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ABSTRACT

Normalization plays an important role in the optimization of deep neural networks.
While there are standard normalization methods in computer vision and natural
language processing, there is limited understanding of how to effectively normalize
neural networks for graph representation learning. In this paper, we propose a
principled normalization method, Graph Normalization (GraphNorm), where the
key idea is to normalize the feature values across all nodes for each individual
graph with a learnable shift. Theoretically, we show that GraphNorm serves as a
preconditioner that smooths the distribution of the graph aggregation’s spectrum,
leading to faster optimization. Such an improvement cannot be well obtained
if we use currently popular normalization methods, such as BatchNorm, which
normalizes the nodes in a batch rather than in individual graphs, due to heavy
batch noises. Moreover, we show that for some highly regular graphs, the mean
of the feature values contains graph structural information, and directly subtract-
ing the mean may lead to an expressiveness degradation. The learnable shift in
GraphNorm enables the model to learn to avoid such degradation for those cases.
Empirically, Graph neural networks (GNNs) with GraphNorm converge much
faster compared to GNNs with other normalization methods, e.g., BatchNorm.
GraphNorm also improves generalization of GNNs, achieving better performance
on graph classification benchmarks.

1 INTRODUCTION

Recently, there has been a surge of interest in Graph Neural Networks (GNNs) for learning with
graph-structured data (Hamilton et al., 2017; Kipf & Welling, 2017; Velickovic et al., 2018; Xu
et al., 2018). GNNs learn node and graph features by following a neighbor aggregation (or message
passing) scheme (Gilmer et al., 2017), where node features are recursively aggregated from their
neighbours. One major theme of existing works is the design of GNN architecture variants, e.g.,
neighbor aggregation modules, that learn good graph representations (Xu et al., 2019). To that end,
many theoretical aspects of GNNs have been studied, including their representation power (Xu et al.,
2019), generalization ability (Xu et al., 2020), and infinite-width asymptotic behavior (Du et al.,
2019). These theoretical understandings lead to GNN architectures that enjoy good representation
power and generalization. However, an important problem remains: the optimization of GNNs is
often unstable, and the convergence is slow (Xu et al., 2019). This raises the question:

Can we provably improve the optimization for GNNs?

We give an affirmative answer. Specifically, we study the optimization of GNNs through the
lens of normalization. Feature normalization is an orthogonal direction to feature aggregation
or architecture design, and it has been shown crucial when a neural network gets deeper, wider,
and more sophisticated (He et al., 2016). Normalization methods that shift and scale feature values
have proven to help the optimization of deep neural networks. Curiously, different domains require
specialized normalization methods. In computer vision, batch normalization (Ioffe & Szegedy, 2015)
is a standard component. While in natural language processing (NLP), layer normalization (Ba et al.,
2016; Xiong et al., 2020) is more popularly used. Empirically, common normalization methods
from other domains, e.g., BatchNorm and LayerNorm, often lead to unsatisfactory performance
when applied to GNNs. Theoretically, there is limited understanding of what kind of normalization
provably helps optimization of GNNs.
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Figure 1: Overview. Our proposed GraphNorm is shown along the upper branch. Each step in this
branch can boost the performance of GNNs: subtracting graph mean has preconditioning effect;
introducing a learnable shift avoids the expressiveness degradation; further scaling to unit norm
enjoys “scale-invariant” property (Ioffe & Szegedy, 2015; Hoffer et al., 2018; Arora et al., 2018). In
comparison, BatchNorm in the lower branch suffers from heavy batch noise. Overall, GraphNorm
significantly surpasses BatchNorm in training speed (Figure 4) and enjoys good generalization
performance (Table 1).

In this paper, we propose a theoretically motivated normalization method for GNNs, Graph Normal-
ization (GraphNorm). GraphNorm normalizes the feature values across all nodes in each individual
graph with a learnable shift. We derive GraphNorm from understanding how different components or
steps of a normalization method influence the optimization (Figure 1). In particular, we identify the
importance of appropriate shift steps for GNNs, an under-explored topic in normalization methods
for other domains.

First, we show that applying normalization to each individual graph instead of to the whole mini-batch,
is beneficial according to a theoretical understanding of the shift operation. We prove that when
applying the normalization to each individual graph, the shift operation (Step 1a in Figure 1) serves as
a preconditioner of the graph aggregation operation (Theorem 3.1). Empirically, the preconditioning
makes the optimization curvature smoother and makes the training more efficient (Figure 2). Such an
improvement cannot be well achieved if we apply the normalization across graphs in a batch, i.e.,
using BatchNorm. This is because the variation of the batch-level statistics on graph data is much
larger (Figure 3). Therefore using noisy statistics during training may make the optimization even
more unstable.

Second, we show that the standard shift that simply subtracts the mean of feature values may lead
to an expressiveness degradation. Specifically, we prove that for some highly regular graphs, the
mean statistics of feature values contains graph structural information which may be crucial for
classification (Proposition 4.1 and 4.2). Therefore, directly removing them from the features will
consequently hurt the performance (Figure 5). Based on this analysis, we propose the learnable shift
(Step 2 in Figure 1) to control how much information in mean statistics to preserve. Together, our
proposed GraphNorm normalizes the feature values across nodes in each graph using a learnable shift
to avoid expressiveness degradation and enjoy effective optimization.

To validate the effectiveness of GraphNorm, we conduct extensive experiments on eight popular
graph classification benchmarks. Empirical results confirm that GraphNorm consistently improves the
optimization for GNNs, e.g., convergence speed and stability of training, by a large margin compared
to BatchNorm (Figure 4). Furthermore, GraphNorm helps GNNs achieve better generalization
performance on most benchmarks (Table 1).

1.1 RELATED WORK

Normalization is important in optimizing deep neural networks, and different normalization tech-
niques have been proposed to improve the training process in different applications (Ioffe & Szegedy,
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2015; Ulyanov et al., 2016; Ba et al., 2016; Salimans & Kingma, 2016; Xiong et al., 2020; Salimans
et al., 2016; Miyato et al., 2018; Wu & He, 2018). The reason behind the effectiveness of normaliza-
tion has been intensively studied. Most of the works focus on the “scale-invariant” property: by using
a normalization layer right after a linear (or convolutional) layer, the output values will not change
when the weights of the parameters in the layer are scaled. Using this property, Kohler et al. (2019)
suggests that normalization decouples the optimization of direction and length of the parameters;
Ioffe & Szegedy (2015); Hoffer et al. (2018); Arora et al. (2018); Li & Arora (2019) show that the
normalization implicitly tunes the learning rate. Santurkar et al. (2018) reveals that normalization
smooths the optimization landscape. The “scale-invariant” property is a consequence of the scaling
operation in normalization. However, the effect of the shift operation remains highly unexplored.

2 PRELIMINARIES

In this section, we introduce the notations and the basics of GNNs. Let G = (V,E) denote a graph
where V = {v1, v2, · · · , vn}, n is the number of nodes. Let the feature vector of node vi be Xi. We
denote the adjacency matrix of a graph as A ∈ Rn×n with Aij = 1 if (vi, vj) ∈ E and 0 otherwise.
The degree matrix associated with A is defined as D = diag (d1, d2, . . . , dn) where di =

∑n
j=1Aij .

Graph Neural Networks. GNNs use the graph structure and node features to learn the representa-
tions of nodes and graphs. Modern GNNs follow a neighborhood aggregation strategy (Sukhbaatar
et al., 2016; Kipf & Welling, 2017; Hamilton et al., 2017; Velickovic et al., 2018; Monti et al., 2017),
where the representation of a node is iteratively updated by aggregating the representation of its
neighbors. To be concrete, we denote h(k)i as the representation of vi at the k-th layer and define
h
(0)
i = Xi. We use AGGREGATE to denote the aggregation function in the k-th layer. Formally,

h
(k)
i = AGGREGATE(k)

(
h
(k−1)
i ,

{
h
(k−1)
j : vj ∈ N (vi)

})
, i = 1, 2, · · · , n, (1)

where N (vi) is the set of nodes adjacent to vi. Different graph neural networks can be obtained by
choosing different AGGREGATE functions. We introduce two popularly used networks in detail,
Graph Convolutional Networks (GCN) (Kipf & Welling, 2017) and Graph Isomorphism Network
(GIN) (Xu et al., 2019). In GCN, the AGGREGATE function is defined as:

h
(k)
i = ReLU

(
W (k) ·MEAN

{
h
(k−1)
j , ∀vj ∈ N (vi) ∪ {vi}

})
, (2)

where MEAN denotes the average pooling operation over each feature dimension and W (k) is the
parameter matrix in layer k. Taking the matrix form, Eq. 2 can be rewritten as

H(k) = ReLU
(
W (k)H(k−1)QGCN

)
, (3)

where H(k) =
[
h
(k)
1 , h

(k)
2 , · · · , h(k)n

]
∈ Rd(k)×n, d(k) denotes the feature dimension at the k-th layer.

QGCN = D̂−
1
2 ÂD̂−

1
2 , where Â = A+ In and D̂ is the degree matrix of Â. In is the identity matrix.

In GIN, the AGGREGATE function is defined as

h
(k)
i = MLP(k)

W (k)

(1 + ξ(k)
)
· h(k−1)i +

∑
vj∈N (vi)

h
(k−1)
j

 , (4)

which in matrix form is

H(k) = MLP(k)
(
W (k)H(k−1)QGIN

)
, (5)

where ξ(k) is a learnable parameter and QGIN = A+ In + ξ(k)In.

For a K-layer GNN, the outputs of the final layer, i.e., h(K)
i ,i = 1, · · · , n, will be used for prediction.

For graph classification tasks, we can apply a READOUT function, e.g., summation, to aggregate
node features h(K)

i to obtain the entire graph’s representation hG = READOUT
({
h
(K)
i

∣∣ vi ∈ V }).
A classifier can be applied upon hG to predict the labels.
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Figure 2: Singular value distribution of Q and QN for sampled graphs in different datasets using
GIN. More visualizations for different types of graphs can be found in Appendix D.1

Normalization. Generally, given a set of values {x1, x2, · · · , xm}, a normalization operation first
shifts each xi by the mean µ, and then scales them down by standard deviation σ: xi → γ xi−µ

σ + β,
where γ and β are learnable parameters, µ = 1

m

∑m
i=1 xi and σ2 = 1

m

∑m
i=1 (xi − µ)

2. The
major difference among different existing normalization methods is which set of feature values the
normalization is applied to. For example, in computer vision, BatchNorm (Ioffe & Szegedy, 2015) is
the de facto method that normalizes the feature values in the same channel across different samples in
the batch. In NLP, LayerNorm (Ba et al., 2016) is more popularly used, which normalizes the feature
values at each position in a sequence separately. In GNN literature, as the aggregation function is
similar to the convolutional operation, BatchNorm is usually used. Xu et al. (2019) uses BatchNorm
in the GIN model, where the BatchNorm is applied to all values in the same feature dimension across
the nodes of all graphs in the batch.

3 UNDERSTANDING NORMALIZATION FOR GNNS

In this section, we start from analyzing why and how normalization can help the optimization
procedure of GNNs, and then use such a theoretical understanding to develop GraphNorm.

3.1 THE ADVANTAGE OF THE SHIFT IN NORMALIZATION

As mentioned previously, the scale-invariant property of the normalization has been investigated and
considered as one of the ingredients that make the optimization efficient. However, as far as we know,
the effectiveness of the shift is not well understood. Compared to the image and sequential data,
the graph is explicitly structured, and the neural networks exploit the structural information directly
in the aggregation of the neighbours, see Eq. (1). Such uniqueness of GNNs makes it possible to
study how the shift operation interplays with the graph data in detail. We first consider the following
general GNN structure equipped with a normalization layer:

H(k) = F (k)
(

Norm
(
W (k)H(k−1)Q

))
, (6)

where F (k) is a function that applies to each node separately, Q is an n× n matrix representing the
neighbor aggregation, andW (k) is the weight/parameter matrix in layer k. We apply the normalization
after the linear transformation as in previous works (Ioffe & Szegedy, 2015; Xiong et al., 2020; Xu
et al., 2019). We can instantiate Eq. (6) as GCN and GIN, by setting proper F (k) and matrix Q. For
example, if we set F (k) to be ReLU and set Q to be QGCN (Eq. (3)), then Eq. (6) becomes GCN with
normalization; Similarly, by setting F (k) to be MLP(k) and Q to be QGIN (Eq. (5)), we recover GIN
with normalization.

We are interested in how this normalization layer affects the optimization of graph neural networks.
Towards this goal, we first consider applying the normalization over each individual graph separately.
Mathematically, for a graph of n nodes, denote N = In − 1

n11
>. N is the matrix form of the shift

operation, i.e., for any vector z = [z1, z2, · · · , zn]
> ∈ Rn, z>N = z> −

(
1
n

∑n
i=1 zi

)
1>. Then the

normalization together with the aggregation can be represented as1

Norm
(
W (k)H(k−1)Q

)
= S

(
W (k)H(k−1)Q

)
N, (7)

1Standard normalization has an additional affine operation after shifting and scaling. Here we omit it in Eq. 7
for easier understanding. Note that adding this operation will not affect the theoretical analysis.
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Figure 3: Batch-level statistics are noisy for GNNs. We plot the batch-level/dataset-level
mean/standard deviation of the first (layer 0) and the last (layer 3) BatchNorm layers of differ-
ent model checkpoints for a five-layer GIN on PROTEINS and a ResNet18 on CIFAR10. The batch
size of all experiments are set to 128. More visualizations for different types of graphs can be found
in Appendix D.2.

where S = diag
(

1
σ1
, 1
σ2
, · · · , 1

σ
d(k)

)
is the scaling. Each σi is the standard deviation of the values

of the i-th features among the nodes in the graph we consider. We can see that, in matrix form,
shifting feature values on a single graph is equivalent to multiplying N as in Eq. (7). Therefore, we
further check how this operation affects optimization. In particular, we examine the singular value
distribution of QN . The following theorem shows that QN has a smoother singular value distribution
than Q, i.e., N serves as a preconditioner of Q.
Theorem 3.1 (Shift Serves as a Preconditioner of Q). Let Q,N be defined as in Eq. (7), 0 ≤ λ1 ≤
· · · ≤ λn be the singular values of Q. We have µn = 0 is one of the singular values of QN , and let
other singular values of QN be 0 ≤ µ1 ≤ µ2 ≤ · · · ≤ µn−1. Then we have

λ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ µn−1 ≤ λn, (8)

where λi = µi or λi = µi−1 only if there exists one of the right singular vectors αi of Q associated
with λi satisfying 1>αi = 0.

Classic wisdom in optimization shows that preconditioning can accelerate the convergence of iterative
methods (Axelsson, 1985; Demmel, 1997), and similar ideas are also used to accelerate the optimiza-
tion of deep neural networks (Duchi et al., 2011; Kingma & Ba, 2015). In the case of optimizing the
weight matrix W (k), we can see from Eq. (7) that after applying normalization, the term Q in the
gradient of W (k) will become QN which makes the optimization curvature of W (k) smoother, see
Appendix A.4 for more discussions.

To check how much the matrix N improves the distribution of the spectrum of matrix Q in real
practice, we sample graphs from different datasets for illustration, as showed in Figure 2 (more
visualizations for different types of graph can be found in Appendix D.1). We can see that the singular
value distribution of QN is much smoother, and the condition number is improved. Note that for a
multi-layer GNN, the normalization will be applied in each layer. Therefore, the overall improvement
of such preconditioning can be more significant.

3.2 THE DISADVANTAGES OF BATCH NORMALIZATION FOR GRAPH

The above analysis shows the benefits of using normalization on the nodes in a single graph. Then a
natural question is whether using a batch-level normalization for GNNs (Xu et al., 2019) can lead
to similar advantages. In batch normalization (BatchNorm), the mean and standard deviation in a
sampled batch are random variables which try to provide accurate estimations for the mean and
standard deviation over the whole dataset (Ioffe & Szegedy, 2015; Teye et al., 2018; Luo et al., 2019).
During testing, the estimated dataset-level statistics are used instead of the batch-level statistics (Ioffe
& Szegedy, 2015).
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In GNNs, for each feature dimension, the BatchNorm normalizes the feature values of the dimension
over all nodes across different graphs in the batch. Note that one can view all graphs in the dataset
as isolated subgraphs in a super graph. If the batch-level statistics are well-concentrated around
dataset-level statistics, we can use Eq. (7) to this super graph, and thus Theorem 3.1 can be applied.
Then BatchNorm can be considered as normalizing isolated parts in the super graph, which will
enjoy the preconditioning in the theorem. However, the concentration of batch-level statistics is
heavily domain-specific. Shen et al. (2020) find that in computer vision, the variation of batch-level
statistics in typical networks is quite small while in natural language processing, this variation is large.
In GNNs, how the batch-level statistics are concentrated is still unknown. If those values poorly
concentrate around the dataset-level statistics, we cannot expect the preconditioning property of the
shift operation holds for batch normalization.

To study this, we train a 5-layer GIN with BatchNorm as in Xu et al. (2019) on the PROTEINS dataset
and train a ResNet18 (He et al., 2016) on the CIFAR10 dataset for comparison. The batch size of all
experiments are set to 128. For each model checkpoint, we record the maximum/minimum batch-
level statistics (mean and standard deviation) for the first (layer 0) and the last (layer 3) BatchNorm
layer on a randomly picked dimension across different batches. We also calculate the dataset-level
statistics. In Figure 3, pink line denotes the dataset-level statistics, and green/blue line denotes the
maximum/minimum value of the batch-level statistics respectively. We observe that for image tasks,
the batch-level statistics well concentrate around the dataset-level statistics during training. On the
contrary, on the graph tasks, the variation of batch-level statistics is rather large. We hypothesize
this is due to that the graph structure is quite different between each other and the statistics of a
batch is hard to reflect the statistics of the whole dataset. Such heavy noise brings instabilities to the
optimization when using BatchNorm, and the preconditioning property also may not hold.

4 GRAPH NORMALIZATION

Although we provide evidence on the indispensability and advantages to apply the normalization in a
graph-wise manner, simply normalizing the values in each feature dimension within a graph does
not consistently lead to improvement. We show that in some situations, e.g., for regular graphs, the
standard shift (e.g., shifting by subtracting the mean) may cause information loss on graph structures.
We also show in the experimental section that some graphs in real-world datasets are highly regular.

We consider r-regular graphs, i.e., each node has a degree r. We first look into the case that there are
no available node features, then Xi is set to be the one-hot encoding of the node degree (Xu et al.,
2019). In a r-regular graph, all nodes have the same encoding, and thus the columns of H(0) are
the same. We study the output of the standard shift operation in the first layer, i.e., k = 1 in Eq. (7).
From the following proposition, we can see that when the standard shift operation is applied to GIN
for a r-regular graph described above, the information of degree is lost:

Proposition 4.1. For a r-regular graph with features described above, we have for GIN,
Norm

(
W (1)H(0)QGIN

)
= S

(
W (1)H(0)QGIN

)
N = 0, i.e., the output of normalization layer

is a zero matrix without any information of the graph structure.

Such information loss not only happens when there are no node features. For complete graphs, we
can further show that even each node has different features, the graph structural information, i.e.,
adjacency matrix A, will always be ignored after the standard shift operation in GIN:

Proposition 4.2. For a complete graph (r = n− 1), we have for GIN, QGINN = ξ(k)N , i.e., graph
structural information in Q will be removed after multiplying N .

The proof of these two propositions can be found in Appendix A. Similar results can be easily derived
for other architectures like GCN. As we can see from the above analysis, in graph data, the mean
statistics after the aggregation sometimes contain structural information. Discarding the mean will
degrade the expressiveness of the neural networks. Note that the problem may not happen in image
domain. The mean statistics of image data contains global information such as brightness. Removing
such information in images will not change the semantics of the objects and thus will not hurt the
classification performance.

This analysis inspires us to modify the current normalization method with a learnable parameter
to automatically control how much the mean to preserve in the shift operation. Combined with the
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Figure 4: Training performance of GIN/GCN with GraphNorm and BatchNorm on different tasks.

Table 1: Test performance of GIN/GCN with GraphNorm and BatchNorm on different tasks.

Datasets MUTAG PTC PROTEINS NCI1 IMDB-B RDT-B COLLAB
# graphs 188 344 1113 4110 1000 2000 5000
# classes 2 2 2 2 2 2 2
Avg # nodes 17.9 25.5 39.1 29.8 19.8 429.6 74.5

WL SUBTREE (SHERVASHIDZE ET AL., 2011) 90.4 ± 5.7 59.9 ± 4.3 75.0 ± 3.1 86.0 ± 1.8 73.8 ± 3.9 81.0 ± 3.1 78.9 ± 1.9
DCNN (ATWOOD & TOWSLEY, 2016) 67.0 56.6 61.3 62.6 49.1 - 52.1
DGCNN (ZHANG ET AL., 2018) 85.8 58.6 75.5 74.4 70.0 - 73.7
AWL (IVANOV & BURNAEV, 2018) 87.9 ± 9.8 - - - 74.5 ± 5.9 87.9 ± 2.5 73.9 ± 1.9

GIN+BATCHNORM ((XU ET AL., 2019)) 89.4 ± 5.6 64.6 ± 7.0 76.2 ± 2.8 82.7 ± 1.7 75.1 ± 5.1 92.4 ± 2.5 80.2 ± 1.9
GIN+GraphNorm 91.6 ± 6.5 64.9 ± 7.5 77.4 ± 4.9 81.4 ± 2.4 76.0 ± 3.7 93.5 ± 2.1 80.2 ± 1.0

Datasets OGBG-MOLHIV

# graphs 41,127
# classes 2
Avg # nodes 25.5

Graph-agnostic MLP (Hu et al., 2020) 68.19 ± 0.71
GCN (Hu et al., 2020) 76.06 ± 0.97
GIN (Hu et al., 2020) 75.58 ± 1.40

GCN+BatchNorm 76.22 ± 0.95
GCN+GraphNorm 78.30 ± 0.69

GIN+BatchNorm 76.61 ± 0.97
GIN+GraphNorm 77.73 ± 1.29

graph-wise normalization, we call our new method GraphNorm. For each graph G, we generally
denote value ĥi,j as the inputs to GraphNorm, e.g., the j-th feature value of node vi, i = 1, · · · , n,
j = 1, · · · , d. GraphNorm takes the following form:

GraphNorm
(
ĥi,j

)
= γj

ĥi,j − αj · µj
σ̂j

+ βj , (9)

where µj = 1
n

∑n
i=1 ĥi,j , σ̂

2
j = 1

n

∑n
i=1

(
ĥi,j − αj · µj

)2
, and γj , βj are the affine parameters as in

other normalization methods. By introducing the learnable parameter αj for each feature dimension
j, we are able to learn how much the information we need to keep in the mean. In Section 5.3, we
show that using this parameter consistently boosts the convergence speed, and makes a significant
improvement on the datasets consisting of “regular” graphs.

5 EXPERIMENTS

5.1 SETTINGS

We use eight popularly used benchmark datasets of different scales in the experiments (Yanardag &
Vishwanathan, 2015; Xu et al., 2019), including four medium-scale bioinformatics datasets (MUTAG,
PTC, PROTEINS, NCI1), three medium-scale social network datasets (IMDB-BINARY, COLLAB,
REDDIT-BINARY), and one large-scale bioinformatics dataset ogbg-molhiv, which is recently
released on Open Graph Benchmark (OGB). Dataset statistics are summarized in Table 1. We
evaluate our proposed GraphNorm on two typical graph neural networks GIN (Xu et al., 2019) and
GCN (Kipf & Welling, 2017) and compare it with BatchNorm2.Specifically, we use a five-layer
GCN/GIN. For GIN, the number of sub-layers in MLP is set to 2. Normalization is applied to each
layer. To aggregate global features on top of the network, we use SUM readout for MUTAG, PTC,
PROTEINS and NCI1 datasets, and use MEAN readout for other datasets, as in Xu et al. (2019).
Details of the experimental settings are presented in Appendix C.

2We did not include LayerNorm as a baseline in the main body due to that we observe it usually leads to
unsatisfactory performance, see Figure 10 in Appendix. Dwivedi et al. (2020) observed similar phenomena.
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Figure 5: Ablation study of the parameter α. Left panel: Sampled graphs with different topological
structures. Right panel: training curves of GIN/GCN using GraphNorm with or without α (α = 1).

5.2 RESULTS

We plot the training curve of GIN/GCN with GraphNorm and BatchNorm on different tasks in Figure
4. First, from the curve, we can see that GraphNorm is significantly better than BatchNorm in terms
of the convergence speed. For example, GIN/GCN with GraphNorm converges in roughly 5000/500
iterations on NCI1 and PTC datasets, while the two models using BatchNorm does not even converge
in 10000/1000 iterations. Second, the majority of modern deep learning models are shown to be able
to interpolate the data (Zhang et al., 2017; Belkin et al., 2018; Liang & Rakhlin, 2018). But we found
that GIN and GCN with BatchNorm are slow to fit the training set well, and the training performance
is not very stable, which may due to the large noise induced by the batch-level statistics. However,
when using GraphNorm, in most datasets, the model can fit the training data easily.

Besides the training performance, we report the test (validation) accuracy on the datasets in Table 1.
From the table, we can see that by using GraphNorm, we can achieve better performance on five
tasks, which shows that better optimization leads to better test performance. On the large-scale ogbg-
molhiv dataset, the improvements are more impressive. We achieve state-of-the-art performance, and
GraphNorm is 2.1/1.1 points better than BatchNorm with GCN/GIN, respectively. As a summary,
the experimental results show that using GraphNorm is a better choice for GNNs in terms of both
optimization and generalization performance.

5.3 ABLATION STUDY

As mentioned in Section 4, the mean statistics of the feature values in a graph contains structural
information. In GraphNorm, we use a learnable shift with parameter α (see Eq. (9)) to preserve such
useful information automatically. We conduct experiments to show whether such a learnable α is
essential. We use two typical datasets, PROTEINS and IMDB-BINARY, which exhibit irregular-type
and regular-type graphs. Sampled cases are visualized in Figure 5.

We follow the same experimental setting as above and train GIN/GCN using GraphNorm. In the first
setting, we train the model with a learnable α, and in the second setting, we train the model without
α, i.e., by fixing α = 1. The training curves are presented in Figure 5. The figure shows that using a
learnable α slightly improves the convergence on PROTEINS while significantly boost the training
on IMDB-BINARY. This observation shows that shifting the feature values by subtracting the mean
losses information, especially for regular graphs. Such results are consistent with our theoretical
analysis in Section 4 and verify the necessity of the learnable shift.

6 CONCLUSION

In this paper, we propose a principled normalization method, called Graph Normalization (Graph-
Norm), where the key idea is to normalize all nodes for each individual graph with a learnable shift.
Theoretically, we show that GraphNorm serves as a preconditioner that smooths the distribution
of the graph aggregation’s spectrum, and the learnable shift is used to improve the expressiveness
of the networks. Experimental results show GNNs with GraphNorm achieve better generalization
performance on several benchmark datasets. In the future, we will apply our method to more scenarios
and explore other aspects of the optimization for GNNs.
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A PROOFS

A.1 PROOF OF THEOREM 3.1

We first introduce the Cauchy interlace theorem:
Lemma A.1 (Cauchy interlace theorem (Theorem 4.3.17 in Horn & Johnson (2012))). Let S ∈

R(n−1)×(n−1) be symmetric, y ∈ Rn and a ∈ R be given, and let R =

(
S y
y> a

)
∈ Rn×n. Let

λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of R and µ1 ≤ µ2 ≤ · · · ≤ µn−1 be the eigenvalues of S.
Then

λ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ µn−1 ≤ λn, (10)

where λi = µi only when there is a nonzero z ∈ Rn−1 such that Sz = µiz and y>z = 0; if
λi = µi−1 then there is a nonzero z ∈ Rn−1 such that Sz = µi−1z, y>z = 0.

Using Lemma A.1, the theorem can be proved as below.

Proof. For any matrices P,R ∈ Rn×n, we use P ∼ R to denote that the matrix P is similar to the
matrix R. Note that if P ∼ R, the eigenvalues of P and R are the same. As the singular values of P
are equal to the square root of the eigenvalues of P>P , we have the eigenvalues of Q>Q and that of
NQ>QN are

{
λ2i
}n
i=1

and
{
µ2
i

}n
i=1

, respectively.

Note that N is a projection operator onto the orthogonal complement space of the subspace spanned

by 1, andN can be decomposed asN = U diag

1, · · · , 1︸ ︷︷ ︸
×n−1

, 0

U> where U is an orthogonal matrix.

Since 1 is the eigenvector of N associated with eigenvalue 0, we have

U =
(
U1

1√
n
1
)
, (11)

where U1 ∈ Rn×(n−1) satisfies U11 = 0 and U>1 U1 = In−1.

Then we have NQ>QN = U diag (1, · · · , 1, 0)U>Q>QU diag (1, · · · , 1, 0)U> ∼
diag (1, · · · , 1, 0)U>Q>QU diag (1, · · · , 1, 0).

Let

D = diag (1, · · · , 1, 0) =

(
In−1 0
0> 0

)
, (12)

B =

(
In−1
0>

)
, (13)

C̄ = Q>Q, (14)

where 0 =

0, · · · , 0︸ ︷︷ ︸
×n−1

>.

We have
NQ>QN ∼ DU>C̄UD (15)

= D

(
U>1
1√
n
1>

)
C̄
(
U1

1√
n
1
)
D (16)

= D

(
U>1 C̄U1

1√
n
U>1 C̄1

1√
n
1>C̄U1

1
n1
>C̄1

)
D (17)

=

(
B>

0> 0

)(
U>1 C̄U1

1√
n
U>1 C̄1

1√
n
1>C̄U1

1
n1
>C̄1

)(
B

0
0

)
(18)

=

(
U>1 C̄U1 0

0> 0

)
. (19)
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Using Lemma A.1 and taking R = U>C̄U and S = U>1 C̄U1, we have the eigenvalues of U>1 C̄U1

are interlacing between the eigenvalues of U>C̄U . Note that the eigenvalues of DU>C̄UD are
µ2
1 ≤ µ2

2 ≤ · · · ≤ µ2
n−1 and µ2

n = 0, and by Eq. (19), the eigenvalues of DU>C̄UD contain the
eigenvalues of U>1 C̄U1 and 0. Since the eigenvalues of U>C̄U are λ21 ≤ λ22 ≤ · · · ≤ λ2n (By
similarity of U>C̄U and C̄), we then have

λ21 ≤ µ2
1 ≤ λ22 ≤ · · · ≤ λ2n−1 ≤ µ2

n−1 ≤ λ2n. (20)

Moreover, the equality holds only when there is a nonzero z ∈ Rn−1 that satisfies

U>1 C̄U1z = µz, (21)

1>C̄U1z = 0, (22)

where µ is one of µ2
i s.

Since U1 forms an orthogonal basis of the orthogonal complement space of 1 and Eq. (22) is
equivalent to “C̄U1z lies in the orthogonal complement space”, we have that there is a vector
y ∈ Rn−1 such that

C̄U1z = U1y. (23)

Substituting this into Eq. (21), we have

U>1 U1y = µz. (24)

Since U>1 U1 = In−1, the equation above is equivalent to

y = µz, (25)

which means

C̄U1z = U1y = µU1z, (26)

i.e., U1z is the eigenvector of C̄ associated with µ. By noticing U1z lies in the orthogonal complement
space of 1 and the eigenvector of C̄ is right singular vector of Q, we complete the proof.

A.2 PROOF OF PROPOSITION 4.1

Proof. For r-regular graph, A = r · In and QGIN =
(
r + 1 + ξ(1)

)
In. Since H(0) is given by

one-hot encodings of node degrees, the row of H(0) can be represented as c · 1> where c = 1 for the
r-th row and c = 0 for other rows. By the associative property of matrix multiplication, we only need
to show H(0)QGINN = 0. This is because, for each row

c · 1>QGINN = c · 1>(r + 1 + ξ(1))In

(
In −

1

n
11>

)
(27)

= c
(
r + 1 + ξ(1)

)(
1> − 1> · 1

n
11>

)
= 0. (28)

A.3 PROOF OF PROPOSITION 4.2

Proof.

QGINN = (A+ In + ξ(k)In)N == (11> + ξ(k)In)N = ξ(k)N, (29)

A.4 GRADIENT OF W (k)

We first calculate the gradient of W (k) when using normalization. Denote Z(k) =
Norm

(
W (k)H(k−1)Q

)
and L as the loss. Then the gradient of L w.r.t. the weight matrix W (k) is

∂L
∂W (k)

=

((
H(k−1)QN

)>
⊗ S

)
∂L
∂Z(k)

, (30)
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Table 2: Summary of statistics of benchmark datasets.

Datasets MUTAG PTC PROTEINS NCI1 IMDB-B RDT-B COLLAB OGBG-MOLHIV

# graphs 188 344 1113 4110 1000 2000 5000 41127
# classes 2 2 2 2 2 2 2 2
Avg # nodes 17.9 25.5 39.1 29.8 19.8 429.6 74.5 25.5
Avg # edges 57.5 72.5 184.7 94.5 212.8 1425.1 4989.5 27.5
Avg # degrees 3.2 3.0 4.7 3.1 10.7 3.3 66.9 2.1

where ⊗ represents the Kronecker product, and thus
(
H(k−1)QN

)> ⊗ S is an operator on matrices.

Analogously, the gradient of W (k) without normalization consists a
(
H(k−1)Q

)> ⊗ In term. As
suggested by Theorem 3.1, QN has a smoother distribution of spectrum than Q, so that the gradient
of W (k) with normalization enjoys better optimization curvature than that without normalizaiton.

B DATASETS

Detailed of the datasets used in our experiments are presented in this section. Brief statistics of the
datasets are summarized in Table 2. Those information can be also found in Xu et al. (2019) and Hu
et al. (2020).

Bioinformatics datasets. PROTEINS is a dataset where nodes are secondary structure elements
(SSEs) and there is an edge between two nodes if they are neighbors in the amino-acid sequence or in
3D space. It has 3 discrete labels, representing helix, sheet or turn. NCI1 is a dataset made publicly
available by the National Cancer Institute (NCI) and is a subset of balanced datasets of chemical
compounds screened for ability to suppress or inhibit the growth of a panel of human tumor cell
lines, having 37 discrete labels. MUTAG is a dataset of 188 mutagenic aromatic and heteroaromatic
nitro compounds with 7 discrete labels. PTC is a dataset of 344 chemical compounds that reports the
carcinogenicity for male and female rats and it has 19 discrete labels.

Social networks datasets. IMDB-BINARY is a movie collaboration dataset. Each graph corre-
sponds to an ego-network for each actor/actress, where nodes correspond to actors/actresses and an
edge is drawn betwen two actors/actresses if they appear in the same movie. Each graph is derived
from a pre-specified genre of movies, and the task is to classify the genre graph it is derived from.
REDDIT-BINARY is a balanced dataset where each graph corresponds to an online discussion thread
and nodes correspond to users. An edge was drawn between two nodes if at least one of them
responded to another’s comment. The task is to classify each graph to a community or a subreddit
it belongs to. COLLAB is a scientific collaboration dataset, derived from 3 public collaboration
datasets, namely, High Energy Physics, Condensed Matter Physics and Astro Physics. Each graph
corresponds to an ego-network of different researchers from each field. The task is to classify each
graph to a field the corresponding researcher belongs to.

Large-scale Open Graph Benchmark: ogbg-molhiv. Ogbg-molhiv is a molecular property pre-
diction dataset, which is adopted from the the MOLECULENET (Wu et al., 2017). Each graph
represents a molecule, where nodes are atoms and edges are chemical bonds. Both nodes and edges
have associated diverse features. Node features are 9-dimensional, containing atomic number and
chirality, as well as other additional atom features. Edge features are 3-dimensional, containing bond
type, stereochemistry as well as an additional bond feature indicating whether the bond is conjugated.

C THE EXPERIMENTAL SETUP

Network architecture. For the medium-scale bioinformatics and social network datasets, we
use 5-layer GIN/GCN with a linear output head for prediction followed Xu et al. (2019) with
residual connection. The hidden dimension of GIN/GCN is set to be 64. For the large-scale ogbg-
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molhiv dataset, we also use 5-layer GIN/GCN(Xu et al., 2019) architecture with residual connection.
Following Hu et al. (2020), we set the hidden dimension as 300.

Baselines. For the medium-scale bioinformatics and social network datasets, we compare several
competitive baselines as in �xu2018how, including the WL subtree kernel model (Shervashidze et al.,
2011), diffusion-convolutional neural networks (DCNN) (Atwood & Towsley, 2016), Deep Graph
CNN (DGCNN) (Zhang et al., 2018) and Anonymous Walk Embeddings (AWL) (Ivanov & Burnaev,
2018). We report the accuracies reported in the original paper (Xu et al., 2019). For the large-scale
ogbg-molhiv dataset, we use the baselines in Hu et al. (2020), including the Graph-agnostic MLP
model, GCN (Kipf & Welling, 2017) and GIN (Xu et al., 2019). We also report the roc-auc values
reported in the original paper (Hu et al., 2020).

Hyper-parameter configurations. We use Adam (Kingma & Ba, 2015) optimizer with a linear
learning rate decay schedule. We follow previous work Xu et al. (2019) and Hu et al. (2020) to
use hyper-parameter search (grid search) to select the best hyper-parameter based on validation
performance. In particular, we select the batch size ∈ {64, 128}, the dropout ratio ∈ {0, 0.5}, weight
decay ∈ {5e− 2, 5e− 3, 5e− 4, 5e− 5} ∪ {0.0}, the learning rate ∈ {1e− 4, 1e− 3, 1e− 2}. For
the drawing of the training curves in Figure 4, for simplicity, we set batch size to be 128, dropout
ratio to be 0.5, weight decay to be 0.0, learning rate to be 1e-2, and train the models for 400 epochs
for all settings.

Evaluation. Using the chosen hyper-parameter, we report the averaged test performance over
different random seeds (or cross-validation). In detail, for the medium-scale datasets, following Xu
et al. (2019), we perform a 10-fold cross-validation as these datasets do not have a clear train-validate-
test splitting format. The mean and standard deviation of the validation accuracies across the 10 folds
are reported. For the ogbg-molhiv dataset, we follow the official setting (Hu et al., 2020). We repeat
the training process with 10 different random seeds.

For all experiments, we select the best model checkpoint with the best validation accuracy and record
the corresponding test performance.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 VISUALIZATION OF THE SINGULAR VALUE DISTRIBUTIONS

As stated in Theorem 3.1, the shift operation N serves as a preconditioner of Q which makes
the singular value distribution of Q smoother. To check the improvements, we sample graphs
from 6 median-scale datasets (PROTEINS, NCI1, MUTAG, PTC, IMDB-BINARY, COLLAB) for
visualization, as in Figure 6.

D.2 VISUALIZATION OF NOISE IN THE BATCH STATISTICS

We show the noise of the batch statistics on the PROTEINS task in the main body. Here we provide
more experiment details and results.

For graph tasks (PROTEINS, PTC, NCI1, MUTAG, IMDB-BINARY datasets), we train a 5-layer
GIN with BatchNorm as in Xu et al. (2019) and the number of sub-layers in MLP is set to 2. For
image task (CIFAR10 dataset), we train a ResNet18 (He et al., 2016). Note that for a 5-layer GIN
model, it has four graph convolution layers (indexed from 0 to 3) and each graph convolution layer
has two BatchNorm layers; for a ResNet18 model, except for the first 3×3 convolution layer and
the final linear prediction layer, it has four basic layers (indexed from 0 to 3) and each layer consists
of two basic blocks (each block has two BatchNorm layers). For image task, we set the batch size
as 128, epoch as 100, learning rate as 0.1 with momentum 0.9 and weight decay as 5e-4. For graph
tasks, we follow the setting of Figure 4 (described in Appendix C).

The visualization of the noise in the batch statistics is obtained as follows. We first train the models
and dump the model checkpoints at the end of each epoch; Then we randomly sample one feature
dimension and fix it. For each model checkpoint, we feed different batches to the model and record
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the maximum/minimum batch-level statistics (mean and standard deviation) of the feature dimension
across different batches. We also calculate dataset-level statistics.

As Figure 3 in the main body, pink line denotes the dataset-level statistics, and green/blue line denotes
the maximum/minimum value of the batch-level statistics respectively. First, we provide more results
on PTC, NCI1, MUTAG, IMDB-BINARY tasks, as in Figure 7. We visualize the statistics from the
first (layer-0) and the last (layer-3) BatchNorm layers in GIN for comparison. Second, we further
visualize the statistics from different BatchNorm layers (layer 0 to layer 3) in GIN on PROTEINS
and ResNet18 in CIFAR10, as in Figure 8. Third, we conduct experiments to investigate the influence
of the batch size. We visualize the statistics from BatchNorm layers under different settings of batch
sizes [8, 16, 32, 64], as in Figure 9. We can see that the observations are consistent and the batch
statistics on graph data are noisy, as in Figure 3 in the main body.

E OTHER RELATED WORKS

Due to space limitations, we add some more related works on normalization and graph neural
networks here. Zou et al. (2019) used normalization to stabilize the training process of GNNs. Zhao
& Akoglu (2020) introduced PAIRNORM to prevent node embeddings from over-smoothing on
the node classification task. Our GraphNorm focuses on accelerating the training and has faster
convergence speed on graph classification tasks. Yang et al. (2020) interpreted the effect of mean
subtraction on GCN as approximating the Fiedler vector. We analyze more general aggregation
schemes, e.g., those in GIN, and understand the effect of the shift through the distribution of spectrum.
Some concurrent and independent works (Li et al., 2020; Chen et al., 2020; Zhou et al., 2020a;b)
also seek to incorporate normalization schemes in GNNs, which show the urgency of developing
normalization schemes for GNNs. In this paper, we provide several insights on how to design a proper
normalization for GNNs. Before the surge of deep learning, there are also many classic architectures
of GNNs such as Scarselli et al. (2008); Bruna et al. (2013); Defferrard et al. (2016) that are not
mentioned in the main body of the paper. We refer the readers to Zhou et al. (2018); Wu et al. (2020);
Zhang et al. (2020) for surveys of graph representation learning.
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Figure 6: Singular value distribution of Q and QN . Graph samples from PROTEINS, NCI1,
MUTAG, PTC, IMDB-BINARY, COLLAB are presented.
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Figure 7: Batch-level statistics are noisy for GNNs (Examples from PTC, NCI1, MUTAG, IMDB-
BINARY datasets). We plot the batch-level mean/standard deviation and dataset-level mean/standard
deviation of the first (layer 0) and the last (layer 3) BatchNorm layers in different checkpoints. GIN
with 5 layers is employed.
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Figure 8: Batch-level statistics are noisy for GNNs of different depth. We plot the batch-level
mean/standard deviation and dataset-level mean/standard deviation of different BatchNorm layers
(from layer 0 to layer 3) in different checkpoints. We use a five-layer GIN on PROTEINS and
ResNet18 on CIFAR10 for comparison.
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Figure 9: Batch-level statistics are noisy for GNNs of different batch sizes. We plot the batch-
level mean/standard deviation and dataset-level mean/standard deviation of different BatchNorm
layers (layer 0 and layer 3) in different checkpoints. Specifically, different batch sizes (8, 16, 32, 64)
are chosed for comparison. GIN with 5 layers is employed.
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Figure 10: Training performance of GIN/GCN with GraphNorm, BatchNorm , LayerNorm and
without normalization on PROTEINS, NCI1, PTC and MUTAG datasets.
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