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Abstract

Adapter layers are lightweight, learnable units001
inserted between transformer layers. Re-002
cent work explores using such layers for neu-003
ral machine translation (NMT), to adapt pre-004
trained models to new domains or language005
pairs. We propose strategies to compose lan-006
guage and domain adapters. Our goals are007
both parameter-efficient adaptation to multi-008
ple domains and languages simultaneously,009
and cross-lingual transfer in domains where010
parallel data is unavailable for certain lan-011
guage pairs. We find that a naive combina-012
tion of domain-specific and language-specific013
adapters often results in translations into the014
wrong language. We study other ways to015
combine the adapters to alleviate this issue016
and maximize cross-lingual transfer. With our017
best adapter combinations, we obtain improve-018
ments of 3-4 BLEU on average for source lan-019
guages that do not have in-domain data. For020
target languages without in-domain data, we021
achieve a similar improvement by combining022
adapters with back-translation.023

1 Introduction024

Multilingual Neural Machine Translation (NMT)025

has made a lot of progress recently (Johnson et al.,026

2017; Bapna and Firat, 2019; Aharoni et al., 2019;027

Zhang et al., 2020; Fan et al., 2020a) and is now028

widely adopted by the community and MT ser-029

vice providers. Multilingual NMT models handle030

multiple language directions at once and allow for031

knowledge transfer to low-resource languages. Ma-032

chine translation systems often need to be adapted033

to specific domains like legal or medical text. How-034

ever, when building multilingual systems, data for035

most language pairs might not exist. We would ide-036

ally be able to leverage data in a subset of language037

pairs to transfer domain knowledge to many others.038

A technique for adapting such models to new039

language-pairs and domains are the recently in-040

troduced ‘adapter layers’ (Bapna and Firat, 2019),041

lightweight, learnable units inserted between trans- 042

former layers. Previous studies have shown it is 043

possible to combine language adapters (Philip et al., 044

2020), or language and task adapters (Pfeiffer et al., 045

2020) trained independently, enabling zero-shot 046

compositions of adapters. In this work we analyse 047

how to combine language adapters with domain 048

adapters in multilingual NMT, and study whether 049

domain knowledge can be transferred across lan- 050

guages. 051

We show it is hard to decouple language knowl- 052

edge from domain knowledge when finetuning mul- 053

tilingual MT systems on new domains. In Sec- 054

tion 5.2 we demonstrate that adapters learnt on a 055

subset of language pairs fail to generate into lan- 056

guages not in that subset. Such generation into the 057

wrong language is referred to as ‘off-target’ trans- 058

lation. Our initial results show ‘stacking’ (or com- 059

posing) language and domain adapters can improve 060

performance, but combinations of domain and lan- 061

guage adapters unseen at training time lead to bad 062

performance. We examine how adapter placement 063

and other techniques can improve the composition- 064

ality of language and domain adapters when deal- 065

ing with source or target languages that do not have 066

in-domain data (which we refer to throughout this 067

work as “out-of-domain languages”). Our key 068

contributions are: 069

• We examine adapter placement for simple 070

bilingual domain adaptation as well as mul- 071

tilingual multi-domain adaptation, and show 072

that encoder-only adapters can be just as effec- 073

tive as default adapters added in every layer. 074

• We analyse different language and domain 075

adapter combinations that improve perfor- 076

mance and reduce off-target translations. Our 077

best results for translation into out-of-domain 078

languages use decoder-only domain adapters, 079

regularisation with domain adapter dropout, 080

and data augmentation with English-centric 081
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back-translation.082

2 Related Work083

Cross-lingual transfer Many works have084

demonstrated that large pre-trained multilingual085

models (Devlin et al., 2019; Conneau et al., 2020;086

Liu et al., 2020) fine-tuned on high-resource087

languages (or language pairs) can transfer to088

lower-resource languages in various tasks: Natural089

Language Inference (Conneau et al., 2018),090

Question Answering (Clark et al., 2020), Named091

Entity Recognition (Pires et al., 2019; K et al.,092

2020), Neural Machine Translation (Liu et al.,093

2020) and others (Hu et al., 2020).094

Domain adaptation in NMT Domain adapta-095

tion has been discussed extensively for bilingual096

NMT models. A typical approach is to fine-tune a097

model trained on a large corpus of ‘generic’ data on098

a smaller in-domain corpus (Luong and Manning,099

2015; Neubig and Hu, 2018). A common tech-100

nique to make use of monolingual in-domain data101

is to do back-translation (Sennrich et al., 2016a; Be-102

rard et al., 2019a; Jin et al., 2020). Multi-domain103

models can be trained with domain tags (Kobus104

et al., 2017; Berard et al., 2019a; Stergiadis et al.,105

2021). In this work we focus on multilingual do-106

main adaptation, where we hope to transfer do-107

main knowledge from one language pair to many108

others. This setting presents challenges for back-109

translation, since for n languages and k domains110

we need to run back-translation O(n2k) times.111

Adapter layers Bapna and Firat (2019) intro-112

duce adapter layers for NMT as a lightweight al-113

ternative to finetuning. They study both adding114

language-pair specific adapters to multilingual115

NMT models to match the performance of a116

bilingual version, and domain-specific adapters117

for parameter-efficient domain adaptation. Fur-118

ther, Philip et al. (2020) show that decompos-119

ing language-specific adapters into independently120

trained language adapters improves zero-shot trans-121

lation in English-centric settings, and can also be122

used to adapt a model to all language directions in123

a scalable way. Pfeiffer et al. (2020) study adapter124

layers in the context of pre-trained Language Mod-125

els. They compose language adapters trained on126

masked language modelling in language x and task127

adapters trained on classification tasks in language128

y and obtain transfer to classification in language129

x. Our work pursues a similar objective to Pfeiffer130

et al. (2020), but for NMT where in addition to 131

encoding sentences we need to generate text for 132

new language and domain combinations. 133

3 Composing Adapter Modules 134

Adapter modules (Rebuffi et al., 2017; Houlsby 135

et al., 2019) are randomly initialised modules in- 136

serted between the layers of a pre-trained net- 137

work and fine-tuned on new data. An adapter 138

layer is typically a down projection to a bottle- 139

neck dimension followed by an up projection to 140

the initial dimension, which we write as FFN(h) = 141

Wupf(Wdownh), with f(·) a non-linearity. The bot- 142

tleneck controls the parameter count of the mod- 143

ule; typically NMT requires slightly larger parame- 144

ter counts than classification to match fine-tuning 145

(Bapna and Firat, 2019; Cooper Stickland et al., 146

2021). With a residual connection and a near- 147

identity initialization the original model is (ap- 148

proximately) retained at the beginning of optimiza- 149

tion, keeping at least the performance of the parent 150

model. 151

3.1 Stacking Domain and Language 152

Adapters 153

In this work we study ‘stacking’ adapter modules, 154

i.e. each language and domain has a unique adapter 155

module associated with it. When passing a batch 156

with source language x, target language y, and do- 157

main z, we only ‘activate’ the adapters for {x, y, z}. 158

The encoder adapters for x and decoder adapters 159

for y are activated. 160

We mostly follow the architecture of Bapna and 161

Firat (2019). Language adapters LA are defined as: 162

163

LA(hl) = FFNlg(LNlg(hl)) + hl (1) 164

where hl is the Transformer hidden state at layer 165

l and LNlg is a newly initialised layer-norm. Let 166

z = LA(hl); when stacking domain and language 167

adapters, the layer output hl,out is given by: 168

hl,out = FFNdom(LNdom(z)) + z (2) 169

Since we simply apply another adapter on top of 170

the language adapter we refer to this as ‘modular’ 171

style. 172

Pfeiffer et al. (2020) use a different formulation 173

that empirically performed well, with: 174

LA(hl, rl) = FFNlg(hl) + rl. (3) 175

The residual connection rl is the output of the 176

Transformer’s feed-forward layer whereas hl is 177
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the output of the subsequent layer normalisation.178

When stacking domain and language adapters the179

layer output is given by applying the model’s pre-180

trained layer norm LNpre,181

hl,out = LNpre(FFNdom(LA(hl, rl)) + rl) (4)182

and using the output of the Transformer’s feed-183

forward layer as a residual instead of the language184

adapter output. We refer to this as ‘MAD-X’ style185

after Pfeiffer et al. (2020). This leaves the layer186

output ‘closer’ to the pre-trained model, with the187

same layer-norm and residual connection, contrary188

to Eq. 2 which has a newly initialised layer-norm189

and a residual connection. For all models without190

any stacking we obtain layer output as in Eq. 2 or191

Eq. 4 but replace LA(·) with the identity operation.192

3.2 Improving the Compositionality of193

Adapters194

In our initial experiments (Section 5.2) we found195

that (unlike Pfeiffer et al., 2020) naive stacking of196

language and domain adapters does not work very197

well for unseen combinations of language and do-198

mains, and often results in off-target translation (i.e.199

translations into the wrong language). Therefore,200

we study several strategies to improve the compo-201

sitionality of adapters in the context of NMT:202

1) Using decoder-only domain adapters when203

translating from an out-of-domain source language204

into an in-domain1 target language, and encoder-205

only domain adapters when translating from an in-206

domain source language into an out-of-domain tar-207

get language. This means we never stack together208

a combination of language and domain adapter that209

was not seen at training time.210

2) Domain adapter dropout (DADrop). Simi-211

lar to layer-drop (Fan et al., 2020b) but specialised212

to adapter layers, or AdapterDrop (Rücklé et al.,213

2020) but without targeting specific layers, we ran-214

domly ‘drop’ (i.e. skip) the domain adapter2 and215

only pass the hidden state through the language216

adapter. This means the adapter stack in the layer217

above can more easily adapt to unfamiliar input,218

and encourages domain and language adapters to219

be more independent of each other.220

3) Data augmentation. We often have access221

to monolingual data in a domain even when no222

1Reminder we refer to the subset of languages we have
parallel data for in a particular domain as ‘in-domain’, and all
other languages as ‘out-of-domain’.

2We could additionally drop the language adapter, but
since this was frozen in many experiments we limit ourselves
to domain adapters for simplicity

parallel data is available. In this work we leverage 223

English-centric back-translation (BT), i.e. trans- 224

lating monolingual data in some languages into 225

English (thus avoiding the more expensive step of 226

translating from each language into every other 227

language). We examine the ability of such data 228

to help cross-lingual transfer to unseen combina- 229

tions of source and target language (BT means we 230

have artificial data for every language in combina- 231

tion with English). We briefly explore ‘denoising 232

auto-encoder’ style objectives as in unsupervised 233

MT (Lample et al., 2018) or sequence-to-sequence 234

pre-training (Lewis et al., 2020). 235

4 Experimental Settings 236

4.1 Data 237

For bilingual domain adaption we use the same 238

datasets as Aharoni and Goldberg (2020), namely 239

parallel text in German and English from five di- 240

verse domains: Koran, Medical, IT, Law and Subti- 241

tles. For studying the domain transfer across lan- 242

guages we select four diverse domains that have 243

data available in most language directions: trans- 244

lations of the Koran (Koran); medical text from 245

the European Medicines Agency (Medical); trans- 246

lation of TED Talks transcriptions (TED); vari- 247

ous technical IT text, e.g. the Ubuntu manual (IT). 248

All data was obtained from the OPUS repository 249

(Tiedemann, 2012). We create validation and test 250

sets of around 2000 sentences each, and avoid over- 251

lap with training data (including parallel sentences 252

in any language) with a procedure described in 253

Appendix A. Note that Medical, Koran and IT are 254

from the same source as those of Aharoni and Gold- 255

berg (2020), although the train/test splits are differ- 256

ent. 257

Domain Langs. Avg size (lines)

ParaCrawl 12 125M
Koran 10 52k

Medical 11 500k
IT 12 196k

TED 12 138k

Table 1: Basic statistics for the datasets we use; number
of languages covered, and average number of training
examples across all language directions.

4.2 Baselines 258

For bilingual domain adaptation we use a Trans- 259

former Base (Vaswani et al., 2017) model trained 260
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{Paracrawl en-fr, en-de,
fr-en, de-en}

{Paracrawl en-fr, en-de,
fr-de, de-fr, fr-en, de-en}

{Koran en-fr, fr-en}

Encoder

Decoder

Src LA

Tgt LA

Enc. DA

Finetuned

Frozen

1) 2) 3)

Figure 1: Toy diagram showing one of our proposed pipelines for training language and domain adapters, on a
example subset of languages: {en,fr,de}, with ‘domain-agnostic’ data from ParaCrawl and specialised data from
the Koran. Red indicates a fine-tuned model component, blue indicates a frozen component. LA = language
adapter, DA = domain adapter. From left to right we show: 1) Training an encoder-decoder model with English-
centric ParaCrawl. 2) Training mononlingual language adapters with multiparallel Paracrawl data. 3) Training
domain adapters stacked on language adapters in the encoder, on a subset (here {en, fr}) of languages for the
domain of interest (e.g. Koran). Here we show domain adapters added only to the encoder, but we consider various
other configurations in this work.

for 12 epochs on German to English WMT20 data261

(47M parallel lines), with a joint BPE (Sennrich262

et al., 2016b) vocabulary of size 24k with inline263

casing (Berard et al., 2019b) (i.e. wordpieces are264

put in lowercase with a special token indicating265

their case.).266

In multilingual settings we concentrate on 12267

high-resource European languages3 due to the268

availability of domain-specific parallel data for269

most language pairs. Our baseline model is270

a Transformer Base trained on English-centric271

ParaCrawl v7.1 data (Bañón et al., 2020) with all272

12 languages (803M line pairs in total). It is trained273

with fairseq (Ott et al., 2019) for 800k updates, with274

a batch size of maximum 4000 tokens and accu-275

mulated gradients over 64 steps (Ott et al., 2018).4276

The source/target embeddings are shared and tied277

with the output layer. We tokenize the data with a278

shared BPE model of size 64k with inline casing279

(Berard et al., 2019b) Both the multilingual mod-280

els and BPE model are trained with temperature-281

based sampling with T = 5 (Arivazhagan et al.,282

2019). We calculate all BLEU scores with Sacre-283

bleu5 (Post, 2018). We use adapter bottleneck size284

3{cs, da, de, en, es, fr, it, nb, nl, pl, pt, sv}
4This corresponds to an effective batch size of ≈207k

tokens and training length of 7 epochs.
5Signature: BLEU+case.mixed+lang.m2m-

en+numrefs.1+smooth.exp+tok.13a+version.1.5.0.

of 1024 unless stated otherwise, and when using 285

DADrop (Section 3.2) use a 20% chance of skip- 286

ping the domain adapter. 287

We additionally train monolingual language 288

adapters (Philip et al., 2020) for all 12 languages 289

on multi-parallel ParaCrawl data, which we ob- 290

tain by aligning all languages through their English 291

side, like Freitag and Firat (2020). The adapters 292

are trained for another 1M steps, without accumu- 293

lated gradients. Finally, for each domain we report 294

the performance of models fine-tuned on all the 295

language-pair directions, which serves as an up- 296

per bound for cross-lingual transfer. More training 297

hyper-parameters are given in Appendix A. 298

4.3 Our model pipelines 299

Scenario 1): we adapt the English-centric 300

ParaCrawl pre-trained model to all four do- 301

mains and every language direction simultaneously. 302

This approach tests for parameter-efficient multi- 303

domain, multilingual domain adaptation. There 304

is no cross-lingual transfer needed since all lan- 305

guage directions are included in the training data. 306

Results for this scenario and for bilingual domain 307

adaptation are reported in Section 5.1. 308

Scenario 2): This is described in a toy diagram 309

in Figure 1. We first extend the baseline multilin- 310

gual English-centric model with 12 (one for each 311

language) monolingual language adapters (Philip 312
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et al., 2020) trained on multi-parallel Paracrawl.313

We then test the cross-lingual domain transfer abil-314

ity of our proposed combinations of adapters by315

training on data in a particular domain with a sub-316

set of four languages (referred to as ‘in-domain’;317

in Figure 1 en and fr would be in-domain). We test318

our model on all language directions from the set of319

all twelve languages. This will include cases where320

we don’t have in-domain data for either the source321

or target language, which we refer to as ‘out-of-322

domain’ (in Figure 1 de would be out-of-domain).323

Finally, we extend the above mentioned scenario324

with back-translated (BT) data from out-of-domain325

languages into English. To create the BT data, we326

use the model with language adapters trained on327

ParaCrawl (18) (which has not seen any in-domain328

data) on the English-aligned training data for each329

each language and domain, and use beam search330

with a beam size of 5. Results for this scenario are331

reported in Section 5.2.332

To train language and domain adapters, we333

freeze all model parameters except for adapter pa-334

rameters, and use a fixed learning rate schedule335

with learning rate 5 × 10−5. Following Philip336

et al. (2020), when training language adapters337

without domain adapters we build homogeneous338

batches (i.e. only containing sentences for one lan-339

guage direction) and activate only the correspond-340

ing adapters. When training language and domain341

adapters together, we build homogeneous batches342

that only contain sentences for the same combina-343

tion of language direction and domain.344

5 Results and Discussion345

First, in Section 5.1 we discuss different ways of346

distributing adapter parameters given a fixed param-347

eter budget in bilingual and multilingual settings.348

In Section 5.2 we analyse the capacity of adapters349

for domain transfer across languages. We first350

demonstrate problems with cross-lingual generali-351

sation during domain adaption for ‘naive’ methods,352

and then discuss solutions.353

5.1 Where are adapters most effective?354

Bilingual domain adaptation Before studying355

multilingual domain adaptation, we validate some356

of our ideas on a simpler, bilingual German →357

English domain adaptation setting. Table 6 reports358

the results of this experiment. First, we note that359

encoder-only adapters perform similarly to encoder360

& decoder adapters, while decoder-only adapters361

perform worse. 362

Moreover, adding adapters to only the last three 363

layers of the encoder almost matches the per- 364

formance of adapting every layer, while adding 365

adapters to the first three layers decreases perfor- 366

mance. We believe this is because the last encoder 367

layer directly influences every layer of the decoder 368

through cross-attention. We find the same trends 369

at a smaller adapter size with a bottleneck dimen- 370

sion of 64 (see Appendix B), and for multilingual 371

models. 372

The strong performance of encoder-only 373

adapters has interesting implications for inference 374

speed. With an auto-regressive decoder, the com- 375

putational bottleneck is on the decoder side. The 376

encoder output is computed all at once, while com- 377

puting the decoder output requires L steps, where L 378

is the output length. Inference speed-ups are mod- 379

est due to the small size of adapters, e.g. around 380

10% and 8% faster inference for encoder-only vs 381

decoder only for the models of this section and 382

Section 5.2 respectively. 383

Multilingual multi-domain models Table 3 re- 384

ports the results in the more challenging task of 385

adapting a multilingual NMT model to multiple 386

domains and language directions simultaneously. 387

In this scenario, we assume access to in-domain 388

data in all the language directions. 389

Stacking domain and language adapters (last 3 390

rows of Table 3) gives the best performance, com- 391

pared to language adapters with the same parame- 392

ter budget. We believe this is because it allows the 393

model to (partially) decouple domain information 394

from language-specific information and better ex- 395

ploit the allocated parameter budget. Encoder-only 396

domain adapters combined with LA outperform 397

much larger LA, and are faster at inference. In- 398

creasing capacity further with encoder + decoder 399

DA improves performance mainly for IT and Ko- 400

ran6. The better results for encoder-only DA com- 401

pared to decoder-only DA are coherent with the 402

results reported for the bilingual setting. However, 403

we will see in the next section that this sometimes 404

comes at the expense of cross-lingual transfer. 405

5.2 Analysis of cross-lingual domain transfer 406

To study the capacity of our models to transfer do- 407

main knowledge across languages, we do domain 408

6Note that while these models increase the parameter count
significantly, the effect on inference speed is limited since only
one set of adapters is activated in each batch (assuming we
have homogeneous batches.)
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ID Model IT Koran Medical Subtitles Law

(1) No finetuning 35.3 14.8 38.1 26.8 42.4
(2) Finetuned 43.8 22.7 53 30.9 57.9

(3) Enc. + dec. adapters (d = 1024) 42.9 21.8 51.7 30.5 56
(4) (3) + MAD-X style 40.6 19.3 48.8 29.8 54.3
(5) Dec. adapters (d = 2048) 42.1 19.8 50.5 29.7 55.1
(6) Enc. adapters (d = 2048) 42.4 21.5 51.9 30.1 56.1
(7) Last 3 encoder layers only (d = 4096) 42.9 21.1 52.1 30.1 56
(8) First 3 encoder layers only (d = 4096) 42.2 20 50.1 28.5 54.9

Table 2: BLEU scores of various domain adaptation strategies for a German→ English bilingual model. (d = N)
refers to adapters with a bottleneck dimension of size N .

ID Model IT Koran Medical TED Params (M)

(9) Base (En-centric) 22.9 6.9 24.7 18.8 N/A

(10) Finetuned 40.7 16.9 42.7 26.7 79
(11) Single adapter per layer (d = 1024) 39.5 15.3 41.8 26.4 12.6
(12) LA (d = 1365) 40.5 16.9 42.0 26.6 202
(13) LA (d = 2048) 41.8 18.9 43.3 27.0 303
(14) LA + dec. DA (d = 1024) 42.0 19.5 43.3 27.4 177
(15) LA + enc. DA (d = 1024) 42.1 20.5 43.5 27.7 177
(16) LA + enc & dec. DA (d = 1024) 42.5 21.2 43.6 27.8 202

Table 3: BLEU scores of various multilingual multi-domain adaptation strategies, i.e. training on all language
directions from the 12 languages and all domains. LA = language adapters, DA = domain adapters. ‘Params (M)’
refers to the number of trainable parameters in millions. Note that unlike in Table 4 the LA here are not pre-trained
on ParaCrawl; they are trained jointly with domain adapters.

adaptation on a subset of language pairs and eval-409

uate on all languages. Table 4 shows results for410

cross-lingual transfer from the subset {en, fr, de,411

cs} in the Medical domain. We report decomposed412

BLEU scores for different categories of language-413

directions depending on whether the source/target414

language has in-domain parallel data. Appendix C415

has results in other domains and language subsets;416

we find similar trends to those reported here.417

Off-target translation Directly training vanilla418

adapters on this subset (20) without using pre-419

trained language adapters results in strong perfor-420

mance in-domain (translating between {en, fr, de,421

cs}), but produces almost 100% off-target transla-422

tions when translating into an out-of-domain target423

language. Using domain and language adapters in424

the naive way (21), stacking them in the encoder425

and decoder, gives similar performance in-domain,426

but only slightly better out-of-domain performance.427

Improving out-of-domain performance We428

show in Table 4 various strategies to improve per-429

formance on unseen language combinations. We 430

treat fine-tuning the ParaCrawl language adapters 431

(with no DA) as a strong baseline (23), and note 432

this method requires 8× the trainable parameters 433

of decoder/encoder-only DA (and 24× when us- 434

ing back-translation due to training on all 12 lan- 435

guages). Efforts to ‘decouple’ domain and lan- 436

guage improve unseen combinations. For example, 437

using decoder-only domain adapters (24) leads to 438

the best performance when translating from out-of- 439

domain into in-domain languages, because the DA 440

and target LA were both seen together at train time. 441

And vice-versa, when translating from in-domain 442

into out-of-domain languages, encoder-only do- 443

main adapters work well (although performance 444

is still low). 445

Multi-domain models To study whether jointly 446

training on multiple domains and languages would 447

enable language adapters to be more ‘domain- 448

agnostic’, we experiment with a setting where we 449

jointly train on all language directions for IT, Koran 450

and TED Talks domains and a subset of languages 451
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ID Model All Out→in In→out In→in Out→out

(17) Base (En-centric) 26.0 27.4 26.1 27.2 24.5
(18) (17) + ParaCrawl LA 30.5 31.3 30 30.2 30.2
(19) (17) + Finetune (all directions) 43.9 44.5 43.7 43.6 43.6
(20) (17) + Domain adapters only 23.6 38.2 13.7 (12%) 45 13.8 (13%)
(21) Freeze LA + enc. & dec. DA 27.3 37 20.5 (80%) 44.4 20.2 (83%)

(22) Unfreeze LA 33.2 36.6 28.8 45.6 30.2
(23) (23) + BT 35.4 33.3 38.4 45 31.9

(24) Freeze LA + dec. DA 29.5 41.0 22.9 42.2 22.3
(25) (24) + BT 37.2 38.5 36.7 41.2 35.4
(26) Freeze LA + enc. DA 30.0 34.4 27.3 42.9 24.9
(27) (26) + BT 33.0 35.3 35.1 42.0 27.1

(28) (21) + DADrop 28.5 37.0 23.3 (89%) 43.1 21.7 (88%)
(29) (21) + BT 34.0 36.7 35.9 43.5 27.8
(30) (21) + BT + DADrop 35.2 37.3 36.8 42.5 30.5

(31) Unfreeze LA + dec. DA 23.1 37.7 16.6 (24%) 43.4 11.3 (49%)
(32) (31) + DADrop 31.4 37.1 24.2 45.9 28.0
(33) (31) + DADrop + BT 35.9 34.2 38.6 44.0 32.8

Table 4: BLEU score of various models trained on the {en, fr, de, cs} subset of the Medical domain. LA =
language adapters, DA = domain adapters. ‘Out→in’ is the average score when translating from an out-of-domain
source language into {en, fr, de, cs}. ‘In→out’ corresponds to when the out-of-domain language is the target
language. ‘In→in’ refers to average score when source and target are in the set {en, fr, de, cs}. ‘Out→out’ is the
average score when both the source and target language are unseen during domain adaptation. We note percentage
of on-target (correct language) translations in brackets, when it is less than 90% only.

for Medical. Such models improve out-of-domain452

performance with decoder-only (24) and encoder-453

only DA (26) by respectively 5.3 and 2.4 BLEU454

on average, and decrease off-target translation (see455

Appendix C; similar results hold for taking a subset456

of Koran data instead of Medical). However these457

scores are still worse than simply using pre-trained458

‘domain-agnostic’ ParaCrawl LA (18) and we did459

not explore this method further.460

Data augmentation Data augmentation with461

English-centric back-translation (BT) is the only462

technique that improves over pre-trained ParaCrawl463

LA for out-of-domain target languages. Decoder464

DA combined with BT (25) is the best performing465

model for out-of-domain, improving 5.2 BLEU on466

average over the ParaCrawl LA (18). Note that467

with BT, every language has been seen in combina-468

tion with English model output, so ‘out-of-domain’469

is closer to ‘Out→in’, where decoder-only DA also470

performs well. We report results for the other data471

augmentation methods (see Section 3.2) in Ap-472

pendix C; these only improve over the ParaCrawl473

LA baseline in limited settings.474

Other techniques We find that randomly drop- 475

ping domain adapters (DADrop; see Section 3.2) 476

improves zero-shot performance and slightly de- 477

creases in-domain performance (28). We believe 478

this is caused by a less tight coupling of language 479

and domain information. This technique helps 480

when fine-tuning both LA and DA (32), or with 481

encoder + decoder DA (28); see Appendix C for 482

more results. We find that modular-style stacking 483

outperforms MAD-X style (see Section 3.1), al- 484

though the extent of this varies by which subset 485

(in-domain, etc.) of languages we consider (see 486

Appendix C). 487

Several of our models fine-tune only a single 488

adapter per-layer and use frozen LA. Such mod- 489

els can easily be ‘mixed-and-matched’ by activat- 490

ing a particular adapter for a particular language 491

pair. For example we could activate model (24) on 492

‘Out→in’ (out-of-domain source, in-domain target) 493

data, model (29) on in-domain data and model (25) 494

otherwise. Such models could easily be extended 495

to new domains by training more adapters. 496

7



en fr cs pl de nl sv da es it pt

en
fr
cs
pl
de
nl
sv
da
es
it

pt

0 10 10 9.5 6.5 7.9 7.9 6.9 11 13 12
13 0 11 9.7 10 11 12 10 12 11 11

-9.3-8.1 0 -9.6-6.5-7.8-9.5-8.3-8.7-8.3-9.9
-6 -6 -7.9 0 -4.6-5.7-6.4-6.6-5.9-5.5 -7

-5.4-4.2-4.1-3.1 0 -4.6-4.2-4.6-4.3 -4 -3.2
-7.6-7.1-4.7-3.9-5.8 0 0 -6 -6.7-5.9 -5
-9.1-7.2-6.9-6.3-6.6 0 0 -10 -7.3-6.3-7.8
-6.2-5.1-4.7 -5 -5.4-6.1-8.5 0 -5 -4.7-6.2
11 8.7 10 9.5 7.7 8.6 9.1 7.9 0 9.8 7.8
12 10 9.7 9 9.1 9.9 9.8 9.4 9.4 0 9.8

-1.2-2.5-2.8-2.7-1.2-1.5 -3 -2.3-3.5-2.4 0

Medical fr,it,es,en

en fr cs pl de nl sv da es it pt

en
fr
cs
pl
de
nl
sv
da
es
it

pt

0 9.8 14 10 9.8 8.4 9.6 8.7 8.5 11 12
12 0 14 11 11 12 12 11 10 10 11
14 13 0 6.4 12 12 7.7 7.8 12 13 9.8

-7.2-7.2 -10 0 -5.1-6.6-8.2-8.4-7.1-6.6-8.9
11 11 13 11 0 9.9 9.5 8.6 10 11 12

-8.3-8.3-4.7-4.4-6.3 0 0 -7.3-8.1 -7 -5.2
-8.7-7.5 -9 -8.1-6.7 0 0 -12 -7.5-6.5-9.4
-7 -5.7 -7 -6.5-6.1-7.1 -11 0 -5.6-4.7-7.9

-8.4-9.8 -6 -5.7-6.4-9.3-6.6-6.5 0 -9.2-8.1
-8.5-8.5-6.6-6.4-5.8-7.8-6.2-6.1 -10 0 -7.8
-6.8-7.4-8.8-8.7 -5 -6.8-8.5-7.9-8.7-7.5 0

Medical fr,de,cs,en

en fr cs pl de nl sv es it pt

en
fr
cs
pl
de
nl
sv
es
it

pt

0 6.1 5 6.1 5.1 4.6 5.1 7 6 5.4
11 0 9.1 9.7 9.2 9.3 8.7 9.4 7.2 7.9

-1.6 -1.7 0 -2.6 -1.8 -2 -0.7 -1.8 -2.1 -1.7
-3.5 -4.6 -3.2 0 -3.7 -4.5 -2.2 -4 -4 -2.4
-2.3 -3.1 -1.6 -3 0 -4.4 -1.1 -2.5 -1.8 -1.5
-2.4 -2.8 -1 -2 -2 0 -0.1 -2 -1.6 -0.5
-1 -1.5 -1.2 -1.4 -0.8 -1.4 0 -1.2 -0.7 -0.7
19 18 13 17 14 17 14 0 15 12
12 10 10 8.9 9.1 10 9.1 9 0 8.5

-1.5 -3.3 -1.9 -2.3 -1.5 -1.6 -0.2 -2.7 -3.4 0

Koran fr,it,es,en

en fr cs pl de nl sv es it pt

en
fr
cs
pl
de
nl
sv
es
it

pt

0 6.4 7.3 6.6 8.1 5.4 5.9 6.1 5.7 5.6
12 0 12 10 13 11 10 7.8 5.6 7.3
8.2 8.8 0 7 8.5 8.3 6.7 6.9 7.9 6.5
-3.7 -4.7 -3.7 0 -3.7 -5.2 -2 -4.5 -4.6 -2.1

9 8.2 8.7 7 0 6.5 6.9 7.1 7.5 7.1
-2.6 -2.9 -1 -2.5 -2.4 0 -0.6 -2.3 -2.2 -0.8
-2.1 -2.4 -1.9 -2.4 -1.6 -2.4 0 -2.3 -1.6 -1.7
-4.9 -9.1 -4.3 -6.2 -4.9 -5.3 -3.4 0 -10 -6.7
-4.6 -9.8 -3.5 -6.1 -4 -5.5 -2.6 -8.6 0 -5.4
-3.1 -4.8 -3.6 -4.2 -3.1 -3.4 -1.9 -5.2 -5.8 0

Koran fr,de,cs,en

15

10

5

0

5

10

15

Source Language

Ta
rg

et
 L

an
gu

ag
e

Figure 2: Analysis of cross-lingual transfer for the decoder-only domain adapter (with pre-trained ParaCrawl
language adapters) fine-tuned on a subset of language for the Medical (top) or Koran (bottom) domains. Models
are either trained on romance languages (fr,it,es,en; left) or a mix of language families (fr,de,cs,en; right). All
numbers are BLEU score improvement over a model with ParaCrawl language adapters that have not been fine-
tuned on in-domain data. Other than en & fr, language families are grouped together. Best viewed in .pdf form.

Cross-lingual transfer analysis We conduct a497

preliminary analysis of whether language diversity498

is important for cross-lingual transfer. We compare499

models trained on a mix of language families (fr,500

de, cs, en) and mostly romance languages (fr, it,501

es, en) to test whether diversity of languages in our502

in-domain training set improved transfer. Figure 2503

shows how the performance changes for each lan-504

guage pair. When translating from out-of-domain505

source languages into in-domain target languages,506

training on diverse languages gives better perfor-507

mance (compare en and fr rows in Figure 2).508

However, for out-of-domain source and target509

languages (da, nl, pl, pt, sv) the romance languages510

performed roughly the same or better. It is not511

clear why this is the case, but perhaps the DA are512

more language-agnostic when trained on similar513

languages as they devote less capacity to language514

information. When using back-translation or when515

training multi-domain models (which see all lan-516

guage directions for three domains as explained517

previously), training with multiple families of lan-518

guages outperforms romance-only training for out-519

of-domain languages as expected. We summarise520

these results in Appendix C.521

6 Conclusion 522

This work studies composing language and domain 523

adapter modules in the context of NMT. We find 524

that while adapters for encoder architectures like 525

BERT can be safely composed, this is not true 526

for NMT adapters: domain adapters struggle to 527

generate into languages they were not trained on, 528

even though the original model they are inserted 529

in was trained on those languages (but not with 530

in-domain data). Naive fine-tuning, or stacking 531

language adapters with domain adapters at every 532

layer results in low cross-lingual generalisation. 533

We can improve performance when translat- 534

ing an out-of-domain source language into an in- 535

domain target language by using domain adapters 536

in the decoder only. Data augmentation with back- 537

translation improves a similar model when both 538

source and target are out-of-domain. Overall decou- 539

pling domain and language information is required 540

for strong cross-lingual generalisation. When used 541

carefully we believe using adapters for multilingual 542

domain adaptation represent a convenient and ef- 543

fective method with reasonable cross-lingual gener- 544

alisation and are easily extensible to new domains. 545
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A Data and Hyper-parameters808

We share embeddings between encoder and de-809

coder. We use the Adam optimizer (Kingma and810

Ba, 2014) with an inverse square root learning rate811

schedule for pre-training, and a fixed learning rate812

schedule for training adapters. We speed up train-813

ing with 16 bit floating point arithmetic. We use la-814

bel smoothing 0.1 and dropout 0.1. We train for ei-815

ther 20 epochs or 1 million updates, whichever cor-816

responds to the smallest number of training updates.817

We use early stopping, checking performance after818

each epoch or every 100,000 training steps, and use819

average validation negative-log-likelihood on all of820

the training data (but not out-of-domain language821

data) as our criteria for choosing the best model.822

We otherwise use default Fairseq (Ott et al., 2019)823

parameters. We train all models on a single Nvidia824

V100 GPU, and training takes between 8 and 36825

hours depending on dataset size.826

In order to create validation and test splits that827

had no overlap with training data in any language,828

we first set aside a number of English sentences.829

Then we aligned all language pairs to these sen-830

tences, i.e. the German to French test set is com-831

posed of German and French sentences that share832

the same English sentence. Finally we remove all833

sentences in any language from the train splits of834

all parallel data if those sentences are aligned with835

any English sentences in the subset we set aside for836

validation/test splits.837

B Additional Results for Bilingual838

Domain Adaptation839

Table 6 presents results of bilingual domain adap-840

tion explored in the main paper but with smaller841

adapter bottleneck dimension. The same trends842

emerge: encoder-only adapters perform better, and843

the last three layers of the encoder are better than844

the first three. The last three encoder layers also845

perform better than the first three for a multilingual846

model, see Table 9 models (93) and (94). Interest-847

ingly the multilingual last three encoder layer DA848

model is roughly halfway between encoder-only849

and decoder-only on Out→in and In→out perfor-850

mance, suggesting it might be a useful compromise851

between the two.852

C Additional Results for Cross-lingual853

Transfer854

Table 5 compares models trained on a mix of lan-855

guage families (fr, de, cs, en) and mostly romance856

Model Out→ {en,fr} Out→Out

Koran
LA + Dec. DA 0.6 -0.9
LA + Dec. DA 0.3 -0.3

Unfr. LA + Dec. DA 0.1 -0.4
LA + Enc & Dec. DA 1.3 -1.3

Koran + BT
LA + Dec. DA 0.4 0.2
LA + Dec. DA 1.9 0.9

Unfr. LA + Dec. DA 0.3 0
LA + Enc & Dec. DA 0.7 0.3

Medical
LA + Dec. DA 0.8 -2.4
LA + Dec. DA 3.2 0.2

Unfr. LA + Dec. DA 0.2 0.1
LA + Enc & Dec. DA 3.2 -1.1

Medical + BT
LA + Dec. DA 0.4 2.9
LA + Dec. DA 1.3 1.6

Unfr. LA + Dec. DA 0.5 3.1
LA + Enc & Dec. DA 0.5 1.5

Table 5: Difference in average BLEU score between
models trained on a diverse subset of languages and
models trained on mostly romance languages. Data
source is noted in bold. Refer to the main paper
for model definitions. Out→ {en,fr} corresponds to
translation from an out-of-domain source language into
{en,fr}. ‘Out→Out’ is the average score when both the
source and target language are unseen during domain
adaptation (choosing languages unseen by either sub-
set).

languages (fr, it, es, en) to test whether diversity of 857

languages in our in-domain training set improved 858

transfer. Positive numbers in this table indicate di- 859

versity of training languages improves performance. 860

As noted in the main paper, diversity helps for trans- 861

lating out-of-domain languages into in-domain. We 862

have unclear results for when both source and tar- 863

get are out-of-domain; it seems when using back- 864

translation (BT), i.e. when all languages have been 865

seen (albeit with artificial English parallel data) 866

diversity helps, but without BT it mostly hurts per- 867

formance. We speculate that training on mostly 868

romance languages means the domain adapter en- 869

codes less ‘language information’, but leave further 870

exploration to future work. 871

We present additional results for the setting dis- 872

cussed in Section 5.2 of the main paper in Table 7 873
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ID Model IT Medical Koran Subtitles Law

(34) No finetuning 35.3 14.8 38.1 26.8 42.4
(35) Finetuned 43.8 22.7 53 30.9 57.9
(36) Enc. + dec. adapters (d=64) 40 18.7 47.3 29.4 51.5
(37) Dec. adapters (d=128) 39 17.5 46 28.8 50.6
(38) Enc. adapters (d=128) 40 18.9 47.3 29.2 51.5
(39) Last 3 encoder layers only (d=256) 40 19 47.3 29 51.1
(40) First 3 encoder layers only (d=256) 39.5 18 46 28.8 49.5

Table 6: BLEU scores of various domain adaptation strategies for a German→ English bilingual model. (d = N)
refers to adapters with a bottleneck dimension of size N .

(Koran domain), Table 8 (Koran results for the ro-874

mance language subset), and Table 9 (additional875

Medical results). For the Koran domain, we see876

similar trends with decoder-only domain adapters877

(DA) performing best on out-of-domain source878

to in-domain target languages, and vice versa for879

encoder-only DA. We briefly experiment with de-880

noising objectives, where we simply copy target881

data in out-of-domain languages to the source side882

(and optionally add ‘noise’ to the source side, e.g.883

swap tokens or mask tokens (Lewis et al., 2020)).884

Although we got reasonable improvements (models885

(56) and (51)) for out-of-domain target languages,886

we were mostly unable to improve over the pre-887

trained ParaCrawl LA, and so concentrate on back-888

translation.889

We experiment with a setting where we jointly890

train on all language directions for IT, Koran and891

TED Talks domains and a subset of languages for892

Medical, and similarly with only a subset of Ko-893

ran (models (47), (48) etc.). These models stack894

language and domain adapters. Such models don’t895

require any pre-trained LA, and improve out-of-896

domain performance and decrease off-target trans-897

lation compared to freezing ParaCrawl LA and898

training DA. However these scores are still worse899

than simply using pre-trained ‘domain-agnostic’900

ParaCrawl LA (43).901
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ID Model All Out→in In→out In→in Out→Out

(41) Base (En-centric) 7 7.5 7 7.7 6.4
(42) Finetune (all directions) 23.8 19.9 26.8 20.6 25.7
(43) (41) + ParaCrawl LA 9 9.2 9 9 8.7

(44) Domain adapters only 6.9 13.5 0.4 23.0 0.3
(45) Freeze LA + enc. & dec. DA 8.6 13.5 4.1 21.7 3.1
(46) Unfreeze LA 11.8 12.9 8.6 23.5 8.7

(47) Multi-domain dec. DA 9.9 12.9 7.8 17.0 6.4
(48) Multi-domain enc. DA 10.6 13.1 9.0 17.6 7.1
(49) Multi-domain enc. & dec. DA 10.3 14.0 7.7 18.2 6.2

(50) Freeze LA + dec. DA 9.7 16.2 5.2 18.2 4.8
(51) (50) + Mono data 11.3 14.4 8.7 16.2 8.6
(52) (50) + MAD-X style 9 15.4 4.5 17.1 4.3
(53) (50) + BT 13.7 14.4 13.1 17.5 12.1
(54) (50) + BT + DADrop 13.8 14.7 13.2 17.7 12.1

(55) Freeze LA + enc. DA 9.6 10.9 8.3 20.3 5.4
(56) (55) + Mono data 10.6 10.5 10 17.3 8.3
(57) (55) + MAD-X style 7.5 11.0 3.8 19.4 2.8
(58) (55) + BT 12 12.1 12.7 19.5 8.3
(59) (55) + BT + DADrop 12.3 12.2 13.5 18.9 8.8

(60) Enc. & dec. DA + BT 13.3 14 13.9 20.8 9.3
(61) (60) + DADrop 13.8 14.2 14.8 20.9 9.8

(62) Unfreeze LA + dec. DA 7.6 13.6 0.51 24.6 1.6
(63) (62) + DADrop 11.5 13.5 6.8 24.5 8.4

Table 7: BLEU score of various models trained on the {en, fr, de, cs} subset of the Koran domain. LA = language
adapters, DA = domain adapters. ‘Out→in’ is the average score when translating from an out-of-domain source
language into {en, fr, de, cs}. ‘In→out’ corresponds to when the out-of-domain language is the target language.
‘In→in’ refers to average score when source and target are in the set {en, fr, de, cs}. ‘Out→Out’ is the average
score when both the source and target language are unseen during domain adaptation. ‘Mono data’ refers to
adding copied monolingual data for out-of-domain languages, and additionally multiparallel ParaCrawl data in
small amounts.
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ID Model All Out→in In→out In→in Out→Out

(64) Freeze LA + enc. & dec. DA 10.0 13.9 5.7 26.7 3.6
(65) (64) + DADrop 10.0 13.8 5.8 26.7 3.6
(66) Unfreeze LA 13 16.5 7.3 31.6 7
(67) (66) + BT 14.4 12.9 13.4 35.0 8.1

(68) Freeze LA + dec. DA 11.6 19.4 5.6 24.1 5.1
(69) (68) + BT 14.2 17.7 11.6 23.5 9.7
(70) Freeze LA + enc. DA 9.9 11.8 7.1 26.1 4.2
(71) (70) + BT 12.1 13.4 10.9 26.2 6.3

(72) Unfreeze LA + dec. DA 11.9 17.7 3.7 32.9 5.6
(73) (72) + DADrop 13.3 17.5 7.2 32.1 7.2
(74) (72) + DADrop + BT 14.5 13.6 13.4 33.6 8.6
(75) Enc. & dec. DA + BT 13.3 15.6 11.9 26.9 7.2
(76) (75) + DADrop 13.8 16.3 12.2 27.7 7.4

Table 8: BLEU score of various models trained on the mostly romance language {en, fr, it, es} subset of the Koran
domain. LA = language adapters, DA = domain adapters. ‘Out→in’ is the average score when translating from an
out-of-domain source language into {en, fr, it, es}. ‘In→out’ corresponds to when the out-of-domain language is
the target language. ‘In→in’ refers to average score when source and target are in the set {en, fr, it, es}. ‘Out→Out’
is the average score when both the source and target language are unseen during domain adaptation.
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ID Model All Out→in In→out In-domain Out→Out

(77) Base (En-centric) 26.0 27.4 26.1 27.2 24.5
(78) (77) + ParaCrawl LA 30.5 31.3 30 30.2 30.2
(79) (77) + Finetune (all directions) 43.9 44.5 43.7 43.6 43.6
(80) (77) + Domain adapters only 23.6 38.2 13.7 (12%) 45 13.8 (13%)
(81) Freeze LA + enc. & dec. DA 27.3 37 20.5 (80%) 44.4 20.2 (83%)

(82) Unfreeze LA 33.2 36.6 28.8 45.6 30.2
(83) (83) + BT 35.4 33.3 38.4 45 31.9

(84) Multi-domain dec. DA 31.9 37.3 28.6 42 27.5
(85) Multi-domain enc. DA 32.3 38.4 28.9 42.4 27.3
(86) Multi-domain enc. & dec. DA 31.3 38.8 26.8 42.4 25.9

(87) Freeze LA + dec. DA 29.5 41.0 22.9 42.2 22.3
(88) (87) + BT 37.2 38.5 36.7 41.2 35.4
(89) (87) + BT + DADrop 36.9 37.8 36.6 40.5 35.3
(90) Freeze LA + enc. DA 30.0 34.4 27.3 42.9 24.9
(91) (90) + BT 33.0 35.3 35.1 42.0 27.1
(92) (90) + BT + DADrop 34.1 35.7 35.8 41.4 29.6
(93) Freeze LA + enc. first 3 layers DA 24 31.5 18.2 41.8 17.6
(94) Freeze LA + enc. last 3 layers DA 29.8 37.3 24.8 42.7 24.2

(95) (81) + DADrop 28.5 37.0 23.3 (89%) 43.1 21.7 (88%)
(96) (81) + BT 34.0 36.7 35.9 43.5 27.8
(97) (81) + BT + DADrop 35.2 37.3 36.8 42.5 30.5
(98) (81) + BT + MAD-X style 32.3 37 33.6 43.5 24.8

(99) Unfreeze LA + dec. DA 23.1 37.7 16.6 (24%) 43.4 11.3 (49%)
(100) (99) + DADrop 31.4 37.1 24.2 45.9 28.0
(101) (99) + DADrop + BT 35.9 34.2 38.6 44.0 32.8

Table 9: BLEU score of various models trained on the {en, fr, de, cs} subset of the Medical domain. Some results
are also included in the main paper.
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