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ABSTRACT

The Information Bottleneck (IB) principle offers a compelling theoretical
framework to understand how neural networks (NNs) learn. However, its
practical utility has been constrained by unresolved theoretical ambiguities
and significant challenges in accurate estimation. In this paper, we present a
Generalized Information Bottleneck (GIB) framework that reformulates the
original IB principle through the lens of synergy, i.e., the information obtain-
able only through joint processing of features. We provide theoretical and
empirical evidence demonstrating that synergistic functions achieve superior
generalization compared to their non-synergistic counterparts. Building on
these foundations we re-formulate the IB using a computable definition of
synergy based on the average interaction information (II) of each feature
with those remaining. We demonstrate that the original IB objective is upper
bounded by our GIB in the case of perfect estimation, ensuring compatibility
with existing IB theory while addressing its limitations. Our experimen-
tal results demonstrate that GIB consistently exhibits compression phases
across a wide range of architectures (including those with ReLU activations
where the standard IB fails), while yielding interpretable dynamics in both
CNNs and Transformers and aligning more closely with our understanding
of adversarial robustness.

1 INTRODUCTION

Deep learning has achieved remarkable practical success, yet our theoretical understanding
of how neural networks learn effective representations remains incomplete (Shwartz-Ziv
& Tishby, 2017). Information theory offers a principled framework for analyzing deep
learning, as information-theoretic quantities are invariant to invertible transformations and
provide interpretable units of measurement (Cover & Thomas, 1991). The Information
Bottleneck (IB) principle, introduced by Tishby et al. (1999), has emerged as a particu-
larly influential framework for understanding neural network learning dynamics, providing
insights into diverse phenomena including
adversarial robustness (Ma et al., 2021), the
effects of dropout regularization (Achille &
Soatto, 2018), and generalization bounds
(Kawaguchi et al., 2023). Through this in-
terpretation, the activations of our network
can be viewed as a hidden state representa-
tion 7, which converges to a set of statis-
tics captured by two competing terms. The
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guessing requires a network whose learned representation is well aligned with that of the
target data. However, it is well established that optimizing solely for prediction accuracy can
lead to overfitting. Consequently, the IB framework introduces a second term: the complexity
term I(X;7T), which quantifies the mutual information between the input data X and the
hidden representation. Optimizing this less intuitive term can be interpreted as an effort to
minimize redundant and irrelevant information from the input that is encoded in the latent
space.

Overall, the IB framework posits that deep neural networks learn by solving the following
Lagrangian optimization problem:

L1 = max I(T;Y) — B '1(x;T) (1)
p(T|X) —— ———
prediction term  complexity term

Shwartz-Ziv & Tishby (2017) suggested that the success of deep learning can be attributed
to the ability of NNs to perform the aforementioned optimization problem in two distinct
phases. First, a fitting phase, where both of the two introduced terms increase, and second
a compression phase, where the complexity term decreases in size (refer to Figure 1 for a
visual illustration of these processes). It was argued that this second compression phase
was unique to deep models and helped explain their generalizability. In some cases, the
flow of information through the latent space has been shown to align precisely with the IB’s
theoretical predictions (Shwartz-Ziv & Tishby, 2017).

While the IB framework initially seemed to provide a complete explanation of how neural
networks balance compression and predictive accuracy, Saxe et al. (2019) presented coun-
terexamples that challenge this view. In particular, the authors showed that compression
phases depend critically on the choice of activation function: networks with tanh activations
exhibited compression across all layers, whereas ReL U-based networks did not. Despite the
absence of a compression phase, the ReL U networks still generalized well. According to
Goldfeld et al. (2019), this occurs because the complexity term in deterministic networks
is theoretically constant or infinite, rendering compression impossible. Consequently, the
compression observed in tanh networks was not a genuine information-theoretic effect, but
rather the result of injected randomness (Saxe et al., 2019; Shwartz-Ziv & Tishby, 2017;
Geiger, 2022).

In this paper, we address these issues by introducing a generalized formulation of the IB
framework that is grounded in synergy. Synergy, a concept from multivariate information
theory, captures the extra predictive power that arises when inputs are considered together
rather than in isolation (Williams & Beer, 2010). To motivate this perspective, we begin
by asking: why synergy? We then present both theoretical arguments and empirical results
showing that synergistic functions lead to improved generalization.

Having established that synergistic functions generalize better, we construct the GIB by
reformulating the IB through the lens of synergy. First, we introduce a point-wise mutual
information (PMI)-based reweighting scheme that ensures we measure synergy specifically
for correct predictions rather than arbitrary outputs. We then combine this reweighting
with our feature-wise synergy decomposition, which uses the interaction information (II) to
quantify information available only through joint processing of all features. Finally, we cast
this as a Lagrangian optimization problem, yielding our GIB objective that measures how
synergistically the input features combine to describe correct outputs.

After deriving the GIB, we prove that, under perfect estimation, it can be lower bounded by
the IB. Importantly, our formulation overcomes key theoretical limitations of standard IB,
including the issue of infinite complexity terms. We demonstrate that GIB exhibits clear
compression phases and interpretable learning dynamics across a wide range of scenarios
where standard IB fails. In Figure 2, we revisit the experiments presented in Saxe et al. (2019)
and show that the GIB displays compression phases for five different activation functions
while the IB is limited to one?. Beyond these synthetic examples, we observe consistent

2Reading Information Planes Plots. Throughout, we visualize information dynamics using
information plane plots. In these plots, the z-axis represents the complexity term and the y-axis
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Figure 2: Information plane dynamics across multiple activation functions, extending Shwartz-
Ziv & Tishby (2017) and Saxe et al. (2019) beyond tanh and ReLU to include softplus, swish,
and leaky ReLU. Standard IB (blue) shows compression only for tanh; GIB (pink) shows
compression for all activation functions. Each column represents one seed.

information dynamics in practical deep learning settings including ResNets on CIFAR-10 and
BERT fine-tuning. Furthermore, the complexity term in our framework provides meaningful
insights into model behavior under adversarial attacks, correctly tracking vulnerability where
standard IB fails. Code for full reproducibility of these results will be made publicly available
upon publication.

2 RELATED WORK

MI Estimation. MI estimation in the IB framework remains an active area of research and
debate. Numerous estimators exist (e.g., k-nearest-neighbor (kNN) methods (Kozachenko &
Leonenko, 1987; Kraskov et al., 2004), and kernel-density approaches (Kandasamy et al.,
2015; Han et al., 2017)), and trainable neural estimators (Belghazi et al., 2018)), yet many
information-theoretic studies of deep networks (Shwartz-Ziv & Tishby, 2017; Saxe et al.,
2019) discretize neuron outputs (“binning”) to approximate MI. Binning is simple and fast,
but even moderate coarse-graining can introduce substantial estimation error (Goldfeld et al.,
2019). Despite these limitations, we use binning because MI estimates are needed throughout
training (e.g., at each epoch); running kNN, KDE, or variational estimators at this frequency
would be prohibitively slow and numerically unstable in high-dimensional settings. Our goal
is to track relative trends in MI rather than obtain exact differential values, and binning
provides a tractable, reproducible proxy that makes per-training-step MI monitoring feasible.

Other Generalizations of the Information Bottleneck. There exist many extensions
of the IB framework. For instance, the variational information bottleneck (VIB) introduces
stochastic neural parameterizations to scale IB to deep networks (Alemi et al., 2017),
while Information dropout applies a neuron-wise IB-like penalty via multiplicative noise to
improve generalization (Achille & Soatto, 2018). The HSIC bottleneck (Wang et al., 2021)
replaces mutual information with the Hilbert—Schmidt independence criterion to regularize
intermediate representations for adversarial robustness. More recent work has extended the
IB to multivariate and deep settings. Matrix-based Rényi’s a-order entropy functionals (Yu

represents the prediction term. For standard IB, these are I(X;7) and I(7;Y), respectively.
For the full formulation of the GIB, see Section 3. Trajectories are color-coded by training
epoch, progressing from early training (dark pink/blue) to late training (light green/yellow). Blue
trajectories correspond to the standard IB dynamics, whereas pink trajectories depict the dynamics
under our GIB formulation. Movement leftward indicates compression (reduction of redundant
information), while movement upward indicates improved prediction. For the IB we only report the
information plane of the final layer as this is where compression dynamics are most readily observed.
Meanwhile, the GIB is formulated based on inputs and therefore only produces one information
plane per training. For clarity of presentation, we normalize the complexity term and prediction
term results between 0 and 1.
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et al., 2020; 2021a) provide estimators of multivariate entropies and dependence. These
have been used to develop deterministic IB objectives in deep networks (Yu et al., 2021b),
and to design gated IB objectives for sequential environments (Alesiani et al., 2023). The
multivariate IB of Friedman et al. (2001) captures statistical dependencies between multiple
bottleneck variables through graphical models. Most relevant to our work, recent advances
have also connected IB and Partial Information Decomposition (PID), with Kolchinsky
(2024) building on earlier IB work such as Kolchinsky et al. (2019), showing that PID
redundancy can be isolated via an IB-style optimization. Although these methods extend 1B
to multivariate settings and even show that certain PID quantities, such as redundancy, can
be characterized via bottlenecks, none explicitly incorporate a synergy-specific information
term into the IB formulation. Our approach achieves this, and we will demonstrate that it not
only results in more consistent compression behavior but also offers theoretical advantages.

Synergy. Synergy characterizes the additional information obtained by evaluating variables
collectively rather than individually, quantifying how features interact to reduce uncertainty
about a target. The characteristics of this relationship can be illustrated by means of the XOR
function. Consider two binary string variables, X; and X5, with Z being their XOR output.
In this scenario, X7 and Z, as well as X5 and Z, are uncorrelated (I(X1; Z) = I(X2; Z) = 0),
but together, X; and X, fully describe Z (I(X1,X92;Z) = H(Z)) (Guyon & Elisseeff,
2003; Williams & Beer, 2010). While the concept is intuitive, its formalization has proven
challenging, leading to multiple proposed measures. Early work by Williams & Beer (2010)
introduced PID, which decomposes MI into unique, redundant, and synergistic components.
However, the number of terms in this decomposition equals the n — 1’th Dedekind number,
where n is the number of features. This number is impractically large: a system with nine
variables would require approximately 5 x 10?2 terms, while for ten variables, the Dedekind
number remains unknown. Moreover, estimating these terms is subject to convergence issues
and size limitations (Makkeh et al., 2018; 2019; Pakman et al., 2021). While Varley &
Hoel (2022) reduced the number of investigable quantities by averaging contributions of
layers in the PID lattice, with different layers representing different levels of redundancy
or synergy, calculations remained too complex for applications involving more than a few
features. Alternative measures such as O-information (Rosas et al., 2019), correlational
importance (Nirenberg & Latham, 2003), and synergistic MI (Griffith & Koch, 2014) can
estimate the synergy or redundancy of large sets of variables, but fail to reveal whether a
specific feature interacts synergistically or redundantly. We resolve these issues by averaging
the interaction information of each feature with those remaining:

1 N

Syn(X = ¥) = I(X;Y) = + > (X ~5Y) + I(X%;Y)) (2)

i=1

where X ~% = X\ {X*}. This formulation captures how features collectively reduce uncertainty
about the target Y, while maintaining computational feasibility by avoiding the exponential
explosion of subset calculations (Westphal et al., 2025).

3 THE GENERALIZED INFORMATION BOTTLENECK

We now introduce the GIB, by first showing that, given two functions with identical mutual
information (MI) with noisy training data, the function exhibiting higher synergy achieves
tighter generalization bounds. This result motivates the principle that synergistic functions
generalize better than non-synergistic ones, and thus learning should favor synergy. At the
same time, we emphasize that functions must also be correct. To capture this, we introduce a
distribution that prioritizes accurate predictions. The final formulation of the GIB therefore
maximizes the synergistic contribution of the inputs in describing this distribution.

3.1 SYNERGY AND GENERALIZATION

In this subsection, we formally establish the connection between synergy and generalization.
We begin by presenting theoretical results supported by experiments on synthetic data, and
then extend the discussion to empirical findings on ResNets.
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Figure 3: Synergistic processing of noise enhances generalization. (a) Controlled synthetic
experiment demonstrating how synergy affects information flow (see Appendix E.1 for details).
Three functions of increasing synergy process binary inputs with noise: non-synergistic (blue),
partially synergistic (green), and highly synergistic (magenta). Left: I(f(X,¢);¢): more
synergistic functions have lower dependence on noise. Right: I(f(X,¢); X) - we observe that
synergistic functions have lower MI with the input. (b) Empirical validation on CIFAR-10
using ResNets of varying depths (see Appendix E.2). We quantify synergistic interactions
between inputs and noise as I(f(X,¢);¢|X)/I(f(X,¢e); X,e). Higher synergy correlates with
smaller generalization gaps.

3.1.1 THEORETICAL EVIDENCE

Let us first suppose we have some noise ¢ that can be considered independent of our input
data X. Now consider two functions s~ and s™. If sT combines the independent components
of its arguments in a more synergistic manner than s—, by definition we have:

I(sT(X,e); X,e) — I(sT(X,¢e);e) — I(sT(X,e); &) >

. ] ®
I(s™ (X, ) &) = I(s™(X,e);e) = I(s™ (X, €); X).

If we now assume that I(s™(X,e); X,e) = I(s™(X,¢); X,e) (which can crudely be thought
of as approximately equal train accurac1es) then 1t must be true that:

I(sT(X,e);e) + I(sT(X,e); X) < I(s (X,¢e);e) + I(s™ (X,¢e); X) (4)

where I(s(X,€);€) represents the MI between the output of a function and the noise, while
I(s(X,¢€); X) describes the information shared between the output and uncorrupted input.
In Figure 3(a) we analyze the implications of Equation 4 via synthetic data. We show that
more synergistic functions for the same complexity of input and output have lower values of
both I(s(X,e);¢e) and I(s(X,e); X). This is favorable as both of these terms are known to
be inversely related to generalization capabilities, as discussed below.

How I(s(X,¢); X) Impedes Generalizability. This quantity can be re-written as the
complexity term of the IB, reducing its value has repeatedly been shown to be related to
compression and generalization (Tishby et al., 1999; Shwartz-Ziv & Tishby, 2017). High
values of this term ensure a latent representation that has memorized irrelevant and redundant
information in the input. Furthermore, recent work has formally related this quantity to
generalization bounds (Kawaguchi et al., 2023).

How I(s(X,¢);e) Impedes Generalizability. The relationship between noise sensitivity
and generalization is fundamentally tied to function smoothness. Most generalization bounds
require that the learned function be Lipschitz smooth, meaning there exists a constant L
such that || f(z1) — f(z2)|| < L||z1 — x2]| for all inputs. This constraint ensures the function’s
output changes at most proportionally to input perturbations. When a function has high
mutual information with noise I(s(X,¢);¢), it indicates the output varies significantly with
small noise perturbations, implying a large Lipschitz constant. As shown by Bartlett et al.
(2017) and Neyshabur et al. (2017), generalization bounds scale with the Lipschitz constant
of neural networks, which can be bounded by the product of layer-wise spectral norms.
Therefore, functions with lower I(s(X,¢);¢e) exhibit smaller Lipschitz constants and tighter
generalization bounds, explaining why synergistic functions that minimize noise sensitivity
achieve superior generalization.
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3.1.2 EMPIRICAL EVIDENCE

To empirically validate our theoretical findings, we conducted experiments examining how
synergistic processing of noise affects generalization in deep NNs. We trained ResNet models
of varying depths (20, 32, 44, 56, 68, 80, 92, and 110 layers) on CIFAR-10 with standard
data augmentations. To quantify synergy with augmentation noise, we developed a novel
teacher-student framework: a teacher model trained with augmentations (random crops and
horizontal flips) teaches a student model to predict its outputs from non-augmented inputs.
The cross-entropy loss achieved by the student provides a maximal upper bound for the
proportion of information between inputs and outputs that cannot be explained without
considering the interaction of noise and features, formally: I(f(X,¢e);e|X)/I(f(X,¢e); X, ¢).

Our results, shown in Figure 3(b), reveal a strong negative correlation (Pearson r» = —0.79,
p < 0.001) between this synergy measure and generalization performance across all model
configurations. Models with higher synergy (those whose predictions depend more on the
interaction between image content and augmentation patterns) consistently achieve smaller
generalization gaps. This confirms our theoretical prediction: synergistic processing of
augmentation noise, rather than treating it as independent corruption, enables models to
extract more robust features that generalize better to clean test images. Full experimental
details are provided in Appendix E.2. Considering that to synergistically process noise, we
must synergistically process the features, we design our GIB principle based on measures of
feature synergy.

3.2 FORMULATING THE GIB PRINCIPLE

During the last section, we argued that synergistic functions generalize better than their
non-synergistic counterparts. Consequently, we argue that when learning, a deep network
should aim to maximize the synergy of the inputs to produce the outputs. However, this is
not a strict enough condition, because there are many different synergistic functions, most of
which are irrelevant to the task at hand. We instead want to measure how synergistically
our inputs combine to give the correct outputs.

To facilitate this, we take the following two steps. First, our prediction term will solely
measure the MI between our predictions and targets. Second, our complexity term will be
a function of a new distribution that describes the co-occurrences of Z with Y. The exact
definition of @ is based on PMI-based reweighting, i.e., weighting samples by the likelihood

ratio between the joint distribution and the product of marginals: Q(Z,Y) = %.

This reweighting scheme emphasizes patterns where Z and Y co-occur more frequently than
would be expected under independence, effectively highlighting the meaningful dependencies
between our learned representations and the target outputs. PMI has proven effective in
capturing meaningful associations in numerous ML contexts: it underlies word2vec’s implicit
matrix factorization (Levy & Goldberg, 2014), drives contrastive learning objectives (van den
Oord et al., 2018), and measures feature relevance in interpretable ML (Bouma, 2009).

By sampling from the distribution Q(Z,Y) = % we obtain the random variable Q).

Combining these steps with how we earlier defined synergy, we get the following formulation
of the GIB:

N

(I 5Q) + I(X5Q) (5)

=1

Lom = z:v) ——
1B pf%??) L,J 28N

prediction term

complexity term

The prediction term (blue) I(Z;Y) measures the mutual information between the model
outputs Z and the labels Y, capturing how well the predictions align with the true targets.
The complexity term (red) 555 SN (I(X5 Q) + I(XF;Q)) inversely quantifies the average
information obtainable from individual features or their complements about the PMI-
reweighted distribution Q(Z,Y), which emphasizes correct predictions. By maximizing their
difference, GIB measures information dynamics that emerge only from collective feature
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interactions, which our analysis also indicates leads to improved generalization. On the other
hand, measuring synergy can be computationally demanding, as we discuss in Appendix G.

4 RELATING THE GIB TO THE IB

In this section, we first prove that under a simple assumption (i.e., perfect estimation) the IB
is a lower bound of our GIB. Finally, we discuss how the GIB solves longstanding IB issues.

Theorem 1. If we assume perfect training accuracy and therefore Q = Z =Y, then the
original IB objective is upper bounded by our GIB:
N
1 —i i
I(T5Y) = BIX;T) S H(ZY) = 525 > (HAT5Q) + 1(X5Q)) (6)

i=1

The proof is provided in Appendix B. This result demonstrates that the GIB provides
an upper bound on the IB objective. Consequently, as we optimize the traditional IB to
find sufficient statistics, we simultaneously optimize our GIB objective, ensuring that our
approach remains compatible with the theoretical foundations of the IB. For instance, in
Appendix C we prove the GIB discovers sufficient statistics.

This new formulation overcomes two main limitations of the original IB. First, the partition
across subsets of features combined with the PMI definition of Q(Z,Y") protects the compres-
sion term from becoming infinite. In Appendix D we prove that the GIB is only infinite under
interpretable circumstances. Second, and more fundamentally, our formulation explicitly
considers over-reliance on individual features, as explained in Section 3.1. IB optimizes
the total information flow between inputs and outputs through the latent representation 7
without considering how features interact. In contrast, GIB explicitly models how inputs
combine to form the latent representation, distinguishing between different types of feature
interactions. This is evident in the complexity terms: IB’s 371I1(X;T) aggregates all in-
formation equally, while GIB’s synergistic decomposition MLN Zi\il (I(X75Q) + (X% Q))
penalizes the information contained in individual features. Consequently, IB compresses
indiscriminately, whereas GIB selectively preserves long-range feature combinations; the
synergistic patterns we have shown lead to better generalization.

5 EXPERIMENTAL CASE STUDIES

This section presents experimental evidence demonstrating GIB’s advantages over standard
IB across diverse settings. We show that GIB provides more consistent and interpretable
information dynamics throughout training, successfully capturing compression phases where
standard IB fails (refer to Footnote 2 on reading information planes). Additionally, we
demonstrate that GIB’s complexity term serves as a direct indicator of adversarial vulnera-
bility, providing quantitative insights into model robustness that standard IB cannot capture.
As stated in Section 2, all MIs will be estimated using binning. However, in Appendix F, we
reproduce our results with a different method of MI estimation.

5.1 INFORMATION DyYNAMICS OF MLPS LEARNING SIMPLE FUNCTIONS

We examine NNs learning five mathematical functions of increasing complexity: addition,
multiplication, and three symmetric polynomials labelled f1, f2 and f3 (polynomials in
which all arguments are subjected to the same operations). Full experimental details are in
Appendix E.3.

The information plane dynamics in Figure 4 show clear differences between the standard
IB and GIB formulations. For the GIB, we observe compression phases, characterized
by leftward movement during training, across all five functions and random seeds. The
trajectories initially move upward and rightward as networks fit the training data, then shift
leftward as training progresses. The standard IB displays more variable behavior, without
real indication of compression, despite the strong generalization capabilities of these networks.
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Figure 4: Information plane dynamics for NNs learning simple mathematical functions.
Comparison of standard IB versus GIB across five functions (rows) and five random seeds.
Functions include basic arithmetic and symmetric polynomials. GIB consistently shows
compression phases (leftward movement), while standard IB exhibits varied behaviors. See
Appendix E.3 for experimental details.

5.2 INFORMATION DyYNAMICS OF RESNETS

We analyze information dynamics in residual networks (ResNets) of varying depths (20,
56, 80, 110 layers) trained on CIFAR-10. For the standard IB, we compute MI using the
10-dimensional output layer directly. For GIB, due to the need to compute feature-wise
decompositions on the high-dimensional input space (3072 dimensions), we first apply Kernel
PCA to reduce the pixel space to 50 principal components before computing MI, as explained
in more detail in Appendix E.4 (Turk & Pentland, 1991). For more details as to why we
chose 50 components, see Appendix H.

Figure 5 displays information plane trajectories for ResNets trained on CIFAR-10. The GIB
formulation shows consistent compression and fitting for all network depths and random
seeds, though the dynamics vary with architecture size. In smaller networks (ResNet-20),
trajectories show a general trend of increasing prediction term while the complexity term
decreases throughout training. Larger networks (ResNet-56 and above) begin to show phase
structure.

The standard IB presents markedly different dynamics. Rather than showing clear phases, IB
trajectories remain largely clustered with minimal compression across epochs. The absence of
compression phases in standard IB holds across all tested architectures, confirming previous
observations that ReL U networks fail to exhibit expected IB behavior (Saxe et al., 2018).

5.3 INFORMATION DYNAMICS OF TRANSFORMERS CLASSIFYING NEWS HEADLINES

We examine BERT-base fine-tuned on AG News text classification, comparing standard
fine-tuning with a novel “unlearning” initialization strategy. In this case, unlearning involves
training on random labels to remove biases from the model. For the standard IB, we again
set T as the final layer representation for use in MI calculations. For GIB, we apply our
feature-wise synergy decomposition to the full set of inputs. Full experimental details are in
Appendix E.5.

The standard fine-tuning approach shown in row 1 of Figure 6 produces highly variable
trajectories that begin near the center of the information plane, indicating that pre-trained
BERT representations contain substantial pre-training biases. This prompted us to unlearn,
where we train on random labels. The unlearning intervention dramatically alters these
dynamics. After 3 epochs of random label training, models consistently start from the bottom-
right corner of the information plane, as shown in row 2. From this reset position, both
IB and GIB show more coherent learning trajectories during subsequent fine-tuning. This
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Figure 5: Information plane dynamics for ResNets of varying depths trained on CIFAR-10.
Comparison across four network depths and five random seeds. GIB consistently exhibits
compression phases, while standard IB shows limited or no compression. See Appendix E.4

for details.
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Figure 6: Information plane dynamics for BERT fine-tuned on AG News. Comparison
of standard fine-tuning (top) versus unlearning -+ fine-tuning (bottom). The unlearning
procedure repositions models to a more favorable initialization point for subsequent learning.
See Appendix E.5 for details.

reveals how studying these information-planes can be used for diagnostics and interpretation.

5.4 ADVERSARIAL ROBUSTNESS

We investigate how adversarial perturbations affect information dynamics by training NNs
with tanh activations on MNIST under Fast Gradient Sign Method (FGSM) attacks of varying
strength. Full details are in Appendix E.6. Figure 7(a) illustrates the effect of adversarial
attacks on learning dynamics. Networks trained under weak attacks (¢ = 0.01) exhibit normal
convergence, whereas strong attacks (¢ = 1.0) substantially hinder the learning process. The
information-theoretic analysis in Figure 7(b) exposes a critical difference between standard
IB and our GIB formulation. The GIB’s complexity term faithfully reflects the degradation
in generalization: values remain high for € = 1.0 (poor generalization), while decreasing
rapidly when proper training occurs. In contrast, the standard IB’s complexity term shows
minimal differentiation between attack strengths.

6 CONCLUSION

In this work, we have introduced the Generalized Information Bottleneck (GIB), a principled
reformulation of the IB that explicitly accounts for synergistic interactions between features.
Our theoretical and empirical analysis demonstrated that synergistic functions achieve better
generalization, providing a fundamental justification for why deep networks should learn
representations that combine inputs synergistically rather than processing them independently.
The GIB framework addresses several longstanding limitations of the original IB. First, we
proposed a PMI-based reweighting scheme Q(Z,Y") that protects the compression term
from becoming infinite during training. Second, we have introduced a feature-wise synergy
decomposition, explicitly penalizing representations that rely too heavily on individual
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a) Train/Test Loss Comparison by Adversarial Strength
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Figure 7: Information dynamics under adversarial attacks on MNIST. (a) Training dynamics
for three FGSM attack strengths. (b) Information-theoretic analysis comparing IB versus
GIB. GIB’s complexity term correctly reflects degradation in generalization, while standard
IB fails to differentiate between attack strengths. See Appendix E.6 for details.

features or simple feature combinations. This ensures that our formulation highlights when
networks learn patterns that emerge solely through the collective processing of multiple
inputs, a distinction that is crucial for robust generalization. Our experimental results
across diverse architectures demonstrate that GIB provides a more complete picture of how
deep networks process information. The GIB framework opens new possibilities for both
understanding and improving deep learning systems.
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A NOTATION TABLE

Table 1 contains all the mathematical notation used in this paper.

Table 1: Summary of Notational Conventions.

Symbol Description

X Set of input random variables (features)
Xt i-th individual input feature _
X All features except the i-th feature: X'\ {X'}

Target random variable (labels)
Output/prediction random variable
Hidden representation/latent space
Noise random variable

Number of input features

Trade-off parameter in IB formulation
Mutual information

) Entropy

1) Conditional entropy

) Probability distribution

(Z,Y) PMlI-based reweighted distribution
Variable sampled from Q(Z,Y)
Syn(-) Synergy measure

QOTII=E®=2" AN

sT,s™ More/less synergistic functions

1B Information Bottleneck

GIB Generalized Information Bottleneck
MI Mutual Information

NN Neural Network

PMI Point-wise Mutual Information
PID Partial Information Decomposition

FGSM Fast Gradient Sign Method

B PROOF OF THEOREM 1

In this section we prove Theorem 1. To do this, we assume that we have perfect training
performance and therefore Q(Y,Z) =Y = Z. We also assume the predictor is deterministic
given its input (as in a standard feed-forward network), hence H(Z|X) = 0 and therefore

I(X;2)=H(Z). (7)
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Proof. Given this, our GIB formulation becomes:

N
Lam = 1(Z;Y) = =3 (I(Xx~Q) + I(X';Q)) (8)

N

I(X;Y) — % Z (I(X™52)+1(X% Z))  (since I(X;Y) < H(Y)) (10)
. v

I(X;Y) - TZ(H(Z%LH(Z)) (by I(4; B) < H(B)) (11)
) —

I(x;Y) M—N-N-ZH(Z) (12)
~1(X:Y) = 3H(2) (13)
:I(X;Y)—%I(X;Z) (by Eq. 7, H(Z|X) = 0) (14)
>I1(X;Y) — %I(X; T) (by data processing, X — T — Z) (15)

T;Y)— %I(X; T) (by data processing, ¥ =T —Y). (16)

We obtain: )

I(T:Y) - BI(X;T) < Lcis
which shows that the original IB objective is upper bounded by the proposed GIB under the
stated assumption. O

C GIB AND SUFFICIENT STATISTICS

In this section, we show that when the first term in the GIB objective is I(Z;Y), the GIB
recovers sufficient statistics in the limit 5 — oco.

Theorem 2. For § € (0,00], consider the GIB functional

N
To(Pyix) = 1(2:Y) Z( Q) +1(X5Q)).

Then at B = oo,
sup Joo = sup I(Z;Y) < H(Y).

Pz x Pz x
Moreover, equality holds (i.e., supp, 1(Z;Y)=H(Y)) if and only if Y is a deterministic
function of Z, equivalently H(Y | Z) = 0. In this case, Z is a sufficient statistic.

Proof. At 8 = oo, the penalty term vanishes and therefore Joo = I(Z;Y’). By the elementary
information inequality I(Z;Y) < H(Y') for all encoders Pz x, we have

sup Joo = sup I(Z;Y) < H(Y).

Pz x Pz x

If for some encoder we have H(Y | Z) =0, i.e. Y is a deterministic function of Z, then
I(ZY)=H(Y)-H(Y | 2)=H(),

and the upper bound is achieved.
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Conversely, if I(Z;Y) = H(Y) for some encoder, then
HY | Z)=H(Y)-I1(Z;Y) =0,
so Y must be a deterministic function of Z.

Thus, at 8 = oo, maximising J,, recovers precisely the set of encoders for which Z is a
sufficient statistic for Y. O

D WHEN GIB ENCOUNTERS INFINITY

In this section, we analyze the conditions under which our GIB formulation yields infinite
values and show that, unlike standard IB, these infinities have meaningful interpretations.
Theorem 3. Let X = (X',...,X") be a feature vector and let Y be a continuous random
variable. Assume that the representation Z achieves perfect prediction of Y in the sense that
I(Z;Y) = co. Assume further that no individual feature X* nor its complement X% alone
yields an infinite mutual information with the PMI variable Q, in the sense that

N
1 —i i
NZ (I(X Q)+ I(X ;Q)) < o0,
i=1
where Q 1s the point-wise mutual information random variable. Then Laip = oo.

Proof. By definition,
N
1 —i. i
Low =1(Z:Y) = 5o ; (150 + 1(x%.Q)).
By assumption, I(Z;Y) = oo, while the sum is finite. Hence, in the extended real line,
L = oo — (finite) = oo.
O

Interpretation of Infinities in GIB. In contrast to the standard IB, where infinities arise
as technical artifacts of deterministic mappings between continuous variables, the infinities
in the GIB functional admit a more structural interpretation.

When Lgp = oo, we are in a regime of perfect synergy: the output Y can be recovered from
the full feature set (via Z), yet no individual coordinate or coordinate subset carries enough
information to reconstruct the relevant PMI signal. In other words, all features are jointly
essential. This corresponds to the ideal synergistic regime.

Conversely, if some feature X? or complement X'~ can alone perfectly determine Y, then
the corresponding term I(X% Q) or I(X~% Q) becomes infinite, making the entire penalty
infinite. In this case, the GIB takes the form

00 — 00,
which is indeterminate. This suggests that prediction is not synergistic, as the output can
be reconstructed from a sufficiently informative subset of the features.

Thus, while both IB and GIB encounter infinities in the continuous setting, the GIB admits a
meaningful interpretation: an infinite value corresponds precisely to perfect synergy, whereas
the indeterminate case reflects the absence of synergy.

E EXPERIMENTAL SETTINGS

E.1 SYNTHETIC SYNERGY EXPERIMENT

Data Generation. For each input dimension n € {2, ..., 10}, we generate N = 10% samples.
Each sample consists of a binary input vector X € {0,1}" with i.i.d. Bernoulli(0.5) entries.
We apply a “force-to-1” noise model: with probability pai, = 1/3, we randomly select one
coordinate ¢ ~ Uniform{1,...,n} and set X/ = 1, leaving all other coordinates unchanged.
With probability 2/3, no modification is made (X’ = X). The noise pattern is encoded as
e €{0,1,...,n}, where 0 indicates no flip and ¢ > 0 indicates coordinate ¢ was forced to 1.
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Functions. We examine three deterministic functions of increasing synergy applied to the
noisy input X’:

e Non-synergistic: f1(X’) = X} (output depends only on first input)
e Partially synergistic: f2(X') = X1 @ X} (XOR of first two inputs)
e Highly synergistic: f3(X’) = @), X/ (XOR of all inputs)

MI Estimation. Since all variables are discrete, we compute exact MI using empirical
probability distributions with base-2 logarithms.

E.2 CIFAR-10 SYNERGY WITH AUGMENTATION

Architecture and Training. We train ResNet models of depths {20, 32, 44, 56, 68, 80,
92, 110} on CIFAR-10. Each architecture follows the standard ResNet design for CIFAR
with initial 3 X 3 convolution, three residual stages, global average pooling, and a final 10-way
linear classifier. Models are trained with SGD (learning rate 0.1, momentum 0.9, weight
decay 5 x 10~%) for 200 epochs with batch size 256. Learning rate is reduced by a factor of 0.1
at epochs 100 and 150 using MultiStepLR scheduler. Standard data augmentation consists
of random crops (32 x 32 with padding 4) and horizontal flips applied during training.

Teacher-Student Framework. To quantify synergy with augmentation noise, we employ
a two-stage approach. First, a teacher network is trained as described above on augmented
data. After training, we collect the teacher’s softmax outputs on the augmented training set.
We then train a student network of identical architecture to predict these teacher outputs
from non-augmented inputs. The student is trained for 200 epochs using the same SGD
configuration (Ir=0.1, momentum=0.9, weight decay=5 x 10~%) with MultiStepLR milestones
at epochs 100 and 150. The student minimizes cross-entropy loss between its predictions
and the teacher’s softmax targets.

Synergy Measurement. We compute the marginal entropy of teacher predictions as
H(Y) = —E[(pteacher l0g Pteacher)] Where the expectation is over all augmented training
samples. The conditional entropy is estimated as the final cross-entropy loss achieved by
the converged student model. The synergy ratio I(f(X,¢e);e|X)/I(f(X,¢e); X,e) (which can
be re-written as the final loss of the student divided by the total entropy) quantifies the
proportion of the teacher’s output entropy that cannot be predicted from clean images alone,
requiring knowledge of the augmentation pattern.

E.3 SiMPLE FUNCTIONS

Network Architecture. All networks consist of a single hidden layer with specified units,
followed by a linear output layer. No bias terms, regularization, or normalization are used.
Weights are initialized using PyTorch’s default settings, namely Kaiming uniform for the
hidden layers and uniform initialization for the output layer.

Target Functions and Architectures. The target functions and architectures considered
in our evaluation are the following:

e Addition: f(a,b) = a + b, 2 inputs — 4 hidden units (identity activation) — 1
output;

e Multiplication: f(a,b) = a x b, 2 inputs — 3 hidden units (square activation: z2)
— 1 output;

e Symmetric polynomial 1 (f1): f(a,b,c) = ab+ bc+ ca, 3 inputs — 16 hidden units
(square activation: z?) — 1 output;

e Symmetric polynomial 2 (2): f(a,b,c) = a? + b? + ¢, 3 inputs — 8 hidden units
(square activation: x?) — 1 output;

e Symmetric polynomial 3 (f3): f(a,b,c,d) = ab+ bc+ cd + da, 4 inputs — 16 hidden
units (square activation: x2) — 1 output.
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Training Details. Networks are trained with standard gradient descent (no momentum)
with learning rate 0.01 for 1000 epochs, minimizing mean squared error (MSE) loss. Training
data consists of 1500 samples uniformly sampled from [—10, 10]™ for all functions except addi-
tion, which uses [0, 10]%. Test data uses 1500 samples from the extended range [—1000, 1000]"
to evaluate extrapolation. MI is computed every 10 epochs using histogram binning with 40
bins. We get our binning estimation technique from Saxe et al. (2018).

E.4 RESNETS oN CIFAR-10

Architecture. We use standard ResNet architectures for CIFAR-10 with depths {20,
56, 80, 110}, implemented with BasicBlocks. Each network has an initial 16-filter 3 x 3
convolution, followed by three stages with {16, 32, 64} filters respectively, global average
pooling, and a 10-way linear classifier.

Training. Models are trained on CIFAR-10 (50k train, 10k test) with SGD (momentum
0.9, weight decay 5 x 1074, initial learning rate 0.1) for 200 epochs with batch size 128.
Learning rate decays by 0.1 at epochs 100 and 150. Standard augmentation includes random
crops (32 x 32, padding 4) and horizontal flips. No additional preprocessing is applied beyond
standard CIFAR normalization.

MI Estimation. For standard IB, we compute MI between the 10-dimensional logit vector
T (pre-softmax outputs) and targets Y. For GIB’s input decomposition, we first apply
Kernel PCA with RBF kernel (gamma=1/3072) to reduce the 3072-dimensional flattened
images to 50 principal components. MI is computed at each epoch using the first 5000
training samples with histogram binning (30 bins). For IB: I(7;Y) using the 10-dimensional
logits. For GIB: synergy decomposition using the 50 PCA components as features.

E.5 BERT oN AG NEwS

Model Configuration. BERT-base-uncased (12 layers, 768 hidden dimensions, 12 atten-
tion heads) fine-tuned for 4-way AG News classification (World, Sports, Business, Sci/Tech).
The dataset contains 120,000 training and 7,600 test examples. Maximum sequence length is
128 tokens with padding.

Training Protocols. The training protocols used in our evaluation are the following:

e Standard Fine-tuning: Direct fine-tuning from pre-trained BERT weights for 3
epochs.

e Unlearning 4+ Fine-tuning: 3 epochs of training with randomly shuffled labels
(maintaining class balance), followed by 3 epochs of standard fine-tuning.

Optimization. Both protocols use AdamW optimizer with learning rate 2 x 10~° and
weight decay 0.01, batch size 32. No learning rate warmup or scheduling is applied. Training
uses cross-entropy loss over the 4 classes.

MI Computation. MI is computed 24 times per epoch (approximately every 200 batches)
using 5000 training samples. For standard 1B, we use the 4-dimensional logit vector T from
the classification head. For GIB, we use the raw 128-dimensional token ID sequences as
input features X (no PCA is applied). MI estimation uses histogram binning with 30 bins.

E.6 ADVERSARIAL ROBUSTNESS

Architecture. 4-layer fully-connected network: 784 — 1024 — 20 — 20 — 20 — 10, with
tanh activations after each hidden layer and softmax output.

Adversarial Training. FGSM attacks are applied to every training example in each batch:
Zadv = x + € - sign(VL(f(x),y)) where € € {0.01,0.1,1.0}. Perturbed inputs are clipped to
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[0,1]. The training loss is the average of clean and adversarial losses: £ = (Lejean + Ladv)/2-
No validation set or early stopping is used.

Training Details. Networks are trained for 10,000 epochs using Adam optimizer with
learning rate 1072. MI is computed every 250 epochs between inputs and the final 20-
dimensional hidden layer activations using histogram binning (30 bins).

F ALTERNATIVE MI ESTIMATION USING GCMI AND KDE

To validate the robustness of our findings, we repeated our experiments using two alternative
MI estimation methods: Gaussian Copula Mutual Information (GCMI) and Kernel Density
Estimation (KDE). These methods offer different trade-offs between computational efficiency
and estimation accuracy compared to our primary histogram binning approach.

F.1 KEgRNEL DENsITY EsTiMATION (KDE)

KDE (Parzen, 1962) estimates probability densities using kernel functions centered at each
data point, then computes MI from these continuous density estimates. We use Gaussian
kernels with bandwidth selected via Scott’s rule (Scott, 1992). While computationally more
intensive than GCMI (O(n?) for n samples), KDE provides non-parametric estimates that
can capture arbitrary distribution shapes without assuming specific parametric forms. This
flexibility makes KDE particularly suitable for complex, multi-modal distributions that might
arise in neural network representations.

F.1.1 ActIivaTiON FUNCTION COMPARISON
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Figure 8: Information plane dynamics across activation functions using KDE estimation.
The non-parametric nature of KDE reveals fine-grained dynamics in the information plane
trajectories.

Figure 8 displays information plane dynamics using KDE estimation. The GIB formulation
(pink) again shows compression phases across all activation functions. Standard IB (blue)
fails to show any compression.

F.1.2 SIMPLE MATHEMATICAL FUNCTIONS

Figure 9 shows KDE-based MI estimation for simple function learning. The GIB formulation
exhibits clear compression phases for all functions. Although, this can also be accompanied
by a stage of decompression. Standard IB shows more erratic behavior, generally moves
upward and leftward but in less distinct phases.
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Figure 9: Information plane dynamics for simple mathematical functions using KDE estima-
tion. The method provides sharp phase transitions despite increased trajectory variance.

F.1.3 RESNET INFORMATION DYNAMICS
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Figure 10: Information plane dynamics for ResNets on CIFAR-10 using KDE estimation.

Figure 10 reveals the first significant divergence in interpretation between the GIB results
obtained using binning versus KDE. Under KDE estimation, neither GIB nor IB exhibits
interpretable information bottleneck dynamics.

F.1.4 BERT FINE-TUNING DYNAMICS
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Figure 11: Information plane dynamics for BERT fine-tuning using KDE estimation.
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In Figure 11, our results realign with the interpretation presented in the main text. Following
the unlearning phase, we observe a rapid initial fitting step succeeded by a prolonged, gradual
(and less pronounced) compression phase. These dynamics are evident for both IB and GIB.

F.2 GAussiaAN CorPULA MUTUAL INFORMATION (GCMI)

GCMI (Ince et al., 2017) estimates MI by first transforming variables to have standard
Gaussian marginals using the Gaussian copula, then computing MI under the Gaussian
assumption. This approach is particularly effective for continuous variables with complex,
potentially non-linear relationships. The method is computationally efficient (O(n log n) for
n samples) and provides robust estimates even for high-dimensional data. Unlike histogram
binning, GCMI does not require discretization parameters and automatically adapts to the

data distribution.
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Figure 12: Information plane dynamics across activation functions using GCMI estimation.
Standard IB (blue) and GIB (pink) trajectories for networks trained on synthetic tasks
S0-S4.

Figure 12 presents information plane dynamics using GCMI estimation across five activation
functions. Under this estimator, both methods frequently exhibit compression phases.
However, GIB often displays a subsequent decompression phase, characterized by a rightward
shift in the later stages of training.

F.2.2 SIMPLE MATHEMATICAL FUNCTIONS

Figure 13 presents results for networks learning arithmetic and polynomial functions using
GCMI estimation. While the dynamics of both methods are not easily interpretable, the GIB
formulation demonstrates upward leftward movement, indicating the occurrence of fitting
and compression but they are occurring at once rather than in distinct phases. In contrast,
standard IB shows variable behavior with limited evidence of compression.

F.2.3 RESNET INFORMATION DYNAMICS

In Figure 14, we observe that neither the IB nor the GIB yields interpretable results.

F.2.4 BERT FINE-TUNING DYNAMICS

Figure 15 likewise shows that the dynamics produced by both the IB and GIB are not
interpretable.
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Figure 13: Information plane dynamics for simple mathematical functions using GCMI
estimation.
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Figure 14: Information plane dynamics for ResNets on CIFAR-10 using GCMI estimation.

F.3 SumMmMARYy oF GCMI AND KDE RESULTS

In this section, KDE provides strong validation for our main findings. For the KDE
method, our GIB formulation consistently shows compression phases where standard IB fails,
particularly for different activation functions and simple arithmetic. Meanwhile, the effect is
less pronounced for GCMI, but compression remains more likely than for the standard IB.
This consistency across three fundamentally different MI estimation approaches (binning,
GCMI, and KDE) strongly supports our theoretical framework. The fact that synergy-based
decomposition reveals consistent information dynamics across estimation methods suggests
that GIB captures a fundamental aspect of how neural networks process information during
learning.

G COMPUTATIONAL COMPLEXITY

The computational requirements of GIB and IB differ significantly in their scaling behavior.
If we define our unit of computation as a single MI estimation, GIB requires 2N + 1
calculations: more specifically, one for the prediction term I(Z;Y) and 2N for the complexity
term (computing I(X % Q) and I(X?%; Q) for each feature). Critically, these calculations occur
at the input layer where dimensionality is typically highest, for CIFAR-10, this means 3072
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Figure 15: Information plane dynamics for BERT fine-tuning using GCMI estimation.

features. However, GIB’s computational cost is independent of network depth, since it only
considers input-output relationships. In contrast, standard IB requires 2L MI calculations for
L layers, computing I(X;7;) and I(7;;Y) at each layer. While one might compute IB only
for the final layer where dynamics are often most pronounced, this prevents the use of the IB
as a tool for understanding learning dynamics throughout the network. Additionally, GIB
benefits from a key advantage: we can apply PCA to high-dimensional inputs (as we do for
CIFAR-10 in Section 5.2) because features at the input layer share a common representation
space (Turk & Pentland, 1991). Conversely, combining representations across layers for IB is
less conventional.

H ErreEcT oF PCA DIMENSIONALITY ON GIB DYNAMICS
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Figure 16: GIB information plane dynamics for ResNets with varying PCA dimensionality.
Each subplot shows results for KPCA with 25 (left) versus 100 (right) components (C’s). As
dimensionality increases, compression phases become more pronounced.

Figure 16 demonstrates the impact of PCA dimensionality on observed GIB dynamics. With
only 25 principal components, the dynamics are erratic and noisy. However, as we increase to
50 components (shown in main results) and then to 100 components, the dynamics become
less noisy. This progression suggests that capturing synergistic information requires sufficient
dimensionality to represent the complex feature interactions present in the original input
space.
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I SuM VERSUS WHOLE SYNERGY FORMULATION

I.1 SuM-VERSUS-WHOLE SYNERGY

In this section, we examine an alternative formulation of synergy based on sum versus whole
synergy rather than our feature-wise approach. Due to the increased noise in this estimation
method, all MI values are averaged over 50 iterations to obtain stable measurements.

This alternative definition of GIB is based on the sum-versus-whole formulation of synergy,
which compares information available from the complete feature set against the sum of
information from individual components (Schneidman et al., 2003). The basic form is
Syngp(X = Y) = I(X;Y) — Zivzl (I(X*%Y)), which considers only individual features.
This captures the intuitive notion of synergy, for example, XOR has zero information from
individual inputs but perfect information from their combination, yielding maximal synergy
(Bell, 2003). Unlike exponentially complex PID-based measures (Williams & Beer, 2010), this
formulation requires only O(N) mutual information calculations, making it computationally
feasible for tracking synergistic learning dynamics in high-dimensional neural networks .
Combining this with our representation of the PMI-weighted combination of Z and Y and
rewriting as a Lagrangian optimization we get the following:

N
L = max I(Z;Y) —-p~1Yy I(X% 17
svw = e | L(ZY) =71 1(X5Q) (17)

prediction term

complexity term

In the following section, we compare the outcomes of tracking this optimization with those
obtained from the approach introduced in the main paper.

1.2  AcTIivAaTION FUNCTION COMPARISON
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Figure 17: Information plane dynamics comparing the alternative synergy bottleneck (SVW,
blue) with our GIB (pink) across multiple activation functions. While SVW shows compres-
sion phases more frequently than standard IB, it exhibits less consistent compression than
our feature-wise GIB formulation. MI values averaged over 50 iterations.

Figure 17 shows that the alternative synergy formulation (SVW) improves upon standard 1B
by exhibiting compression phases in several cases where IB fails. However, the compression
is less pronounced and less consistent across activation functions compared to our feature-
wise GIB. This suggests that while any synergy-based decomposition provides benefits over
treating the latent space as a black box, the specific choice of synergy might impact the
observability of information dynamics.
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1.3 SIMPLE MATHEMATICAL FUNCTIONS
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Figure 18: Learning dynamics for simple mathematical functions. The alternative synergy
bottleneck (SVW) consistently shows compression phases across all functions, significantly
outperforming standard IB.

For NNs learning simple mathematical functions (Figure 18), the alternative synergy formu-
lation consistently exhibits compression phases across all tasks. This represents a substantial
improvement over standard IB, which shows no compression for these functions.

1.4 RESNET INFORMATION DYNAMICS
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Figure 19: ResNet information dynamics on CIFAR-10. The alternative synergy bottleneck
(SVW) shows distinct compression and non-compression phases, providing clearer learning
dynamics than standard approaches while exhibiting more variability than our feature-wise
GIB.

Figure 19 shows that the alternative synergy formulation reveals distinct phases in ResNet
training.

1.5 BERT FINE-TUNING DYNAMICS
The first notable limitation of the alternative synergy formulation appears in transformer

fine-tuning (Figure 20). The SVW method fails to exhibit compression phases for BERT on
the AG News classification task, even after our unlearning intervention. In contrast, our GIB
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Figure 20: BERT fine-tuning with the alternative synergy bottleneck. Unlike our GIB
formulation, SVW fails to show compression phases for both standard fine-tuning and the
unlearning protocol, suggesting inherent limitations in capturing synergistic dynamics in
transformer architectures.

formulation clearly reveals compression dynamics. This discrepancy suggests that variance-
weighted synergy measures may struggle to capture the high-dimensional, attention-based
computations characteristic of transformers.

1.6 SUMMARY

The alternative synergy formulation serves as a useful baseline, showing that synergy-based
approaches generally outperform standard IB.
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