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ABSTRACT

Recent advances in neural algorithmic reasoning with graph neural networks
(GNNs) are propped up by the notion of algorithmic alignment. Broadly, a neural
network will be better at learning to execute a reasoning task (in terms of sam-
ple complexity) if its individual components align well with the target algorithm.
Specifically, GNNs are claimed to align with dynamic programming (DP), a gen-
eral problem-solving strategy which expresses many polynomial-time algorithms.
However, has this alignment truly been demonstrated and theoretically quantified?
Here we show, using methods from category theory and abstract algebra, that there
exists an intricate connection between GNNs and DP, going well beyond the ini-
tial observations over individual algorithms such as Bellman-Ford. Exposing this
connection, we easily verify several prior findings in the literature, and hope it
will serve as a foundation for building stronger algorithmically aligned GNNs.

1 INTRODUCTION

One of the principal pillars of neural algorithmic reasoning (Veličković & Blundell, 2021) is training
neural networks that execute algorithmic computation in a high-dimensional latent space. A funda-
mental question in this space is: which architecture should be used to learn a particular algorithm?
We seek architectures with low sample complexity: generalising better with fewer training examples.

The key theoretical advance towards this aim was made by Xu et al. (2019). Therein, the notion of
algorithmic alignment is formalised, favouring architectures that align better to the algorithm, in the
sense that we can separate them into modules, which correspond to the computations of the target
algorithm’s subroutines. The theory predicts that graph neural networks (GNNs) algorithmically
align with dynamic programming (DP). However, it quickly became apparent that it is not enough
to just train any GNN—many recent works propose specialised GNNs that align with linearithmic
(Freivalds et al., 2019), iterative (Tang et al., 2020) or structured algorithms (Veličković et al., 2020).

We believe that the fundamental reason why so many isolated efforts needed to look into learning
specific classes of algorithms is the fact the GNN-DP connection has not been sufficiently explored.
Indeed, the original work of Xu et al. (2019) merely mentions in passing that the formulation of
DP algorithms seems to align with GNNs, and demonstrates one example (Bellman-Ford). Our
thorough investigation of the literature yielded no concrete follow-up to this initial claim.

Here, we make a first step towards a framework that could allow us to identify GNNs that could
align particularly well with certain classes of DP, rather than assuming a “one-size-fits-all” GNN.
We interpret the operations of both DP and GNNs from the lens of category theory and abstract
algebra. In doing so, several previously shown results will naturally arise as corollaries, and we
hope it opens up the door to a broader unification between algorithmic reasoning and the geometric
deep learning blueprint (Bronstein et al., 2021).

2 GNNS, DYNAMIC PROGRAMMING, AND THE CATEGORICAL CONNECTION

We will use the definition of GNNs based on Bronstein et al. (2021). Let a graph be a tuple of nodes
and edges, G = (V,E), with one-hop neighbourhoods defined as Nu = {v ∈ V | (v, u) ∈ E}.
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Further, a node feature matrix X ∈ R|V |×k gives the features of node u as xu; we omit edge- and
graph-level features for clarity. A (message passing) GNN over this graph is then executed as:

hu = φ

(⊕
v∈Nu

ψ(xu,xv)

)
(1)

where ψ : Rk × Rk → Rk is a message function, φ : Rk → Rk is a readout function, and
⊕

is a
permutation-invariant aggregation function (such as

∑
or max). Both ψ and φ can be realised as

MLPs, but many special cases exist, giving rise to, e.g., attentional GNNs (Veličković et al., 2017).

Dynamic programming is defined as a process that solves problems in a divide et impera fashion:
imagine that we want to solve a problem instance x. DP proceeds to identify a set of subproblems,
η(x), such that solving them first, and recombining the answers, can directly lead to the solution for
x: f(x) = ρ({f(y) | y ∈ η(x)}). Eventually, we decompose the problem enough until we arrive at
a instance for which the solution is trivially given (i.e. f(y) which is known upfront). From these
“base cases”, we can gradually build up the solution for the problem instance we initially care for in
a bottom-up fashion. This rule is often expressed programmatically:

dp[x]← recombine(score(dp[y], dp[x]) for y in expand(x)) (2)

To initiate our discussion on why DP can be connected with GNNs, it is a worthwhile exercise to
show how Equation 2 induces a graph structure. To see this, we leverage a categorical analysis of dy-
namic programming first proposed by De Moor (1994). Therein, dynamic programming algorithms
are reasoned about as a composition of three components (presented here on a high level):

dp = ρ︸︷︷︸
recombine

◦ σ︸︷︷︸
score

◦ η︸︷︷︸
expand

(3)

Therefore, dynamic programming algorithms can be seen as performing computations over a graph
of subproblems, which can usually be precomputed for the task at hand (since the outputs of η are
assumed known upfront for every subproblem). Let V be the space of all subproblems, and R an
appropriate value space (e.g. the real numbers). Then, expansion is defined as η : V → P(V ),
giving the set of all subproblems relevant for a given problem. Note that this also induces a set
of edges between subproblems, E; namely, (x, y) ∈ E if x ∈ η(y). Each subproblem is scored
by using a function σ : P(V ) → P(R). Finally, the individual scores are recombined using the
recombination function, ρ : P(R) → R. The final dynamic programming primitive therefore
computes a function dp : V → R in each of the subproblems of interest.

3 THE DIFFICULTY OF CONNECTING GNNS AND DP

The basic technical obstacle to establishing a rigorous correspondence between neural networks and
DP is the vastly different character of the computations they perform. Neural networks are built
from linear algebra over the familiar real numbers, while DP, which is often a generalisation of
path-finding problems, typically takes place over “tropical” objects like (N∪{∞},min,+)1, which
are usually studied in mathematics as “degenerations” of Euclidean space. The two worlds cannot
clearly be reconciled, directly, with simple equations.

However, if we define an arbitrary “latent space” R and make as few assumptions as possible, we
can observe that many of the behaviors we care about, for both GNNs and DP, arise from looking at
functions S → R, where S is a finite set. R can be seen as the set of real-valued vectors in the case
of GNNs, and the tropical numbers in the case of DP.

So our principal object of study is the category of finite sets, and “R-valued quantities” on it. By
“category” here we mean a collection of objects (all finite sets) together with a notion of composable
arrows (functions between finite sets).

To draw our GNN-DP connection, we need to devise an abstract object which can capture both
the GNN’s message passing/aggregation stages (Equation 1) and the DP’s scoring/recombination

1Here we add the “∞” object to denote the vertices the DP expansion hasn’t reached so far.
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stages (Equation 2). It may seem quite intuitive that these two concepts can and should be relatable,
and category theory is a very attractive tool for “making the obvious even more obvious” (Fong
& Spivak, 2019). Indeed, recently concepts from category theory have enabled the construction of
powerful GNN architectures beyond permutation equivariance (de Haan et al., 2020).

We will construct the integral transform by composing transformations over our input features in a
way that will depend minimally on the specific choice of R. In doing so, we will build a compu-
tational diagram that will be applicable for both GNNs and DP (and their own choices of R), and
hence allowing for focusing on making components of those diagrams as aligned as possible.

4 THE FOUR ARROWS OF THE INTEGRAL TRANSFORM
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Figure 1: The illustration of how pullback and
pushforward combine to form the integral trans-
form. Each edge euv is connected to its sender and
receiver nodes (u, v) via the span (black arrows).
The pullback then “pulls” the node features f(u)
along the span, into edge features g(evu) = f(u).
Once all sender features are pulled back to their
edges, the pushforward then “collects” all of the
edge features that send to a particular receiver, by
pushing them along the span.

A directed graph (V,E) is defined by two func-
tions s, t : E → V , defining the sender and
receiver nodes for each edge. We express this
in the following diagram:

V E Vts

The general question is: given some data f on
V assigning features f(v) to each v ∈ V , how
to transform it via this diagram into some other
data on V ? If we are able to do this, we will
be able to characterise both the processes of
sending messages between nodes in GNNs and
scoring subproblems in DP.

Initially, we will focus on the cases where the
“message” sent along edge e ∈ E depends
only on the sender and not the receiver. This
is the case in many path-finding algorithms,
such as Bellman-Ford. We provide details on
how to generalise the messages to be receiver-
conditioned in Appendix B.

We start by defining a kernel transformation
k : [E,R] → [E,R] that performs some com-
putation over edge features, e.g. in the case of Bellman-Ford, adding the sender distance ds(e)
(previously pulled back to the edge via s∗) to the edge weight ws(e)→t(e). Here we use [E,R] as a
shorthand notation for the set of functions E → R. Using the kernel, we can complete the following
diagram:

[V,R] [E,R] [E,R] [V,N[R]] [V,R]k t∗s∗
⊕

Here N[R] is the collection of of multisets in R, or “bags of R-values”. This object is explained
more rigorously in Appendix A.

These four arrows, taken together, form our integral transform: starting with node features, perform-
ing computations over edges, finally aggregating the edge messages in the receivers. In doing so,
we have updated our initial node features (which are elements of [V,R]). We now explain each of
the four arrows in turn.

s∗ is the pullback arrow, which takes data defined on V and returns data defined on E. To do this,
we precompose the node features with the source function. That is, (s∗f)(v) := f(s(v)). Then, the
kernel is applied to the resulting edge features, integrating the sender’s features with any provided
edge features (e.g. edge weights).

After applying our kernel, we have edge messages m : E → R as a result. We now need to
send these messages to the receiver nodes, for which we employ the pushforward. We define
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(t∗m)(v) =
∑

e∈t−1(v)m(e), which we interpret as a formal sum in N[R]. Intuitively, (t∗m)(v) is
the “bag of incoming values” at v. The reason why we require multisets is because there may be
several edges in t’s preimage that store the same value; this also aligns nicely with related work that
studies GNN expressive power using multisets (Xu et al., 2018).

Finally, we apply an aggregator
⊕

, pointwise for every receiver, to compute updated features for
every node. To have such an aggregator, we need one property from R: that it have the structure of
a commutative monoid. (see A for details)

Note the generality of our construction: nearly all of the operations at play here rely on the properties
of the sets E and V . The only arrow which is constraining the choice of R is the aggregator

⊕
; it

necessitates that R be a commutative monoid, which is a sensible choice for both pathfinding algo-
rithms and GNNs. Hence, we have defined a generic blueprint where arbitrary Rs can be inserted,
hence amplifying the connection between GNNs (where R often includes real-valued vectors) and
DP (where R may be, e.g., the “tropical” numbers).

5 IMMEDIATE COROLLARIES OF THE INTEGRAL TRANSFORM VIEW

Since we designed the aforementioned integral transform in a way that it can describe both GNNs
(Equation 1) and DP (Equation 2), there exist some “embarrassingly obvious” ways of making
the architecture of the GNN more algorithmically aligned to the target DP algorithm. Perhaps the
clearest one is the final arrow, the aggregator (

⊕
). If we make the GNN’s choice of aggregator

function match the one used by the target algorithm, this should lead to immediate gains to sample
complexity and generalisation.

Indeed, this aligns well with one of the earliest lines of research in algorithmic reasoning: deploy-
ing GNNs with aggregators that align to the problem. Already in Veličković et al. (2019), it was
demonstrated that using the max aggregation in GNNs yields superior performance on executing
pathfinding algorithms, especially when compared to the more popular choice of

∑
. Similar find-

ings were observed by Tang et al. (2020); Richter & Wattenhofer (2020), who also clearly indicated
environments where max is the superior aggregator. Lastly, theoretical works such as Xu et al.
(2020); Li et al. (2021) have illustrated the additional useful corollaries to extrapolation and noisy-
label training when using aligned aggregators.

The fact that already such a vast collection of research works can be unified as analysing one arrow
in a categorical diagram is a statement to the potential of our proposed analysis. Any invested effort
in analysing GNNs and DP in this manner could provide strong returns when organising existing
research and proposing future work.

6 IDEAS FOR FUTURE WORK

What other arrows can be “inspected” in this way? The most natural candidate is the kernel arrow,
which corresponds to both the GNN’s message function ψ (Equation 1) to the DP scoring function
(Equation 2). Aligning the two more closely may require looking deeper into the kernel arrow to
formalise entirely, and we leave such analyses for future work to maintain a focused contribution.

While it might seem that the pullback and pushforward arrows are fairly static, this is primarily
because both the graph structure (in the case of GNNs) and the expansions (in the case of DP)
are assumed fixed known upfront. This is a simplifying assumption that need not always hold (for
example, if our algorithm relies on any kind of data structure). Another promising avenue for
future work could dive deeper into these two arrows as well, and specifically to develop GNNs that
automatically propose subproblems within their computations.

Lastly, it is not at all unlikely that analyses similar to ours have already been used to describe other
fields of science—beyond algorithmic reasoners. The principal ideas of span and integral transform
are central to defining Fourier series (Willerton, 2020), and appear in the analysis of Yang-Mills
equations in particle physics (Eastwood et al., 1981). Properly understanding the common ground
behind all of these definitions may, in the very least, lead to interesting connections, and a shared
understanding between the various fields they span.
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A THE MULTISET MONAD, COMMUTATIVE MONOIDS AND AGGREGATORS

Given a set S, we define N[S] := {p : S → N | #{p(r) 6= 0} < ∞}, the natural-valued functions
of finite support on S. This has a clear correspondence to multisets over S: p sends each element of
S to the amount of times it appears in the multiset. We can write its elements formally as

∑
s∈S nss,

where all but finitely many of the ns are nonzero.

Given a function f : S → T between sets, we can define a function N[f ] : N[S]→ N[T ], as follows:
N[f ](

∑
s∈S nss) :=

∑
s∈S nsf(s), which we can write as

∑
t∈T mtt, where mt =

∑
f(s)=t ns.

For each S, we can also define two special functions. The first is unit : S → N[S], sending
each element to its indicator function (i.e. an element x ∈ S to the multiset {{x}}). The second is
join : N[N[S]]→ N[S], which interprets a nested sum as a single sum.

These facts tell us that N[−] is a monad, a special kind of self-transformation of the category of sets.
Monads are very general tools for computation, used heavily in functional programming languages
(e.g. Haskell) to model the semantics of wrapped or enriched types. Monads provide a clean way for
abstracting control flow, as well as gracefully handling functions with side effects (Wadler, 1990).

It is well-known that the algebras for the monad N[−] are the commutative monoids, sets equipped
with a commutative and associative binary operation and a unit element.

Concretely, a commutative monoid structure on a setR is equivalent to defining an aggregator func-
tion

⊕
: N[R]→ R compatible with the unit and monad composition. Here, compatibility implies

it should correctly handle sums of singletons and sums of sums, in the sense that the following two
diagrams commute; that is, they yield the same result regardless of which path is taken:

R N[R] N[N[R]] N[R]

R N[R] R

N[
⊕

]

join

⊕
⊕

unit

id
⊕

The first diagram explains that the outcome of aggregating a singleton multiset (i.e. the one produced
by applying unit) with

⊕
is equivalent to the original value placed in the singleton. The second

diagram indicates that the
⊕

operator yields the same results over a nested multiset, regardless of
whether we choose to directly apply it twice (once on each level of nesting), or first perform the
join function to collapse the nested multiset, then aggregate the collapsed multiset with

⊕
.

Conveniently, such a
⊕

is exactly what is required to appropriately connect the outcomes of our
previously derived pullback (s∗) and pushforward (t∗) operations into a commutative diagram:

V E W

R R N[R]

s t

s∗f

⊕
t∗s
∗ff

id

As such, so long asR is endowed with a commutative monoid structure, we can use this construction
to define a suitable

⊕
to serve as our aggregation function.

B RECEIVER-DEPENDENT KERNELS

The construction in Section 4 does not immediately support receiver-dependent features, as any
feature attached to a non-sender node is lost in the initial pullback step. To get around this issue
without losing the spirit of the integral transform, we assume that each e ∈ E has an opposite
e∗ ∈ E (s.t. s(e) = t(e∗), s(e∗) = t(e)).
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While such a construction is natural for undirected graphs, it is possible to make it work while having
directionality constraints. Specifically, the kernel can mask these extra edges as an implementation
detail (e.g. attaching an edge weight of “+∞” in the context of pathfinding), so this construction
does not lose generality.

Now, we can express receiver dependence by factorising the kernel arrow as follows:

[E,R] [E,R]× [E,R] [E,R]
(id,∗) k′

The first arrow sends g(e) to g(e, e∗). This gives our k′ access to both sender and receiver fea-
tures. Again, we can perform any necessary receiver masking within k′ to avoid contributions from
“virtual” edges.

In general, more complex kernels may require additionally enlarging E by a constant factor. For
example, if E is given an additional symmetry E → E we could use this to express ternary kernels,
and so on.
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