
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SAFEFLOWMATCHER: SAFE AND FAST PLANNING
USING FLOW MATCHING WITH CONTROL BARRIER
FUNCTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative planners based on flow matching (FM) produce high-quality paths in
a single or a few ODE steps, but their sampling dynamics offer no formal safety
guarantees and can yield incomplete paths near constraints. We present SafeFlow-
Matcher, a planning framework that couples FM with control barrier functions
(CBFs) to achieve both real-time efficiency and certified safety. SafeFlowMatcher
uses a two-phase prediction–correction (PC) integrator: (i) a prediction phase in-
tegrates the learned FM once (or a few steps) to obtain a candidate path without
intervention; (ii) a correction phase refines this path with a vanishing time-scaled
vector field and a CBF-based quadratic program that minimally perturbs the vector
field. We prove a barrier certificate for the resulting flow system, establishing for-
ward invariance of a robust safe set and finite-time convergence to the safe set. In
addition, by enforcing safety only on the executed path—rather than all interme-
diate latent paths—SafeFlowMatcher avoids distributional drift and mitigates lo-
cal trap problems. Moreover, SafeFlowMatcher attains faster, smoother, and safer
paths than diffusion- and FM-based baselines on maze navigation, locomotion,
and robot manipulation tasks. Extensive ablations corroborate the contributions of
the PC integrator and the barrier certificate.

1 INTRODUCTION

Figure 1: Overview of SafeFlowMatcher Ver-
sus Existing Certification-Based Methods. Di-
rectly constraining intermediate samples during
generation (top) can cause paths to be distorted or
trapped, whereas SafeFlowMatcher (bottom) de-
couples generation and certification, producing a
complete and certified-safe path.

Robotic path planning must simultaneously
achieve real-time responsiveness and strong
safety guarantees. Recently, generative mod-
els such as diffusion (Ho et al., 2020; Dhari-
wal & Nichol, 2021; Song et al., 2021b) and
flow matching (FM) (Lipman et al., 2023) have
gained attention for path planning, thanks to
their expressive modeling of multi-modal ac-
tion distributions (Carvalho et al., 2023; Braun
et al., 2024) and low-latency inference (Qureshi
et al., 2019; Liu et al., 2024) compared to classi-
cal sampling- and optimization-based planners.
However, the sampling dynamics of these mod-
els are governed by implicitly learned rules and
can produce paths that violate physical safety
constraints, leading to task interruptions or col-
lisions. Therefore, integrating certified safety
into generative planning is essential for deploy-
ment in real-world robotic systems.

Several approaches have attempted to enforce
safety in generative planning. Safety-guidance
methods regulate the sampling process through learned safety scores (often called guidance, e.g.,
classifier(-free) guidance(Dhariwal & Nichol, 2021; Ho & Salimans, 2021), or value/reward guid-
ance (Yang et al., 2024; Chen et al., 2024)), but their reliance on data-driven proxy prevents them

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

from providing strong safety guarantees. More explicitly, certification-based methods incorporate
functions such as Control Barrier Functions (CBFs) directly into the generative process (Xiao et al.,
2025). Unlike guidance-based approaches, these methods can guarantee safety at deployment with-
out requiring additional training. However, a key challenge in such certification-based methods is
a semantic misalignment: certification concerns the executed physical path (its waypoints over the
horizon), whereas interventions are often applied to intermediate latent states that are never executed.
Constraining such latents is unnecessary for certification. As a result, repeated interventions distort
the learned flow and often yield incomplete (locally trapped) paths. Finally, although diffusion sam-
plers can be accelerated (Lu et al., 2022; Zhang & Chen, 2022; Liu et al., 2022), their SDE-based
denoising requires many steps, making real-time planning expensive. In contrast, FM casts sampling
as deterministic ODE integration, generating accurate paths in a single or a few steps.

To address these limitations, we propose SafeFlowMatcher, a planning framework that combines
flow matching with CBFs, particularly for finite-time convergence CBFs, to achieve certified safety
before the completion of generation, while maintaining the efficiency of FM. Our key idea is a
prediction–correction (PC) integrator that decouples distributional drift from safety certification. In
the prediction phase, we propagate the flow once (or a few steps) to obtain a candidate path without
any safety intervention. In the correction phase, we refine this path by (i) compensating for integra-
tion error through a modified vector field, and (ii) enforcing safety through CBFs. Rather than con-
straining all intermediate samples from pure noise to the target during prediction, SafeFlowMatcher
enforces safety only in the correction phase. This preserves the native FM dynamics and prevents
distributional drift when generating the target path. Also, it avoids local traps caused by repeatedly
pushing intermediate waypoints onto the barrier boundary and stalling near safety constraints.

Our main contributions are as follows:

• We introduce SafeFlowMatcher, a novel planning framework that integrates finite-time con-
vergence CBF-based certification with flow matching to enforce hard safety constraints,
while preserving the efficiency of flow matching.

• We propose prediction–correction integrator that decouples path generation from certifica-
tion: FM first generates paths without intervention, and then CBF-based corrections enforce
finite-time convergence to the safe set while compensating for integration errors.

• We validate SafeFlowMatcher in maze navigation, locomotion, and robot manipulation
tasks with extensive ablation studies, showing consistent improvements over both FM- and
diffusion-based planners in efficiency, safety, and path quality.

2 RELATED WORK & PRELIMINARIES

2.1 FLOWMATCHER: FLOW MATCHING FOR PLANNING

FM has recently been proposed as a powerful alternative to diffusion, originally in the image gen-
eration domain (Lipman et al., 2023; Song et al., 2021b), and has shown promise for efficient path
planning and robotic control (Ye & Gombolay, 2024; Zhang & Gienger, 2024; Chisari et al., 2024;
Xing et al., 2025). Unlike diffusion, FM directly learns a time-varying vector field that maps noise
to the target distribution via forward integration, making the sampling process efficient and flexible.

We adapt standard flow matching (FM) (Lipman et al., 2023) to the planning context. Let H ∈ N
be the planning horizon and H ≜ {0, . . . ,H}. A path is a stacked vector τ = (τ 0, τ 1, . . . , τH) ∈
DH+1 ⊆ Rd×(H+1), where each waypoint τ k ∈ D ⊆ Rd encodes the state at step k.

Let vt(·; θ) : DH+1 → DH+1 be a time-dependent vector field. The flow ψ : [0, 1] × DH+1 →
DH+1 is defined as the solution of the ODE

d

dt
ψt(τ) = vt(ψt(τ); θ), ψ0(τ) = τ , (1)

which transports a simple prior p0 (e.g. N (0, I)) to a target p1. Following conditional flow
matching (CFM), we train vt(·; θ) by regressing it to a conditional vector field that generates
a fixed conditional probability path. We adopt the optimal transport (OT) path pt(τ | τ1) =
N
(
τ ; µt(τ1), σ

2
t I

)
, µt(τ1)= t τ1, σt =1− t, whose generating OT-conditional vector field is

ut(τ | τ1) =
τ1 − τ

1− t
. (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Let q denote the data distribution over the target paths τ1. Sampling t∼Unif[0, 1], τ0∼ p0, τ1∼ q
and defining τt ≜ ψt(τ0) = (1− t)τ0 + t τ1 (conditioned on τ1), we have by (2) that ut(τt | τ1) =
τ1 − τ0. Hence, we train vt(·; θ) with the CFM loss:

L(θ) = Et, q(τ1), p0(τ0)

∥∥ vt(ψ(τ0); θ)− (τ1 − τ0)
∥∥2
2
. (3)

Further details are in Lipman et al. (2023).

For numerical integration, we discretize 0= t0< · · · <tT =1 with the sampling horizon T ∈N
(Collectively T (T) = {t0, . . . , tT }) and define step sizes ∆ti = ti+1 − ti. We define T -step in-
tegrator Ψ

(T)
0→1 : DH+1 → DH+1 (e.g., Euler integrator 1) which integrates the flow matching

dynamics from τ0 to τ1 as

Ψ
(T)
0→1(τ0) = τ0 +

T−1∑
i=0

∆ti vti(τti ; θ). (4)

2.2 CONTROL BARRIER FUNCTIONS

Safety filters (Hsu et al., 2023; Wabersich et al., 2023) are a real-time intervention mechanism to
ensure that an autonomous agent operates within some predefined safety sets, overriding its nominal
behavior only when it is about to violate the sets. Various approaches exist for constructing safety
filters, but among these, control barrier functions (CBFs) (Ames et al., 2019) are especially popular,
as they provide a systematic way to guarantee forward invariance of safe sets by solving a real-time
optimization problem at each control step. Additional recent work on CBFs, including non-convex
safe sets and learning-based CBFs, are summarized in Appendix A.

Here, we review only the standard finite-time convergence CBF preliminaries that are necessary for
the rest of this paper. To this end, we consider an arbitrary control-affine system

ẋt = f(xt) + g(xt)ut, (5)
where xt ∈ D ⊂ Rd, ut ∈ U ⊂ Rd, and f : Rd → Rd and g : Rd → Rd×d are locally Lipschitz
continuous.

Define the safe set C as the superlevel set of a continuously-differentiable (C1) function b : D → R,
C ≜ {xt ∈ D | b(xt) ≥ 0}. (6)

System safety is often mathematically prescribed by ensuring that a system’s state safely converges
to the targeted safe set within finite time.

Definition 1 (Finite-Time Convergence CBF) Given the system (5) and the safe set (6), C1 func-
tion b is called a finite-time convergence CBF if there exist parameters ρ ∈ [0, 1) and ϵ > 0 such
that for all xt ∈ D,

sup
ut∈U

[Lfb(xt) + Lgb(xt)ut + ϵ · sgn(b(xt))|b(xt)|ρ] ≥ 0, (7)

whereLfb(xt)≜∇b(xt)
⊤f(xt) andLgb(xt)≜∇b(xt)

⊤g(xt) denote the Lie derivatives of b along
f and g, respectively.

Lemma 1 (Forward Invariance of the Safe Set) Define CBF b as in Definition 1, such that the
initial state satisfies b(x0) ≥ 0. Any Lipschitz continuous controller ut that satisfies condition (7)
ensures forward invariance of the safe set C, i.e., b(xt) ≥ 0 for all t ≥ 0.

Lemma 1 ensures that once the state first enters the safe set, it remains there thereafter. To select a
control input that guarantees forward invariance of C as well as become close as possible to some
reference control input uref

t , a common approach is to solve a quadratic program (CBF-QP) (Ames
et al., 2019) at each time step:
u∗
t = argmin

ut∈U
∥ut−uref

t ∥2 subject to Lfb(xt)+Lgb(xt)ut + ϵ · sgn(b(xt))|b(xt)|ρ ≥ 0. (8)

This means the optimal solution u∗
t is the minimally modified control that guarantees the forward

invariance of the safe set C. Moreover, based on the finite-time stability theorem (Bhat & Bernstein,
2000), the finite-time convergence CBF can be used to ensure that states not only remain within the
safe set but also reach it within finite-time (Li et al., 2018; Srinivasan et al., 2018).

1Alternatively, higher-order ODE solvers can be used.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 SAFEFLOWMATCHER

Here, we present SafeFlowMatcher, a safe and fast planning framework that couples flow matching
with certified safety in settings where neither the dynamics nor cost map are known. First, in Sec-
tion 3.1, we introduce a two-phase prediction–correction (PC) integrator which decouples genera-
tion and certification. Next, in Section 3.2, we formalize safety for SafeFlowMatcher by employing
control barrier functions (CBFs) and derive conditions that guarantee forward invariance and finite-
time convergence to the safe set. The pseudocode of SafeFlowMatcher is in Algorithm 1, and full
generation processes for two Maze environments are visualized in Appendix F.5.

Figure 2: Local trap. Exam-
ple of a local trap in maze en-
vironment.

We introduce a crucial problem in non-autoregressive planner, par-
ticularly for a generative-based planner. As shown in Figure 2, non-
autoregressive planners may fail to generate a complete path after
planning when using CBFs. Although the resulting path remains
safe (does not exceed safety constraints), it may be unable to reach
the goal because certain waypoints become locally trapped near the
barrier boundaries and cannot escape within the finite sampling or
integration time. We will show that SafeFlowMatcher can effec-
tively resolve this issue using a PC integrator.

Definition 2 (Local Trap) A local trap problem occurs during the
planning process if there exists k∈H such that ∥τ k

1 − τ k−1
1 ∥>ζ,

where ζ > 0 is a user-defined threshold depending on the planning
environment. 2

Algorithm 1 SafeFlowMatcher

Input: learned velocity field vt(·; θ), prediction and correction horizon T p, T c, planning horizon
H, CBF parameters (ϵ, ρ), robustness parameter δ, and scale constant α
Output: Safe path τ c

1
Phase 1: Prediction

1: Sample initial noise τ p
0 ∼ N (0, I)

2: Compute predicted path τ p
1 ← Ψ

(Tp)
0→1(τ

p
0) by (9)

Phase 2: Correction
3: Initialize corrected path τ c

0 ← τ p
1

4: for each correction step t ∈ T (T c) do
5: ṽt ← α (1− t) vt(τ c

t ; θ)
6: for each waypoint k ∈ H do
7: Solve QP (17) to obtain (uk∗

t , rk∗t), using ṽt
8: end for
9: Update velocity time-scaled flow dynamics (13) with u∗

t = {u0,∗
t , . . . ,uH,∗

t }
10: end for
11: Return safe final path τ c

1

3.1 PREDICTION–CORRECTION INTEGRATOR

SafeFlowMatcher divides the integration process into two phases: a prediction phase that generates
an approximate path without considering safety, and a correction phase that refines the path by
reducing integration error and adding safety constraints. Let τ ℓ

t ∈ DH+1 ⊆ Rd×(H+1) for ℓ ∈ {p, c}
denote the paths in the prediction and correction phases, with waypoints τ ℓ,k

t ∈D⊆Rd for k ∈ H.
Additionally, we denote by T = T p+T c the total sampling horizon, where T p and T c are the number
of sampling (integration) steps allocated to the prediction and correction phases, respectively.

The Prediction phase aims to quickly approximate the target path starting from pure noise τ p
0 ∼

N (0, I), without considering safety constraints. Starting from the noise, we run Euler integration to

2The definition is slightly different from that of SafeDiffuser (Xiao et al., 2025) to capture a broader class
of failure cases. See Appendix D for the details.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

obtain the solution of the flow matching dynamics (1):

τ p
1 = Ψ

(Tp)
0→1(τ

p
0) = τ ⋆

1 + ε, (9)

where τ ⋆
1 is the exact solution of the flow matching dynamics and ε is the Euler integration (pre-

diction) error. To balance computational efficiency and reliability, we select small T p (typically
T p = 1) that places τ p

1 sufficiently close to τ ⋆
1 , making it a suitable initialization for the correction

phase.

The Correction phase starts from the path in the prediction phase τ c
0 = τ p

1 , unlike τ p
0 in the

prediction phase. In this phase, the path is refined by (i) reducing the discretization error ε and (ii)
enforcing safety constraints.

To achieve (i), we introduce the vanishing time-scaled flow dynamics (VTFD)
dτ c

t

dt
= α (1− t) vt(τ c

t ; θ) ≜ ṽt(τ
c
t ; θ), (10)

where the factor (1− t) gradually suppresses the vector field as t→ 1 with scaling constant α > 0.
Intuitively, this produces a contraction effect: the path is driven toward the target direction in the
early correction steps, while the dynamics become increasingly stable near t=1, preventing drift
and allowing the prediction error to decay. This mechanism is formalized in Lemma 2 and Lemma 3.

Lemma 2 Assume the prediction error ε ∼ pε has a symmetric, zero-mean distribution (e.g., Gaus-
sian) and that, in a neighborhood of ε = 0, the negative log-density − log pε is C2 with a positive-
definite Hessian A ≻ 0 (i.e., locally strongly convex). In addition, assume the target log-density
log p1 is C2. Suppose the correction phase is initialized near the target τ ⋆

1 :

τ c
t = τ ⋆

1 + (1− t) ε, ε = O(1). (11)

Then, E[τ1 | τ c
t] = τ ⋆

1 +O(1− t).

We empirically verify the validity of the symmetric zero-mean assumption on the prediction error ε
in Appendix B.1. (11) is a natural result under optimal transport, since OT path approaches τ1 as
t→ 1. Lemma 2 ensures that the posterior expectation contracts toward the target.

Lemma 3 Under the assumptions of Lemma 2, let et ≜ τ c
t − τ ⋆

1 . If the flow dynamics follow the
vanishing time-scaled flow dynamics (10), then as t→ 1,

et = O((1− t)2) + (ε+O(1))e−αt. (12)

Lemma 3 implies that VTFD reduces the prediction error of τ c
1 . See the proofs of Lemma 2 and

Lemma 3 in Appendix B.2.

3.2 CONTROL BARRIER CERTIFICATE FOR SAFEFLOWMATCHER

To ensure the safety constraints hold during the correction phase, we introduce an additional pertur-
bation to minimally intervene the flow dynamics (10):

dτ c
t

dt
= ṽt(τ

c
t ; θ) + ∆ut, (13)

where ṽt is VTFD defined in (10), and ∆ut = {∆u0
t ,∆u1

t , ...,∆uH
t }∈Rd×(H+1) (∆uk

t ∈Rd) is a
perturbation term that enforces safety constraints. Importantly, the safety constraint is applied in a
waypoint-wise fashion: the CBF condition is enforced independently for each waypoint τ c,k

t so that
it remains within safe set C. Thus, we can split the dynamics (13) into

dτ c,k
t

dt
= ṽkt (τ

c
t ; θ) + ∆uk

t ≜ uk
t , (14)

where ṽkt (τ
c
t ; θ) denotes the k-th column of ṽt(τ c

t ; θ). For notational simplicity, we denote the right-
hand side by ut = {u0

t ,u
1
t , ...,u

H
t } ∈ Rd×(H+1)(uk

t ∈ Rd). 3 We now formalize the concept of
safety in flow matching using finite-time flow invariance.

3(14) is a control-affine system with drift f(τ c,k
t) = ṽkt and input matrix g = I . Thus, at the waypoint

level, the structure coincides with the standard control-affine system used in Section 2.2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Definition 3 (Finite-Time Flow Invariance) Let b :D→R be a C1 function. The system (13) is
finite-time flow invariant if there exists tf ∈ [0, 1] such that b(τ c,k

t) ≥ 0 for all k ∈ H, ∀t ≥ tf .

Theorem 1 (Forward Invariance for SafeFlowMatcher) Let b :D→R be a C1 function, and de-
fine the robust safety set Cδ ≜ {τ c,k ∈ D | b(τ c,k) ≥ δ} for some δ > 0. Suppose the system (13) is
controlled by ut satisfying the following barrier certificate for 0 < ρ < 1, ϵ > 0:

∇b(τ c,k
t)⊤uk

t + ϵ · sgn(b(τ c,k
t)− δ)|b(τ c,k

t)− δ|ρ + wk
t r

k
t ≥ 0,∀k ∈ H, ∀t ∈ [0, 1]. (15)

Here, wk
t : [0, 1] → R≥0 is a monotonically decreasing function with wk

t = 0 for all t ∈ [tw, 1]
(tw ∈ [0, 1)), and rkt ≥ 0 is a slack variable. Then the flow matching (13) achieves finite-time flow
invariance on Cδ .

The weightswk
t serve as functions that relax the CBF constraint in the early refining phase, providing

numerical stability by preventing infeasibility and reducing abrupt changes in the QP solution. Since
wk

t vanishes for t ≥ tw, the relaxation term has no effect afterwards, ensuring that the final path
satisfies certified safety.

Proposition 1 (Finite Convergence Time for SafeFlowMatcher) Suppose Theorem 1 holds. Then
for any initial path τ c,k

tw ∈ D \ Cδ , the state path τ c,k
t converges to the safe set Cδ within finite time

T ≤ tw +
(δ − b(τ c,k

tw))1−ρ

ϵ(1− ρ)
, (16)

and remains in the set thereafter.

Proposition 1 allows us to select parameters ϵ and ρ to guarantee flow invariance on the robust safe
set Cδ before the time (16). The proofs of Theorem 1 and Proposition 1 are in Appendix C.

In order to enforce the invariance of the safety set Cδ with minimum intervention during planning,
we solve a quadratic program (QP) analogous to (8) at each sampling time t and planning step k:

uk∗
t , rk∗t = argmin

uk
t ,r

k
t

∥uk
t − ṽkt (τ c

t ; θ)∥2 + rkt
2

subject to (15), (17)

where uk
t and ṽkt (τ

c
t ; θ) are defined in (14). Since the QP (17) is equivalent to a Euclidean projec-

tion problem with linear inequalities, closed-form solutions are available when it has at most two
inequalities (Luenberger, 1997; Boyd & Vandenberghe, 2004). Moreover, the computational time
can be reduced further by decreasing the correction horizon T c or balancing (T p, T c), as discussed
in Appendix F.1.

Remark 1 The PC integrator brings τ c
0 closer to the barrier boundary after the prediction phase.

By Proposition 1, this improved initialization reduces the required convergence time, allowing us
a wider range of choices for (ρ, ϵ), and more stable control inputs. We empirically validate this in
Appendix F.2.

Remark 2 The relaxation term is mainly necessary in environments where the planner is prone to
becoming locally stuck due to complex safety constraints. In particular, it is essential in Maze2D,
where the safe set is highly non-convex, leading to frequent local traps. In contrast, in relatively
open or convex environments such as locomotion or robot manipulation tasks in our experiments,
the relaxation is typically unnecessary. In such cases, the relaxation term wk

t remains zero, and the
slack variable rkt can be removed from (15).

4 EXPERIMENTS

We evaluate SafeFlowMatcher through experiments designed to answer three key questions:

1. Does SafeFlowMatcher outperform state-of-the-art generative model based safe planning
baselines in terms of safety, planning performance, and efficiency?

2. Does SafeFlowMatcher really require a two-phase (prediction and correction) approach?

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3. How well can SafeFlowMatcher generalize to more complex and high-dimensional tasks
(e.g., robot locomotion and manipulation)?

We conduct experiments on a variety of planning domains: (i) Maze navigation
(maze-large-v1), (ii) OpenAI Gym locomotion (Walker2D-Medium-Expert-v2,
Hopper-Medium-Expert-v2) (Brockman et al., 2016; Todorov et al., 2012), and (iii) a robot
manipulation task (block stacking) (Janner et al., 2022).

To fairly evaluate our proposed method, we extend SafeDiffuser (Xiao et al., 2025) beyond its orig-
inal DDPM sampler. We introduce three additional safety-aware variants. For the first and second
variants, we adapt DDIM (Song et al., 2021a) into two versions, SafeDDIM(η=0.0 & 1.0), which
share the same weights as SafeDiffuser; here, η controls the level of sampling randomness. The
last variant we develop is SafeFM, a flow-matching counterpart to SafeDiffuser which uses the
same weights as SafeFlowMatcher, but enforces safety directly during sampling and without the
prediction–correction integrator. When safety constraints are disabled, we drop the “Safe” prefix.
Additional details on experimental settings are provided in Appendix E.1.

For safety, we report Barrier Safety (BS) per constraint, the minimum value of the barrier function b
(which should remain non-negative), and Trap Rate, the rate of local trap occurrences. For planning
quality, we measure the overall Score, the average path Curvature (κ), and the average path Accel-
eration (a) over the planning horizon. For efficiency, we report S-Time, the computation time per
sampling step during generation, and T-Time, the total computation time to generate an entire path.
Formal definitions of the metrics are provided in Appendix E.2.

4.1 MAIN RESULTS ON MAZE2D NAVIGATION

We first present the main performance comparison in the Maze2D setting, as shown in Figure 3,
where there are two safety constraints (red circles). Our results illustrate that SafeFlowMatcher
generates smooth, efficient paths that effectively avoid obstacles, whereas baselines may produce
unsafe, suboptimal, or computationally-expensive paths.

Figure 3: Comparisons of the path generation process in Maze2D. Red circles indicate the safety
constraints the path should satisfy. (Top) RES-SafeDiffuser initializes samples all over the maze
and converges to a path that has local traps. (Bottom) SafeFlowMatcher (ours) initializes from near
target path after prediction phase, and converges to a higher-quality path with no local traps.4

As shown in Table 1, SafeFlowMatcher achieves the highest score while preserving safety, with
almost no local traps. Local traps remain rare even with far more than two constraints; Appendix F.1
shows the case with six constraints.

Moreover, Figure 4 demonstrates that our method consistently outperforms all baselines, both safety-
enabled and -disabled versions, across all sampling horizons. As detailed in Appendix F.3, regarding

4Diffusion-based samplers evolve backward on an interval [0, T], whereas flow matching evolves forward
on [0, 1]; a natural correspondence can be established by normalizing T = 1 and reversing time.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

both safety and efficiency, our method also maintains 100% safety even at very short sampling hori-
zons. Especially, when T c = 4 and using the closed-form solution, our method achieves 50× faster
T-Time than SafeDiffuser (0.023s vs. 1.208s), while SafeDiffuser still suffers from severe local
traps that lead to incomplete paths. When using the QP solver, SafeDiffuser completes generation in
9.998s, whereas SafeFlowMatcher completes generation in just 0.157s. Notably, the QP-based Safe-
FlowMatcher is still about 8× faster than even the closed-form version of SafeDiffuser (1.208s),
while achieving high task performance. We further analyze the distributional drift introduced by
CBF-based corrections in Appendix F.4.

Method BS1 (↑) BS2 (↑) Score (↑) S-TIME TRAP κ (↓) a (↓)
(≥ 0) (≥ 0) (ms) RATE

Diffuser (Janner et al., 2022) -0.825 -0.784 1.572±0.288 3.70 0% 77.04±4.30 86.68±3.81
DDIM(η = 0.0) -0.642 -0.902 1.474±0.106 3.63 0% 64.51±4.35 57.46±2.46
DDIM(η = 1.0) -0.595 -0.899 1.565±0.140 3.72 0% 64.21±5.00 57.15±1.96
FM -1.000 -1.000 1.422±0.359 3.51 0% 52.09±22.02 33.96±22.95
FlowMatcher -0.324 -0.904 1.632±0.003 3.51 0% 73.51±1.02 88.45±0.60
Truncation (Brockman et al., 2016) -0.999 -0.999 0.978±0.128 19.51 100% 1118.21±1093.96 9.043e5±8.988e6
CG (Dhariwal & Nichol, 2021) -0.996 -0.999 0.505±0.092 19.13 100% 949.63±1103.62 959.71±1846.58
CG-ϵ (Dhariwal & Nichol, 2021) -0.998 -0.999 0.499±0.104 19.87 100% 1027.28±1124.70 1.202e9±1.1961e10
ROS-SafeDiffuser (Xiao et al., 2025) 0.010 0.010 1.435±0.502 4.67 100% 75.15±6.67 422.87±86.70
RES-SafeDiffuser (Xiao et al., 2025) 0.010 0.010 1.442±0.451 4.72 72% 80.30±13.06 398.17±1060.86
TVS-SafeDiffuser (Xiao et al., 2025) -0.003 -0.003 1.506±0.405 4.78 69% 78.72±7.80 124.51±34.22
ROS-SafeDDIM(η = 0.0) 0.010 0.010 1.132±0.556 4.79 100% 31.22±4.87 2073.84±1694.06
RES-SafeDDIM(η = 0.0) 0.010 0.010 1.405±0.494 4.83 96% 43.23±3.41 1153.81±2040.98
TVS-SafeDDIM(η = 0.0) -0.026 -0.026 1.522±0.295 4.79 90% 42.56±3.39 575.73±371.83
ROS-SafeDDIM(η = 1.0) 0.010 0.010 1.575±0.158 4.89 100% 56.30±2.93 668.17±69.19
RES-SafeDDIM(η = 1.0) 0.010 0.010 1.532±0.331 4.82 86% 61.73±4.80 1584.00±8085.06
TVS-SafeDDIM(η = 1.0) -0.026 -0.026 1.549±0.304 4.74 65% 60.29±3.41 27.23±43.20
ROS-SafeFM 0.010 0.010 1.138±0.556 4.68 100% 23.57±8.34 1.317e4±9.931e4
RES-SafeFM 0.010 0.010 1.401±0.429 4.74 12% 61.17±19.52 6724.64±5.304e4
TVS-SafeFM -0.002 -0.002 1.350±0.417 4.73 41% 60.29±3.41 768.71±2212.17
SafeFlowMatcher w/o relaxation (ours) 0.010 0.010 1.622±0.065 4.76 2% 71.73±3.54 108.43±167.36
SafeFlowMatcher (ours) 0.010 0.010 1.632±0.003 4.71 0% 69.19±1.02 91.90±0.77

Table 1: Performance comparison of different methods. we evaluated all methods over 100 inde-
pendent trials under identical settings. For all safety-aware methods, we set the robustness margin
to δ=0.01, meaning that a method is considered safe only if b(τ)≥ δ. This ensures robust rather
than marginal safety. FlowMatcher-variants use T p =1 and T c =256, and others use T =256. The
closed-form CBF-QP computation takes 1.14 ms on average. All baselines are reproduced by us.

4 8 16 32 64 128 256
Sampling Horizon T

0.8

1.0

1.2

1.4

1.6

Sc
or

e
(

)

SafeFlowMatcher (ours)
SafeFM
SafeDiffuser (Xiao et al., 2025)
SafeDDIM(= 0.0)
SafeDDIM(= 1.0)ROS RES TVS

4 8 16 32 64 128 256
Sampling Horizon T

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

Sc
or

e
(

)

FlowMatcher (ours)
FM
Diffuser (Janner et al., 2022)
DDIM(= 0.0)
DDIM(= 1.0)

Figure 4: Score versus sampling horizon T . Left (safety on): SafeFlowMatcher attains the highest
score across all sampling horizons. Right (safety off): FlowMatcher (FM + PC integrator) also re-
mains more efficient than the other cases.

4.2 ABLATION STUDIES ON PC INTEGRATOR

Effect of Using Two Phases. To highlight the necessity of both the prediction and correction
phases, we discuss the results of FlowMatcher (prediction-only), SafeFM (correction-only), and
SafeFlowMatcher (PC integrator) in Table 1. The prediction-only behavior achieves good task per-
formance but lacks safety. Conversely, the correction-only behavior enforces safety from the be-
ginning but often fails to generate complete paths, resulting in a high trap rate. SafeFlowMatcher
combines the strengths of both phases, achieving superior performance while ensuring safety.

Effect of Prediction Horizon (T p). We analyze how the prediction horizon T p affects overall
performance while keeping the correction horizon fixed at T c =256. Table 2 reports the qualities

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

of fully generated paths and the total computation time across different values of T p, and Figure 5
visualizes how increasing T p shapes the predicted path before correction. As T p increases, the path
quality remains largely unchanged, while the computation cost increases due to additional prediction
steps.

Table 2: Effect of prediction horizon T p. We compare path quality metrics (score, curvature, and
acceleration) and the total computation time, measured after one full path generation.

Prediction horizon (T p) 1 2 4 8 16
Score(↑) 1.632±0.008 1.520±0.340 1.468±0.434 1.404±0.538 1.632±0.003
T-TIME (s) 1.209 1.220 1.230 1.249 1.287
Curvature κ(↓) 69.19±1.02 68.84±3.32 68.70±4.62 68.26±4.77 67.73±4.97
Acceleration a(↓) 91.90±2.77 93.76±2.30 93.18±3.52 91.99±3.83 92.61±3.81

Figure 5: Predicted paths under different prediction horizon T p. Each shows the predicted path
after the prediction phase. As prediction horizon T p increases, prediction error ε decreases.

Effect of Vanishing Time-Scale. We first analyze the role of the scaling constant α in VTFD (10).
As shown in Table 3 and Figure 6, increasing α consistently reduces both curvature and acceleration,
indicating that larger scaling factors suppress the prediction error more aggressively. This trend is
consistent with the theoretical result from Lemma 3.

However, we observe that a larger α introduces bias in the final path. This effect is visible in Figure 6,
where the red path region stays relatively stable up to a certain critical value but becomes increas-
ingly distorted once α exceeds this threshold. In our Maze2D setup, this occurs around α ≈ 2. This
shows that α should not simply be maximized in practice; instead, one can start from α = 1 and
increase it until we identify the point just before the sharp distortion begins.

Figure 7 shows how the score changes with increasing correction horizon T c when T p = 1. With
vanishing time-scale, the score remains stable even as T c grows, whereas removing the scaling
causes the score to deteriorate steadily. Figure 8 provides the corresponding path visualization. With
vanishing time-scale, the correction path moves from τ c

0 to τ c
1 along a straight direction. In contrast,

without scaling, the path exhibits sharp drift near t=1, and some segments of the path become
largely distorted. These results demonstrate that vanishing time-scale is essential for preventing
late-stage drift and maintaining stable refinement behavior.

Table 3: Effect of scaling constant α. Path qualities are measured after full generation.

Scaling constant α 1.0 1.5 2.0 2.5 3.0
Score (↑) 1.623±0.005 1.629±0.004 1.632±0.008 1.618±0.033 1.572±0.058
Curvature κ (↓) 85.10±3.73 83.91±2.00 69.28±1.04 55.16±0.83 44.08±0.62
Acceleration a (↓) 173.22±5.62 123.49±1.86 92.05±0.59 71.89±0.42 58.05±0.24

Figure 6: Generated paths under different scaling constant α. Each snapshot shows the fully
generated path after the two phases. As the scaling constant α increases, the path becomes smoother
but can be distorted.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

4 8 16 32 64 128 256
Correction Horizon T c

0.8

1.0

1.2

1.4

1.6
Sc

or
e

(
)

w/ damping
w/o damping

Figure 7: Score with and without a vanish-
ing time-scale. When T p = 1, as the correction
horizon T c increases, we see that the score de-
creases in the absence of vanishing time-scale.

Figure 8: Generation process with (a) and with-
out (b) a vanishing time-scale. The transparent
path represents τ c

0 , the solid path represents τ c
1 .

The black line represents the path τ c
t from ◦ to •

over the interval t ∈ [0, 1]. The path’s segments
in the black circles are largely distorted in the ab-
sence of a vanishing time-scale.

4.3 GENERALIZATION TO HIGH-DIMENSIONAL ROBOTIC TASKS

We evaluate the generalization capability of SafeFlowMatcher on high-dimensional robotic tasks,
including two locomotion environments (Walker2D and Hopper) and a robot manipulation task
(Block Stacking). Across all three tasks, SafeFlowMatcher attains the highest score while main-
taining BS≥0 , indicating that the PC integrator scales beyond static maze navigation. The detailed
comparison across locomotion and manipulation tasks is summarized in Table 4. Note that the BS
metric here is reported in a different way than in Table 1; here, BS is a binary indicator (yes or no)
of whether safety is guaranteed (≥ 0) or not (< 0).

Table 4: Performance on high-dimensional robotic tasks. SafeFlowMatcher maintains its advan-
tages in both locomotion and robot manipulation settings.

Category Environment Method Score (↑) BS (≥ 0)

Locomotion

SafeDiffuser (Xiao et al., 2025) 0.283± 0.135 Yes
Walker2D SafeFM 0.264± 0.127 Yes

Ours 0.331± 0.021 Yes
SafeDiffuser (Xiao et al., 2025) 0.435± 0.068 Yes

Hopper SafeFM 0.675± 0.312 Yes
Ours 0.917± 0.026 Yes

Robot Manipulation Block Stacking
SafeDiffuser (Xiao et al., 2025) 0.72± 0.055 Yes

SafeFM 0.73± 0.056 Yes
Ours 0.76± 0.053 Yes

5 CONCLUSION

We introduced SafeFlowMatcher, a planning framework that couples flow matching (FM) with CBF-
certified safety by employing a two-phase prediction–correction integrator. On the path generation
side, we proposed the vanishing time-scaled flow dynamics, which contracts the prediction error to-
ward the target path. On the safety side, we established a finite-time convergence barrier certificate
for the flow system to ensure forward invariance of a safe set. The approach generates a candidate
path with the learned FM dynamics and then refines only the executed path under safety constraints.
This decoupling preserves the native generative dynamics, avoids distributional drift from repeated
interventions on latent states, and mitigates local trap failures near constraint boundaries. Empir-
ically, SafeFlowMatcher attains faster, smoother, and safer paths than various diffusion- and FM-
based baselines across maze navigation, locomotion, and robot manipulation tasks. Incorporating
data-driven certificates is a promising direction for extending certified generative planning to more
dynamic and complex environments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Reproducibility Statement. All baseline results reported in this paper are fully reproduced by us
using our own implementations or publicly available code, ensuring a fair and controlled compar-
ison on the same hardware. To facilitate reproducibility, we provide anonymized source code for
training and evaluation in the supplementary material. For fair comparisons under matched compu-
tational budgets, our model architectures strictly adhere to those in prior work (Janner et al., 2022;
Xiao et al., 2025) and their official implementations(Code: https://github.com/jannerm/diffuser,
https://github.com/Weixy21/SafeDiffuser). Our experiments are conducted on the Maze2D environ-
ment, locomotion tasks (Hopper, Walker2d) and a robot manipulation (block stacking). All hyper-
parameters for training and evaluation, including optimizer settings, learning rates, and rollout con-
figurations, are detailed in Appendix E. For each experimental setting, we perform 100 independent
trials and report the mean and standard deviation across these runs in Table 1 and Table 4. All exper-
iments were run on a machine equipped with an AMD EPYC9354 CPU and an NVIDIA RTX4090
(24GB) GPU. Additional ablation studies are provided in Appendix F.

REFERENCES

Hossein Abdi, Golnaz Raja, and Reza Ghabcheloo. Safe control using vision-based control barrier
function (v-cbf). In IEEE International Conference on Robotics and Automation, pp. 782–788.
IEEE, 2023.

Ayush Agrawal and Koushil Sreenath. Discrete control barrier functions for safety-critical control of
discrete systems with application to bipedal robot navigation. In Robotics: Science and Systems,
volume 13, pp. 1–10. Cambridge, MA, USA, 2017.

Aaron D Ames, Xiangru Xu, Jessy W Grizzle, and Paulo Tabuada. Control barrier function based
quadratic programs for safety critical systems. IEEE Transactions on Automatic Control, 62(8):
3861–3876, 2016.

Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil Sreenath, and
Paulo Tabuada. Control barrier functions: Theory and applications. In 2019 18th European
control conference (ECC), pp. 3420–3431. Ieee, 2019.

Sanjay P Bhat and Dennis S Bernstein. Finite-time stability of continuous autonomous systems.
SIAM Journal on Control and optimization, 38(3):751–766, 2000.

Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Max Braun, Noémie Jaquier, Leonel Rozo, and Tamim Asfour. Riemannian flow matching policy
for robot motion learning. In 2024 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 5144–5151. IEEE, 2024.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016.

Joao Carvalho, An T Le, Mark Baierl, Dorothea Koert, and Jan Peters. Motion planning diffusion:
Learning and planning of robot motions with diffusion models. In 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 1916–1923. IEEE, 2023.

Chang Chen, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, and Sungjin Ahn. Simple hierarchical
planning with diffusion. CoRR, abs/2401.02644, 2024.

Eugenio Chisari, Nick Heppert, Max Argus, Tim Welschehold, Thomas Brox, and Abhinav Valada.
Learning robotic manipulation policies from point clouds with conditional flow matching. In 8th
Annual Conference on Robot Learning, 2024.

Ryan K Cosner, Andrew W Singletary, Andrew J Taylor, Tamas G Molnar, Katherine L Bouman,
and Aaron D Ames. Measurement-robust control barrier functions: Certainty in safety with un-
certainty in state. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 6286–6291. IEEE, 2021.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. Ad-
vances in neural information processing systems, 34:8780–8794, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ruiqi Feng, Chenglei Yu, Wenhao Deng, Peiyan Hu, and Tailin Wu. On the guidance of flow
matching. In Forty-second International Conference on Machine Learning, 2025.

Marvin Harms, Mihir Kulkarni, Nikhil Khedekar, Martin Jacquet, and Kostas Alexis. Neural control
barrier functions for safe navigation. In 2024 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 10415–10422. IEEE, 2024.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applications, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Kai-Chieh Hsu, Haimin Hu, and Jaime F Fisac. The safety filter: A unified view of safety-critical
control in autonomous systems. Annual Review of Control, Robotics, and Autonomous Systems,
7, 2023.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, pp. 9902–9915.
PMLR, 2022.

Zhuozhu Jian, Zihong Yan, Xuanang Lei, Zihong Lu, Bin Lan, Xueqian Wang, and Bin Liang.
Dynamic control barrier function-based model predictive control to safety-critical obstacle-
avoidance of mobile robot. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 3679–3685. IEEE, 2023.

Hassan K Khalil and Jessy W Grizzle. Nonlinear systems, volume 3. Prentice hall Upper Saddle
River, NJ, 2002.

Jeeseop Kim, Jaemin Lee, and Aaron D Ames. Safety-critical coordination for cooperative legged
locomotion via control barrier functions. In 2023 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 2368–2375. IEEE, 2023.

Anqi Li, Li Wang, Pietro Pierpaoli, and Magnus Egerstedt. Formally correct composition of coor-
dinated behaviors using control barrier certificates. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 3723–3729. IEEE, 2018.

Qiayuan Liao, Zhongyu Li, Akshay Thirugnanam, Jun Zeng, and Koushil Sreenath. Walking in
narrow spaces: Safety-critical locomotion control for quadrupedal robots with duality-based opti-
mization. In 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 2723–2730. IEEE, 2023.

Lars Lindemann, Alexander Robey, Lejun Jiang, Satyajeet Das, Stephen Tu, and Nikolai Matni.
Learning robust output control barrier functions from safe expert demonstrations. IEEE Open
Journal of Control Systems, 3:158–172, 2024.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations, 2023.

Jianwei Liu, Maria Stamatopoulou, and Dimitrios Kanoulas. Dipper: Diffusion-based 2d path plan-
ner applied on legged robots. In 2024 IEEE International Conference on Robotics and Automation
(ICRA), pp. 9264–9270. IEEE, 2024.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
manifolds. In International Conference on Learning Representations, 2022.

Kehan Long, Cheng Qian, Jorge Cortés, and Nikolay Atanasov. Learning barrier functions with
memory for robust safe navigation. IEEE Robotics and Automation Letters, 6(3):4931–4938,
2021.

Kehan Long, Vikas Dhiman, Melvin Leok, Jorge Cortés, and Nikolay Atanasov. Safe control syn-
thesis with uncertain dynamics and constraints. IEEE Robotics and Automation Letters, 7(3):
7295–7302, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in neural
information processing systems, 35:5775–5787, 2022.

David G Luenberger. Optimization by vector space methods. John Wiley & Sons, 1997.

Mitio Nagumo. Über die lage der integralkurven gewöhnlicher differentialgleichungen. Proceedings
of the physico-mathematical society of Japan. 3rd Series, 24:551–559, 1942.

Ahmed H Qureshi, Anthony Simeonov, Mayur J Bency, and Michael C Yip. Motion planning net-
works. In 2019 International Conference on Robotics and Automation (ICRA), pp. 2118–2124.
IEEE, 2019.

Alexander Robey, Haimin Hu, Lars Lindemann, Hanwen Zhang, Dimos V Dimarogonas, Stephen
Tu, and Nikolai Matni. Learning control barrier functions from expert demonstrations. In 2020
59th IEEE Conference on Decision and Control (CDC), pp. 3717–3724. Ieee, 2020.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In 9th
International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net, 2021a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021b.

Mohit Srinivasan, Samuel Coogan, and Magnus Egerstedt. Control of multi-agent systems with
finite time control barrier certificates and temporal logic. In 2018 IEEE Conference on Decision
and Control (CDC), pp. 1991–1996. IEEE, 2018.

Mohit Srinivasan, Amogh Dabholkar, Samuel Coogan, and Patricio A Vela. Synthesis of control
barrier functions using a supervised machine learning approach. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 7139–7145. Ieee, 2020.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
2012. doi: 10.1109/IROS.2012.6386109.

Kim P Wabersich, Andrew J Taylor, Jason J Choi, Koushil Sreenath, Claire J Tomlin, Aaron D Ames,
and Melanie N Zeilinger. Data-driven safety filters: Hamilton-jacobi reachability, control barrier
functions, and predictive methods for uncertain systems. IEEE Control Systems Magazine, 43(5):
137–177, 2023.

Li Wang, Aaron D Ames, and Magnus Egerstedt. Safety barrier certificates for collisions-free mul-
tirobot systems. IEEE Transactions on Robotics, 33(3):661–674, 2017.

Wei Xiao, Tsun-Hsuan Wang, Chuang Gan, Ramin Hasani, Mathias Lechner, and Daniela Rus.
Safediffuser: Safe planning with diffusion probabilistic models. In The Thirteenth International
Conference on Learning Representations, 2025.

Zebin Xing, Xingyu Zhang, Yang Hu, Bo Jiang, Tong He, Qian Zhang, Xiaoxiao Long, and Wei
Yin. Goalflow: Goal-driven flow matching for multimodal trajectories generation in end-to-end
autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 1602–1611, June 2025.

Brian Yang, Huangyuan Su, Nikolaos Gkanatsios, Tsung-Wei Ke, Ayush Jain, Jeff Schneider, and
Katerina Fragkiadaki. Diffusion-es: Gradient-free planning with diffusion for autonomous and
instruction-guided driving. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 15342–15353, 2024.

Sean Ye and Matthew C Gombolay. Efficient trajectory forecasting and generation with conditional
flow matching. In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2816–2823. IEEE, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Fan Zhang and Michael Gienger. Robot manipulation with flow matching. In CoRL 2024 Workshop
on Mastering Robot Manipulation in a World of Abundant Data, 2024.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
In NeurIPS 2022 Workshop on Score-Based Methods, 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A ADDITIONAL RELATED WORK ON CONTROL BARRIER FUNCTIONS

Control Barrier Functions have been developed and extended in a wide range of directions, and
existing results show that CBF-based safety filter does not rely on perfectly known, smooth, or
analytically specified safety sets. Discrete-time CBFs have been applied to hybrid locomotion and
time-varying safety constraints (Agrawal & Sreenath, 2017), and duality-based DCBF methods en-
able safe control even with nonsmooth, polytopic, or nonconvex obstacle geometries (Liao et al.,
2023). Perception noise and state-estimation uncertainty can be handled using measurement-robust
and probabilistic CBF formulations (Cosner et al., 2021; Long et al., 2022). Moreover, CBFs have
been extended to dynamic-obstacle environments, explicitly incorporating obstacle motion predic-
tion and enabling real-time avoidance of moving obstacles (Jian et al., 2023).

In addition to analytic formulations, a growing line of work develops learning-based CBFs that
construct safety certificates directly from data rather than hand-crafted functions. These methods
learn barrier functions from RGB-D observations (Abdi et al., 2023), LiDAR scans (Srinivasan
et al., 2020; Long et al., 2021; Harms et al., 2024), or expert demonstrations (Robey et al., 2020;
Lindemann et al., 2024), enabling implicit representations of safety sets in dynamic and unstructured
environments. While SafeFlowMatcher currently leverages analytic CBFs, its correction phase only
requires evaluating a barrier constraint, making the framework compatible with these learned or
perception-driven CBFs.

Beyond their theoretical development, CBF-based safety filters have also been applied across a wide
range of robotic domains. They have seen successful use in autonomous driving (Ames et al., 2016),
legged locomotion (Kim et al., 2023), and multi-robot coordination (Wang et al., 2017).

B THEORETICAL AND EMPIRICAL SUPPORT FOR THE CORRECTION PHASE

B.1 EMPIRICAL VALIDATION OF THE PREDICTION ERROR ASSUMPTION IN LEMMA 2

Lemma 2 and Lemma 3 assume that the prediction error ε follows a symmetric, zero-mean distribu-
tion in a neighborhood around the target path. We empirically validate this assumption by evaluating
the distribution of ε under different prediction horizons T p ∈ {1, 2, 4, 8, 16, 32} in the Maze2D en-
vironment. For each configuration, we generate 1,000 predicted paths, resulting in a total of 384,000
waypoints, and evaluated the prediction error with respect to a high-accuracy FM solution τ⋆1 , which
is computed using the Dormand-Prince 5(4) method (Dorpi5) with 256 steps.

Figure 9 visualizes our results. Across all values of Tp, the distribution of ε remains centered at zero
and exhibits symmetry, directly supporting the symmetric zero-mean (Gaussian-like) assumption
used in both lemmas. Validating whether this assumption still holds for higher-dimensional, complex
tasks is a subject of future work. However, we anticipate that while the final refined path may be
biased if the prediction error is biased, overall safety is still unaffected because the CBF-QP enforces
forward invariance regardless of any bias. Moreover, if the bias is heavy-tailed, the local strong
convexity of − log pε becomes weaker, which may slow down the contraction rate in the correction
phase. Again, this only affects path refinement speed, not safety guarantees, and increasing α to
introduce deliberate path distortion against the error (see Table 3 and Figure 6) might help the
prediction error reduction.

B.2 PROOFS OF LEMMA 2 AND LEMMA 3

Proof of Lemma 2.
Let ϕt(ε) = τ1 + δε, where δ ≜ 1− t. We have pushforward of pε under ϕt:

pt(τ | τ1) = [ϕt]#pε(ε) = pε(ϕ
−1
t (τ)) det

[
∂ϕ−1

t

∂τ
(τ)

]
=

1

δd(H+1)
pε

(
τ − τ1
δ

)
By Bayes’ rule,

p(τ1 | τ c
t) ∝ p1(τ1) pε

(
τ c
t − τ1
δ

)
.

Since − log pε(z) is C2 near 0 with Hessian A ≻ 0 by the assumption,

− log pε(z) = 1
2z

⊤Az +O(∥z∥3).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Let y = τ1 − τ c
t . Substituting z = y/δ yields the posterior energy

Φδ(y) = 1
2δ2 y

⊤Ay − log p1(τ
c
t + y) +O(1).

The quadratic term dominates as δ → 0 (t→ 1), so the posterior concentrates in an O(δ) neighbor-
hood of τ c

t .

The stationarity condition ∇Φδ(y) = 0 gives

1

δ2
Ay −∇ log p1(τ

c
t + y) = 0.

Taylor expanding ∇ log p1 at τ c
t shows y = O(δ2). Thus the posterior mode is

τ̂1 = τ c
t + δ2A−1∇ log p1(τ

c
t) +O(δ3).

Laplace’s approximation then yields the same expansion for the posterior mean:

E[τ1 | τ c
t] = τ c

t + δ2A−1∇ log p1(τ
c
t) +O(δ3).

Under the assumption, we have τ c
t = τ ⋆

1 + δε with ∥ε∥ = O(1),

E[τ1 | τ c
t] = τ ⋆

1 + δε+O(δ2) = τ ⋆
1 +O(δ).

This proves Lemma 2.

Proof of Lemma 3.
If the flow dynamics follow the vanishing time-scaled flow dynamics (10), then we have:

τ̇ c
t = α(1− t) vt(τ c

t ; θ) = α(E[τ1 | τ c
t]− τ c

t).

Let et ≜ τ c
t − τ ⋆

1 ∈ Rd×(H+1), and denote its k-th column by ek,t ∈ Rd. By Lemma 2, E[τ1 |
τ c
t] = τ ⋆

1 +O(1− t) as t→ 1, hence we have

ėk,t = −αek,t +O(1− t).

Solving with an integrating factor gives

ek,t = e−αtek,0 + αe−αt

∫ t

0

eαsO(1− s) ds = (ek,0 +O(1))e−αt +O((1− t)2).

Combining the column vectors again yields the form

et = (e0 +O(1))e−αt +O
(
(1− t)2

)
, e0 = ε.

which proves Lemma 3.

C PROOF OF THEOREM 1 AND PROPOSITION 1

We drop the superscript c for simplicity, and choose the Lyapunov candidate function V (τ k
t) ≜

max(δ − b(τ k
t), 0). Since w(t) = 0 for all t ≥ tw, the barrier inequality (15) reduces on [tw, 1] to

ḃ(τ k
t) + ϵ · sgn

(
b(τ k

t)− δ
) ∣∣b(τ k

t)− δ
∣∣ρ ≥ 0.

Case 1: If τ k
tw ∈ Cδ (i.e., b(τ k

tw) ≥ δ), then V (τ k
tw) = 0. For all t ≥ tw, if b(τ k

t) > δ we have
V (τ k

t) = 0. If b(τ k
t) = δ, the barrier inequality (15) with sgn(0) = 0 reduces to ḃ(τ k

t) ≥ 0, so the
path cannot exit Cδ by Nagumo’s principle (Nagumo, 1942)5. Therefore V (τ k

t) = 0 for all t ≥ tw,
which implies τ k

t ∈ Cδ; the system stays in Cδ .

Case 2: If τ k
tw /∈ Cδ (i.e., b(τ k

tw) < δ), then V (τ k
t) = δ − b(τ k

t) > 0. The following finite-stability
condition holds

V̇ (τ k
t) = −ḃ(τ k

t) ≤ −ϵ(δ − b(τ k
t))

ρ = −ϵV (τ k
t)

ρ.

5Nagumo’s theorem states that if the vector field at the boundary lies in the tangent cone of a set, then the
set is forward invariant.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
X

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20
Y

x = 6.840 × 10 3

y = 2.343 × 10 3

x = 8.225 × 10 2

y = 1.342 × 10 1

Tp = 1

0.0 0.2 0.4 0.6 0.8 1.0

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
X

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Y

x = 8.150 × 10 3

y = 6.760 × 10 3

x = 5.416 × 10 2

y = 6.440 × 10 2

Tp = 2

0.0 0.2 0.4 0.6 0.8 1.0

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
X

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Y

x = 2.979 × 10 3

y = 3.123 × 10 3

x = 6.084 × 10 2

y = 9.052 × 10 2

Tp = 4

0.0 0.2 0.4 0.6 0.8 1.0

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
X

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Y

x = 3.814 × 10 3

y = 3.147 × 10 3

x = 5.435 × 10 2

y = 8.021 × 10 2

Tp = 8

0.0 0.2 0.4 0.6 0.8 1.0

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
X

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Y

x = 3.703 × 10 3

y = 2.747 × 10 3

x = 4.930 × 10 2

y = 7.246 × 10 2

Tp = 16

0.0 0.2 0.4 0.6 0.8 1.0

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
X

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Y

x = 1.252 × 10 3

y = 5.333 × 10 4

x = 1.085 × 10 2

y = 1.387 × 10 2

Tp = 32

0.0 0.2 0.4 0.6 0.8 1.0

Figure 9: Empirical distribution of the prediction error ε over prediction horizon T p. The
six subfigures correspond to T p = 1, 2, 4, 8, 16, 32 (from top-left to bottom-right). Each subplot
visualizes the joint density of (εx, εy) with its marginal distributions. As T p increases, the error
distribution becomes more concentrated around zero while maintaining symmetry, validating the
symmetric zero-mean assumption used in Lemma 2 and Lemma 3.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Define the comparison system

ϕ̇(t) = −ϵϕ(t)ρ, ϕ(tw) = V (τ k
tw).

By the Comparison Lemma (See Lemma 3.4 in Khalil & Grizzle (2002)), we have:

V (τ k
t) ≤ ϕ(t), ∀t ≥ tw.

The solution ϕ(t) is

ϕ(t) =
(
V (τ k

tw)
1−ρ − (1− ρ)ϵ(t− tw)

) 1
1−ρ , for t ≥ tw.

Thus,
V (τ k

t) ≤
(
V (τ k

tw)
1−ρ − (1− ρ)ϵ(t− tw)

) 1
1−ρ .

Hence, the state reaches the robust safe set Cδ in finite time T that satisfies V (τ k
t) ≤ ϕ(T) = 0.

Moreover, we get the finite convergence time,

T = tw +
V (τ k

tw)
1−ρ

ϵ(1− ρ)
= tw +

(δ − b(τ k
tw))

1−ρ

ϵ(1− ρ)
.

Therefore, for all t ≥ T , we have V (τ k
t) ≤ 0, implying x ∈ Cδ . This completes the proofs of both

Theorem 1 and Proposition 1.

D DIFFERENCES IN LOCAL TRAP DEFINITIONS

Figure 10: Local trap occur-
ring away from the safety
boundary. Although some
waypoints do not violate con-
straints (i.e., b(τ k

t) > 0),
it fails to reach the goal.
Our definition considers such
cases as local traps, while the
original definition does not.

We clarify the difference between the local trap definition used
in our SafeFlowMatcher and that of the baseline method SafeD-
iffuser (Xiao et al., 2025).

Definition 4 (Local Trap in SafeDiffuser) A local trap problem
occurs during the planning process if there exists k∈H such that
b(τ k

1)= 0 and ∥τ k
1 − τ k−1

1 ∥>ζ, where ζ > 0 is a user-defined
threshold depending on the planning environment.

In contrast, our definition of a local trap in SafeFlowMatcher re-
moves the condition b(τ k

1) = 0 and instead considers only the
abrupt discontinuity in the path. The reason for relaxing the con-
dition is illustrated in Figure 10. In this example, the generated path
is incomplete due to overly strong or early intervention of the CBF.
However, since the waypoints do not strictly lie on the boundary
(i.e., b(τ k

1) ̸= 0), the original SafeDiffuser definition fails to detect
this failure as a local trap. Therefore, we generalize the definition to
capture a wider class of failure cases.

E EXPERIMENTAL DETAILS

E.1 EXPERIMENTAL SETUP

All CBF constraints are enforced via the closed-form projection of the CBF-QP in (17). For each
model family, the safety-enabled variants reuse the same trained weights as their safety-disabled
counterparts. Specifically, SafeDiffuser and SafeDDIM share the weights trained for Diffuser and
DDIM, respectively, while SafeFM and SafeFlowMatcher share the weights trained for FM and
FlowMatcher. All experiments are run using an AMD EPYC 9354 CPU and an NVIDIA RTX 4090
GPU (24GB).

Maze2D. To match the total amount of training data used in Diffuser (Janner et al., 2022), we
first swept across several batch sizes while fixing the total number of samples processed during
training to 6.4 × 107. As shown in Table 5, both Diffuser and FM performed best or on par at
batch size 128, so for all models and Maze2D experiments, we used batch size 128. Other training

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

and inference hyperparameters are shown in Tables 6. For the correction phase, we set the scaling
constant to α = 2, and use (δ, ε, ρ) = (0.01, 0.5, 0.9) for the CBF parameters. Additionally, for
the relaxation schedule, tw is chosen according to the correction horizon T c. Specifically, we use
tw ∈{0, 0.5, 0.75, 0.9, 0.9, 0.9, 0.99} for T c ∈{4, 8, 16, 32, 64, 128, 256}, respectively. The relax-
ation function is defined as wk

t = 200(1 − e3(t/tw−1)) for t ≤ tw, and wk
t = 0 otherwise. For

Maze2D, the planner is conditioned on the start and goal state observations, which are provided as
the condition for each rollout.

Table 5: Scores by batch size for Maze2D for both Diffuser and FM.

Method 16 32 64 128 256
FlowMatcher 1.631± 0.003 1.628± 0.002 1.615± 0.031 1.631± 0.003 1.523± 0.196
Diffuser (Janner et al., 2022) 1.503± 0.424 1.438± 0.500 1.516± 0.316 1.537± 1.537 1.536± 0.338

Locomotion. Following the observations from Maze2D, we also train all locomotion models us-
ing a batch size of 128. SafeFlowMatcher, SafeFM, and SafeDiffuser share the same hyperparameter
settings, summarized in Table 7. To provide score-based guidance to all flow-matching based meth-
ods, including SafeFM and SafeFlowMatcher, we apply a simple covariance-aware guidance gcov-A

with scale 1.0, following prior work (Feng et al., 2025). During planning, we condition the model at
each environment step on the current state observation and use the task score as a guidance signal to
encourage forward progress.

(a) Walker2D planning result with SafeFlowMatcher.

(b) Hopper planning result with SafeFlowMatcher.

Figure 11: SafeFlowMatcher on locomotion tasks. Planning results for Walker2D (top) and Hop-
per (bottom). In both figures, the red horizontal line indicates the roof height hr in the CBF barrier
function (z ≤ hr) used in the BS metric (Appendix E.2).

Robot Manipulation (Block-Stacking). For the block stacking task, we followed the training
parameters from Diffuser Janner et al. (2022) (batch size 32 with 2-step gradient accumulation,
equivalent to batch size 64 without accumulation). rather than 128, while maintaining the number
of training steps for training SafeFlowMatcher(SafeFM sharing weights with SafeFlowMatcher)
and SafeDiffuser. Other hyperparameter values and conditions are shown in Table 8. For the block
stacking task, the condition includes the initial robot joint configuration together with the observed
states of the four blocks.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) T p = 1 / T c = 999

(b) T p = 600 / T c = 400

Figure 12: Block stacking visual comparison based on the prediction and correction horizons.
For each subfigure, the left shows the predicted path τ p

1 and the right shows the corrected path τ c
1 .

Under the same planning horizon H = 128, we compare different allocations of T p and T c. In
(a), using T p =1 and T c =999 leads to poor prediction quality due to the short prediction phase,
resulting in a large prediction error and ultimately a failed path. In contrast, (b) uses T p =600 and
T c =400 which yields a small prediction error and successfully produces a safe and complete path,
where the yellow block is being stacked on top of the green block.

Table 6: Maze2D’s training and evaluation hyperparameters

Training
Loss type L2
Training steps ntrain 5.0× 105

Steps per epoch 2500
Batch size 128
Learning rate 3× 10−4

EMA decay 0.995

Evaluation Others
Planning Horizon H 384
Sampling Horizon T 256

Evaluation SafeFlowMatcher
Planning Horizon H 384
Prediction Horizon T p 1
Correction Horizon T c 256

E.2 PERFORMANCE METRICS

BS quantifies the degree of safety constraint satisfaction using CBFs for each safety constraint in
the environment. For each rollout, we evaluate the minimum barrier value over all waypoints, and
then take the worst case across all N test episodes:

min
i=1,2,...,N

min
k∈H

b(τ k
1).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: Locomotion (Walker2d/Hopper) hyperparameters

Training
Loss type L2
Training steps ntrain 2.5× 105

Steps per epoch 2500
Batch size 128
Learning rate 2× 10−4

EMA decay 0.995

Value Network Training
Loss type L2
Training steps ntrain 5.0× 104

Steps per epoch 2500
Batch size 128
Learning rate 2× 10−4

EMA decay 0.995

Evaluation Others
Planning Horizon H 600
Sampling Horizon T 20

Evaluation SafeFlowMatcher
Planning Horizon H 600
Prediction Horizon T p 1
Correction Horizon T c 20

Table 8: Robot manipulation (block stacking) hyperparameters

Training
Loss type L2
Training steps ntrain 7.0× 105

Batch size 64
Learning rate 2× 10−5

EMA decay 0.995

Evaluation Others
Planning Horizon H 128
Sampling Horizon T 1000

Evaluation SafeFlowMatcher
Planning Horizon H 128
Prediction Horizon T p 600
Correction Horizon T c 400

A value BS ≥ 0 indicates that the path remains entirely within the safe set. Maze2D contains two
obstacle-based safety constraints, given by the barrier functions:

BS1 :

(
x− x0
a

)2

+

(
y − y0
b

)2

≥ 1, BS2 :

(
x− x0
a

)4

+

(
y − y0
b

)4

≥ 1.

where (x, y)∈R2 denotes the agent’s 2D state, (x0, y0)∈R2 specifies the center of the obstacle,
and a, b > 0 are scaling parameters that shape the corresponding safety region. For locomotion tasks
(Walker2D, Hopper), the barrier function is defined as z≤hr, where hr > 0 denotes the roof height.
For robot manipulation (block stacking), the safety constraints enforce joint limits. the barrier func-
tions are defined as qmin≤q≤qmax, where q∈R7 denotes the joint-angle and qmin,qmax ∈R7

are the per-joint limits.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Score is a normalized, undiscounted performance metric that reflects task success. In Maze2D,
episodes last up to 800 environment steps while planning is performed over a horizon of H =384;
once the agent enters a goal neighborhood, it receives a unit reward for each remaining step, making
the score proportional to the remaining horizon. For locomotion tasks, the score is proportional
to forward displacement and normalized such that reaching the target position x=1 yields a score
of 1. We evaluate locomotion in a receding-horizon manner, continuing until the agent either reaches
x=1, falls, or reaches the maximum episode limit of 1000 steps. For a robot manipulation (block
stacking), planning is performed with horizon H =128, and each episode attempts a single stacking
action. An episode receives a score of 1 upon a successful stack and 0 otherwise.

Trap Rate measures the rate of local traps, i.e., the percentage of episodes in which the generated
path becomes stuck against barrier constraints; see Definition 2.

T-Time & S-Time. We report two timing metrics: the total computation time (T-Time) and the per-
step sampling time (S-Time), both of which include all computational overheads such as CBF-QP
evaluations. T-Time measures the total wall-clock time required to generate an entire path, including
all prediction and correction steps when applicable. S-Time reports the average wall-clock time per
sampling step, computed as S-Time = T-Time/T , where T is the total sampling horizon.

Curvature (κ) measures local path bending using the Menger curvature computed from triplets of
consecutive points. We report the average curvature along the path.

Acceleration (α) captures the change in velocity across consecutive time steps. It is computed as
the mean squared acceleration magnitude along the path. We approximate it via the second-order
finite difference of the 2D position and define the metric as the average acceleration magnitude
along the path.

F ADDITIONAL ABLATION STUDIES

F.1 HANDLING MULTIPLE CBF CONSTRAINTS AND MITIGATING COMPUTATION
BOTTLENECK

We considered only two CBF constraints so far. When more than two constraints are present, no
closed-form solution is available, and a QP solver must be used to compute the CBF-QP at every
step. This inevitably increases computational overhead and can become a bottleneck.

Figure 13 presents the path generation results with six CBF constraints, under a fixed sampling
horizon T = 256, while varying the allocation between prediction and correction horizon (T p, T c).
The corresponding T-TIME and Trap Rate for each configuration are also reported. We observe
that SafeFlowMatcher maintains a trap rate of 0% across all settings. However, as T c increases, the
T-TIME grows due to repeated CBF-QP solves during the correction phase.

A key advantage of SafeFlowMatcher is that the PC integrator naturally mitigates this computational
bottleneck. Since CBF-QP computations occur only in the correction phase, T p and T c can be
adjusted to reduce the number of QP evaluations while maintaining safety. In contrast, SafeDiffuser
and SafeFM require CBF-QP computations at every generation step, resulting in significantly higher
overhead when many constraints are present. Moreover, SafeDiffuser becomes unstable in high-
constraint settings. As presented in Table 1, local traps are already problematic in the two constraints
setting, they occur even more frequently as the number of safety constraints increases. In the six CBF
constraints setting, SafeDiffuser required T-TIME = 10.269 s and exhibited a 100% trap rate over
100 runs. These observations highlight that the PC integrator enables SafeFlowMatcher to scale
efficiently and robustly to environments with many CBF constraints, both in terms of computational
latency and safe path generation.

F.2 EXPLORING THE FEASIBLE RANGE OF CBF HYPERPARAMETERS ρ AND ϵ

We examine the sensitivity of SafeFlowMatcher and SafeFM to the CBF hyperparameters ρ and ϵ.
Smaller ρ or larger ϵ induce more aggressive safety corrections, which can help fast convergence to
a safe set but may also increase curvature. When excessively strong, these corrections can even lead
to unstable or oscillatory behavior.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Tp = 32, T c = 224
T-TIME: 9.025s, TRAP: 0%

Tp = 64, T c = 192
T-TIME: 7.913s, TRAP: 0%

Tp = 96, T c = 160
T-TIME: 6.671s, TRAP: 0%

Tp = 128, T c = 128
T-TIME: 5.556s, TRAP: 0%

Tp = 160, T c = 96
T-TIME: 4.384s, TRAP: 0%

Tp = 192, T c = 64
T-TIME: 3.222s, TRAP: 0%

Tp = 224, T c = 32
T-TIME: 2.070s, TRAP: 0%

Tp = 240, T c = 16
T-TIME: 1.473s, TRAP: 0%

Figure 13: Balancing prediction and correction horizon in narrow-corrider setting. Visualiza-
tion of the prediction–correction trade-off under a fixed total sampling horizon T = T p+T c = 256.
Each result shows the resulting path for a different allocation of prediction steps T p and correction
steps T c in the narrow-corridor setting.

Across a sweep of ρ∈{0.1, 0.3, 0.5, 0.7, 0.9} and ϵ∈{0.25, 0.50, 1.00, 2.50, 5.00, 10.00}, Safe-
FlowMatcher which include PC integrator remains stable over a significantly broader hyperparame-
ter range than SafeFM (the correction-only variant), making it substantially easier to tune in practice.
This behavior is consistent with Remark 1, which explains that the prediction phase places the path
closer to a region where safety enforcement is feasible and well-conditioned, resulting in more ro-
bust behavior under different CBF strengths.

Table 9: Comparison between SafeFlowMatcher and SafeFM on CBF hyperparameters. Sub-
set of the (ρ, ϵ) hyperparameter grid in Maze2D, comparing SafeFlowMatcher (ours) and SafeFM
(w/o PC). Each entry reports mean ± std over 100 rollouts for Score, Trap Rate, curvature (κ), ac-
celeration (a), and minimum barrier values (BS1, BS2).

ρ ϵ
Score Trap Rate κ (↓) a (↓) BS1 BS2

Ours w/o PC Ours w/o PC Ours w/o PC Ours w/o PC Ours w/o PC Ours w/o PC

0.1 0.25 1.632 ± 0.003 0.446 ± 0.649 0% 100% 76.640 ± 1.446 1.766 ± 0.209 94.579 ± 1.116 2.180e+04 ± 1.083e+04 0.010 -0.058 0.009 -0.101
0.1 0.50 1.633 ± 0.003 0.526 ± 0.673 0% 100% 77.919 ± 1.570 1.961 ± 0.257 96.953 ± 1.408 2.713e+04 ± 4.833e+04 0.010 -0.189 0.009 -0.211
0.1 1.00 1.632 ± 0.003 0.639 ± 0.691 0% 100% 78.349 ± 1.561 2.275 ± 0.317 102.139 ± 3.267 2.530e+04 ± 4.340e+04 0.010 -0.041 0.010 -0.200
0.1 2.50 1.633 ± 0.005 0.709 ± 0.699 0% 100% 79.337 ± 1.898 3.041 ± 0.413 109.303 ± 6.840 1.755e+04 ± 1.035e+04 0.010 -0.022 0.010 -0.383
0.1 5.00 1.633 ± 0.004 1.025 ± 0.613 5% 100% 80.416 ± 1.605 3.871 ± 0.556 141.126 ± 16.164 1.418e+04 ± 2.735e+03 0.010 -0.111 0.009 -0.107
0.1 10.00 1.633 ± 0.003 1.215 ± 0.539 50% 100% 81.395 ± 1.435 5.147 ± 0.581 174.368 ± 31.192 1.160e+04 ± 2.497e+03 0.010 -0.888 0.010 -0.111

0.3 0.25 1.632 ± 0.003 0.628 ± 0.685 0% 100% 73.121 ± 1.286 2.205 ± 0.334 92.501 ± 0.775 1.885e+04 ± 4.554e+03 0.010 -0.036 0.008 0.014
0.3 0.50 1.632 ± 0.004 0.702 ± 0.727 0% 100% 75.438 ± 1.267 2.765 ± 0.386 93.140 ± 0.740 1.895e+04 ± 1.503e+04 0.010 -0.056 0.009 0.017
0.3 1.00 1.632 ± 0.003 0.812 ± 0.669 0% 100% 77.971 ± 1.377 4.105 ± 0.561 93.835 ± 0.949 4.505e+04 ± 1.266e+05 0.010 -0.050 0.009 0.021
0.3 2.50 1.634 ± 0.003 1.136 ± 0.588 0% 100% 78.486 ± 1.510 7.826 ± 1.181 95.123 ± 1.614 1.333e+04 ± 3.713e+04 0.010 -0.045 0.009 0.029
0.3 5.00 1.633 ± 0.003 1.323 ± 0.503 0% 100% 79.055 ± 1.453 15.566 ± 3.422 101.603 ± 3.888 3.710e+03 ± 8.006e+02 0.010 -0.122 0.009 0.067
0.3 10.00 1.633 ± 0.003 1.323 ± 0.438 0% 100% 79.345 ± 1.786 21.111 ± 4.519 113.198 ± 8.455 3.093e+03 ± 1.456e+03 0.010 -0.240 0.010 0.071

0.5 0.25 1.632 ± 0.003 1.083 ± 0.581 0% 100% 70.276 ± 1.101 4.186 ± 0.607 92.016 ± 0.787 1.953e+04 ± 3.482e+04 0.009 -0.005 0.008 -0.005
0.5 0.50 1.631 ± 0.007 1.318 ± 0.481 0% 100% 72.149 ± 1.218 8.378 ± 1.172 92.333 ± 0.676 4.498e+04 ± 2.718e+05 0.010 -0.044 0.008 -0.047
0.5 1.00 1.632 ± 0.005 1.356 ± 0.418 0% 100% 74.715 ± 1.251 25.105 ± 8.403 92.021 ± 0.760 5.606e+03 ± 1.862e+04 0.010 -0.190 0.009 -0.181
0.5 2.50 1.632 ± 0.004 1.404 ± 0.363 0% 94% 77.517 ± 1.436 62.906 ± 16.457 91.634 ± 0.676 1.370e+03 ± 5.066e+03 0.010 -0.550 0.009 -0.623
0.5 5.00 1.633 ± 0.003 1.424 ± 0.419 0% 100% 78.220 ± 1.389 48.093 ± 6.626 92.980 ± 1.315 1.015e+03 ± 2.653e+02 0.010 -0.529 0.010 -0.813
0.5 10.00 1.632 ± 0.009 1.334 ± 0.474 0% 100% 78.742 ± 1.554 31.623 ± 4.874 96.749 ± 2.255 2.011e+03 ± 1.126e+03 0.010 -0.478 0.010 -0.634

0.7 0.25 1.632 ± 0.005 1.416 ± 0.423 0% 97% 69.277 ± 1.121 46.769 ± 16.247 92.030 ± 0.821 3.148e+03 ± 9.812e+03 0.010 0.075 -0.039 0.004
0.7 0.50 1.632 ± 0.003 1.318 ± 0.511 0% 29% 70.150 ± 1.057 63.292 ± 20.617 92.006 ± 0.832 4.445e+03 ± 2.939e+04 0.009 0.129 0.008 -0.002
0.7 1.00 1.632 ± 0.003 1.381 ± 0.453 0% 49% 71.967 ± 1.215 70.206 ± 21.172 91.808 ± 0.642 1.733e+04 ± 1.123e+05 0.010 0.042 0.008 -0.083
0.7 2.50 1.632 ± 0.004 1.389 ± 0.450 0% 90% 74.581 ± 1.317 69.241 ± 15.931 90.505 ± 0.637 4.953e+04 ± 4.876e+05 0.010 -0.037 0.008 -0.552
0.7 5.00 1.633 ± 0.003 1.277 ± 0.525 0% 100% 76.222 ± 1.362 52.326 ± 9.061 90.312 ± 0.615 9.065e+02 ± 3.554e+02 0.010 -0.064 0.009 -0.767
0.7 10.00 1.632 ± 0.007 1.363 ± 0.394 0% 100% 77.335 ± 1.329 35.424 ± 5.417 91.406 ± 0.738 1.606e+03 ± 3.131e+02 0.010 -0.094 0.009 -0.716

0.9 0.25 1.631 ± 0.011 1.321 ± 0.526 0% 17% 71.163 ± 1.132 59.639 ± 20.682 91.879 ± 0.629 1.688e+04 ± 1.575e+05 -0.010 -0.055 -0.101 -0.047
0.9 0.50 1.632 ± 0.004 1.421 ± 0.380 0% 25% 69.218 ± 0.897 58.677 ± 20.838 92.114 ± 0.786 1.040e+03 ± 3.773e+03 0.010 0.010 0.010 0.011
0.9 1.00 1.632 ± 0.006 1.335 ± 0.473 0% 26% 70.471 ± 0.955 63.532 ± 21.366 91.757 ± 0.777 4.596e+03 ± 3.320e+04 0.010 0.002 0.010 -0.011
0.9 2.50 1.632 ± 0.003 1.406 ± 0.428 0% 79% 72.022 ± 1.198 70.335 ± 17.711 90.333 ± 0.703 433.667 ± 572.690 0.010 -0.514 0.008 -0.553
0.9 5.00 1.633 ± 0.003 1.391 ± 0.410 0% 100% 72.987 ± 1.284 57.745 ± 10.115 89.935 ± 0.688 743.566 ± 262.536 0.010 -0.530 0.008 -0.691
0.9 10.00 1.632 ± 0.003 1.419 ± 0.361 0% 100% 74.981 ± 1.450 40.196 ± 5.018 89.995 ± 0.664 1.350e+03 ± 255.700 0.010 -0.434 0.009 -0.759

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

F.3 EFFICIENCY OF SAFEFLOWMATCHER ACROSS CORRECTION HORIZONS

Table 10: Closed-Form CBF Solver: Computation time across correction horizons. Comparison
of RES-SafeDiffuser with a fixed sampling horizon T =256 and SafeFlowMatcher for a fixed pre-
diction horizon T p =1 and varying correction horizons T c ∈{4, 8, 16, 32, 64, 128, 256} in Maze2D,
when using the closed-form solution of CBF-QP. Each entry reports mean ± std over 100 rollouts.

Method (Closed-Form CBF) Score (↑) T-Time (s) Trap Rate κ (↓) a (↓) BS1&BS2 (≥ 0)

RES-SafeDiffuser (Xiao et al., 2025) 1.442± 0.451 1.208 72% 80.30± 13.06 398.17± 1060.86 Yes
SafeFlowMatcher (T c=4) 1.610± 0.029 0.023 17% 79.26± 2.29 252.01± 18.19 Yes
SafeFlowMatcher (T c=8) 1.627± 0.018 0.042 0% 75.72± 1.64 114.03± 6.33 Yes
SafeFlowMatcher (T c=16) 1.634± 0.002 0.078 0% 67.96± 1.11 89.29± 0.96 Yes
SafeFlowMatcher (T c=32) 1.634± 0.003 0.155 0% 67.48± 1.09 87.33± 0.85 Yes
SafeFlowMatcher (T c=64) 1.633± 0.003 0.299 0% 68.03± 1.01 89.09± 0.73 Yes
SafeFlowMatcher (T c=128) 1.632± 0.003 0.617 0% 69.72± 0.98 91.01± 0.90 Yes
SafeFlowMatcher (T c=256) 1.632± 0.003 1.215 0% 69.19± 1.02 91.90± 0.77 Yes

Table 11: QP-Based CBF Solver: Computation time across correction horizons. Comparison of
RES-SafeDiffuser with a fixed sampling horizon T =256 and SafeFlowMatcher for a fixed predic-
tion horizon T p =1 and varying correction horizons T c ∈{4, 8, 16, 32, 64, 128, 256} in Maze2D,
when using the QP solver solution of CBF-QP. Each entry reports mean ± std over 100 rollouts.

Method (QP CBF Solver) Score (↑) T-Time (s) Trap Rate κ(↓) a(↓) BS1&BS2 (≥ 0)
RES-SafeDiffuser (Xiao et al., 2025) 1.468± 0.353 9.998 85% 76.06± 38.73 4776.45± 2430.48 Yes
SafeFlowMatcher (T c=4) 1.606± 0.029 0.157 12% 77.31± 2.52 276.02± 39.01 Yes
SafeFlowMatcher (T c=8) 1.632± 0.004 0.315 4% 76.93± 1.11 137.31± 11.00 Yes
SafeFlowMatcher (T c=16) 1.634± 0.003 0.613 0% 67.94± 1.31 118.72± 9.65 Yes
SafeFlowMatcher (T c=32) 1.632± 0.007 1.247 0% 68.54± 1.22 154.20± 14.70 Yes
SafeFlowMatcher (T c=64) 1.632± 0.003 2.464 2% 69.54± 1.44 158.70± 23.97 Yes
SafeFlowMatcher (T c=128) 1.631± 0.004 4.892 11% 70.59± 1.46 174.57± 34.67 Yes
SafeFlowMatcher (T c=256) 1.630± 0.004 9.957 13% 67.80± 1.42 183.47± 28.39 Yes

Across both the closed-form and QP-based CBF solvers, SafeFlowMatcher exhibits exceptionally
low generation time (T-Time), even when the correction horizon is small. The tables show that Safe-
FlowMatcher remains effective and safe over a wide range of T c values, whereas RES-SafeDiffuser
is much slower and frequently suffers from severe local traps. At T c =4, SafeFlowMatcher may
exhibit minor oscillations near constraint boundaries due to overcorrections caused by the small cor-
rection steps (see Figure 14). Although this falls under the definition of the local trap in 2, its impact
is minimal, in contrast to SafeDiffuser, whose early safety enforcement often leads to hard traps and
incomplete paths (see Figure 16).

Figure 14: Local trap of SafeFlowMatcher at T c =4. Local traps observed at small correction
horizons T c =4 in Maze2D. These traps manifest as mild boundary oscillations near obstacles, yet
the path remains complete and reaches the goal. Unlike SafeDiffuser depicted in Figure 16, which
often fails with incomplete paths under early safety enforcement, SafeFlowMatcher maintains path
completeness despite minor oscillations.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

F.4 ENERGY-DISTANCE ANALYSIS OF DISTRIBUTIONAL DRIFT INDUCED BY CONTROL
BARRIER FUNCTIONS

We quantify how much each perturbation ∆uk
t affects the generative process by measuring an energy

distance between paths with and without safety intervention. For each model pair (FlowMatcher
vs. SafeFlowMatcher, FM vs. SafeFM, Diffuser (Janner et al., 2022) vs. SafeDiffuser (Xiao et al.,
2025)), we generate N = 100 paths from both the baseline and the corresponding safe variants,
starting from the same initial conditions. We define the distance between two paths as the average
waypoint-wise Euclidean distance

δ(τ , τ ′) =
1

H + 1

H∑
k=0

∥∥τ k − τ ′ k∥∥
2
.

Given {τ base
1,i }Ni=1 and {τ safe

1,j }Nj=1, where τ1,(·) denotes the final generated path6, the (sample) energy
distance between the two path distributions is

D̂E =
2

N2

N∑
i=1

N∑
j=1

δ(τ base
1,i , τ

safe
1,j)−

1

N2

N∑
i=1

N∑
j=1

δ(τ base
1,i , τ

base
1,j)− 1

N2

N∑
i=1

N∑
j=1

δ(τ safe
1,i , τ

safe
1,j).

Larger values indicate stronger distributional drift between the baseline and safe path distributions.
For each waypoint k, we similarly define a per-waypoint energy distance D̂k

E by replacing δ(τ , τ ′)

with δk(τ , τ ′) = ∥τ k − τ k′∥2 in the above definition of D̂E .

0 50 100 150 200 250 300 350 400
Waypoint Index k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

En
er

gy
 D

is
ta

nc
e

pe
r

W
ay

po
in

t
D̂

k E

SafeFlowMatcher (ours)
SafeFM
SafeDiffuser (Xiao et al., 2025)

Figure 15: Per-waypoint drift between baseline and safe path. For each model pair (Flow-
Matcher/SafeFlowMatcher, FM/SafeFM, Diffuser/SafeDiffuser), the plot shows the mean per-
waypoint deviation between paths produced by the baseline and its corresponding safe variant. The
pink band marks the region where the baseline path violates the CBF constraint at the final time; for
clarity, a single common band is shown, although the exact violation interval may differ by several
steps across models.

Figure 15 plots the per-waypoint energy distance D̂k
E between the baseline and safe paths. Across the

three model pairs, the resulting energy distances D̂E are 0.061 (SafeFlowMatcher), 0.097 (SafeFM),
and 0.229 (SafeDiffuser), showing that SafeFlowMatcher induces the smallest distributional drift
while still enforcing safety. The pink band indicates the segment in which the baseline path violates
the CBF constraint at the final time. Outside this safety-critical region, SafeDiffuser shows large
drift, and SafeFM still exhibits noticeable spillover, suggesting that their safety interventions propa-
gate to parts of the path that do not require correction. In contrast, SafeFlowMatcher keeps the drift
close to zero outside the pink band.

In SafeFM and SafeDiffuser, the perturbation is applied not only at t = 1, but also to intermediate
generative states τ k

t for t ∈ [0, 1) that are never executed. Once these perturbed intermediate states
6For diffusion-based samplers, the final path is obtained at t = 0 rather than t = 1, but we use the unified

notation τ1,(·) for consistency.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

are fed back into the velocity field and integrated forward, the resulting deviations can accumulate
and propagate through the generative dynamics, producing drift at waypoints far outside the final-
time violation interval. However, PC integrator in SafeFlowMatcher naturally separate correction
from the prediction. It can mitigate this kind of drift effectively.

F.5 VISUALIZATION AND QUALITATIVE ANALYSIS OF LOCAL TRAPS

Following the Definition 2, a path is locally trapped if the corrected waypoint exhibits a large dis-
continuity between two successive corrected path:

∥τ k
1 − τ k−1

1 ∥ > ζ,

for some threshold ζ > 0. Intuitively, this corresponds to path that get stuck near safety boundaries
and consequently produce a large jump to escape, often resulting in incomplete paths.

SafeDiffuser applies the CBF constraint to each waypoint at every sampling step, starting from pure
noise. Because the initial waypoints are sampled i.i.d., neighboring waypoints τ k

t and τ k−1
t often

differ significantly. Since CBFs depend on the state, such large discrepancies cause the resulting CBF
corrections to vary greatly across waypoints. Although the diffuser aims to generate a continuous
path (i.e., ∥τ k

t −τ k−1
t ∥ ≤ ζ), applying the CBF constraint independently at each waypoint can break

this continuity, pushing different waypoints toward different constraint boundaries and creating local
traps. This behavior is clearly visualized in Figures 16 and 17.

SafeFlowMatcher, in contrast, begins the correction phase from a semi-continuous path τ c
0 (i.e.,

∥τ c,k
0 − τ c,k−1

0 ∥ ≤ η for some small η ≥ ζ). Because neighboring waypoints are already close to
each other, the resulting CBF corrections vary smoothly across the path. This keeps all waypoints
moving in a consistent direction, preserving the path’s continuity and preventing local traps. As
visualized in Figures 18 and 19, the path maintains forward progress without stalling.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 16: Path Generation Process of SafeDiffuser (Xiao et al., 2025) in Maze2D environment
with two constraints. From the top-left to the bottom-right, we visualize τt on a uniform time
discretization of [T, 0], excluding the midpoint t = 0.5T .

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 17: Path Generation Process of SafeDiffuser (Xiao et al., 2025) in Maze2D environment
with six constraints. From the top-left to the bottom-right, we visualize τt on a uniform time dis-
cretization of [T, 0], excluding the midpoint t = 0.5T .

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 18: Path Generation Process of SafeFlowMatcher in Maze2D environment with two
constraints. Top-left presents the predicted path τ p

1 = τ c
0 from a noise sample. From the top-left to

the bottom-right, we visualize τ c
t on a uniform time discretization of [0, 1], excluding the midpoint

t = 0.5.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 19: Path Generation Process of SafeFlowMatcher in Maze2D environment with six con-
straints. Top-left presents the predicted path τ p

1 = τ c
0 from a noise sample. From the top-left to

the bottom-right, we visualize τ c
t on a uniform time discretization of [0, 1], excluding the midpoint

t = 0.5.

30

	Introduction
	Related Work & Preliminaries
	FlowMatcher: Flow Matching for Planning
	Control Barrier Functions

	SafeFlowMatcher
	Prediction–Correction Integrator
	Control Barrier Certificate for SafeFlowMatcher

	Experiments
	Main Results on Maze2D Navigation
	Ablation Studies on PC Integrator
	Generalization to High-Dimensional Robotic Tasks

	Conclusion
	Additional Related Work on Control Barrier Functions
	Theoretical and Empirical Support for the Correction Phase
	Empirical Validation of the Prediction Error Assumption in Lemma 2
	Proofs of Lemma 2 and Lemma 3

	Proof of Theorem 1 and Proposition 1
	Differences in Local Trap Definitions
	Experimental Details
	Experimental Setup
	Performance Metrics

	Additional Ablation Studies
	Handling Multiple CBF Constraints and Mitigating Computation Bottleneck
	Exploring the Feasible Range of CBF Hyperparameters and
	Efficiency of SafeFlowMatcher Across Correction Horizons
	Energy-Distance Analysis of Distributional Drift Induced by Control Barrier Functions
	Visualization and Qualitative Analysis of Local Traps

