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Abstract
Word sense disambiguation (WSD) is divided001
into two subtasks: textual word sense dis-002
ambiguation (Textual-WSD) and visual word003
sense disambiguation (Visual-WSD). They aim004
to identify the most semantically relevant005
senses or images to a given context contain-006
ing ambiguous target words. However, existing007
WSD models seldom address these two sub-008
tasks jointly due to lack of images in Textual-009
WSD datasets or lack of senses in Visual-WSD010
datasets. To bridge this gap, we propose Pol-011
CLIP, a unified image-text WSD model. By em-012
ploying an image-text complementarity strat-013
egy, it simulates stable diffusion to generate014
implicit visual representations for senses and015
imitates image captioning to provide implicit016
textual representations for images. Addition-017
ally, a disambiguation-oriented image-sense018
dataset is constructed for the training objective019
of learning multimodal polysemy representa-020
tions. To the best of our knowledge, PolCLIP is021
the first model that can cope with both Textual-022
WSD and Visual-WSD. Extensive experimental023
results on benchmarks demonstrate the effec-024
tiveness of our method, achieving a 2.53% F1-025
score increase over the state-of-the-art models026
on Textual-WSD and a 2.22% HR@1 improve-027
ment on Visual-WSD.028

1 Introduction029

Understanding and identifying the intended mean-030

ing of words with multiple senses (i.e., polysemy)031

is a significant challenge in natural language pro-032

cessing (Navigli, 2009). This promotes in-depth033

research on word sense disambiguation (WSD),034

which has recently been extended to multimodal035

downstream tasks (Bevilacqua et al., 2021). Tech-036

niques for WSD are critical for enhancing the ac-037

curacy and effectiveness of text understanding and038

information retrieval tasks such as machine trans-039

lation (Raganato et al., 2019), image-text retrieval040

(Chen et al., 2020), and large language model in-041

ference (Kritharoula et al., 2023).042

Figure 1: Illustration of the Multimodal-WSD task.

Theoretically, WSD can be divided into two sub- 043

tasks: textual word sense disambiguation (Textual- 044

WSD) (Bevilacqua et al., 2021) and visual word 045

sense disambiguation (Visual-WSD) (Raganato 046

et al., 2023). Given a context containing an am- 047

biguous target word, the goal of Textual-WSD is to 048

select the most semantically appropriate one from 049

a set of candidate senses, while the goal of Visual- 050

WSD is to choose the most semantically suitable 051

one from a set of candidate images. Due to the 052

distinct modalities, these two subtasks typically 053

require specialized training datasets and methods 054

(Bevilacqua and Navigli, 2020; Blevins and Zettle- 055

moyer, 2020; Kwon et al., 2023). Nevertheless, 056

they can be unified as a Multimodal-WSD task if 057

the senses and images in existing WSD datasets are 058

aligned. As shown in Figure 1, the task objective 059

of Multimodal-WSD is to identify both the most se- 060

mantically correct senses and images. Technically, 061

developing a generic Multimodal-WSD model can 062

realize the unification of WSD tasks and activate 063

the potential of multimodal applications in under- 064

standing polysemy knowledge. 065

In the Textual-WSD datasets (Raganato et al., 066

2017), only textual senses serve as candidates (i.e., 067

image-missing), while in the Visual-WSD datasets 068

(Raganato et al., 2023), only images serve as can- 069

didates (i.e., sense-missing). This results in the 070
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challenge of modality missing at the data level,071

limiting the unification of these two WSD sub-072

tasks. Furthermore, multimodal representations073

have been demonstrated to carry richer semantic in-074

formation compared to unimodal representations in075

recent WSD works (Gella et al., 2016, 2019). How-076

ever, constrained by model architecture, existing077

Textual-WSD models (Conia and Navigli, 2021;078

Maru et al., 2019; Huang et al., 2019) cannot sup-079

plement candidate senses with image information,080

and Visual-WSD models (Yang et al., 2023; Zhang081

et al., 2023; Dadas, 2023) cannot supplement candi-082

date images with descriptions. This poses technical083

difficulties in developing a unified framework for084

Multimodal-WSD.085

To address these issues, we propose PolCLIP,086

a unified image-text WSD model which is profi-087

cient in multimodal polysemy processing and is088

built upon CLIP (Radford et al., 2021) architec-089

ture. By employing an image-text complementarity090

strategy, it can simulate the stable diffusion (Ho091

et al., 2020) (generating images based on texts) and092

image captioning (Ramos et al., 2023) (generating093

descriptions based on images). The core idea of this094

strategy is to make PolCLIP initially focus on the095

key information of original unimodal senses or im-096

ages, and then re-utilize the text or image encoder097

to generate implicit image-text complementary rep-098

resentations. Two widely used WSD datasets (Sem-099

cor (Miller et al., 1993) and VWSD-KB (Yang100

et al., 2023)) are integrated into a disambiguation-101

oriented image-sense dataset for the training objec-102

tive of learning aligned multimodal representations.103

Moreover, a fine-tuned GPT-3.5 model is utilized to104

generate lexical definitions for semantic enhance-105

ment in testing phase. The main contributions of106

this work can be summarized as follows:107

• A unified image-text WSD model is pro-108

posed, which is the first model to jointly cope109

with Textual-WSD lacking images and Visual-110

WSD lacking senses.111

• An image-text complementarity strategy is in-112

troduced to simulate stable diffusion and im-113

age captioning for addressing the modality114

missing issues in unimodal WSD datasets.115

• A disambiguation-oriented image-sense116

dataset is constructed to provide a benchmark117

for the Multimodal-WSD task.118

2 Related Work 119

Textual-WSD was mainly tackled by knowledge- 120

based methods and supervised methods (Bevilac- 121

qua et al., 2021). Knowledge-based methods (Maru 122

et al., 2019; Scozzafava et al., 2020) typically used 123

external dictionary resources to provide sense lists 124

for ambiguous words to resolve polysemy. Su- 125

pervised methods (Huang et al., 2019; Wang and 126

Wang, 2020) generally used pre-training language 127

models to maximize the similarity probabilities 128

between contexts and candidate senses in a fea- 129

ture space. BEM (Blevins and Zettlemoyer, 2020) 130

and SACE (Wang and Wang, 2021) adopted bi- 131

encoders and only retained the representations cor- 132

responding to ambiguous words. They achieved 133

state-of-the-art results on English all-words bench- 134

marks at that time. Moreover, the full utilization of 135

visual features for verb sense disambiguation has at- 136

tracted increasing interest (Gella et al., 2016, 2019). 137

EViLBERT (Calabrese et al., 2020b) obtained bet- 138

ter results by learning task-agnostic multimodal 139

sense representations, compared to methods built 140

solely on language models. Although these meth- 141

ods primarily leverage visual information to bolster 142

performance on Textual-WSD, but they could not 143

be applied to Visual-WSD straightforwardly. 144

Visual-WSD was introduced in SemEval-2023 145

Task 1 (Raganato et al., 2023). The Visual- 146

WSD mainstream approaches employed Vision- 147

Language Pre-training models (VLPs) for image- 148

text retrieval. FCLL (Yang et al., 2023) proposed a 149

fine-grained image-text contrastive learning mech- 150

anism and won first place in SemEval-2023 Task 151

1. Moreover, large language models (LLMs) were 152

widely used to enrich the semantic information of 153

contexts (Ghahroodi et al., 2023). Calling APIs 154

was a commonly adopted strategy, where simple 155

prompts were designed to guide LLMs to return the 156

interpretations of ambiguous target words in con- 157

texts (Kritharoula et al., 2023). However, Visual- 158

WSD models depended on the prior knowledge of 159

VLPs, which are pre-trained with objectives biased 160

towards image-text understanding rather than WSD. 161

This results in Visual-WSD models struggling to 162

effectively resolve Textual-WSD. 163

Data is a key factor to unify these two WSD 164

subtasks and develop a generic Multimodal-WSD 165

model. WordNet (Miller et al., 1990) is a large lex- 166

icographic database and a standard inventory for 167

English WSD. It contains approximately 120,000 168

synsets. BabelNet (Navigli and Ponzetto, 2010; 169
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Figure 2: Overview framework of the proposed PolCLIP model.

Navigli et al., 2021) is the most popular multilin-170

gual dictionary, which can be semi-automatically171

mapped to other resources to acquire encyclope-172

dic terms. It covers over 500 languages and was173

upgraded to version 5.3 recently. Researchers can174

access various possible resources about ambiguous175

words by BabelNet, including example sentences,176

parts of speech, textual senses, and images. By177

linking WordNet with Wikipedia through Babel-178

Net, BabelPic (Calabrese et al., 2020a) expanded179

non-concrete image-sense pairs, paving the way180

for our work to construct larger disambiguation-181

oriented multimodal datasets.182

3 Method183

3.1 Task formulation184

Textual-WSD and Visual-WSD can be unified as185

a Multimodal-WSD task which is a token classifi-186

cation problem. A given context c generally con-187

tains at least one ambiguous target word wtarget.188

For Textual-WSD, there is a set of word senses189

S = {s1, s2, . . . , ŝ, . . . , sn} as candidates, where190

ŝ denotes the most semantically relevant sense to191

wtarget. Following Eq. 1, a Textual-WSD model is192

required to learn a similarity function F to retrieve193

ŝ from candidate senses. For Visual-WSD, there194

is a group of images I =
{
i1, i2, . . . , î, . . . , in

}
as195

candidates, where î represents the most semanti-196

cally relevant image to wtarget. Following Eq. 2, a197

Visual-WSD model is required to learn a similarity198

function F to retrieve î from candidate images.199

ŝ = argmaxF
(
c, wtarget, S

)
(1)200

201
î = argmaxF

(
c, wtarget, I

)
(2)202

3.2 The PolCLIP model 203

The framework of the PolCLIP model is shown 204

in Figure 2. It utilizes an image-text comple- 205

mentarity strategy and is built upon CLIP archi- 206

tecture. It employs 12-layer transformers as the 207

text encoder and 24-layer visual transformers as 208

the image encoder. A context with an ambigu- 209

ous target word wtarget is input into the text en- 210

coder to generate a complete context representation 211

ec = {[CLS], ew1 , . . . , ewtarget , . . . , ewn , [SEP ]}, 212

where ewtarget is the representation corresponding 213

to wtarget. The candidate senses of wtarget are in- 214

put into the text encoder to output a sense vector 215

vsense. The candidate images of wtarget are fed into 216

the image encoder to output an image vector vimage. 217

A Sense-to-Image Generation (SIG) module and 218

an Image-to-Sense Generation (ISG) module are 219

designed to generate implicit image-text comple- 220

mentary information, which is expressed in vec- 221

tors. Specifically, the SIG module consists of a 222

shared 2-layer self-attention module, a sense-to- 223

image projector, and the last four layers of the im- 224

age encoder. The sense vector vsense is input to 225

SIG. Its key information is condensed through the 226

self-attention module and the linear-layer projector. 227

After that, the highly compressed sense informa- 228

tion is transformed into a sense-generated image 229

vector vsense-gen
image with visual knowledge through the 230

last four layers of the image encoder. Similarly, 231

the ISG module is composed of the same shared 232

2-layer self-attention module, an image-to-sense 233

projector, and the last four layers of the text en- 234

coder. The image vector vimage is input to ISG 235

and then converted into an image-generated sense 236
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vector vimage-gen
sense with textual knowledge.237

In order to make the generated implicit image-238

text complementary information actually beneficial239

to semantic augment, following ALBEF (Li et al.,240

2021), a text momentum encoder and an image mo-241

mentum encoder are employed to generate pseudo-242

target vectors. Specifically, the candidate senses243

and images from the same batch are input sepa-244

rately into the text and image momentum encoders245

to output a pseudo-target sense vector vpseudo
sense and246

a pseudo-target image vector vpseudo
image . These two247

pseudo-target vectors can supervise v
image-gen
sense and248

v
sense-gen
image to be close to ground truth. The text and249

image momentum encoders can retain the prior250

knowledge of the backbone model to counteract251

the issue of catastrophic forgetting (Li et al., 2023).252

Therefore, the pseudo-target vectors gain improve-253

ment continuously with these two momentum en-254

coders being optimized at a small pace. The sim-255

ilarity between v
image-gen
sense and v

pseudo
sense can be calcu-256

lated by Eq. 3-4. Also, the similarity between257

v
sense-gen
image and v

pseudo
image can be calculated by Eq. 5-6.258

s is a similarity function. PISG and PSIG are the259

softmax-normalized similarities used to supervise260

the ISG module and the SIG module.261

s (Sgen , Spse ) = vimage-gen
sense ·

(
vpseudo

sense
)T

(3)262

263

PISG =
exp (s (Sgen , Spse ))∑N
n=1 exp (s (S

gen , Spse ))
(4)264

265

s (Igen , Ipse ) = v
sense-gen
image ·

(
v

pseudo
image

)T
(5)266

267

PSIG =
exp (s (Igen , Ipse ))∑N
n=1 exp (s (I

gen , Ipse ))
(6)268

A shared 4-layer cross-attention module serves269

as a fusion module. It integrates the original uni-270

modal sense/image representations and the gen-271

erated implicit image/sense representations into272

semantically enriched multimodal representations.273

vsense serves as Q and v
sense-gen
image serves as K and274

V . They are fed into the fusion module and then a275

sense-guided multimodal vector vsense-gui
multi is calcu-276

lated by softmax
(
QKT
√
dk

V
)

, where dk denotes the277

dimension of 768. This vsense-gui
multi achieves an effec-278

tive interaction of the original sense representation279

with the implicit sense-generated image represen-280

tation. Similarly, vimage serves as Q and v
image-gen
sense281

serves as K and V . They are fed into the fusion282

module and then an image-guided multimodal vec-283

tor vimage-gui
multi is output by the same cross-attention284

calculation process. This v
image-gui
multi achieves an 285

effective interaction of the original image repre- 286

sentation with the implicit image-generated sense 287

representation. 288

To avoid the key information of the ambiguous 289

target word wtarget being smoothed out, we directly 290

select the representation of wtarget as the anchor 291

vector for retrieval, instead of simply averaging 292

the complete context representation ec or taking 293

[CLS]. Following Eq. 7-8, this anchor ewtarget 294

is used to calculate the similarity with the sense- 295

guided multimodal vector vsense-gui
multi . The similarity 296

between the anchor ewtarget and the image-guided 297

multimodal vector vimage-gui
multi is calculated by Eq. 9- 298

10. PW2S and PW2I are the softmax-normalized 299

anchor-to-sense similarity and the anchor-to-image 300

similarity. The PolCLIP model can identify the 301

most semantically appropriate senses and images 302

based on these two similarities. 303

s(W,S) = ewtarget ·
(
v

sense-gui
multi

)T
(7) 304

305

PW2S =
exp(s(W,S))∑N
n=1 exp(s(W,S))

(8) 306

307

s(W, I) = ewtarget ·
(
v

image-gui
multi

)T
(9) 308

309

PW2I =
exp(s(W, I))∑N
n=1 exp(s(W, I))

(10) 310

Four contrastive losses (Hadsell et al., 2006) are 311

defined to optimize four training objectives jointly, 312

comprising two generation-based objectives (SIG 313

loss and ISG loss) and two understanding-based 314

objectives (W2S loss and W2I loss). 315

The two generation-based objectives make the 316

generated implicit image-text complementary in- 317

formation close to ground truth, to ensure that the 318

enriched multimodal representations are semanti- 319

cally correct. The contrastive loss LSIG is defined 320

as a cross-entropy H between the sense-generated 321

image vector vsense-gen
image and the pseudo-target image 322

vector vpseudo
image : 323

LSIG = E(Igen
,Ipse)∼DH

(
YSIG,PSIG

)
(11) 324

Y indicates the ground-truth multi-label one-hot 325

similarity, where negative pairs have a probabil- 326

ity of 0 and the positive pairs have a probability 327

of 1. Similarly, the image-generated sense vector 328

v
image-gen
sense and the pseudo-target sense vector vpseudo

sense 329

are used to calculate LISG: 330

LISG = E(Sgen
,Spse)∼DH

(
YISG,PISG

)
(12) 331
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Algorithm 1: Pseudocode of PolCLIP Inference
input : a augmented context c with an ambiguous target word wtarget;

the candidates Cand with senses or images;
output : the ranked candidates Candranked ;

the semantically optimal sense or image Obest;

1 ec ← Text-Encoder(c); # the complete context representations
2 ewtarget ← ec; # the anchor vector based on wtarget

3 if only senses in Cand then
4 # for Textual-WSD
5 vsense ← Text_Encoder(Cand);
6 # the sense-generated image representations
7 v

sense-gen
image ← SIG(vsense);

8 # the sense-guided multimodal representations
9 vmulti ← Fusion(vsense , vsense-gen

image );

10 else
11 # for Visual-WSD
12 vimage ← Image_Encoder(Cand);
13 # the image-generated sense representations

14 v
image-gen
sense ← ISG(vimage);

15 # the image-guided multimodal representations

16 vmulti ← Fusion(vimage , vimage-gen
sense );

17 end
18 similarity ← ewtarget · (vmulti)

T ;
19 Candranked ← topk(similarity); # k is the number of candidates
20 Obest ← arg max(Candranked); # the semantically optimal sense or image

The two understanding-based objectives ensure332

that the PolCLIP model can accurately identify the333

semantically optimal senses and images. The an-334

chor ewtarget and the sense-guided multimodal vector335

v
sense-gui
multi are used to calculate LW2S :336

LW2S = E(W,S)∼DH
(
YW2S ,PW2S

)
(13)337

Also, the anchor ewtarget and the image-guided multi-338

modal vector vimage-gui
multi are used to calculate LW2I :339

LW2I = E(W,I)∼DH
(
YW2I ,PW2I

)
(14)340

Finally, the full training objective of PolCLIP is:341

L = LSIG + LISG + LW2S + LW2I (15)342

The pesudocode of training the PolCLIP model343

is provided in Appendix A.344

3.3 Inference of the PolCLIP model345

To further stimulate the potential of the PolCLIP346

model in understanding polysemy text, a semantic347

enhancement is implemented for contexts during348

the inference procedure. Different to methods that349

call APIs, we develop a disambiguation-oriented350

GPT-3.5 (D-GPT) to generate intended lexical def-351

initions of a word in contexts. Fine-tuning on a352

random selection of 50,000 data from SemCor, D-353

GPT is developed based on the gpt-3.5-turbo-1106354

model which is one of the latest fine-tunable GPT355

models released by OpenAI1. More fine-tuning de-356

tails are provided in Appendix B. During inference,357

1https://platform.openai.com/docs/guides/
fine-tuning

Item types Image-Enhanced SemCor VWSD-KB
# of instances 226,036 48,469
# of ambiguous
target words

33,657 24,989

# of senses 39,201 31,306
# of images 181,123 111,575

Table 1: The statistical details of Image-Enhanced Sem-
Cor and VWSD-KB.

the original contexts in WSD test sets are concate- 358

nated with the lexical definitions generated by D- 359

GPT, to create semantically augmented contexts. 360

These augmented contexts are subsequently fed 361

into the PolCLIP model. The trained SIG and ISG 362

modules can support the PolCLIP model to address 363

Multimodal-WSD even when any modality is miss- 364

ing. The inference procedure of the PolCLIP model 365

can be abstracted in Algorithm 1. 366

3.4 Training data 367

The PolCLIP model relies on large-scale aligned 368

image-sense pairs to learn multimodal polysemy 369

knowledge. Thus, we construct a disambiguation- 370

oriented image-sense dataset by integrating Sem- 371

Cor (Miller et al., 1993) and VWSD-KB (Yang 372

et al., 2023), to achieve the training objective of uni- 373

fied image-text WSD. SemCor is the most prevalent 374

dataset for training Textual-WSD models. VWSD- 375

KB contains multimodal data such as words, senses, 376

and images. The offline BabelNet v5.2 and Ba- 377

belPic are used to collect relevant images to the 378

senses in SemCor and VWSD-KB. The detailed 379

construction process is provided in Appendix C. 380

After construction, all senses in SemCor and 381

VWSD-KB to be aligned with at least one image 382

and at most five images. We filter out the collected 383

images that are pornographic, violent, or invalid 384

and conduct a manual validation to ensure there 385

is no data leakage. The SemCor associated with 386

images is called Image-Enhanced SemCor. Table 1 387

displays the statistical details of Image-Enhanced 388

SemCor and VWSD-KB, comprising a total of 389

274,505 English instances (each instance includes 390

a context with at least one ambiguous target word). 391

An example of the disambiguation-oriented image- 392

sense dataset is shown in Figure 1. Given a context 393

“He had seen the Andromeda tree in Japan”, there 394

are four candidate senses for the ambiguous target 395

word “Andromeda”, and each sense corresponds to 396

five images. The most semantically relevant sense 397

and images to this context are Sense 4 and its five 398

associated images. 399

5
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Training Data Models
Textual-WSD Visual-WSD

SE2 SE3 SE7 SE10 SE13 SE15 ALL SE23
F1-score(%) HR@1(%) MRR@10(%)

Zero-shot

Openai/CLIP-ViT-L/14 (ICML 2021) 53.07 47.19 35.60 37.50 57.18 53.52 49.40 57.45 72.60
Laion/CLIP-ViT-L/14 (NeurIPS 2022) 49.27 43.88 31.80 33.70 53.38 49.96 45.73 56.87 70.28
Laion/CLIP-ViT-H/14 (NeurIPS 2022) 51.47 46.45 36.52 39.10 58.78 51.92 49.21 60.70 75.68

UVWSD (ACL 2023) - - - - - - - 80.50 87.60

Image-Enhanced
Semcor

Openai/CLIP-ViT-L/14 (ICML 2021) 70.01 66.48 61.35 71.96 72.35 69.11 69.41 76.67 84.20
Laion/CLIP-ViT-L/14 (NeurIPS 2022) 71.01 65.96 62.34 72.92 71.44 68.37 69.50 75.38 84.02
Laion/CLIP-ViT-H/14 (NeurIPS 2022) 71.00 69.63 65.24 74.53 75.36 71.61 71.83 77.04 84.37

BEM (ACL 2020) 78.29 75.96 66.64 80.71 81.38 81.72 78.53 - -
SACE (ACL 2021) 80.29 78.67 70.57 82.71 80.86 83.73 80.30 - -

Z-Reweighting (ACL 2022) 79.98 77.04 67.72 82.01 79.94 82.81 79.32 - -
FCLL (SemEval 2023) - - - - - - - 80.13 87.41

PolCLIPbase 82.22 79.89 70.56 85.22 82.79 85.66 82.06 79.48 85.00
PolCLIPbase with D-GPT 83.74 81.41 72.09 86.16 84.31 87.18 83.49 82.94 88.55

Image-Enhanced
Semcor

+
VWSD-KB

Openai/CLIP-ViT-L/14 (ICML 2021) 71.90 68.23 63.21 73.76 74.12 67.80 70.85 75.98 83.93
Laion/CLIP-ViT-L/14 (NeurIPS 2022) 69.86 67.37 60.46 72.85 73.24 70.00 69.93 77.88 84.68
Laion/CLIP-ViT-H/14 (NeurIPS 2022) 73.90 70.37 65.24 75.85 76.24 70.80 73.04 77.46 84.60

BEM (ACL 2020) 78.09 75.03 67.65 80.01 78.45 80.09 77.46 - -
SACE (ACL 2021) 81.93 79.71 71.71 84.35 79.22 84.87 81.09 - -

Z-Reweighting (ACL 2022) 79.53 77.03 68.92 81.07 82.50 82.09 79.53 - -
FCLL (SemEval 2023) - - - - - - - 81.37 87.69

PolCLIPlarge 82.76 82.39 71.11 85.18 85.29 86.20 82.60 82.28 87.98
PolCLIPlarge with D-GPT 84.66 82.43 72.97 83.39 84.91 86.40 83.62 83.59 90.07

Table 2: Comparison with state-of-the-art methods on Multimodal-WSD benchmark test sets. Bold numbers indicate
results of the SOTA model, and underlined numbers denote results of the second best model.

4 Experiments and Results400

4.1 Datasets401

Due to the training objective of unified image-402

text WSD, we opt not to use the validation sets403

from Textual-WSD or Visual-WSD. We allocate404

80% of the combined Image-Enhanced Semcor405

and VWSD-KB datasets as the training set and406

reserve the remaining 20% as the validation set.407

XL-WSD (Pasini et al., 2021), an extra-large408

evaluation framework for Textual-WSD, is em-409

ployed to evaluate the model performance on410

Textual-WSD. XL-WSD is widely used since it411

encompasses six English all-words Textual-WSD412

benchmark datasets, including SensEval-2 (SE2,413

(Palmer et al., 2001)), SensEval-3 (SE3, (Snyder414

and Palmer, 2004)), SemEval-2007 (SE7, (Nav-415

igli et al., 2007)), SemEval-2010 (SE10, (Agirre416

et al., 2010)), SemEval-2013 (SE13, (Navigli et al.,417

2013)), and SemEval-2015 (SE15, (Moro and Nav-418

igli, 2015)). These six benchmark datasets com-419

prise a total of 8,517 English instances for testing.420

SemEval-2023 (SE23, (Raganato et al., 2023)) is421

used to assess the model performance on Visual-422

WSD, as it is currently the most widely used Visual-423

WSD benchmark containing 463 English instances.424

4.2 Settings425

Our model is implemented on Pytorch 2.0.1 and426

4 RTX 4090 GPUs. Both the text encoder and427

image encoder are initialized by CLIP-ViT-L/14 428

(Radford et al., 2021). All parameters of the text 429

encoder are optimized, while the image encoder 430

is completely frozen. The sense batch size is set 431

to 50, the image batch size is set to 250 and the 432

epoch is set to 20. Following ALBEF (Li et al., 433

2021), the momentum is set to 0.005. AdamW 434

is applied to optimize model parameters with a 435

learning rate of 1e-04 and weight decay of 0.05. 436

The image resolution is specified as 224×224, and 437

the maximum text length is set to 77. F1-score is 438

used to evaluate the model performance on Textual- 439

WSD. Hit Rate at 1 (HR@1, i.e., accuracy) and 440

Mean Reciprocal Rank at 10 (MRR@10) are used 441

to assess the model performance on Visual-WSD. 442

4.3 Baseline models 443

We train PolCLIPbase using Image-Enhanced Sem- 444

cor and PolCLIPlarge using the combination of 445

Image-Enhanced Semcor and VWSD-KB. In the 446

testing phase, both PolCLIPbase and PolCLIPlarge 447

are integrated with D-GPT for semantic enhance- 448

ment. Our model is compared with recent state- 449

of-the-art (SOTA) methods including (1) SOTA 450

models in Textual-WSD: BEM (Blevins and Zettle- 451

moyer, 2020), SACE (Wang and Wang, 2021) and 452

Z-Reweighting (Su et al., 2022), (2) SOTA mod- 453

els in Visual-WSD: FCLL (Yang et al., 2023) and 454

UVWSD (Kwon et al., 2023), (3) SOTA models in 455

image-text learning tasks: Openai/CLIP-VIT-L/14 456
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(Radford et al., 2021), Laion/CLIP-VIT-L/14 and457

Openai/CLIP-VIT-H/14 (Schuhmann et al., 2022).458

More details about baseline models are provided459

in Appendix D. For a fair comparison, these base-460

line models are retrained using Image-Enhanced461

Semcor and VWSD-KB.462

4.4 Multimodal-WSD results463

The comparison results between PolCLIP and the464

baseline models on Multimodal-WSD benchmark465

test sets are shown in Table 2. The PolCLIP model466

achieves the state-of-the-art performance. SACE467

and FCLL are the second best models for Textual-468

WSD and Visual-WSD, respectively. Without D-469

GPT, PolCLIPlarge reaches an F1-score of 82.60%470

on all the Textual-WSD test data, which is 1.51%471

higher than SACE. It attains an HR@1 of 82.28%472

and a MRR@10 of 87.98% on Visual-WSD, which473

are 0.91% and 0.29% higher than FCLL respec-474

tively. With D-GPT, the performance of both475

PolCLIPbase and PolCLIPlarge is enhanced thanks476

to the semantically augmented contexts with lexical477

definitions. In this situation, PolCLIPlarge gains478

an F1-score of 83.59% on Textual-WSD, which479

is 2.53% higher than SACE. It attains an HR@1480

of 83.59% and a MRR@10 of 90.07% on Visual-481

WSD, which are 2.22% and 2.38% higher than482

FCLL respectively.483

Specifically, without training, Openai/CLIP-VIT-484

L/14, Laion/CLIP-VIT-L/14, and Openai/CLIP-485

VIT-H/14 (collectively called CLIPs) obtain zero-486

shot F1-scores below 50% on all the Textual-WSD487

test data, due to the pre-training data and goal of488

CLIPs do not target WSD. Conversely, UVWSD489

obtains over 80% zero-shot HR@1 on Visual-WSD.490

While only using the Image-Enhanced Semcor as491

the training set, PolCLIPbase outperforms CLIPs,492

BEM, SACE, and Z-Reweighting on Textual-WSD,493

even though its performance on Visual-WSD is494

slightly inferior to FCLL. When the combination495

of Image-Enhanced Semcor and VWSD-KB is496

used as the training set, PolCLIPlarge shows fur-497

ther improvement over PolCLIPbase and surpasses498

all baseline models. Additionally, the effectiveness499

of the disambiguation-oriented image-sense dataset500

is proven, with the performance of all the baseline501

models on Multimodal-WSD being bolstered.502

4.5 Ablation study503

An ablation study is conducted to reveal the contri-504

bution of each module and the results are reported505

in Table 3. For the two generation-based training506

Models
Textual-WSD

ALL F1-score (%)
Visual-WSD
HR@1 (%)

w/o-SIG 74.52 (-8.08) 81.21 (-1.07)
w/o-ISG 81.17 (-1.43) 76.46 (-5.82)
w/o-W2I 82.95 (+0.35) 9.29 (-72.99)
w/o-W2S 19.73 (-62.87) 82.72 (+0.44)

Table 3: Ablation study of PolCLIPlarge on the
Multimodal-WSD benchmark test sets.

objectives, the Sense-to-Image Generation mod- 507

ule is removed first, which corresponds to LSIG. 508

In this scenario, the F1-score of PolCLIPlarge on 509

Textual-WSD decreases by 8.08% and the HR@1 510

on Visual-WSD drops by 1.07%. This indicates 511

that the implicit image information generated by 512

the SIG module can aid PolCLIPlarge in acquir- 513

ing enriched multimodal representations. Sec- 514

ondly, the Image-to-Sense Generation module is re- 515

moved, which corresponds to LISG. The HR@1 of 516

PolCLIPlarge on Visual-WSD decreases by 5.82% 517

and the F1-score on Textual-WSD drops by 1.43%. 518

This demonstrates that the implicit sense informa- 519

tion generated by the ISG module can also facilitate 520

PolCLIPlarge learning deep polysemy knowledge. 521

Regarding the two understanding-based train- 522

ing objectives, the alignment process between the 523

anchor focused on ambiguous target words and 524

candidate images is eliminated first, which corre- 525

sponds to LW2I . This means that PolCLIPlarge 526

exclusively trains for Textual-WSD. At this point, 527

the HR@1 of PolCLIPlarge on Visual-WSD is only 528

9.29%. PolCLIPlarge can be regarded as a model 529

that makes random selections for Visual-WSD, 530

since it is required to choose one from ten candidate 531

images for each instance. However, the trade-off 532

problem caused by multi-task training objectives 533

allows its F1-score on Textual-WSD has a 0.35% 534

improvement. Secondly, the alignment process 535

between the anchor and candidate senses is elim- 536

inated, corresponding to LW2S . This means that 537

PolCLIPlarge exclusively trains for Visual-WSD. 538

In this situation, the F1-score of PolCLIPlarge on 539

Textual-WSD is only 19.73% but the HR@1 on 540

Visual-WSD increases by 0.44%. The reasons can 541

be similarly explained. 542

Overall, the two generation-based modules ac- 543

tually facilitate PolCLIP learning multimodal pol- 544

ysemy knowledge. The two understanding-based 545

alignment processes are the most critical compo- 546

nents, since they maximize the similarities between 547

contexts and senses/images in a feature space. 548
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Figure 3: The experimental results of PolCLIPlarge

with different layer numbers for optimizing the image
encoder.

An additional experiment, which investegates549

the generality of D-GPT for Multimodal-WSD, is550

provided in Appendix E.551

4.6 Optimal layer number for optimizing552

image encoder553

To reduce the computational cost, we opt not to op-554

timize all parameters of the image encoder. With all555

parameters of the text encoder being optimized, the556

last 0/4/8/12 layers of the image encoder are sepa-557

rately optimized to investigate their impact on the558

model performance. The results of PolCLIPlarge559

with different layer numbers for optimizing the560

image encoder are displayed in Figure 3. When561

zero layers are optimized (meaning the image en-562

coder is completely frozen), PolCLIPlarge has the563

smallest parameter size and the SOTA results on564

Multimodal-WSD. Therefore, this model configu-565

ration is selected as our best model (as reported in566

Table 2). It is interesting that when more layers are567

optimized, the model performance gradually im-568

proves in a small way for Textual-WSD, but drops569

significantly for Visual-WSD. This is contrary to570

our expectations. Theoretically, optimizing more571

layers of the image encoder should enhance the572

model ability to capture image knowledge. We573

speculate that redundant knowledge, introduced by574

some noisy image-sense pairs in the training set, in-575

creases the model’s training burden. Thus, refining576

this disambiguation-oriented image-sense dataset577

would be valuable.578

4.7 Analysis on model performance for579

different PoS580

Since some words may present different parts of581

speech (PoS) in contexts, exploring the model per-582

formance for ambiguous target words with differ-583

ent PoS is beneficial to reveal the unique advan-584

Models NOUN VERB ADJ ADV

SACE 82.84 74.23 84.77 81.90

PolCLIPlarge
84.23

(+1.39)
74.38

(+0.15)
88.13

(+3.36)
87.62

(+5.72)

Table 4: The F1-score results of SACE and
PolCLIPlarge for ambiguous target words with different
parts of speech.

tages of the PolCLIP model. The F1-score results 585

of SACE and PolCLIPlarge, trained on the combi- 586

nation of Image-Enhanced SemCor and VWSD- 587

KB, are shown in Table 4. Compared with SACE, 588

PolCLIPlarge has improvements of 1.39%, 0.15%, 589

3.36% and 5.72% in NOUN, VERB, ADJ and ADV 590

respectively. One of the challenges in WSD tasks is 591

the difficulty of understanding non-concrete words 592

accurately, which are often adjectives or adverbs. 593

PolCLIPlarge happens to have a more obvious im- 594

provement in adjectives and adverbs. Therefore, 595

we believe that PolCLIPlarge has favorable adapt- 596

ability and flexibility for ambiguous target words 597

with different PoS, due to its generation-based ad- 598

vantages. On the one hand, it can supplement 599

tangible senses or images with semantically con- 600

crete images or descriptions. On the other hand, 601

it can supplement non-concrete senses or images 602

with semantically abstract images or descriptions. 603

To further intuitively reveal the effectiveness and 604

importance of the two generation-based modules, 605

visualizations of the implicit image-text comple- 606

mentary information generated by the SIG and ISG 607

modules for concrete and non-concrete examples 608

are provided in Appendix F. 609

5 Conclusion 610

This paper proposes a unified image-text WSD 611

model PolCLIP, which achieves state-of-the-art 612

performance on Textual-WSD and Visual-WSD 613

benchmark datasets. Extensive experimental re- 614

sults prove the effectiveness of our image-text com- 615

plementarity strategy. A series of in-depth explo- 616

rations of the model architecture demonstrate the 617

Sense-to-Image Generation module and the Image- 618

to-Sense Generation module can effectively sim- 619

ulate stable diffusion and image captioning, re- 620

spectively. The disambiguation-oriented image- 621

sense dataset empirically facilitates WSD mod- 622

els understanding of multimodal polysemy knowl- 623

edge. This may provide a benchmark for the future 624

Multimodal-WSD task. 625
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Limitation626

Although our method achieves state-of-the-art re-627

sults on English all-words benchmarks, we do628

not explore it on multilingual data. The pro-629

posed image-text complementarity strategy can630

support the PolCLIP model to generating multi-631

modal complementary representations for address-632

ing the modality missing issues in unimodal WSD633

datasets. However, the PolCLIP model still lacks634

the ability to generate realistic senses and images635

that can be intuitively validated in terms of their se-636

mantics. In future work, we plan to further expand637

the disambiguation-oriented image-sense dataset638

to cover more languages. We will also develop a639

large generic model suitable for Multimodal-WSD.640
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A Pseudocode of training PolCLIP 922

Our PolCLIP model, built upon the CLIP (Radford 923

et al., 2021) architecture, leverages an image-text 924

complementarity strategy to excel in processing 925

multimodal polysemy. It is trained on aligned 926

image-sense pairs, enhancing its generalization 927

abilities on WSD. The PolCLIP model optimizes 928

four distinct objectives through four contrastive 929

losses, encompassing two generation-based mod- 930

ules and two understanding-based alignment pro- 931

cesses. The overall training procedure of the Pol- 932

CLIP model can be abstracted in Algorithm 2.

Algorithm 2: Pseudocode of Training PolCLIP
data : a context c with an ambiguous target word wtarget;

the candidate senses S and the candidate images I;

1 while c, wtarget , S, I do
2 ec ← Text-Encoder(c); # the complete context representations
3 ewtarget ← ec; # the anchor vector based on wtarget

4 # the original unimodal sense/image representations
5 vsense ← Text-Encoder(S);
6 vimage ← Image-Encoder(I);
7 # the generated implicit image/sense representations
8 v

sense-gen
image ← SIG(vsense);

9 v
image-gen
sense ← ISG(vimage);

10 # the semantically enriched multimodal representations

11 v
sense-gui
multi ← Fusion(vsense , vsense-gen

image );

12 v
image-gui
multi ← Fusion(vimage , vimage-gen

sense );
13 # the anchor-to-sense and anchor-to-image similarities

14 sim(W2S)← ewtarget · (vsense-gui
multi )T ;

15 sim(W2I)← ewtarget · (viamge-gui
multi )T ;

16
17 # the pseudo sense/image representations

18 v
pseudo
sense ← Text-Momentum-Encoder(S);

19 v
pseudo
image ← Image-Momentum-Encoder(I);

20 # the SIG and IGS similarities

21 sim(SIG)← v
sense-gen
image · (vpseudo

image )T ;

22 sim(ISG)← v
image-gen
sense · (vpseudo

sense )T ;
23 # the two generation-based loss
24 LSIG ← CrossEntropyLoss(sim(SIG), labels(SIG));
25 LISG ← CrossEntropyLoss(sim(ISG), labels(ISG));
26 # the two understanding-based loss
27 LW2S ← CrossEntropyLoss(sim(W2S), labels(W2S));
28 LW2I ← CrossEntropyLoss(sim(W2I), labels(W2I));

29 end

933
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Figure 4: The format of message-style data for fine-
tuning D-GPT. The red GT denotes the ground-truth
sense.

B Fine-tuning D-GPT934

A fine-tuned disambiguation-oriented GPT-3.5 (D-935

GPT) is developed to generate lexical definitions936

for ambiguous target words during the inference937

procedure. The gpt-3.5-turbo-1106 model is cho-938

sen as the backbone model, since it is one of the939

latest fine-tunable GPT models released by Ope-940

nAI and outperforms several LLMs with smaller941

parameter sizes in terms of inference capabilities.942

Constrained by fine-tuning costs, we randomly col-943

lect 50,000 data from SemCor to serve as the fine-944

tuning dataset. Each data consists of a context945

with an ambiguous target word and its ground-truth946

sense. Following OpenAI’s guidelines, the format947

of message-style data for fine-tuning D-GPT is948

shown in Figure 4.949

C Construction of the950

disambiguation-oriented image-sense951

datasets952

The disambiguation-oriented image-sense dataset953

is constructed based on SemCor (Miller et al.,954

1993) and VWSD-KB (Yang et al., 2023) datasets.955

Specially, the offline version of BabelNet2 v5.2956

is employed to collect a list of relevant images957

based on each sense in these two datasets. If there958

are more than five available images in the list, the959

top five are selected; otherwise, all images are re-960

tained. However, a minority of the senses fail to961

associate with any obtain any image through Ba-962

belNet, as they are typically non-concrete, like ex-963

pressing sadness. Thus, BabelPic (Calabrese et al.,964

2020a), an image-text dataset for non-concrete con-965

cepts, is utilized to find images for a part of non-966

concrete senses based on babel-ids. Furthermore,967

those senses that we have collected relevant im-968

ages are set as an internal knowledge base. For969

each sense si that is not included in either Babel-970

2https://babelnet.org/

Figure 5: The evaluation results of SACE, FCLL, and
PolCLIPlarge on the benchmark test sets after integrat-
ing D-GPT.

Net or BabelPic, RoBERTa3 is used to identify the 971

three senses most semantically similar to si within 972

this internal knowledge base, based on text similar- 973

ity. The first image from each of these three most 974

similar senses is aggregated as the set of images 975

corresponding to si. The entire construction pro- 976

cess enables all senses in SemCor and VWSD-KB 977

to be aligned with at least one image and at most 978

five images. 979

D Baselines 980

The details of baselines are as follows: 981

SOTA models in Textual-WSD: BEM (Blevins 982

and Zettlemoyer, 2020) adopted two text encoders 983

and focuses on the representations of ambiguous 984

target words rather than the complete context rep- 985

resentations. SACE (Wang and Wang, 2021) em- 986

ployed an interactive context exploitation method 987

and selects similar sentences from the same doc- 988

ument to enhance context representations. Z- 989

Reweighting (Su et al., 2022) utilized a strategy 990

for adjusting training on imbalanced datasets at the 991

word level. These three models obtain outstanding 992

performance on Textual-WSD benchmarks when 993

training exclusively on SemCor. 994

SOTA models in Visual-WSD: FCLL (Yang 995

et al., 2023) employed a fine-grained image-text 996

contrastive learning mechanism and benefited from 997

VWSD-KB. It won first place in SemEval-2023 998

Task 1. UVWSD (Kwon et al., 2023) did not ne- 999

cessitate training but achieved remarkable perfor- 1000

mance by employing Bayesian inference to incor- 1001

porate sense definitions. 1002

SOTA models in image-text learning tasks: 1003

Openai/CLIP-VIT-L/14 (Radford et al., 2021), 1004

Laion/CLIP-VIT-L/14 and Openai/CLIP-VIT-H/14 1005

(Schuhmann et al., 2022) all employ a dual-stream 1006

architecture to learn image-text knowledge, simi- 1007

3https://huggingface.co/FacebookAI/
roberta-large
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Figure 6: Visualizations of the implicit image-text complementary information generated by the SIG and ISG
modules for concrete and non-concrete examples.

lar to our PolCLIP model. The first model is pre-1008

trained on over 400 million image-text pairs, and1009

the latter two are pre-trained on the English subset1010

of LAION-5B (Schuhmann et al., 2022), a large1011

publicly available image-text dataset.1012

E Generality of D-GPT1013

An additional experiment is conducted to explore1014

the generality of D-GPT for Multimodal-WSD.1015

Specifically, D-GPT is integrated with SACE and1016

FCLL, and its impact on the performance of these1017

two models and PolCLIPlarge is illustrated in Fig-1018

ure 5. D-GPT indeed enhances the performance of1019

these three WSD models. This indicates that us-1020

ing lexical definitions generated by D-GPT to cre-1021

ate semantically augmented contexts is a general-1022

purpose and convenient pipeline for Multimodal-1023

WSD. It can be applied to various WSD models.1024

Furthermore, compared to the evaluation results1025

without D-GOT, PolCLIPlarge shows an improve-1026

ment of 1.02% F1-score and 1.31% HR@1. These1027

are respectively higher than the 0.44% F1-score 1028

increase of SACE on Textual-WSD and the 0.64% 1029

HR@1 increase of FCLL on Visual-WSD. This 1030

also leads us to believe that PolCLIP could gain 1031

more when dealing with contexts that are semanti- 1032

cally more accurate, thanks to the image-text com- 1033

plementarity strategy. 1034

F Effectiveness of the SIG and ISG 1035

modules 1036

In order to further intuitively reveal the effective- 1037

ness and importance of the two generation-based 1038

modules (i.e., SIG and ISG), the generated implicit 1039

image-text complementary information is visual- 1040

ized. Two groups of concrete and non-concrete 1041

examples are collected from the test set. Each 1042

group of examples contains a sense and an im- 1043

age. They are fed into the trained SIG and ISG 1044

modules respectively, and then a sense-generated 1045

image vector and an image-generated sense vector 1046

are output. All senses and images in the training 1047

13



set are transformed into vectors by text and image1048

encoders, serving as two separate candidate pools.1049

By calculating vector similarity, the top-5 most1050

similar images can be identified from the image1051

candidate pool based on the sense-generated image1052

vector. Also, the top-5 most similar senses can be1053

identified from the sense candidate pool based on1054

the image-generated sense vector. Visualizations1055

of these two groups of concrete and non-concrete1056

examples are shown in Figure 6. For the concrete1057

example, the top-3 images are semantically con-1058

sistent with Sense 1. Even if the last two images1059

do not depict the shape of a bell, they are related1060

to music or sound, which is one of the functions1061

of bells. Based on Image 1 related to milk, the1062

retrieved five senses are all semantically correct.1063

For the non-concrete example, the top-3 images are1064

semantically relevant to Sense 2 related to beauty.1065

Even based on Image 2, which primarily shows a1066

man’s face expressing pleasure, the top-3 senses1067

accurately capture concepts of relaxation, laughter,1068

and beard.1069

In summary, thanks to the two generation-based1070

training objectives, the SIG and ISG modules are1071

reliable in effectively imitating stable diffusion and1072

image captioning.1073
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