among the images generated by each prompt. By considering
(1) and (2) together, we can determine if the image contains content from both prompts and assess
the fusion effect. We also conduct a user study to evaluate the combined creativity of our approach.

3.2 MAIN RESULTS

We conducted a comprehensive comparison of our ASS method with four prominent Text-to-Image
(T2I) models (i.e., Stable-Diffusion2 (Rombach et al., 2022), DALLE2 (Ramesh et al., 2022), ERNIE-
ViLG2 (Feng et al., 2023b) and Bing). Additionally, we compare with the sampling results obtained
through PickScore (Kirstain et al., 2023) and HPS-v2 (Wu et al., 2023), which fine-tuned their CLIP
models using human preference datasets. Furthermore, we also present a user study demonstrating
the remarkable creative potential of our method when used in combination.

Figure 6: Text- and image-alignments.

Comparison with the SOTA T2I models. Figs. 1 and 5
showcase several examples of image generation achieved
through those models using prompt pairs. We make the
following four observations. First, our model has the ca-
pability to create novel and surprising species that have
never been seen before in real life. For instance, kanga-
roo-pears depicts the creative combination of kangaroos
with the shape of pears, and sunflower-orange showcases
oranges with sunflower-style segments in Fig. 1. Second,
compared to the SOTA T2I models, our model exhibits a
stronger ability to generate a creative object by inputting
two different objects. Although the images generated by
other models are colorful and rich in detail, they do not fully display the mixed features of the
two objects, as seen in macaque-timber wolf and zucchini-vulture in Fig. 5. Third, to evaluate the
out-of-distribution generation ability of our model, we conducted a retrieval on the entire LAION-5B
dataset (Schuhmann et al., 2022) to find the most similar image in the last second row of Fig. 5. By
comparing our created images with the retrieved images, we found that they significantly differ from
the retrieved ones, highlighting the distinctiveness of our model’s output. Fourth, when comparing the
images generated using intricate text descriptions, Stable-Diffusion2 still struggles to create plausible
compositions, such as A timber wolf with a macaque face and A vulture with the texture of zucchini
on its wings in the final row of Fig. 5. More visual comparisons, please refer to Appendixes B and F.

We conducted computations for text-alignment and image-alignment on thirty prompt pairs. The
results obtained are plotted in Fig. 6. Our method (red plus) achieves a superior balance between text
and image alignments in terms of mean performance. This indicates that the images generated by our
method are more likely to blend both semantic and content information from the two prompts.

Comparison with the evaluation sampling methods. To assess the human-like superiority of our
ASS method, we employed PickScore (Kirstain et al., 2023) and HPSv2 (Wu et al., 2023) to calculate
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Figure 7: Sampling visualizations compared our ASS
with the SOTA HPSv2 and PickScore.

evaluation scores for selecting the opti-
mal image with the highest score from
the new image set I. Subsequently, we
utilized these metrics to evaluate the op-
timal images, and the findings are pre-
sented in Table 1. Our results indicate
that our ASS method closely rivals the
performance of PickScore and HPSv2.
Notably, our method operates indepen-
dently of human intervention, except for
the selection of hyper-parameters using
HPSv2. In contrast, both PickScore
and HPSv2 rely on human performance
datasets to fine-tune the CLIP models for
T2I model evaluation. This demonstrates
the robust capability of our ASS method
to achieve performance comparable to
that of humans. Furthermore, the sampling examples are illustrated in Fig. 7. Our ASS method excels
in generating superior combinatorial images compared to both HPSv2 and PickScore.

Table 1: Quantitative comparisons.
Models PickScore HPS-v2 Our ASS

PickScore ↑ 0.207 0.202 0.200
HPSv2 ↑ 0.246 0.253 0.242

Table 2: User study of combinational image creations.

Models Our ASS SD2
(baseline) DALLE2 ERNIE-ViLG2 Bing

Vote ↑ 658 98 59 49 196

User Study. We conducted a user study to evaluate the combinational creativity of our model
compared to four other T2I methods. Each user was presented with 10 pairs of prompts to vote on,
resulting in a total of 1,060 votes from 106 users. The voting results are summarized in Table 2 and
Appendix C. Our model received the highest number of votes, with 62% of users expressing that our
model generates more creative samples. Additionally, 18.5% of users expressed interest in the Bing
model, while the DALLE2 model received only 5% of the votes. Stable-Diffusion2, received 9% of
the votes, while only 4.6% of users preferred ERNIE-ViLG2.

Table 3: Parameter analysis with θ using av-
erage HPSv2 scores of 20 text pairs. +∞
represents all sampling images.

θ 0.01 0.02 0.05 0.1 +∞
HPSv2 0.2444 0.2451 0.2458 0.2392 0.2361

Table 4: Parameter analysis with α and β
using average HPSv2 of 20 text pairs.

α\β 0 0.2 0.4 0.6
0 0.241 0.231 0.230 0.223

0.1 0.231 0.242 0.243 0.239
0.2 0.242 0.230 0.237 0.224
0.3 0.240 0.231 0.235 0.225

Parameter Analysis. We determined the parameters
θ in Eq. 6, and α, and β in Eq. 7 using 20 text
pairs. To begin, for each prompt pair (p1, p2), we
produce an image set I by randomly generating a set
F consisting of N = 200 swapping vectors. From
I, we coarsely select a subset Icoarse using Eq. 6,
and the parameter θ is set to 0.05 by choosing the
best average HPSv2 score (Wu et al., 2023) in Table
3. This reudces the size of Icoarse approximates to
150. Next, we finely choose a subset Ifine from Icoarse

using Eq. 7. We set that α = 0.4 and β = 0.1 by
selecting the best average HPSv2 score in Table 4.
This reduces the size of Ifine to around 10. Finally,
we obtain the optimal image I(p1,p2)

opt by maximizing the problem in Eq. 8. For illustrations of the
sampled images using different θ, α, and β, please refer to Appendix D.

4 RELATED WORK

Text-to-image (T2I) synthesis has garnered increasing attention in recent years due to its remarkable
progress (Zhu et al., 2019; Liao et al., 2022; Yu et al., 2022). Notably, diffusion models (Ho et al.,
2020; Kawar et al., 2022; Liu et al., 2022a; Zhao et al., 2023; Song et al., 2023) combined with CLIP
models (Radford et al., 2021) have shown great promise in T2I synthesis. For instance, CLIPDraw
(Frans et al., 2022) employs only the CLIP embedding to generate sketch drawings. DALLE2
(Ramesh et al., 2022) introduces a diffusion decoder to generate images based on text concepts.
Stable-Diffusion (Rombach et al., 2022), which performs on the latent diffusion space, has emerged
as the most popular choice due to its open-source nature and ability to save inference time.
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Compositional T2I primarily focuses on generating new and complex images by combining mul-
tiple known concepts. These concepts can be composed in various ways, including object-object,
object-color and shape, object conjunction and negations, object relations, attributes, and modifying
sentences by words. Some notable approaches in this field include object-object compositions (Liu
et al., 2022b; Feng et al., 2023a; Kumari et al., 2023), image-concept compositions such as subject-
context, segmentation-text, and sketch-sentence (Park et al., 2021; Du et al., 2020; Liu et al., 2022b;
Chefer et al., 2023; Li et al., 2022; Cong et al., 2023; Gal et al., 2023; Hertz et al., 2023; Orgad et al.,
2023; Ruiz et al., 2022; Brooks et al., 2023; Avrahami et al., 2023). However, a common limitation of
these compositional T2I models is that they often generate images based solely on the compositional
text descriptions, which restricts their creativity. Moreover, the existing object-object composition
approaches (Liu et al., 2022b; Feng et al., 2023a; Kumari et al., 2023) tend to produce images with
independent objects. Recent Magicmix (Liew et al., 2022) employs linear interpolation to merge
distinct semantic images and text, aiming to produce novel conceptual images. But the outcomes may
sometimes exhibit an unnatural blend and lack artistic value. In contrast, we propose an innovative
sampling method that enables effective information exchange between two object concepts, leading
to the creation of captivating composite images.

Creativity encompasses the ability to generate ideas or artifacts across various domains, including
concepts, compositions, scientific theories, cookery recipes, and more (Boden, 2004; 1998; Maher,
2010; Cetinic & She, 2022; Hitsuwari et al., 2023). Recently, there has been significant research
exploring the integration of creativity into GANs (Goodfellow et al., 2014; Ge et al., 2021) and VAEs
(Kingma & Welling, 2014). For instance, CAN (Elgammal et al., 2017) extend the capabilities of
GANs to produce artistic images by maximizing deviations from established styles while minimizing
deviations from the art distribution. CreativeGAN, systematically modifies GAN models to synthesize
novel engineering designs (Nobari et al., 2021b;a). Additionally, CreativeDecoder (Das et al., 2020;
Cintas et al., 2022) enhances the decoder of VAEs by utilizing sampling, clustering, and selection
strategies to capture neuronal activation patterns. Recent works (Boutin et al., 2022; 2023) design a
method to assess one-shot generative models in approximating human-produced data by examining
the trade-off between recognizability and diversity (measured by standard deviation). Unlike these
methods, our approach introduces a swapping mechanism to to enhance the generation of novel
combinational object images, along with a defined region for accepting high-quality combinations.

Out-of-Distribution (OOD) is closely related to our work as we generate creative object images
that lie outside the data distribution. However, existing OOD techniques primarily concentrate on
detection tasks (Shen et al., 2021; Ye et al., 2022) through disentangled representation learning
(Träuble et al., 2021), causal representation learning (Shen et al., 2022; Khemakhem et al., 2020),
domain generalization (Zhou et al., 2020a;b), and stable learning (Xu et al., 2022). In contrast, our
focus is on OOD generation, where we aim to create meaningful object images. While (Ren et al.,
2023) also incorporate an OOD generation step for the ODD detection task, they primarily address
scenarios where the input distribution has shifted. In our approach, we generate a novel distribution
by blending the embedding distributions of the input data.

5 CONCLUSION AND LIMITATION

Conclusion. We have incorporated a simple sampling method into text-to-image synthesis, proposing
an acceptable swap-sampling schema to generate meaningful objects by combining seemingly
unrelated object concepts. Our first idea involves a swapping process that exchanges important
information from two given prompts, resulting in the creation of fresh object images that go beyond
the original data distribution, thereby enhancing novelty. Additionally, we introduce an acceptable
region based on the CLIP metric, which balances the distance among the given prompts, original
image generations, and our creations to sample high-quality combinatorial object images from this
pool of fresh object images. We futher employ the segment anything model to enhance the visual
semantic components to select the optimal combinatorial image. Experimental results demonstrate
that our approach surpasses popular T2I models in terms of generating creative combinatorial objects.

Limitation. Our method, despite its strengths, has a limitation: the acceptable region can sometimes
result in non-meaningful or chaotic images. The high-quality acceptable area in an unsupervised
manner continues to pose a challenging problem that necessitates further investigation. We have
included the failure examples in the appendix E for reference.
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Figure 8: Generalizations using four different styles including aquarelle, line-art, cartoon, and ink
painting. It can observe that our results are still novel and surprising.

A LEARNING A NEURAL SWAPPING NETWORK

In this subsection, we learn a neural swapping network to generate the meaningful combinatorial
object images with different styles. The swapping part in the subsection 2.1 is rewritten as follows:

Swapping their column vectors by learning a neural swapping vector,

Ef = E1diag(f) + E2diag(1− f) and f = S(cat(E1, E2);ψ) ∈ {0, 1}w×1, (9)

where f = S(cat(E1, E2);ψ) ∈ {0, 1}w×1 is a neural swapping network from the concatenated
embedding, cat(E1, E2), to a binary output that consists of three convolutional layers and two fully
connected layers with the parameter ψ. The architecture of the swapping network consists of three
convolutional layers with a 3× 3 kernel size, followed by two fully connected layers.

Training Loss. Using our ASS method in Algorithm 1, we can get the optimal combinatorial
image I(p1,p2)

opt , and then find its swapping vector f (p1,p2)
opt . Based on the neural swapping network

f = S(cat(E1, E2);ψ) in Eq. 9 and the optimal swapping vector f (p1,p2)
opt , the training loss is defined

as:

L =
1

|P|
∑

(p1,p2)∈P

∥f (p1,p2)
opt − S(cat(E1, E2);ψ)∥2, (10)

where P is a set of the prompt pairs (p1, p2) corresponding to the text pairs (t1, t2), and |P| represents
the cardinality of the set P . To ensure training stability, we employed the RMSprop (Hinton et al.,
2012) optimizer.

Generalizations using different styles. To evaluate the generalizations of our model, we expand its
capabilities to four additional styles: aquarelle, line-art, cartoon, and ink painting for text-to-image
generation. We achieve this without the need for excessive sampling and training. The results in Fig.
8, demonstrate that our model maintains its impressive creativity by generating novel species across
these different styles, such as (orangutan, king crab).

B COMPARISON WITH MAGICMIX

In this section, we conduct a comparative analysis of our findings against those of Magicmix (Liew
et al., 2022). It is worth noting that Magicmix is not currently available as open-source software.
Consequently, we utilized an unofficial implementation, which can be found in (daspartho, 2022).
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Figure 9: Generalizations using unofficial code (daspartho, 2022) of Magicmix with prompt-pairs in
Figure 5.
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(b) Results using our ASS model with same prompt pairs of Fig. 10a.

Figure 10: Comparisons with Magicmix (Liew et al., 2022) with Our ASS using same prompts.

To initiate our investigation, we employed the Magicmix method to blend the five sets of word pairs
depicted in Figure 5. Given that Magicmix operates with image-text inputs, we executed a total of 10
experiments for each pair of prompts. The outcomes of these experiments are presented in Figure 9.

In pursuit of official results for Magicmix, we acquired samples from its website (referenced as (Liew
et al., 2022)), illustrated in Figure 10a. Subsequently, employing identical prompt-pairs, we employed
our ASS model to generate images, as depicted in Figure 10b. These outcomes highlight a significant
distinction between Magicmix and other component fusion generation models compared to our ASS
model. Our primary objective is not mere imitation; instead, we aim to produce a greater number of
Out-Of-Distribution objects based on provided prompts.

C USER STUDY

In this section, we delve into a more comprehensive explanation of our user study. In addition to
the five result categories showcased in Figure 5, we have included an additional set of five prompt-
pair groups, as illustrated in Figure 11, to facilitate our User Study. Within these ten queries, we
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Table 5: The proportion of each option in each question in the User Study.

prompt-pairs
options(Models)

A(our ASS) B(baseline) C(DALLE·2) D(ERNIE-ViLG2) E(Bing)

lionfish and abacus 45.28% 13.21% 10.38% 18.87% 12.26%
lobster and sea slug 62.26% 12.26% 12.26% 3.77% 9.43%
kangaroo and pears 64.15% 20.75% 5.66% 4.72% 4.72%

sunflower and orange 75.47% 15.09% 1.89% 2.83% 4.72%
macaque and timber wolf 75.47% 2.83% 2.83% 3.77% 15.09%
Australian terrier and tiger 51.89% 12.26% 1.89% 3.77% 30.19%

doucan and bathing cap 27.36% 3.77% 4.72% 2.83% 61.32%
zucchini and vulture 85.85% 0.94% 1.89% 1.89% 9.43%
jackfruit and thresher 79.25% 0.94% 3.77% 1.89% 14.15%

CD plaer and beer glass 53.77% 10.38% 10.38% 1.89% 23.58%

presented two prompts alongside their corresponding images. The study was aptly titled, ”Given
the textual concepts of two different objects, please select which of the following options creatively
combines the two objects in terms of novelty, surprise, and artistic value”. We gathered responses
from 106 participants who diligently completed our user study, and their decisions for each subject
are presented in Table 5.
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Figure 11: More visualization results of User Study.
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D PARAMETER ANALYSIS

Here, we showcase sampled images generated with varying values of θ, α, and β, as illustrated in
Figures 12, 13, and 14.

In terms of the parameter θ’s setting, our evaluation method is adept at selecting the most creative
images from diverse distributions. This is made possible by dynamically determining α and β based
on these different distributions. However, this dynamic determination process is time-consuming.
To streamline and expedite this process, we introduce a strict threshold for θ before proceeding to
the overall ranking. This threshold effectively screens out images that require no further creative
evaluation, as they exhibit evident biases. These biases, at this initial stage, contribute to the absence
of creativity in the images, rendering them akin to straightforward outputs stemming directly from
the prompt they are biased towards. We provide some illustrative results in Figure 12.
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Figure 12: Visualizations with different θ.

When β is set at 0.1, an increase in α beyond our predefined value results in a biased image favoring
one of the prompt pairs. Conversely, if α falls below the predetermined threshold, the sampled image
may appear unconventional due to the limited sampling space, as depicted in the shallow blue zone in
Fig. 4. This is because the optimal sample tends to be biased for acceptability. Furthermore, when
α is held constant at 0.4, varying β can help validate the assertion that lower values of β result in
increased urgency, whereas higher values lead to heightened confusion.
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Figure 13: Visualizations with different α when β = 0.1.
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Figure 14: Visualizations with different β when α = 0.4.

E FAILURE EXAMPLES

Here, we illustrate instances of unsuccessful model outputs. Some prompt-pairs, as depicted in Figure
15b, prove challenging to generate novel and imaginative content. Even PickScore and HPS-v2 fail
to produce satisfactory samples in such cases. While increasing the sample size may potentially
address this issue, the likelihood of encountering this situation is exceptionally low, estimated at
approximately 5%. Given our overall computing resources, we will refrain from excessive processing
of these samples.

During the sampling stage, as observed in Figures 15a, the primary reason for subpar samples is the
inadequate configuration of hyperparameters α and β. Despite these values being established through
consensus in our experiments, they tend to align with the distribution of majority classes, neglecting
the minority classes. In our upcoming research, our focus will shift towards tailoring the distribution
to the most creative samples across all categories and enhancing our model to reduce the occurrence
of failed samples.
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(a) Failure samples in sampling stage.
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(b) Failure samples in evaluation stage.

Figure 15: Failure results

F MORE VISUAL RESULTS

In the following section, we delve into supplementary findings. Figure 16 illustrates a comprehensive
comparison of our results with those of other T2I models. Additionally, Figure 17 showcases a
collection of visually captivating and groundbreaking results.
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Figure 16: More visual results and comparison to other T2I models.
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Figure 17: More visual results.
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