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ABSTRACT

The Information Bottleneck (IB) principle offers a compelling theoretical frame-
work to understand how neural networks (NNs) learn. However, its practical utility
has been constrained by unresolved theoretical ambiguities and significant chal-
lenges in accurate estimation. In this paper, we present a Generalized Information
Bottleneck (GIB) framework that reformulates the original IB principle through the
lens of synergy, i.e., the information obtainable only through joint processing of
features. We provide theoretical and empirical evidence demonstrating that syner-
gistic functions achieve superior generalization compared to their non-synergistic
counterparts. Building on these foundations we re-formulate the IB using a com-
putable definition of synergy based on the average interaction information (II) of
each feature with those remaining. We demonstrate that the original IB objective is
upper bounded by our GIB in the case of perfect estimation, ensuring compatibility
with existing IB theory while addressing its limitations. Our experimental results
demonstrate that GIB consistently exhibits compression phases across a wide range
of architectures (including those with ReLU activations where the standard IB
fails), while yielding interpretable dynamics in both CNNs and Transformers and
aligning more closely with our understanding of adversarial robustness.

1 INTRODUCTION

Deep learning has achieved remarkable practical success, yet our theoretical understanding
of how neural networks learn effective representations remains incomplete (Shwartz-Ziv &
Tishby, 2017). Information theory offers a principled framework for analyzing deep learn-
ing, as information-theoretic quantities are invariant to invertible transformations and provide
interpretable units of measurement (Cover & Thomas, 1991). The Information Bottleneck
(IB) principle, introduced by Tishby et al. (1999), has emerged as a particularly influential
framework for understanding neural network learning dynamics, providing insights into di-
verse phenomena including adversarial robustness (Ma et al., 2021), the effects of dropout
regularization (Achille & Soatto, 2018), and generalization bounds (Kawaguchi et al., 2023).
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Figure 1: This schematic illustrates information
plane dynamics during training, with trajectories
color-coded from early epochs (light colors) to late
epochs (dark purple), showing distinct fitting and
compression phases.

Through this interpretation, the activations of
our network can be viewed as a hidden state
representation T , which converges to a set of
statistics captured by two competing terms. The
first term, referred to as the prediction term,
quantifies the mutual information (MI) between
the hidden representation T and the target Y ,
denoted as I(Y ; T )1. It is straightforward to
see that achieving training (and consequently
test) accuracy above random guessing requires
a network whose learned representation is well
aligned with that of the target data. However,
it is well established that optimizing solely for
prediction accuracy can lead to overfitting. Con-
sequently, the IB framework introduces a second

1For the mathematical notation used throughout this paper, see Appendix A.
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term: the complexity term I(X ; T ), which quantifies the mutual information between the input data
X and the hidden representation. Optimizing this less intuitive term can be interpreted as an effort to
minimize redundant and irrelevant information from the input that is encoded in the latent space.

Overall, the IB framework posits that deep neural networks learn by solving the following Lagrangian
optimization problem:

LIB = max
p(T |X )

 I(T ;Y )︸ ︷︷ ︸
prediction term

−β−1I(X ; T )︸ ︷︷ ︸
complexity term

 (1)

Shwartz-Ziv & Tishby (2017) suggested that the success of deep learning can be attributed to the
ability of NNs to perform the aforementioned optimization problem in two distinct phases. First,
a fitting phase, where both of the two introduced terms increase, and second a compression phase,
where the complexity term decreases in size (refer to Figure 1 for a visual illustration of these
processes). It was argued that this second compression phase was unique to deep models and helped
explain their generalizability. In some cases, the flow of information through the latent space has
been shown to align precisely with the IB’s theoretical predictions (Shwartz-Ziv & Tishby, 2017).

While the IB framework initially seemed to provide a complete explanation of how neural networks
balance compression and predictive accuracy, Saxe et al. (2019) presented counterexamples that
challenge this view. In particular, the authors showed that compression phases depend critically on
the choice of activation function: networks with tanh activations exhibited compression across all
layers, whereas ReLU-based networks did not. Despite the absence of a compression phase, the
ReLU networks still generalized well. According to Goldfeld et al. (2019), this occurs because the
complexity term in deterministic networks is theoretically constant or infinite, rendering compression
impossible. Consequently, the compression observed in tanh networks was not a genuine information-
theoretic effect, but rather the result of injected randomness (Saxe et al., 2019; Shwartz-Ziv & Tishby,
2017; Geiger, 2022).

In this paper, we address these issues by introducing a generalized formulation of the IB framework
that is grounded in synergy. Synergy, a concept from multivariate information theory, captures
the extra predictive power that arises when inputs are considered together rather than in isolation
(Williams & Beer, 2010). To motivate this perspective, we begin by asking: why synergy? We then
present both theoretical arguments and empirical results showing that synergistic functions lead to
improved generalization.

Having established that synergistic functions generalize better, we construct the GIB by reformulating
the IB through the lens of synergy. First, we introduce a point-wise mutual information (PMI)-based
reweighting scheme that ensures we measure synergy specifically for correct predictions rather than
arbitrary outputs. We then combine this reweighting with our feature-wise synergy decomposition,
which uses the interaction information (II) to quantify information available only through joint
processing of all features. Finally, we cast this as a Lagrangian optimization problem, yielding
our GIB objective that measures how synergistically the input features combine to describe correct
outputs.

After deriving the GIB, we prove that, under perfect estimation, it can be lower bounded by the
IB. Importantly, our formulation overcomes key theoretical limitations of standard IB, including
the issue of infinite complexity terms. We demonstrate that GIB exhibits clear compression phases
and interpretable learning dynamics across a wide range of scenarios where standard IB fails. In
Figure 2, we revisit the experiments presented in Saxe et al. (2019) and show that the GIB displays
compression phases for five different activation functions while the IB is limited to one2. Beyond

2Reading Information Planes Plots. Throughout, we visualize information dynamics using information
plane plots. In these plots, the x-axis represents the complexity term and the y-axis represents the prediction term.
For standard IB, these are I(X ; T ) and I(T ;Y ), respectively. For the full formulation of the GIB, see Section 3.
Trajectories are color-coded by training epoch, progressing from early training (dark pink/blue) to late training
(light green/yellow). Blue trajectories correspond to the standard IB dynamics, whereas pink trajectories depict
the dynamics under our GIB formulation. Movement leftward indicates compression (reduction of redundant
information), while movement upward indicates improved prediction. For the IB we only report the information
plane of the final layer as this is where compression dynamics are most readily observed. Meanwhile, the GIB
is formulated based on inputs and therefore only produces one information plane per training. For clarity of
presentation, we normalize the complexity term and prediction term results between 0 and 1.
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Figure 2: Information plane dynamics across multiple activation functions, extending Shwartz-Ziv &
Tishby (2017) and Saxe et al. (2019) beyond tanh and ReLU to include softplus, swish, and leaky
ReLU. Standard IB (blue) shows compression only for tanh; GIB (pink) shows compression for all
activation functions. Each column represents one seed.

these synthetic examples, we observe consistent information dynamics in practical deep learning
settings including ResNets on CIFAR-10 and BERT fine-tuning. Furthermore, the complexity term in
our framework provides meaningful insights into model behavior under adversarial attacks, correctly
tracking vulnerability where standard IB fails. Code for full reproducibility of these results will be
made publicly available upon publication.

2 RELATED WORK

MI Estimation. MI estimation in the IB framework remains an active area of research and debate.
Numerous estimators exist (e.g., k-nearest-neighbor (kNN) methods (Kozachenko & Leonenko, 1987;
Kraskov et al., 2004), and kernel-density approaches (Kandasamy et al., 2015; Han et al., 2017)),
and trainable neural estimators (Belghazi et al., 2018)), yet many information-theoretic studies of
deep networks (Shwartz-Ziv & Tishby, 2017; Saxe et al., 2019) discretize neuron outputs (“binning”)
to approximate MI. Binning is simple and fast, but even moderate coarse-graining can introduce
substantial estimation error (Goldfeld et al., 2019). Despite these limitations, we use binning because
MI estimates are needed throughout training (e.g., at each epoch); running kNN, KDE, or variational
estimators at this frequency would be prohibitively slow and numerically unstable in high-dimensional
settings. Our goal is to track relative trends in MI rather than obtain exact differential values, and
binning provides a tractable, reproducible proxy that makes per-training-step MI monitoring feasible.

Other Generalizations of the Information Bottleneck. There exist many extensions of the IB
framework that move beyond the original two-variable setting. For instance, the Variational IB
introduces stochastic neural parameterizations to scale IB to deep networks (Alemi et al., 2017),
while Information Dropout applies a neuron-wise IB-like penalty to improve generalization (Achille
& Soatto, 2018). More recent work has drawn connections between IB and the framework of Partial
Information Decomposition (PID), with Kolchinsky et al. (2019); Kolchinsky (2024) showing that
redundancy can be isolated via an IB-style optimization. However, the work most closely related
to ours is the multivariate IB of Friedman et al. (2001), which explicitly captures structure within
the latent space by introducing multiple bottleneck variables and using graphical models to specify
both compression and preservation relations among them. This enables the IB to consider how inputs
interact to describe latent representations. While Friedman et al. (2001) multivariate IB captures
statistical dependencies between multiple bottleneck variables, it does not explicitly quantify or
optimize for synergistic information processing. Our approach fundamentally differs by directly
measuring the information available only through collective feature processing, which we posit is key
to understanding generalization in deep networks.

Synergy. Synergy characterizes the additional information obtained by evaluating variables col-
lectively rather than individually, quantifying how features interact to reduce uncertainty about a
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target. The characteristics of this relationship can be illustrated by means of the XOR function.
Consider two binary string variables, X1 and X2, with Z being their XOR output. In this scenario,
X1 and Z, as well as X2 and Z, are uncorrelated (I(X1;Z) = I(X2;Z) = 0), but together, X1 and
X2 fully describe Z (I(X1, X2;Z) = H(Z)) (Guyon & Elisseeff, 2003; Williams & Beer, 2010).
While the concept is intuitive, its formalization has proven challenging, leading to multiple proposed
measures. Early work by Williams & Beer (2010) introduced PID, which decomposes MI into unique,
redundant, and synergistic components. However, the number of terms in this decomposition equals
the n− 1’th Dedekind number, where n is the number of features. This number is impractically large:
a system with nine variables would require approximately 5× 1022 terms, while for ten variables, the
Dedekind number remains unknown. Moreover, estimating these terms is subject to convergence
issues and size limitations (Makkeh et al., 2018; 2019; Pakman et al., 2021). While Varley & Hoel
(2022) reduced the number of investigable quantities by averaging contributions of layers in the
PID lattice, with different layers representing different levels of redundancy or synergy, calculations
remained too complex for applications involving more than a few features. Alternative measures
such as O-information (Rosas et al., 20019), correlational importance (Nirenberg & Latham, 2003),
and synergistic MI (Griffith & Koch, 2014) can estimate the synergy or redundancy of large sets of
variables, but fail to reveal whether a specific feature interacts synergistically or redundantly. We
resolve these issues by averaging the interaction information of each feature with those remaining:

Syn(X → Y ) = I(X ;Y )− 1

N

N∑
i=1

(
I(X−i;Y ) + I(Xi;Y )

)
(2)

where X−i = X \ {Xi}. This formulation captures how features collectively reduce uncertainty
about the target Y , while maintaining computational feasibility by avoiding the exponential explosion
of subset calculations (Westphal et al., 2025).

3 THE GENERALIZED INFORMATION BOTTLENECK

We now introduce the GIB, by first showing that, given two functions with identical mutual in-
formation (MI) with noisy training data, the function exhibiting higher synergy achieves tighter
generalization bounds. This result motivates the principle that synergistic functions generalize better
than non-synergistic ones, and thus learning should favor synergy. At the same time, we emphasize
that functions must also be correct. To capture this, we introduce a distribution that prioritizes accurate
predictions. The final formulation of the GIB therefore maximizes the synergistic contribution of the
inputs in describing this distribution.

3.1 SYNERGY AND GENERALIZATION

In this subsection, we formally establish the connection between synergy and generalization. We
begin by presenting theoretical results supported by experiments on synthetic data, and then extend
the discussion to empirical findings on ResNets.

3.1.1 THEORETICAL EVIDENCE

Let us first suppose we have some noise ε that can be considered independent of our input data X .
Now consider two functions s− and s+. If s+ combines the independent components of its arguments
in a more synergistic manner than s−, by definition we have:

I(s+(X , ε);X , ε)− I(s+(X , ε); ε)− I(s+(X , ε);X ) >

I(s−(X , ε);X , ε)− I(s−(X , ε); ε)− I(s−(X , ε);X ).
(3)

If we now assume that I(s+(X , ε);X , ε) = I(s−(X , ε);X , ε) (which can crudely be thought of as
approximately equal train accuracies) then it must be true that:

I(s+(X , ε); ε) + I(s+(X , ε);X ) < I(s−(X , ε); ε) + I(s−(X , ε);X ) (4)

where I(s(X , ε); ε) represents the MI between the output of a function and the noise, while
I(s(X , ε);X ) describes the information shared between the output and uncorrupted input. In Figure
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a) b)

Figure 3: Synergistic processing of noise enhances generalization. (a) Controlled synthetic exper-
iment demonstrating how synergy affects information flow (see Appendix E.1 for details). Three
functions of increasing synergy process binary inputs with noise: non-synergistic (blue), partially
synergistic (green), and highly synergistic (magenta). Left: I(f(X, ε); ε): more synergistic functions
have lower dependence on noise. Right: I(f(X, ε);X) - we observe that synergistic functions
have lower MI with the input. (b) Empirical validation on CIFAR-10 using ResNets of vary-
ing depths (see Appendix E.2). We quantify synergistic interactions between inputs and noise as
I(f(X, ε); ε|X)/I(f(X, ε);X, ε). Higher synergy correlates with smaller generalization gaps.

3(a) we analyze the implications of Equation 4 via synthetic data. We show that more synergis-
tic functions for the same complexity of input and output have lower values of both I(s(X , ε); ε)
and I(s(X , ε);X ). This is favorable as both of these terms are known to be inversely related to
generalization capabilities, as discussed below.

How I(s(X , ε);X ) Impedes Generalizability. This quantity can be re-written as the complexity
term of the IB, reducing its value has repeatedly been shown to be related to compression and gener-
alization (Tishby et al., 1999; Shwartz-Ziv & Tishby, 2017). High values of this term ensure a latent
representation that has memorized irrelevant and redundant information in the input. Furthermore,
recent work has formally related this quantity to generalization bounds (Kawaguchi et al., 2023).

How I(s(X , ε); ε) Impedes Generalizability. The relationship between noise sensitivity and
generalization is fundamentally tied to function smoothness. Most generalization bounds require
that the learned function be Lipschitz smooth, meaning there exists a constant L such that ∥f(x1)−
f(x2)∥ ≤ L∥x1 − x2∥ for all inputs. This constraint ensures the function’s output changes at most
proportionally to input perturbations. When a function has high mutual information with noise
I(s(X , ε); ε), it indicates the output varies significantly with small noise perturbations, implying a
large Lipschitz constant. As shown by Bartlett et al. (2017) and Neyshabur et al. (2017), generalization
bounds scale with the Lipschitz constant of neural networks, which can be bounded by the product of
layer-wise spectral norms. Therefore, functions with lower I(s(X , ε); ε) exhibit smaller Lipschitz
constants and tighter generalization bounds, explaining why synergistic functions that minimize noise
sensitivity achieve superior generalization.

3.1.2 EMPIRICAL EVIDENCE

To empirically validate our theoretical findings, we conducted experiments examining how synergistic
processing of noise affects generalization in deep NNs. We trained ResNet models of varying depths
(20, 32, 44, 56, 68, 80, 92, and 110 layers) on CIFAR-10 with standard data augmentations. To
quantify synergy with augmentation noise, we developed a novel teacher-student framework: a
teacher model trained with augmentations (random crops and horizontal flips) teaches a student
model to predict its outputs from non-augmented inputs. The cross-entropy loss achieved by the
student provides a maximal upper bound for the proportion of information between inputs and
outputs that cannot be explained without considering the interaction of noise and features, formally:
I(f(X, ε); ε|X)/I(f(X, ε);X, ε).

Our results, shown in Figure 3(b), reveal a strong negative correlation (Pearson r = −0.79, p < 0.001)
between this synergy measure and generalization performance across all model configurations.
Models with higher synergy (those whose predictions depend more on the interaction between
image content and augmentation patterns) consistently achieve smaller generalization gaps. This
confirms our theoretical prediction: synergistic processing of augmentation noise, rather than treating
it as independent corruption, enables models to extract more robust features that generalize better
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to clean test images. Full experimental details are provided in Appendix E.2. Considering that
to synergistically process noise, we must synergistically process the features, we design our GIB
principle based on measures of feature synergy.

3.2 FORMULATING THE GIB PRINCIPLE

During the last section, we argued that synergistic functions generalize better than their non-synergistic
counterparts. Consequently, we argue that when learning, a deep network should aim to maximize the
synergy of the inputs to produce the outputs. However, this is not a strict enough condition, because
there are many different synergistic functions, most of which are irrelevant to the task at hand. We
instead want to measure how synergistically our inputs combine to give the correct outputs.

To facilitate this, we define a new distribution that, instead of describing Z our output, describes the
co-occurrences of Z with Y . The exact definition of Q(Y,Z) is based on PMI-based reweighting, i.e.,
weighting samples by the likelihood ratio between the joint distribution and the product of marginals:
Q(Z, Y ) = P (Z,Y )

P (Z)P (Y ) . This reweighting scheme emphasizes patterns where Z and Y co-occur more
frequently than would be expected under independence, effectively highlighting the meaningful
dependencies between our learned representations and the target outputs. PMI has proven effective in
capturing meaningful associations in numerous ML contexts: it underlies word2vec’s implicit matrix
factorization (Levy & Goldberg, 2014), drives contrastive learning objectives (van den Oord et al.,
2018), and measures feature relevance in interpretable ML (Bouma, 2009). Combining this definition
with how we earlier defined synergy, we get the following formulation of the GIB:

LGIB = max
p(Z|X)

[Syn(X → Q(Z, Y ))] (5)

= max
p(Z|X)

I(X ;Q(Z, Y ))︸ ︷︷ ︸
prediction term

− 1

2βN

N∑
i=1

(
I(X−i;Q(Z, Y )) + I(Xi);Q(Z, Y ))

)
︸ ︷︷ ︸

complexity term

 (6)

The prediction term (blue) I(X ;Q(Z, Y )) measures the mutual information between all input fea-
tures and the PMI-reweighted distribution, capturing how well the complete feature set predicts
patterns where model outputs and true labels co-occur beyond chance. The complexity term (red)

1
2βN

∑N
i=1

(
I(X−i;Q(Z, Y )) + I(Xi;Q(Z, Y ))

)
inversely quantifies the average information ob-

tainable from individual features or their complements. By maximizing their difference, GIB
measures information dynamics that emerge only from collective feature interactions, which our
analysis also indicates leads to improved generalization. On the other hand, measuring synergy can
be computationally demanding, as we discuss in Appendix G.

4 RELATING THE GIB TO THE IB

In this section, we first prove that under a simple assumption (i.e., perfect estimation) the IB is a
lower bound of our GIB. Finally, we discuss how the GIB solves longstanding IB issues.
Theorem 1. If we assume perfect training accuracy and therefore Q(Z, Y ) = Z = Y , then the
original IB objective is upper bounded by our GIB:

I(T ;Y )− βI(X ; T ) ≤ I(X ;Q(Z, Y ))− 1

2βN

N∑
i=1

(
I(X−i;Q(Z, Y )) + I(Xi;Q(Z, Y ))

)
(7)

The proof is provided in Appendix B. This result demonstrates that the GIB provides an upper bound
on the IB objective. Consequently, as we optimize the traditional IB to find sufficient statistics, we
simultaneously optimize our GIB objective, ensuring that our approach remains compatible with the
theoretical foundations of the IB. For instance, in Appendix C we prove the GIB discovers sufficient
statistics.

This new formulation overcomes two main limitations of the original IB. First, the partition across
subsets of features combined with the PMI definition of Q(Z, Y ) protects the compression term

6
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Figure 4: Information plane dynamics for NNs learning simple mathematical functions. Comparison
of standard IB versus GIB across five functions (rows) and five random seeds. Functions include
basic arithmetic and symmetric polynomials. GIB consistently shows compression phases (leftward
movement), while standard IB exhibits varied behaviors. See Appendix E.3 for experimental details.

from becoming infinite. In Appendix D we prove that the GIB is only infinite under interpretable
circumstances. Second, and more fundamentally, our formulation explicitly considers over-reliance
on individual features, as explained in Section 3.1. IB optimizes the total information flow be-
tween inputs and outputs through the latent representation T without considering how features
interact. In contrast, GIB explicitly models how inputs combine to form the latent representation,
distinguishing between different types of feature interactions. This is evident in the complexity
terms: IB’s β−1I(X ; T ) aggregates all information equally, while GIB’s synergistic decomposition

1
2βN

∑N
i=1

(
I(X−i;Q(Z, Y )) + I(Xi;Q(Z, Y ))

)
penalizes the information contained in individ-

ual features. Consequently, IB compresses indiscriminately, whereas GIB selectively preserves
long-range feature combinations; the synergistic patterns we have shown lead to better generalization.

5 EXPERIMENTAL CASE STUDIES

This section presents experimental evidence demonstrating GIB’s advantages over standard IB across
diverse settings. We show that GIB provides more consistent and interpretable information dynamics
throughout training, successfully capturing compression phases where standard IB fails (refer to
Footnote 2 on reading information planes). Additionally, we demonstrate that GIB’s complexity term
serves as a direct indicator of adversarial vulnerability, providing quantitative insights into model
robustness that standard IB cannot capture. As stated in Section 2, all MIs will be estimated using
binning. However, in Appendix F, we reproduce our results with a different method of MI estimation.

5.1 INFORMATION DYNAMICS OF MLPS LEARNING SIMPLE FUNCTIONS

We examine NNs learning five mathematical functions of increasing complexity: addition, multiplica-
tion, and three symmetric polynomials labelled f1, f2 and f3 (polynomials in which all arguments are
subjected to the same operations). Full experimental details are in Appendix E.3.

The information plane dynamics in Figure 4 show clear differences between the standard IB and GIB
formulations. For the GIB, we observe compression phases, characterized by leftward movement
during training, across all five functions and random seeds. The trajectories initially move upward
and rightward as networks fit the training data, then shift leftward as training progresses. The
standard IB displays more variable behavior, without real indication of compression, despite the
strong generalization capabilities of these networks.

5.2 INFORMATION DYNAMICS OF RESNETS

We analyze information dynamics in residual networks (ResNets) of varying depths (20, 56, 80,
110 layers) trained on CIFAR-10. For the standard IB, we compute MI using the 10-dimensional

7
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Figure 5: Information plane dynamics for ResNets of varying depths trained on CIFAR-10. Compari-
son across four network depths and five random seeds. GIB consistently exhibits compression phases,
while standard IB shows limited or no compression. See Appendix E.4 for details.

output layer directly. For GIB, due to the need to compute feature-wise decompositions on the
high-dimensional input space (3072 dimensions), we first apply Kernel PCA to reduce the pixel space
to 50 principal components before computing MI, as explained in more detail in Appendix E.4 (Turk
& Pentland, 1991). For more details as to why we chose 50 components, see Appendix H.

Figure 5 displays information plane trajectories for ResNets trained on CIFAR-10. The GIB formula-
tion shows consistent compression behavior across all network depths and random seeds, though the
dynamics vary with architecture size. In smaller networks (ResNet-20), trajectories show a general
trend of increasing prediction term while the complexity term decreases throughout training. Larger
networks (ResNet-56 and above) begin to show more pronounced phase structure.

The standard IB presents markedly different dynamics. Rather than showing clear phases, IB
trajectories remain largely clustered with minimal directional movement across epochs. The absence
of compression phases in standard IB holds across all tested architectures, confirming previous
observations that ReLU networks fail to exhibit expected IB behavior (Saxe et al., 2018).

5.3 INFORMATION DYNAMICS OF TRANSFORMERS CLASSIFYING NEWS HEADLINES

We examine BERT-base fine-tuned on AG News text classification, comparing standard fine-tuning
with a novel “unlearning” initialization strategy. In this case, unlearning involves training on random
labels to remove biases from the model. For the standard IB, we again set T as the final layer
representation for use in MI calculations. For GIB, we apply our feature-wise synergy decomposition
to the full set of inputs. Full experimental details are in Appendix E.5.

The standard fine-tuning approach shown in row 1 of Figure 6 produces highly variable trajectories
that begin near the center of the information plane, indicating that pre-trained BERT representations
contain substantial pre-training biases. This prompted us to unlearn, where we train on random
labels. The unlearning intervention dramatically alters these dynamics. After 3 epochs of random
label training, models consistently start from the bottom-right corner of the information plane, as
shown in row 2. From this reset position, both IB and GIB show more coherent learning trajectories
during subsequent fine-tuning. This reveals how studying these information-planes can be used for
diagnostics and interpretation. It is worth noting that, in the absence of unlearning for seed 2, the
model failed to overcome its initial biases, which led to atypical and unstable information dynamics.

5.4 ADVERSARIAL ROBUSTNESS

We investigate how adversarial perturbations affect information dynamics by training NNs with
tanh activations on MNIST under Fast Gradient Sign Method (FGSM) attacks of varying strength.
Full details are in Appendix E.6. Figure 7(a) illustrates the effect of adversarial attacks on learning
dynamics. Networks trained under weak attacks (ϵ = 0.01) exhibit normal convergence, whereas
strong attacks (ϵ = 1.0) substantially hinder the learning process. The information-theoretic analysis
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Figure 6: Information plane dynamics for BERT fine-tuned on AG News. Comparison of standard
fine-tuning (top) versus unlearning + fine-tuning (bottom). The unlearning procedure repositions
models to a more favorable initialization point for subsequent learning. See Appendix E.5 for details.

a)

b)

Figure 7: Information dynamics under adversarial attacks on MNIST. (a) Training dynamics for
three FGSM attack strengths. (b) Information-theoretic analysis comparing IB versus GIB. GIB’s
complexity term correctly reflects degradation in generalization, while standard IB fails to differentiate
between attack strengths. See Appendix E.6 for details.

in Figure 7(b) exposes a critical difference between standard IB and our GIB formulation. The GIB’s
complexity term faithfully reflects the degradation in generalization: values remain high for ϵ = 1.0
(poor generalization), while decreasing rapidly when proper training occurs. In contrast, the standard
IB’s complexity term shows minimal differentiation between attack strengths.

6 CONCLUSION

In this work, we have introduced the Generalized Information Bottleneck (GIB), a principled reformu-
lation of the IB that explicitly accounts for synergistic interactions between features. Our theoretical
and empirical analysis demonstrated that synergistic functions achieve better generalization, providing
a fundamental justification for why deep networks should learn representations that combine inputs
synergistically rather than processing them independently. The GIB framework addresses several
longstanding limitations of the original IB. First, we proposed a PMI-based reweighting scheme
Q(Z, Y ) that protects the compression term from becoming infinite during training. Second, we have
introduced a feature-wise synergy decomposition, explicitly penalizing representations that rely too
heavily on individual features or simple feature combinations. This ensures that our formulation
highlights when networks learn patterns that emerge solely through the collective processing of
multiple inputs, a distinction that is crucial for robust generalization. Our experimental results
across diverse architectures demonstrate that GIB provides a more complete picture of how deep
networks process information. The GIB framework opens new possibilities for both understanding
and improving deep learning systems.
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A NOTATION TABLE

Table 1 contains all the mathematical notation used in this paper.

Table 1: Summary of Notational Conventions.
Symbol Description
X Set of input random variables (features)
Xi i-th individual input feature
X−i All features except the i-th feature: X \ {Xi}
Y Target random variable (labels)
Z Output/prediction random variable
T Hidden representation/latent space
ε Noise random variable
N Number of input features
β Trade-off parameter in IB formulation
I(·; ·) Mutual information
H(·) Entropy
H(·|·) Conditional entropy
P (·) Probability distribution
Q(Z, Y ) PMI-based reweighted distribution
Syn(·) Synergy measure
s+, s− More/less synergistic functions
IB Information Bottleneck
GIB Generalized Information Bottleneck
MI Mutual Information
NN Neural Network
PMI Point-wise Mutual Information
PID Partial Information Decomposition
FGSM Fast Gradient Sign Method

B PROOF OF THEOREM 1

In this section we prove Theorem 1. To do this, we assume that we have perfect training performance
and therefore Q(Y,Z) = Y = Z. We also assume the predictor is deterministic given its input (as in
a standard feed-forward network), hence H(Z|X ) = 0 and therefore

I(X ;Z) = H(Z). (8)
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Proof. Given this, our GIB formulation becomes:

LGIB = I(X ;Q(Z, Y ))− 1

2βN

N∑
i=1

(
I(X−i;Q(Z, Y )) + I(Xi;Q(Z, Y ))

)
(9)

= I(X ;Y )− 1

2βN

N∑
i=1

(
I(X−i;Z) + I(Xi;Z)

)
(10)

≥ I(X ;Y )− 1

2βN

N∑
i=1

(H(Z) +H(Z)) (by monotonicity.) (11)

= I(X ;Y )− 1

2βN
·N · 2H(Z) (12)

= I(X ;Y )− 1

β
H(Z) (13)

= I(X ;Y )− 1

β
I(X ;Z) (by Eq. 8) (14)

≥ I(X ;Y )− 1

β
I(X ; T ) (by dpi.) (15)

≥ I(T ;Y )− 1

β
I(X ; T ) (by dpi.) (16)

(17)

We obtain:
I(T ;Y )− 1

β
I(X ; T ) ≤ LGIB

which shows that the original IB objective is upper bounded by the proposed GIB under the stated
assumption.

C GIB AND SUFFICIENT STATISTICS

In this section, we prove the GIB discovers sufficient statistics.
Theorem 2. Let (X,Y ) ∼ PX,Y and let Z ∼ PZ|X be any (possibly stochastic) encoder. Define

Q(Z, Y ) =
PZ,Y (Z, Y )

PZ(Z)PY (Y )
=

PZ|Y (Z|Y )

PZ(Z)
=

PY |Z(Y |Z)

PY (Y )
.

For β ∈ (0,∞], consider

Jβ(PZ|X) := I
(
X;Q(Z, Y )

)
− 1

β 2N

N∑
i=1

(
I
(
X−i;Q(Z, Y )

)
+ I

(
Xi;Q(Z, Y )

))
,

where X = (X1, . . . , XN ) and X−i omits coordinate i. Then, at β = ∞,

sup
PZ|X

J∞ = sup
PZ|X

I
(
X;Q(Z, Y )

)
= I(X;Y ),

and the supremum is attained if and only if Z is sufficient for Y given X , i.e., PY |X = PY |Z almost
surely.

Proof. At β = ∞ the penalty vanishes and J∞ = I(X;Q). The transformation (X,Y ) 7→ (X,Q)
is a (possibly randomized) Markov kernel induced by first drawing Z ∼ PZ|X(·|X) and then setting

Q =
PY |Z(Y |Z)

PY (Y ) . By data processing for KL divergence,

I
(
X;Q(Z, Y )

)
≤ I(X;Y ).

Taking the supremum over PZ|X yields supPZ|X
I(X;Q) ≤ I(X;Y ). From this point onward,

we adopt the same analytical approach as the IB framework to demonstrate that the GIB identifies
sufficient statistics. See Tishby et al. (1999).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D WHEN GIB ENCOUNTERS INFINITY

In this section, we analyze the conditions under which our GIB formulation yields infinite values and
show that, unlike standard IB, these infinities have meaningful interpretations.
Theorem 3. Let X and Y be continuous random variables with continuous probability distributions.
Assume perfect training accuracy such that Q(Z, Y ) = Z = Y and H(Z|X ) = 0 (deterministic
predictor). If no single feature or feature subset can perfectly predict the output, i.e.,

1

N

N∑
i=1

(
I(X−i;Z) + I(Xi;Z)

)
< ∞,

then LGIB = ∞.

Proof. Starting from our GIB formulation with Q(Z, Y ) = Z = Y :

LGIB = I(X ;Q(Z, Y ))− 1

2βN

N∑
i=1

(
I(X−i;Q(Z, Y )) + I(Xi;Q(Z, Y ))

)
(18)

= I(X ;Z)− 1

2βN

N∑
i=1

(
I(X−i;Z) + I(Xi;Z)

)
(19)

= ∞− 1

2βN

N∑
i=1

(
I(X−i;Z) + I(Xi;Z)

)
(20)

= ∞ (21)

The third line follows because I(X ;Z) = ∞ for continuous variables with perfect dependence, while
the sum remains finite by assumption.

Interpretation of Infinities in GIB. In contrast to the original IB, where infinities arise as technical
artifacts, the infinities in our GIB possess more interpretability. When LGIB = ∞, we have a case
of perfect synergy: the output cannot be predicted without the complete feature set, and removing
even a single feature results in loss of predictive power. This represents the ideal synergistic function
where all features must interact to determine the output.

Conversely, if any single feature subset can perfectly predict the output (in violation of our assump-
tion), then at least one of the terms I(X−i;Z) or I(Xi;Z) becomes infinite, making the entire sum
infinite. In this case, LGIB = ∞−∞ = 0. Therefore, while both IB and GIB yield infinities in the
continuous setting, our formulation admits a meaningful interpretation: an infinite GIB corresponds
to perfect synergy, indicating that all features are essential. This contrasts with standard IB, where
infinities are just a technical feature of continuous random variables under deterministic functions.

E EXPERIMENTAL SETTINGS

E.1 SYNTHETIC SYNERGY EXPERIMENT

Data Generation. For each input dimension n ∈ {2, ..., 10}, we generate N = 106 samples.
Each sample consists of a binary input vector X ∈ {0, 1}n with i.i.d. Bernoulli(0.5) entries. We
apply a “force-to-1” noise model: with probability pflip = 1/3, we randomly select one coordinate
i ∼ Uniform{1, ..., n} and set X ′

i = 1, leaving all other coordinates unchanged. With probability
2/3, no modification is made (X ′ = X). The noise pattern is encoded as ε ∈ {0, 1, ..., n}, where 0
indicates no flip and i > 0 indicates coordinate i was forced to 1.

Functions. We examine three deterministic functions of increasing synergy applied to the noisy
input X ′:

• Non-synergistic: f1(X ′) = X ′
1 (output depends only on first input)

• Partially synergistic: f2(X ′) = X ′
1 ⊕X ′

2 (XOR of first two inputs)
• Highly synergistic: f3(X ′) =

⊕n
i=1 X

′
i (XOR of all inputs)
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MI Estimation. Since all variables are discrete, we compute exact MI using empirical probability
distributions with base-2 logarithms.

E.2 CIFAR-10 SYNERGY WITH AUGMENTATION

Architecture and Training. We train ResNet models of depths {20, 32, 44, 56, 68, 80, 92, 110}
on CIFAR-10. Each architecture follows the standard ResNet design for CIFAR with initial 3× 3
convolution, three residual stages, global average pooling, and a final 10-way linear classifier. Models
are trained with SGD (learning rate 0.1, momentum 0.9, weight decay 5× 10−4) for 200 epochs with
batch size 256. Learning rate is reduced by a factor of 0.1 at epochs 100 and 150 using MultiStepLR
scheduler. Standard data augmentation consists of random crops (32 × 32 with padding 4) and
horizontal flips applied during training.

Teacher-Student Framework. To quantify synergy with augmentation noise, we employ a two-
stage approach. First, a teacher network is trained as described above on augmented data. After
training, we collect the teacher’s softmax outputs on the augmented training set. We then train a
student network of identical architecture to predict these teacher outputs from non-augmented inputs.
The student is trained for 200 epochs using the same SGD configuration (lr=0.1, momentum=0.9,
weight decay=5×10−4) with MultiStepLR milestones at epochs 100 and 150. The student minimizes
cross-entropy loss between its predictions and the teacher’s softmax targets.

Synergy Measurement. We compute the marginal entropy of teacher predictions as H(Y ) =
−E[(pteacher log pteacher)] where the expectation is over all augmented training samples. The condi-
tional entropy is estimated as the final cross-entropy loss achieved by the converged student model.
The synergy ratio I(f(X, ε); ε|X)/I(f(X, ε);X, ε) (which can be re-written as the final loss of the
student divided by the total entropy) quantifies the proportion of the teacher’s output entropy that
cannot be predicted from clean images alone, requiring knowledge of the augmentation pattern.

E.3 SIMPLE FUNCTIONS

Network Architecture. All networks consist of a single hidden layer with specified units, followed
by a linear output layer. No bias terms, regularization, or normalization are used. Weights are
initialized using PyTorch’s default settings, namely Kaiming uniform for the hidden layers and
uniform initialization for the output layer.

Target Functions and Architectures. The target functions and architectures considered in our
evaluation are the following:

• Addition: f(a, b) = a+ b, 2 inputs → 4 hidden units (identity activation) → 1 output;

• Multiplication: f(a, b) = a × b, 2 inputs → 3 hidden units (square activation: x2) → 1
output;

• Symmetric polynomial 1 (f1): f(a, b, c) = ab+ bc+ ca, 3 inputs → 16 hidden units (square
activation: x2) → 1 output;

• Symmetric polynomial 2 (f2): f(a, b, c) = a2 + b2 + c2, 3 inputs → 8 hidden units (square
activation: x2) → 1 output;

• Symmetric polynomial 3 (f3): f(a, b, c, d) = ab+ bc+ cd+ da, 4 inputs → 16 hidden units
(square activation: x2) → 1 output.

Training Details. Networks are trained with standard gradient descent (no momentum) with
learning rate 0.01 for 1000 epochs, minimizing mean squared error (MSE) loss. Training data
consists of 1500 samples uniformly sampled from [−10, 10]n for all functions except addition, which
uses [0, 10]2. Test data uses 1500 samples from the extended range [−1000, 1000]n to evaluate
extrapolation. MI is computed every 10 epochs using histogram binning with 40 bins. We get our
binning estimation technique from Saxe et al. (2018).
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E.4 RESNETS ON CIFAR-10

Architecture. We use standard ResNet architectures for CIFAR-10 with depths {20, 56, 80, 110},
implemented with BasicBlocks. Each network has an initial 16-filter 3× 3 convolution, followed
by three stages with {16, 32, 64} filters respectively, global average pooling, and a 10-way linear
classifier.

Training. Models are trained on CIFAR-10 (50k train, 10k test) with SGD (momentum 0.9, weight
decay 5× 10−4, initial learning rate 0.1) for 200 epochs with batch size 128. Learning rate decays by
0.1 at epochs 100 and 150. Standard augmentation includes random crops (32× 32, padding 4) and
horizontal flips. No additional preprocessing is applied beyond standard CIFAR normalization.

MI Estimation. For standard IB, we compute MI between the 10-dimensional logit vector T
(pre-softmax outputs) and targets Y . For GIB’s input decomposition, we first apply Kernel PCA
with RBF kernel (gamma=1/3072) to reduce the 3072-dimensional flattened images to 50 principal
components. MI is computed at each epoch using the first 5000 training samples with histogram
binning (30 bins). For IB: I(T ;Y ) using the 10-dimensional logits. For GIB: synergy decomposition
using the 50 PCA components as features.

E.5 BERT ON AG NEWS

Model Configuration. BERT-base-uncased (12 layers, 768 hidden dimensions, 12 attention heads)
fine-tuned for 4-way AG News classification (World, Sports, Business, Sci/Tech). The dataset
contains 120,000 training and 7,600 test examples. Maximum sequence length is 128 tokens with
padding.

Training Protocols. The training protocols used in our evaluation are the following:

• Standard Fine-tuning: Direct fine-tuning from pre-trained BERT weights for 3 epochs.

• Unlearning + Fine-tuning: 3 epochs of training with randomly shuffled labels (maintaining
class balance), followed by 3 epochs of standard fine-tuning.

Optimization. Both protocols use AdamW optimizer with learning rate 2× 10−5 and weight decay
0.01, batch size 32. No learning rate warmup or scheduling is applied. Training uses cross-entropy
loss over the 4 classes.

MI Computation. MI is computed 24 times per epoch (approximately every 200 batches) using
5000 training samples. For standard IB, we use the 4-dimensional logit vector T from the classifi-
cation head. For GIB, we use the raw 128-dimensional token ID sequences as input features X (no
PCA is applied). MI estimation uses histogram binning with 30 bins.

E.6 ADVERSARIAL ROBUSTNESS

Architecture. 4-layer fully-connected network: 784 → 1024 → 20 → 20 → 20 → 10, with tanh
activations after each hidden layer and softmax output.

Adversarial Training. FGSM attacks are applied to every training example in each batch: xadv =
x + ϵ · sign(∇xL(f(x), y)) where ϵ ∈ {0.01, 0.1, 1.0}. Perturbed inputs are clipped to [0,1]. The
training loss is the average of clean and adversarial losses: L = (Lclean + Ladv)/2. No validation
set or early stopping is used.

Training Details. Networks are trained for 10,000 epochs using Adam optimizer with learning rate
10−3. MI is computed every 250 epochs between inputs and the final 20-dimensional hidden layer
activations using histogram binning (30 bins).
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F ALTERNATIVE MI ESTIMATION USING LOSS COMPARISON

To validate the robustness of our findings, we repeated our experiments using an alternative MI
estimation method based on predictive power (Covert et al., 2020). This method estimates MI by
training a model to predict one variable from another and measuring the predictive performance. For
discrete targets, we use cross-entropy loss to directly recover the MI in bits. For continuous targets,
we use mean squared error (MSE) loss, which provides an approximate MI estimate. While this
approach is more computationally intensive than histogram binning, it can potentially capture more
complex dependencies.

F.1 ACTIVATION FUNCTION COMPARISON
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Figure 8: Information plane dynamics across activation functions using loss comparison method MI
estimation. Standard IB (blue) and GIB (pink) trajectories for networks trained on synthetic tasks
S0-S4. MI computed every 10 epochs for first 2000 epochs, then every 250 epochs.

Figure 8 shows information plane dynamics using loss comparison estimation. While compression
phases are less clearly defined than with histogram binning, we observe that only our GIB formulation
(pink trajectories) exhibits compression phases across the different activation functions. The standard
IB (blue trajectories) shows minimal or no compression, consistent with our main findings. The
reduced clarity of phases likely stems from the increased variance inherent in the loss comparison
method, which requires training auxiliary models at each measurement point.

F.2 SIMPLE MATHEMATICAL FUNCTIONS

Figure 9 presents results for networks learning arithmetic and polynomial functions. For the addition
task, we observe some compression phases in our GIB formulation but not in the standard IB.
However, for the remaining functions (multiplication and symmetric polynomials), the information
plane trajectories show no clear phase structure for either method. This is likely due to two factors:
(1) the use of MSE loss for continuous targets provides only approximate MI estimates, and (2) the
reduced sampling frequency (every 10 epochs) may miss rapid transitions. The computational cost of
loss comparison necessitated this reduced sampling rate, as each MI estimate requires training an
auxiliary model.

F.3 RESNET INFORMATION DYNAMICS

Figure 10 reveals an interesting pattern in ResNet training dynamics. The standard IB (blue tra-
jectories) typically shows a clear fitting phase (upward movement) but often lacks a subsequent
compression phase. In contrast, our GIB formulation (pink trajectories) exhibits the opposite be-
havior: less pronounced fitting phases but more consistent compression. This asymmetry suggests
that loss comparison estimation may be more sensitive to the synergistic decomposition in our GIB
formulation than to the aggregate information flow measured by standard IB.
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Figure 9: Information plane dynamics for simple mathematical functions using loss comparison
MI estimation. Due to computational constraints, MI was computed every 10 epochs rather than
continuously.
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Figure 10: Information plane dynamics for ResNets on CIFAR-10 using loss comparison MI estima-
tion. MI computed at every epoch using the same PCA preprocessing as in main experiments.
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Figure 11: Information plane dynamics for BERT fine-tuning using loss comparison MI estimation.
Top row shows standard fine-tuning (Learned), bottom row shows unlearning followed by fine-tuning
(Unlearned).
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F.4 BERT FINE-TUNING DYNAMICS

Figure 11 examines BERT fine-tuning with loss comparison estimation. Before the unlearning
intervention (top row), both IB and GIB trajectories are difficult to interpret, showing erratic patterns
without clear phase structure. After unlearning (bottom row), the dynamics become more structured:
both methods consistently show fitting phases across all seeds. However, only the GIB formulation
exhibits a compression phase, and this is clearly visible only for seed 1. The increased noise in
these measurements compared to histogram binning may reflect the challenge of estimating MI in
high-dimensional token spaces using loss comparison.

F.5 SUMMARY OF LOSS COMPARISON RESULTS

While loss comparison provides a theoretically principled approach to MI estimation, our results
demonstrate several practical limitations. The method produces noisier estimates than histogram
binning, particularly for continuous targets and high-dimensional inputs. Despite this increased noise,
our GIB formulation was still more likely to exhibit compression phases compared to standard IB,
which often showed only fitting phases or no clear dynamics at all. This robustness is particularly
notable given the well-documented brittleness of information plane dynamics. As demonstrated by
Saxe et al. (2019) and later by Geiger (2022), observing clear compression phases in the standard
IB framework depends critically on the choice of activation functions, binning procedures, and even
random initialization. The fact that our GIB formulation shows more consistent phase structure across
different MI estimation methods may suggest that synergy-based decomposition captures a more
fundamental aspect of how neural networks process information during learning.

G COMPUTATIONAL COMPLEXITY

The computational requirements of GIB and IB differ significantly in their scaling behavior. If we
define our unit of computation as a single MI estimation, GIB requires 2N + 1 calculations: more
specifically, one for the prediction term I(X ;Q(Z, Y )) and 2N for the complexity term (computing
I(X−i;Q(Z, Y )) and I(Xi;Q(Z, Y )) for each feature). Critically, these calculations occur at the
input layer where dimensionality is typically highest, for CIFAR-10, this means 3072 features.
However, GIB’s computational cost is independent of network depth, since it only considers input-
output relationships. In contrast, standard IB requires 2L MI calculations for L layers, computing
I(X ; Tl) and I(Tl;Y ) at each layer. While one might compute IB only for the final layer where
dynamics are often most pronounced, this prevents the use of the IB as a tool for understanding
learning dynamics throughout the network. Additionally, GIB benefits from a key advantage: we can
apply PCA to high-dimensional inputs (as we do for CIFAR-10 in Section 5.2) because features at the
input layer share a common representation space (Turk & Pentland, 1991). Conversely, combining
representations across layers for IB is less conventional.

H EFFECT OF PCA DIMENSIONALITY ON GIB DYNAMICS

Figure 12 demonstrates the impact of PCA dimensionality on observed GIB dynamics. With only
25 principal components, the compression phases are absent; trajectories show limited leftward
movement and often remain clustered. However, as we increase to 50 components (shown in main
results) and then to 100 components, the compression phases become increasingly apparent. This
progression suggests that capturing synergistic information requires sufficient dimensionality to
represent the complex feature interactions present in the original input space.

I SUM VERSUS WHOLE SYNERGY FORMULATION

I.1 SUM-VERSUS-WHOLE SYNERGY

In this section, we examine an alternative formulation of synergy based on sum versus whole synergy
rather than our feature-wise approach. Due to the increased noise in this estimation method, all MI
values are averaged over 50 iterations to obtain stable measurements.
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Figure 12: GIB information plane dynamics for ResNets with varying PCA dimensionality. Each
subplot shows results for KPCA with 25 (left) versus 100 (right) components (C’s). As dimensionality
increases, compression phases become more pronounced.

This alternative definition of GIB is based on the sum-versus-whole formulation of synergy, which
compares information available from the complete feature set against the sum of information
from individual components (Schneidman et al., 2003). The basic form is SynGIB(X → Y ) =

I(X ;Y )−
∑N

i=1

(
I(Xi;Y )

)
, which considers only individual features. This captures the intuitive

notion of synergy, for example, XOR has zero information from individual inputs but perfect informa-
tion from their combination, yielding maximal synergy (Bell, 2003). Unlike exponentially complex
PID-based measures (Williams & Beer, 2010), this formulation requires only O(N) mutual informa-
tion calculations, making it computationally feasible for tracking synergistic learning dynamics in
high-dimensional neural networks . Combining this with our representation of the PMI-weighted
combination of Z and Y and rewriting as a Lagrangian optimization we get the following:

LSVW = max
p(Z|X)

I(X ;Q(Z, Y ))︸ ︷︷ ︸
prediction term

−β−1
N∑
i=1

I(Xi;Q(Z, Y ))︸ ︷︷ ︸
complexity term

 (22)

In the following section, we compare the outcomes of tracking this optimization with those obtained
from the approach introduced in the main paper.

I.2 ACTIVATION FUNCTION COMPARISON

Figure 13 shows that the alternative synergy formulation (SVW) improves upon standard IB by
exhibiting compression phases in several cases where IB fails. However, the compression is less
pronounced and less consistent across activation functions compared to our feature-wise GIB. This
suggests that while any synergy-based decomposition provides benefits over treating the latent space
as a black box, the specific choice of synergy might impact the observability of information dynamics.

I.3 SIMPLE MATHEMATICAL FUNCTIONS

For NNs learning simple mathematical functions (Figure 14), the alternative synergy formulation
consistently exhibits compression phases across all tasks. This represents a substantial improvement
over standard IB, which shows no compression for these functions.

I.4 RESNET INFORMATION DYNAMICS

Figure 15 shows that the alternative synergy formulation reveals distinct phases in ResNet training.
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Figure 13: Information plane dynamics comparing the alternative synergy bottleneck (SVW, blue)
with our GIB (pink) across multiple activation functions. While SVW shows compression phases
more frequently than standard IB, it exhibits less consistent compression than our feature-wise GIB
formulation. MI values averaged over 50 iterations.
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Figure 14: Learning dynamics for simple mathematical functions. The alternative synergy bottleneck
(SVW) consistently shows compression phases across all functions, significantly outperforming
standard IB.

I.5 BERT FINE-TUNING DYNAMICS

The first notable limitation of the alternative synergy formulation appears in transformer fine-tuning
(Figure 16). The SVW method fails to exhibit compression phases for BERT on the AG News classi-
fication task, even after our unlearning intervention. In contrast, our GIB formulation clearly reveals
compression dynamics. This discrepancy suggests that variance-weighted synergy measures may
struggle to capture the high-dimensional, attention-based computations characteristic of transformers.

I.6 SUMMARY

The alternative synergy formulation serves as a useful baseline, showing that synergy-based ap-
proaches generally outperform standard IB.
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Figure 15: ResNet information dynamics on CIFAR-10. The alternative synergy bottleneck (SVW)
shows distinct compression and non-compression phases, providing clearer learning dynamics than
standard approaches while exhibiting more variability than our feature-wise GIB.
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Figure 16: BERT fine-tuning with the alternative synergy bottleneck. Unlike our GIB formulation,
SVW fails to show compression phases for both standard fine-tuning and the unlearning protocol,
suggesting inherent limitations in capturing synergistic dynamics in transformer architectures.
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