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Abstract

Adapter layers are lightweight, learnable units
inserted between transformer layers. Re-
cent work explores using such layers for neu-
ral machine translation (NMT), to adapt pre-
trained models to new domains or language
pairs. We propose strategies to compose lan-
guage and domain adapters. Our goals are
both parameter-efficient adaptation to multi-
ple domains and languages simultaneously,
and cross-lingual transfer in domains where
parallel data is unavailable for certain lan-
guage pairs. We find that a naive combina-
tion of domain-specific and language-specific
adapters often results in translations into the
wrong language. We study other ways to
combine the adapters to alleviate this issue
and maximize cross-lingual transfer. With our
best adapter combinations, we obtain improve-
ments of 3-4 BLEU on average for source lan-
guages that do not have in-domain data. For
target languages without in-domain data, we
achieve a similar improvement by combining
adapters with back-translation.

1 Introduction

Multilingual Neural Machine Translation (NMT)
has made a lot of progress recently (Johnson et al.,
2017; Bapna and Firat, 2019; Aharoni et al., 2019;
Zhang et al., 2020; Fan et al., 2020a) and is now
widely adopted by the community and MT ser-
vice providers. Multilingual NMT models handle
multiple language directions at once and allow for
knowledge transfer to low-resource languages. Ma-
chine translation systems often need to be adapted
to specific domains like legal or medical text. How-
ever, when building multilingual systems, data for
most language pairs might not exist. We would ide-
ally be able to leverage data in a subset of language
pairs to transfer domain knowledge to many others.

A technique for adapting such models to new
language-pairs and domains are the recently in-
troduced ‘adapter layers’ (Bapna and Firat, 2019),

lightweight, learnable units inserted between trans-
former layers. Previous studies have shown it is
possible to combine language adapters (Philip et al.,
2020), or language and task adapters (Pfeiffer et al.,
2020) trained independently, enabling zero-shot
compositions of adapters. In this work we analyse
how to combine language adapters with domain
adapters in multilingual NMT, and study whether
domain knowledge can be transferred across lan-
guages.

We show it is hard to decouple language knowl-
edge from domain knowledge when finetuning mul-
tilingual MT systems on new domains. In Sec-
tion 5.2 we demonstrate that adapters learnt on a
subset of language pairs fail to generate into lan-
guages not in that subset. Such generation into the
wrong language is referred to as ‘off-target’ trans-
lation. Our initial results show ‘stacking’ (or com-
posing) language and domain adapters can improve
performance, but combinations of domain and lan-
guage adapters unseen at training time lead to bad
performance. We examine how adapter placement
and other techniques can improve the composition-
ality of language and domain adapters when deal-
ing with source or target languages that do not have
in-domain data (which we refer to throughout this
work as “out-of-domain languages”). Our key
contributions are:

* We examine adapter placement for simple
bilingual domain adaptation as well as mul-
tilingual multi-domain adaptation, and show
that encoder-only adapters can be just as effec-
tive as default adapters added in every layer.

* We analyse different language and domain
adapter combinations that improve perfor-
mance and reduce off-target translations. Our
best results for translation into out-of-domain
languages use decoder-only domain adapters,
regularisation with domain adapter dropout,
and data augmentation with English-centric



back-translation.

2 Related Work

Cross-lingual transfer Many works have
demonstrated that large pre-trained multilingual
models (Devlin et al., 2019; Conneau et al., 2020;
Liu et al., 2020) fine-tuned on high-resource
languages (or language pairs) can transfer to
lower-resource languages in various tasks: Natural
Language Inference (Conneau et al., 2018),
Question Answering (Clark et al., 2020), Named
Entity Recognition (Pires et al., 2019; K et al.,
2020), Neural Machine Translation (Liu et al.,
2020) and others (Hu et al., 2020).

Domain adaptation in NMT Domain adapta-
tion has been discussed extensively for bilingual
NMT models. A typical approach is to fine-tune a
model trained on a large corpus of ‘generic’ data on
a smaller in-domain corpus (Luong and Manning,
2015; Neubig and Hu, 2018). A common tech-
nique to make use of monolingual in-domain data
is to do back-translation (Sennrich et al., 2016a; Be-
rard et al., 2019a; Jin et al., 2020). Multi-domain
models can be trained with domain tags (Kobus
et al., 2017; Berard et al., 2019a; Stergiadis et al.,
2021). In this work we focus on multilingual do-
main adaptation, where we hope to transfer do-
main knowledge from one language pair to many
others. This setting presents challenges for back-
translation, since for n languages and k£ domains
we need to run back-translation O(n?k) times.

Adapter layers Bapna and Firat (2019) intro-
duce adapter layers for NMT as a lightweight al-
ternative to finetuning. They study both adding
language-pair specific adapters to multilingual
NMT models to match the performance of a
bilingual version, and domain-specific adapters
for parameter-efficient domain adaptation. Fur-
ther, Philip et al. (2020) show that decompos-
ing language-specific adapters into independently
trained language adapters improves zero-shot trans-
lation in English-centric settings, and can also be
used to adapt a model to all language directions in
a scalable way. Pfeiffer et al. (2020) study adapter
layers in the context of pre-trained Language Mod-
els. They compose language adapters trained on
masked language modelling in language x and task
adapters trained on classification tasks in language
y and obtain transfer to classification in language
2. Our work pursues a similar objective to Pfeiffer

et al. (2020), but for NMT where in addition to
encoding sentences we need to generate text for
new language and domain combinations.

3 Composing Adapter Modules

Adapter modules (Rebuffi et al., 2017; Houlsby
et al., 2019) are randomly initialised modules in-
serted between the layers of a pre-trained net-
work and fine-tuned on new data. An adapter
layer is typically a down projection to a bottle-
neck dimension followed by an up projection to
the initial dimension, which we write as FEN(h) =
Wap f(Waownh), with f(-) a non-linearity. The bot-
tleneck controls the parameter count of the mod-
ule; typically NMT requires slightly larger parame-
ter counts than classification to match fine-tuning
(Bapna and Firat, 2019; Cooper Stickland et al.,
2021). With a residual connection and a near-
identity initialization the original model is (ap-
proximately) retained at the beginning of optimiza-
tion, keeping at least the performance of the parent
model.

3.1 Stacking Domain and Language
Adapters

In this work we study ‘stacking’ adapter modules,
i.e. each language and domain has a unique adapter
module associated with it. When passing a batch
with source language z, target language v, and do-
main z, we only ‘activate’ the adapters for {x, y, z}.
The encoder adapters for = and decoder adapters
for y are activated.

We mostly follow the architecture of Bapna and
Firat (2019). Language adapters LA are defined as:

LA(h;) = FENj (LN (hy)) + h; (1)

where h; is the Transformer hidden state at layer
[ and LNy, is a newly initialised layer-norm. Let
z = LA(h;); when stacking domain and language
adapters, the layer output hy o is given by:

hl,out = FFNgom (LNdom(Z)) +z (2)

Since we simply apply another adapter on top of
the language adapter we refer to this as ‘modular’
style.

Pfeiffer et al. (2020) use a different formulation
that empirically performed well, with:

LA(hl7 l‘l) = FFng(hl) +ry. 3)

The residual connection r; is the output of the
Transformer’s feed-forward layer whereas h; is



the output of the subsequent layer normalisation.
When stacking domain and language adapters the
layer output is given by applying the model’s pre-
trained layer norm LN,

hl,out = LNpre (FFNdom (LA(hla rl)) + rl) (4)

and using the output of the Transformer’s feed-
forward layer as a residual instead of the language
adapter output. We refer to this as ‘MAD-X’ style
after Pfeiffer et al. (2020). This leaves the layer
output ‘closer’ to the pre-trained model, with the
same layer-norm and residual connection, contrary
to Eq. 2 which has a newly initialised layer-norm
and a residual connection. For all models without
any stacking we obtain layer output as in Eq. 2 or
Eq. 4 but replace LA(+) with the identity operation.

3.2 Improving the Compositionality of
Adapters

In our initial experiments (Section 5.2) we found
that (unlike Pfeiffer et al., 2020) naive stacking of
language and domain adapters does not work very
well for unseen combinations of language and do-
mains, and often results in off-target translation (i.e.
translations into the wrong language). Therefore,
we study several strategies to improve the compo-
sitionality of adapters in the context of NMT:

1) Using decoder-only domain adapters when
translating from an out-of-domain source language
into an in-domain! target language, and encoder-
only domain adapters when translating from an in-
domain source language into an out-of-domain tar-
get language. This means we never stack together
a combination of language and domain adapter that
was not seen at training time.

2) Domain adapter dropout (DADrop). Simi-
lar to layer-drop (Fan et al., 2020b) but specialised
to adapter layers, or AdapterDrop (Riicklé et al.,
2020) but without targeting specific layers, we ran-
domly ‘drop’ (i.e. skip) the domain adapter® and
only pass the hidden state through the language
adapter. This means the adapter stack in the layer
above can more easily adapt to unfamiliar input,
and encourages domain and language adapters to
be more independent of each other.

3) Data augmentation. We often have access
to monolingual data in a domain even when no

'Reminder we refer to the subset of languages we have
parallel data for in a particular domain as ‘in-domain’, and all
other languages as ‘out-of-domain’.

2We could additionally drop the language adapter, but

since this was frozen in many experiments we limit ourselves
to domain adapters for simplicity

parallel data is available. In this work we leverage
English-centric back-translation (BT), i.e. trans-
lating monolingual data in some languages into
English (thus avoiding the more expensive step of
translating from each language into every other
language). We examine the ability of such data
to help cross-lingual transfer to unseen combina-
tions of source and target language (BT means we
have artificial data for every language in combina-
tion with English). We briefly explore ‘denoising
auto-encoder’ style objectives as in unsupervised
MT (Lample et al., 2018) or sequence-to-sequence
pre-training (Lewis et al., 2020).

4 Experimental Settings

4.1 Data

For bilingual domain adaption we use the same
datasets as Aharoni and Goldberg (2020), namely
parallel text in German and English from five di-
verse domains: Koran, Medical, IT, Law and Subti-
tles. For studying the domain transfer across lan-
guages we select four diverse domains that have
data available in most language directions: trans-
lations of the Koran (Koran); medical text from
the European Medicines Agency (Medical); trans-
lation of TED Talks transcriptions (TED); vari-
ous technical IT text, e.g. the Ubuntu manual (IT).
All data was obtained from the OPUS repository
(Tiedemann, 2012). We create validation and test
sets of around 2000 sentences each, and avoid over-
lap with training data (including parallel sentences
in any language) with a procedure described in
Appendix A. Note that Medical, Koran and IT are
from the same source as those of Aharoni and Gold-
berg (2020), although the train/test splits are differ-
ent.

Domain  Langs. Avg size (lines)
ParaCrawl 12 125M
Koran 10 52k
Medical 11 500k
IT 12 196k
TED 12 138k

Table 1: Basic statistics for the datasets we use; number
of languages covered, and average number of training
examples across all language directions.

4.2 Baselines

For bilingual domain adaptation we use a Trans-
former Base (Vaswani et al., 2017) model trained
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Figure 1: Toy diagram showing one of our proposed pipelines for training language and domain adapters, on a
example subset of languages: {en,fr,de}, with ‘domain-agnostic’ data from ParaCrawl and specialised data from
the Koran. Red indicates a fine-tuned model component, blue indicates a frozen component. LA = language
adapter, DA = domain adapter. From left to right we show: 1) Training an encoder-decoder model with English-
centric ParaCrawl. 2) Training mononlingual language adapters with multiparallel Paracrawl data. 3) Training
domain adapters stacked on language adapters in the encoder, on a subset (here {en, fr}) of languages for the
domain of interest (e.g. Koran). Here we show domain adapters added only to the encoder, but we consider various

other configurations in this work.

for 12 epochs on German to English WMT20 data
(47M parallel lines), with a joint BPE (Sennrich
et al., 2016b) vocabulary of size 24k with inline
casing (Berard et al., 2019b) (i.e. wordpieces are
put in lowercase with a special token indicating
their case.).

In multilingual settings we concentrate on 12
high-resource European languages® due to the
availability of domain-specific parallel data for
most language pairs. Our baseline model is
a Transformer Base trained on English-centric
ParaCrawl v7.1 data (Bafién et al., 2020) with all
12 languages (803M line pairs in total). It is trained
with fairseq (Ott et al., 2019) for 800k updates, with
a batch size of maximum 4000 tokens and accu-
mulated gradients over 64 steps (Ott et al., 2018).*
The source/target embeddings are shared and tied
with the output layer. We tokenize the data with a
shared BPE model of size 64k with inline casing
(Berard et al., 2019b) Both the multilingual mod-
els and BPE model are trained with temperature-
based sampling with T" = 5 (Arivazhagan et al.,
2019). We calculate all BLEU scores with Sacre-
bleu® (Post, 2018). We use adapter bottleneck size

3{cs, da, de, en, es, fr, it, nb, nl, pl, pt, sv}

“This corresponds to an effective batch size of ~207k
tokens and training length of 7 epochs.

SSignature: BLEU+case.mixed+lang.m2m-
en+numrefs. 1 +smooth.exp+tok.13a+version.1.5.0.

of 1024 unless stated otherwise, and when using
DADrop (Section 3.2) use a 20% chance of skip-
ping the domain adapter.

We additionally train monolingual language
adapters (Philip et al., 2020) for all 12 languages
on multi-parallel ParaCrawl data, which we ob-
tain by aligning all languages through their English
side, like Freitag and Firat (2020). The adapters
are trained for another 1M steps, without accumu-
lated gradients. Finally, for each domain we report
the performance of models fine-tuned on all the
language-pair directions, which serves as an up-
per bound for cross-lingual transfer. More training
hyper-parameters are given in Appendix A.

4.3 Our model pipelines

Scenario 1): we adapt the English-centric
ParaCrawl pre-trained model to all four do-
mains and every language direction simultaneously.
This approach tests for parameter-efficient multi-
domain, multilingual domain adaptation. There
is no cross-lingual transfer needed since all lan-
guage directions are included in the training data.
Results for this scenario and for bilingual domain
adaptation are reported in Section 5.1.

Scenario 2): This is described in a toy diagram
in Figure 1. We first extend the baseline multilin-
gual English-centric model with 12 (one for each
language) monolingual language adapters (Philip



et al., 2020) trained on multi-parallel Paracrawl.
We then test the cross-lingual domain transfer abil-
ity of our proposed combinations of adapters by
training on data in a particular domain with a sub-
set of four languages (referred to as ‘in-domain’;
in Figure 1 en and fr would be in-domain). We test
our model on all language directions from the set of
all twelve languages. This will include cases where
we don’t have in-domain data for either the source
or target language, which we refer to as ‘out-of-
domain’ (in Figure 1 de would be out-of-domain).

Finally, we extend the above mentioned scenario
with back-translated (BT) data from out-of-domain
languages into English. To create the BT data, we
use the model with language adapters trained on
ParaCrawl (18) (which has not seen any in-domain
data) on the English-aligned training data for each
each language and domain, and use beam search
with a beam size of 5. Results for this scenario are
reported in Section 5.2.

To train language and domain adapters, we
freeze all model parameters except for adapter pa-
rameters, and use a fixed learning rate schedule
with learning rate 5 x 107°. Following Philip
et al. (2020), when training language adapters
without domain adapters we build homogeneous
batches (i.e. only containing sentences for one lan-
guage direction) and activate only the correspond-
ing adapters. When training language and domain
adapters together, we build homogeneous batches
that only contain sentences for the same combina-
tion of language direction and domain.

5 Results and Discussion

First, in Section 5.1 we discuss different ways of
distributing adapter parameters given a fixed param-
eter budget in bilingual and multilingual settings.
In Section 5.2 we analyse the capacity of adapters
for domain transfer across languages. We first
demonstrate problems with cross-lingual generali-
sation during domain adaption for ‘naive’ methods,
and then discuss solutions.

5.1 Where are adapters most effective?

Bilingual domain adaptation Before studying
multilingual domain adaptation, we validate some
of our ideas on a simpler, bilingual German —
English domain adaptation setting. Table 6 reports
the results of this experiment. First, we note that
encoder-only adapters perform similarly to encoder
& decoder adapters, while decoder-only adapters

perform worse.

Moreover, adding adapters to only the last three
layers of the encoder almost matches the per-
formance of adapting every layer, while adding
adapters to the first three layers decreases perfor-
mance. We believe this is because the last encoder
layer directly influences every layer of the decoder
through cross-attention. We find the same trends
at a smaller adapter size with a bottleneck dimen-
sion of 64 (see Appendix B), and for multilingual
models.

The strong performance of encoder-only
adapters has interesting implications for inference
speed. With an auto-regressive decoder, the com-
putational bottleneck is on the decoder side. The
encoder output is computed all at once, while com-
puting the decoder output requires L steps, where L
is the output length. Inference speed-ups are mod-
est due to the small size of adapters, e.g. around
10% and 8% faster inference for encoder-only vs
decoder only for the models of this section and
Section 5.2 respectively.

Multilingual multi-domain models Table 3 re-
ports the results in the more challenging task of
adapting a multilingual NMT model to multiple
domains and language directions simultaneously.
In this scenario, we assume access to in-domain
data in all the language directions.

Stacking domain and language adapters (last 3
rows of Table 3) gives the best performance, com-
pared to language adapters with the same parame-
ter budget. We believe this is because it allows the
model to (partially) decouple domain information
from language-specific information and better ex-
ploit the allocated parameter budget. Encoder-only
domain adapters combined with LA outperform
much larger LA, and are faster at inference. In-
creasing capacity further with encoder + decoder
DA improves performance mainly for IT and Ko-
ran®. The better results for encoder-only DA com-
pared to decoder-only DA are coherent with the
results reported for the bilingual setting. However,
we will see in the next section that this sometimes
comes at the expense of cross-lingual transfer.

5.2 Analysis of cross-lingual domain transfer

To study the capacity of our models to transfer do-
main knowledge across languages, we do domain

®Note that while these models increase the parameter count
significantly, the effect on inference speed is limited since only
one set of adapters is activated in each batch (assuming we
have homogeneous batches.)



ID Model IT Koran Medical Subtitles Law
(1) No finetuning 353 148 38.1 26.8 424
(2) Finetuned 438 227 53 30.9 57.9
(3) Enc. + dec. adapters (d = 1024) 429 218 51.7 30.5 56

4 (3)+MAD-Xstyle 40.6 19.3 48.8 29.8 54.3
(5) Dec. adapters (d = 2048) 42.1 198 50.5 29.7 55.1
(6) Enc. adapters (d = 2048) 424 215 51.9 30.1 56.1
(7) Last 3 encoder layers only (d = 4096) 429 21.1 52.1 30.1 56

(8) First 3 encoder layers only (d = 4096) 42.2 20 50.1 28.5 54.9

Table 2: BLEU scores of various domain adaptation strategies for a German — English bilingual model. (d = N)

refers to adapters with a bottleneck dimension of size N.

ID Model IT Koran Medical TED Params (M)
(9) Base (En-centric) 22.9 6.9 24.7 18.8 N/A
(10) Finetuned 40.7 169 42.7 26.7 79
(11) Single adapter per layer (d = 1024) 39.5 15.3 41.8 26.4 12.6
(12) LA (d =1365) 40.5 169 42.0 26.6 202
(13) LA (d =2048) 41.8 18.9 43.3 27.0 303
(14) LA +dec. DA (d = 1024) 420 195 43.3 27.4 177
(15) LA +enc. DA (d = 1024) 42.1 205 43.5 27.7 177
(16) LA +enc & dec. DA (d = 1024) 425 21.2 43.6 27.8 202

Table 3: BLEU scores of various multilingual multi-domain adaptation strategies, i.e. training on all language
directions from the 12 languages and all domains. LA = language adapters, DA = domain adapters. ‘Params (M)’
refers to the number of trainable parameters in millions. Note that unlike in Table 4 the LA here are not pre-trained
on ParaCrawl; they are trained jointly with domain adapters.

adaptation on a subset of language pairs and eval-
uate on all languages. Table 4 shows results for
cross-lingual transfer from the subset {en, fr, de,
cs} in the Medical domain. We report decomposed
BLEU scores for different categories of language-
directions depending on whether the source/target
language has in-domain parallel data. Appendix C
has results in other domains and language subsets;
we find similar trends to those reported here.

Off-target translation Directly training vanilla
adapters on this subset (20) without using pre-
trained language adapters results in strong perfor-
mance in-domain (translating between {en, fr, de,
cs}), but produces almost 100% off-target transla-
tions when translating into an out-of-domain target
language. Using domain and language adapters in
the naive way (21), stacking them in the encoder
and decoder, gives similar performance in-domain,
but only slightly better out-of-domain performance.

Improving out-of-domain performance We
show in Table 4 various strategies to improve per-

formance on unseen language combinations. We
treat fine-tuning the ParaCrawl language adapters
(with no DA) as a strong baseline (23), and note
this method requires 8 x the trainable parameters
of decoder/encoder-only DA (and 24x when us-
ing back-translation due to training on all 12 lan-
guages). Efforts to ‘decouple’ domain and lan-
guage improve unseen combinations. For example,
using decoder-only domain adapters (24) leads to
the best performance when translating from out-of-
domain into in-domain languages, because the DA
and target LA were both seen together at train time.
And vice-versa, when translating from in-domain
into out-of-domain languages, encoder-only do-
main adapters work well (although performance
is still low).

Multi-domain models To study whether jointly
training on multiple domains and languages would
enable language adapters to be more ‘domain-
agnostic’, we experiment with a setting where we
jointly train on all language directions for IT, Koran
and TED Talks domains and a subset of languages



ID Model All  Out—in In—out In—in  Out—out
(17) Base (En-centric) 26.0 27.4 26.1 27.2 24.5
(18) (17) + ParaCrawl LA 30.5 31.3 30 30.2 30.2
(19) (17) + Finetune (all directions) 43.9 44.5 43.7 43.6 43.6
(20) (17) + Domain adapters only 23.6 38.2 13.7 (12%) 45 13.8 (13%)
(21) Freeze LA +enc. & dec. DA 27.3 37 20.5 (80%) 444  20.2 (83%)
(22) Unfreeze LA 33.2 36.6 28.8 45.6 30.2
23) (23)+BT 354 33.3 38.4 45 31.9
(24) Freeze LA +dec. DA 29.5 41.0 22.9 42.2 22.3
25) (24)+BT 37.2 38.5 36.7 41.2 354
(26) Freeze LA +enc. DA 30.0 344 27.3 42.9 24.9
27) (26) + BT 33.0 35.3 35.1 42.0 27.1
(28) (21) + DADrop 28.5 37.0 233 (89%) 43.1 21.7 (88%)
29) (21)+BT 34.0 36.7 359 43.5 27.8
(30) (21) + BT + DADrop 35.2 37.3 36.8 42.5 30.5
(31) Unfreeze LA + dec. DA 23.1 37.7 16.6 24%) 434 11.3 (49%)
(32) (31) + DADrop 314 37.1 24.2 45.9 28.0
(33) (31) + DADrop + BT 35.9 342 38.6 44.0 32.8

Table 4: BLEU score of various models trained on the {en, fr, de, cs} subset of the Medical domain. LA =
language adapters, DA = domain adapters. ‘Out—in’ is the average score when translating from an out-of-domain
source language into {en, fr, de, cs}. ‘In—out’ corresponds to when the out-of-domain language is the target
language. ‘In—in’ refers to average score when source and target are in the set {en, fr, de, cs}. ‘Out—out’ is the
average score when both the source and target language are unseen during domain adaptation. We note percentage
of on-target (correct language) translations in brackets, when it is less than 90% only.

for Medical. Such models improve out-of-domain
performance with decoder-only (24) and encoder-
only DA (26) by respectively 5.3 and 2.4 BLEU
on average, and decrease off-target translation (see
Appendix C; similar results hold for taking a subset
of Koran data instead of Medical). However these
scores are still worse than simply using pre-trained
‘domain-agnostic’ ParaCrawl LA (18) and we did
not explore this method further.

Data augmentation Data augmentation with
English-centric back-translation (BT) is the only
technique that improves over pre-trained ParaCrawl
LA for out-of-domain target languages. Decoder
DA combined with BT (25) is the best performing
model for out-of-domain, improving 5.2 BLEU on
average over the ParaCrawl LA (18). Note that
with BT, every language has been seen in combina-
tion with English model output, so ‘out-of-domain’
is closer to ‘Out—in’, where decoder-only DA also
performs well. We report results for the other data
augmentation methods (see Section 3.2) in Ap-
pendix C; these only improve over the ParaCrawl
LA baseline in limited settings.

Other techniques We find that randomly drop-
ping domain adapters (DADrop; see Section 3.2)
improves zero-shot performance and slightly de-
creases in-domain performance (28). We believe
this is caused by a less tight coupling of language
and domain information. This technique helps
when fine-tuning both LA and DA (32), or with
encoder + decoder DA (28); see Appendix C for
more results. We find that modular-style stacking
outperforms MAD-X style (see Section 3.1), al-
though the extent of this varies by which subset
(in-domain, etc.) of languages we consider (see
Appendix C).

Several of our models fine-tune only a single
adapter per-layer and use frozen LA. Such mod-
els can easily be ‘mixed-and-matched’ by activat-
ing a particular adapter for a particular language
pair. For example we could activate model (24) on
‘Out—in’ (out-of-domain source, in-domain target)
data, model (29) on in-domain data and model (25)
otherwise. Such models could easily be extended
to new domains by training more adapters.
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Figure 2: Analysis of cross-lingual transfer for the decoder-only domain adapter (with pre-trained ParaCrawl
language adapters) fine-tuned on a subset of language for the Medical (top) or Koran (bottom) domains. Models
are either trained on romance languages (fr,it,es,en; left) or a mix of language families (fr,de,cs,en; right). All
numbers are BLEU score improvement over a model with ParaCrawl language adapters that have not been fine-
tuned on in-domain data. Other than en & fr, language families are grouped together. Best viewed in .pdf form.

Cross-lingual transfer analysis We conduct a
preliminary analysis of whether language diversity
is important for cross-lingual transfer. We compare
models trained on a mix of language families (fr,
de, cs, en) and mostly romance languages (fr, it,
es, en) to test whether diversity of languages in our
in-domain training set improved transfer. Figure 2
shows how the performance changes for each lan-
guage pair. When translating from out-of-domain
source languages into in-domain target languages,
training on diverse languages gives better perfor-
mance (compare en and fr rows in Figure 2).

However, for out-of-domain source and target
languages (da, nl, pl, pt, sv) the romance languages
performed roughly the same or better. It is not
clear why this is the case, but perhaps the DA are
more language-agnostic when trained on similar
languages as they devote less capacity to language
information. When using back-translation or when
training multi-domain models (which see all lan-
guage directions for three domains as explained
previously), training with multiple families of lan-
guages outperforms romance-only training for out-
of-domain languages as expected. We summarise
these results in Appendix C.

6 Conclusion

This work studies composing language and domain
adapter modules in the context of NMT. We find
that while adapters for encoder architectures like
BERT can be safely composed, this is not true
for NMT adapters: domain adapters struggle to
generate into languages they were not trained on,
even though the original model they are inserted
in was trained on those languages (but not with
in-domain data). Naive fine-tuning, or stacking
language adapters with domain adapters at every
layer results in low cross-lingual generalisation.

We can improve performance when translat-
ing an out-of-domain source language into an in-
domain target language by using domain adapters
in the decoder only. Data augmentation with back-
translation improves a similar model when both
source and target are out-of-domain. Overall decou-
pling domain and language information is required
for strong cross-lingual generalisation. When used
carefully we believe using adapters for multilingual
domain adaptation represent a convenient and ef-
fective method with reasonable cross-lingual gener-
alisation and are easily extensible to new domains.
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A Data and Hyper-parameters

We share embeddings between encoder and de-
coder. We use the Adam optimizer (Kingma and
Ba, 2014) with an inverse square root learning rate
schedule for pre-training, and a fixed learning rate
schedule for training adapters. We speed up train-
ing with 16 bit floating point arithmetic. We use la-
bel smoothing 0.1 and dropout 0.1. We train for ei-
ther 20 epochs or 1 million updates, whichever cor-
responds to the smallest number of training updates.
We use early stopping, checking performance after
each epoch or every 100,000 training steps, and use
average validation negative-log-likelihood on all of
the training data (but not out-of-domain language
data) as our criteria for choosing the best model.
We otherwise use default Fairseq (Ott et al., 2019)
parameters. We train all models on a single Nvidia
V100 GPU, and training takes between 8 and 36
hours depending on dataset size.

In order to create validation and test splits that
had no overlap with training data in any language,
we first set aside a number of English sentences.
Then we aligned all language pairs to these sen-
tences, i.e. the German to French test set is com-
posed of German and French sentences that share
the same English sentence. Finally we remove all
sentences in any language from the train splits of
all parallel data if those sentences are aligned with
any English sentences in the subset we set aside for
validation/test splits.

B Additional Results for Bilingual
Domain Adaptation

Table 6 presents results of bilingual domain adap-
tion explored in the main paper but with smaller
adapter bottleneck dimension. The same trends
emerge: encoder-only adapters perform better, and
the last three layers of the encoder are better than
the first three. The last three encoder layers also
perform better than the first three for a multilingual
model, see Table 9 models (93) and (94). Interest-
ingly the multilingual last three encoder layer DA
model is roughly halfway between encoder-only
and decoder-only on Out—in and In—out perfor-
mance, suggesting it might be a useful compromise
between the two.

C Additional Results for Cross-lingual
Transfer

Table 5 compares models trained on a mix of lan-
guage families (fr, de, cs, en) and mostly romance
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Model Out— {en,fr} Out—Out
Koran

LA + Dec. DA 0.6 -0.9

LA + Dec. DA 0.3 -0.3
Unfr. LA + Dec. DA 0.1 -04
LA + Enc & Dec. DA 1.3 -1.3

Koran + BT

LA + Dec. DA 04 0.2

LA + Dec. DA 1.9 0.9
Unfr. LA + Dec. DA 0.3 0
LA + Enc & Dec. DA 0.7 0.3

Medical

LA + Dec. DA 0.8 2.4

LA + Dec. DA 3.2 0.2
Unfr. LA + Dec. DA 0.2 0.1
LA + Enc & Dec. DA 3.2 -1.1

Medical + BT

LA + Dec. DA 04 2.9

LA + Dec. DA 1.3 1.6
Unfr. LA + Dec. DA 0.5 3.1
LA + Enc & Dec. DA 0.5 1.5

Table 5: Difference in average BLEU score between
models trained on a diverse subset of languages and
models trained on mostly romance languages. Data
source is noted in bold. Refer to the main paper
for model definitions. Out— {en,fr} corresponds to
translation from an out-of-domain source language into
{en,fr}. ‘Out—Out’ is the average score when both the
source and target language are unseen during domain
adaptation (choosing languages unseen by either sub-
set).

languages (ft, it, es, en) to test whether diversity of
languages in our in-domain training set improved
transfer. Positive numbers in this table indicate di-
versity of training languages improves performance.
As noted in the main paper, diversity helps for trans-
lating out-of-domain languages into in-domain. We
have unclear results for when both source and tar-
get are out-of-domain; it seems when using back-
translation (BT), i.e. when all languages have been
seen (albeit with artificial English parallel data)
diversity helps, but without BT it mostly hurts per-
formance. We speculate that training on mostly
romance languages means the domain adapter en-
codes less ‘language information’, but leave further
exploration to future work.

We present additional results for the setting dis-
cussed in Section 5.2 of the main paper in Table 7



ID Model IT Medical Koran Subtitles Law

(34) No finetuning 353 14.8 38.1 26.8 424
(35) Finetuned 43.8 22.7 53 30.9 579
(36) Enc. + dec. adapters (d=64) 40 18.7 473 29.4 51.5
(37) Dec. adapters (d=128) 39 17.5 46 28.8 50.6
(38) Enc. adapters (d=128) 40 18.9 473 29.2 51.5
(39) Last 3 encoder layers only (d=256) 40 19 473 29 51.1
(40) First 3 encoder layers only (d=256) 39.5 18 46 28.8 49.5

Table 6: BLEU scores of various domain adaptation strategies for a German — English bilingual model. (d = N)
refers to adapters with a bottleneck dimension of size V.

(Koran domain), Table 8 (Koran results for the ro-
mance language subset), and Table 9 (additional
Medical results). For the Koran domain, we see
similar trends with decoder-only domain adapters
(DA) performing best on out-of-domain source
to in-domain target languages, and vice versa for
encoder-only DA. We briefly experiment with de-
noising objectives, where we simply copy target
data in out-of-domain languages to the source side
(and optionally add ‘noise’ to the source side, e.g.
swap tokens or mask tokens (Lewis et al., 2020)).
Although we got reasonable improvements (models
(56) and (51)) for out-of-domain target languages,
we were mostly unable to improve over the pre-
trained ParaCrawl LA, and so concentrate on back-
translation.

We experiment with a setting where we jointly
train on all language directions for I'T, Koran and
TED Talks domains and a subset of languages for
Medical, and similarly with only a subset of Ko-
ran (models (47), (48) etc.). These models stack
language and domain adapters. Such models don’t
require any pre-trained LA, and improve out-of-
domain performance and decrease off-target trans-
lation compared to freezing ParaCrawl LA and
training DA. However these scores are still worse
than simply using pre-trained ‘domain-agnostic’
ParaCrawl LA (43).
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ID Model All Out—in In—out In—in Out—Out

(41) Base (En-centric) 7 7.5 7 7.7 6.4
(42) Finetune (all directions) 23.8 19.9 26.8 20.6 25.7
(43) (41) + ParaCrawl LA 9 9.2 9 9 8.7
(44) Domain adapters only 6.9 13.5 0.4 23.0 0.3
(45) Freeze LA + enc. & dec. DA 8.6 13.5 4.1 21.7 3.1
(46) Unfreeze LA 11.8 12.9 8.6 23.5 8.7
(47) Multi-domain dec. DA 9.9 12.9 7.8 17.0 6.4
(48) Multi-domain enc. DA 10.6 13.1 9.0 17.6 7.1
(49) Multi-domain enc. & dec. DA 10.3 14.0 7.7 18.2 6.2
(50) Freeze LA + dec. DA 9.7 16.2 5.2 18.2 4.8
(51) (50) + Mono data 11.3 14.4 8.7 16.2 8.6
(52) (50) + MAD-X style 9 154 4.5 17.1 4.3
(53) (50) + BT 13.7 14.4 13.1 17.5 12.1
(54) (50) + BT + DADrop 13.8 14.7 13.2 17.7 12.1
(55) Freeze LA +enc. DA 9.6 10.9 8.3 20.3 5.4
(56) (55) + Mono data 10.6 10.5 10 17.3 8.3
(57) (55)+ MAD-X style 7.5 11.0 3.8 194 2.8
(58) (55)+BT 12 12.1 12.7 19.5 8.3
(59) (55) + BT + DADrop 12.3 12.2 13.5 18.9 8.8
(60) Enc. & dec. DA + BT 13.3 14 13.9 20.8 9.3
(61) (60) + DADrop 13.8 14.2 14.8 20.9 9.8
(62) Unfreeze LA + dec. DA 7.6 13.6 0.51 24.6 1.6
(63) (62) + DADrop 11.5 13.5 6.8 24.5 8.4

Table 7: BLEU score of various models trained on the {en, fr, de, cs} subset of the Koran domain. LA = language
adapters, DA = domain adapters. ‘Out—in’ is the average score when translating from an out-of-domain source
language into {en, fr, de, cs}. ‘In—out’ corresponds to when the out-of-domain language is the target language.
‘In—in’ refers to average score when source and target are in the set {en, fr, de, cs}. ‘Out—Out’ is the average
score when both the source and target language are unseen during domain adaptation. ‘Mono data’ refers to
adding copied monolingual data for out-of-domain languages, and additionally multiparallel ParaCrawl data in
small amounts.

14



ID Model All  Out—in In—out In—in Out—Out

(64) Freeze LA +enc. & dec. DA 10.0 13.9 5.7 26.7 3.6
(65) (64) + DADrop 10.0 13.8 5.8 26.7 3.6
(66) Unfreeze LA 13 16.5 7.3 31.6 7

(67) (66) +BT 14.4 12.9 134 35.0 8.1
(68) Freeze LA + dec. DA 11.6 194 5.6 24.1 5.1
(69) (68)+BT 14.2 17.7 11.6 23.5 9.7
(70) Freeze LA +enc. DA 9.9 11.8 7.1 26.1 4.2
(71) (70) + BT 12.1 13.4 10.9 26.2 6.3
(72) Unfreeze LA + dec. DA 11.9 17.7 3.7 32.9 5.6
(73) (72) + DADrop 13.3 17.5 7.2 32.1 7.2
(74) (72) + DADrop + BT 14.5 13.6 134 33.6 8.6
(75) Enc. & dec. DA + BT 13.3 15.6 11.9 26.9 7.2
(76) (75) + DADrop 13.8 16.3 12.2 27.7 7.4

Table 8: BLEU score of various models trained on the mostly romance language {en, fr, it, es} subset of the Koran
domain. LA = language adapters, DA = domain adapters. ‘Out—in’ is the average score when translating from an
out-of-domain source language into {en, fr, it, es}. ‘In—out’ corresponds to when the out-of-domain language is
the target language. ‘In—in’ refers to average score when source and target are in the set {en, fr, it, es}. ‘Out—Out’
is the average score when both the source and target language are unseen during domain adaptation.
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ID Model All  Out—in In—out In-domain  Out—Out

(77) Base (En-centric) 26.0 27.4 26.1 27.2 24.5
(78) (77) + ParaCrawl LA 30.5 31.3 30 30.2 30.2
(79) (77) + Finetune (all directions) 43.9 44.5 43.7 43.6 43.6
(80) (77) + Domain adapters only 23.6 38.2 13.7 (12%) 45 13.8 (13%)
(81) Freeze LA + enc. & dec. DA 27.3 37 20.5 (80%) 44 4 20.2 (83%)
(82) Unfreeze LA 33.2 36.6 28.8 45.6 30.2
(83) (83)+BT 354 333 384 45 31.9
(84) Multi-domain dec. DA 31.9 37.3 28.6 42 27.5
(85) Multi-domain enc. DA 32.3 384 28.9 42.4 27.3
(86) Multi-domain enc. & dec. DA 31.3 38.8 26.8 42.4 25.9
(87) Freeze LA + dec. DA 29.5 41.0 22.9 422 22.3
88) (87)+BT 37.2 38.5 36.7 41.2 354
89) (87)+ BT + DADrop 36.9 37.8 36.6 40.5 35.3
(90) Freeze LA + enc. DA 30.0 344 27.3 42.9 24.9
91) (90)+BT 33.0 353 35.1 42.0 27.1
92) (90) + BT + DADrop 34.1 35.7 35.8 41.4 29.6
(93) Freeze LA +enc. first 3 layers DA 24 31.5 18.2 41.8 17.6
(94) Freeze LA + enc. last 3 layers DA 29.8 37.3 24.8 42.7 24.2
(95) (81) + DADrop 28.5 37.0 23.3 (89%) 43.1 21.7 (88%)
96) (81)+BT 34.0 36.7 359 43.5 27.8
97) (81) + BT + DADrop 35.2 37.3 36.8 42.5 30.5
98) (81) + BT + MAD-X style 32.3 37 33.6 43.5 24.8
(99) Unfreeze LA + dec. DA 23.1 37.7 16.6 (24%) 434 11.3 (49%)
(100) (99) + DADrop 314 37.1 24.2 45.9 28.0
(101) (99) + DADrop + BT 359 34.2 38.6 44.0 32.8

Table 9: BLEU score of various models trained on the {en, fr, de, cs} subset of the Medical domain. Some results
are also included in the main paper.
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