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ABSTRACT

Generative planners based on Flow Matching (FM) produce high-quality paths in
a single or a few ODE steps, but their sampling dynamics offer no formal safety
guarantees and can yield incomplete paths near constraints. We present SafeFlow-
Matcher, a planning framework that couples FM with control barrier functions
(CBFs) to achieve both real-time efficiency and certified safety. SafeFlowMatcher
uses a two-phase prediction–correction (PC) integrator: (i) a prediction phase in-
tegrates the learned FM once (or a few steps) to obtain a candidate path without
intervention; (ii) a correction phase refines this path with a vanishing time-scaled
vector field and a CBF-based quadratic program that minimally perturbs the vec-
tor field. We prove a barrier certificate for the resulting flow system, establishing
forward invariance of a robust safe set and finite-time convergence to the safe
set. In addition, by enforcing safety only on the executed path—rather than all
intermediate latent paths—SafeFlowMatcher avoids distributional drift and mit-
igates local trap problems. Moreover, SafeFlowMatcher attains faster, smoother,
and safer paths than diffusion- and FM-based baselines on maze navigation and
locomotion. Extensive ablations corroborate the contributions of the PC integrator
and the barrier certificate.

1 INTRODUCTION

Figure 1: Directly constraining intermediate sam-
ples during generation (top) can cause paths to be
distorted or trapped, whereas SafeFlowMatcher
(bottom) decouples generation and certification,
producing a complete and certified-safe path.

Robotic path planning must simultaneously
achieve real-time responsiveness and strong
safety guarantees. Recently, generative mod-
els such as diffusion (Ho et al., 2020; Dhari-
wal & Nichol, 2021b; Song et al., 2021b) and
flow matching (FM) (Lipman et al., 2023) have
gained attention for path planning, thanks to
their expressive modeling of multi-modal ac-
tion distributions (Carvalho et al., 2023; Braun
et al., 2024) and low-latency inference (Qureshi
et al., 2019; Liu et al., 2024) compared to classi-
cal sampling- and optimization-based planners.
However, the sampling dynamics of these mod-
els are governed by implicitly learned rules and
can produce paths that violate physical safety
constraints, leading to task interruptions or col-
lisions. Therefore, integrating certified safety
into generative planning is essential for deploy-
ment in real-world robotic systems.

Several approaches have attempted to enforce
safety in generative planning. Safety-guidance methods regulate the sampling process through
learned safety scores (often called guidance, e.g., classifier(-free) guidance(Dhariwal & Nichol,
2021a; Ho & Salimans, 2021), or value/reward guidance (Yang et al., 2024; Chen et al., 2024)), but
their reliance on data-driven proxy prevents them from providing strong safety guarantees. More ex-
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plicit, certification-based methods incorporate functions such as Control Barrier Functions (CBFs)
directly into the generative process (Wei et al., 2025). Unlike guidance-based approaches, these
methods can guarantee safety at deployment without requiring additional training. However, a key
challenge in such certification-based methods is a semantic misalignment: certification concerns the
executed physical path (its waypoints over the horizon), whereas interventions are often applied to
intermediate latent states that are never executed. Constraining such latents is unnecessary for certi-
fication. As a result, repeated interventions distort the learned flow and often yield incomplete (lo-
cally trapped) paths. Finally, although diffusion samplers can be accelerated (Lu et al., 2022; Zhang
& Chen, 2022; Liu et al., 2022), their SDE-based denoising requires many steps, making real-time
planning expensive. In contrast, FM casts sampling as deterministic ODE integration, generating
accurate paths in a single or a few steps.

To address these limitations, we propose SafeFlowMatcher, a planning framework that combines
flow matching with CBFs, particularly for finite-time convergence CBFs, to achieve certified safety
before the completion of generation, while maintaining the efficiency of FM. Our key idea is a
Prediction–Correction (PC) integrator that decouples distributional drift from safety certification. In
the prediction phase, we propagate the flow once (or a few steps) to obtain a candidate path without
any safety intervention. In the correction phase, we refine this path by (i) compensating for integra-
tion error through a modified vector field, and (ii) enforcing safety through CBFs. Rather than con-
straining all intermediate samples from pure noise to the target during prediction, SafeFlowMatcher
enforces safety only in the correction phase. This preserves the native FM dynamics and prevents
distributional drift when generating the target path. Also, it avoids local traps caused by repeatedly
pushing intermediate waypoints onto the barrier boundary and stalling near safety constraints.

Our main contributions are as follows:

• We introduce SafeFlowMatcher, a novel planning framework that integrates finite-time con-
vergence CBF-based certification with flow matching to enforce hard safety constraints,
while preserving the efficiency of flow matching.

• We propose prediction–correction integrator that decouples path generation from certifica-
tion: FM first generates paths without intervention, and then CBF-based corrections enforce
finite-time convergence to the safe set while compensating for integration errors.

• We validate SafeFlowMatcher in maze navigation and locomotion with extensive ablation
studies, showing consistent improvements over both FM- and diffusion-based planners in
efficiency, safety, and path quality.

2 RELATED WORK & PRELIMINARIES

2.1 FLOWMATCHER: FLOW MATCHING FOR PLANNING

FM has recently been proposed as a powerful alternative to diffusion, originally in the image gen-
eration domain (Lipman et al., 2023; Song et al., 2021b), and has shown promise for efficient path
planning and robotic control (Ye & Gombolay, 2024; Zhang & Gienger, 2024; Chisari et al., 2024;
Xing et al., 2025). Unlike diffusion, FM directly learns a time-varying vector field that maps noise
to the target distribution via forward integration, making the sampling process efficient and flexible.

We adapt standard flow matching (FM) (Lipman et al., 2023) to planning context. Let H ∈ N be
the planning horizon and H ≜ {0, . . . , H}. A path is a stacked vector τ = (τ 0, τ 1, . . . , τH) ∈
DH+1 ⊆ Rd×(H+1), where each waypoint τ k ∈ D ⊆ Rd encodes the state at step k.

Let vt(·; θ) : DH+1 → DH+1 be a time-dependent vector field. The flow ψ : [0, 1] × DH+1 →
DH+1 is defined as the solution of the ODE

d

dt
ψt(τ ) = vt(ψt(τ ); θ), ψ0(τ ) = τ , (1)

which transports a simple prior p0 (e.g. N (0, I)) to a target p1. Following conditional flow
matching (CFM), we train vt(·; θ) by regressing it to a conditional vector field that generates
a fixed conditional probability path. We adopt the optimal transport (OT) path pt(τ | τ1) =
N
(
τ ; µt(τ1), σ

2
t I

)
, µt(τ1)= t τ1, σt =1− t, whose generating OT-conditional vector field is

ut(τ | τ1) =
τ1 − τ

1− t
. (2)
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Sampling t∼Unif[0, 1], τ0∼p0, τ1∼ q and defining τt ≜ ψt(τ0) = (1− t)τ0 + t τ1 (conditioned
on τ1), we have by (2) that ut(τt | τ1) = τ1 − τ0. Hence, we train vt(·; θ) with the CFM loss:

L(θ) = Et, q(τ1), p0(τ0)

∥∥ vt(ψ(τ0); θ)− (τ1 − τ0)
∥∥2
2
. (3)

Further details are in Lipman et al. (2023).

For numerical integration, we discretize 0= t0< · · · <tT =1 with T ∈N (Collectively T (T ) =

{t0, . . . , tT }) and define step sizes ∆ti = ti+1 − ti. We define T -step integrator Ψ(T )
0→1 : DH+1 →

DH+1 (e.g., Euler integrator 1) which integrates the flow matching dynamics from τ0 to τ1 as

Ψ
(T )
0→1(τ0) = τ0 +

T−1∑
i=0

∆ti vti(τti ; θ). (4)

2.2 CONTROL BARRIER FUNCTIONS

Safety filters (Hsu et al., 2023; Wabersich et al., 2023) are a real-time intervention mechanism to
ensure that an autonomous agent operates within some predefined safety sets, overriding its nominal
behavior only when it is about to violate the sets. Various approaches exist for constructing safety
filters, including reachability-based methods (Bansal et al., 2017), model predictive control (Hew-
ing et al., 2020; Wabersich & Zeilinger, 2021), and learning-based safety critics (Alshiekh et al.,
2018; Srinivasan et al., 2020). Among these, control barrier functions (CBFs) (Ames et al., 2019)
are especially popular as they provide a systematic way to guarantee forward invariance of safe
sets by solving a real-time optimization problem at each control step. They have wide application
in autonomous driving (Ames et al., 2016), legged locomotion (Kim et al., 2023), multi-robot sys-
tems (Wang et al., 2017), and more. Here, we review only the CBF preliminaries that are necessary
for the rest of this paper; the reader is referred to the above references for more details.

We consider systems of the following control-affine form

ẋt = f(xt) + g(xt)ut, (5)

where xt ∈ D ⊂ Rd, ut ∈ U ⊂ Rm, and f : Rd → Rd and g : Rd×m → Rd are locally Lipschitz
continuous.

Define the safe set C as the superlevel set of a continuously-differentiable (C1) function b : D → R,

C ≜ {xt ∈ D | b(xt) ≥ 0}. (6)

Definition 1 (Finite-Time Convergence CBF) Given the system (5) and the safe set (6), C1 func-
tion b is called a finite-time convergence CBF if there exist parameters ρ ∈ [0, 1) and ϵ > 0 such
that for all xt ∈ D,

sup
ut∈U

[Lfb(xt) + Lgb(xt)ut + ϵ · sgn(b(xt))|b(xt)|ρ] ≥ 0, (7)

whereLfb(xt)≜∇b(xt)
⊤f(xt) andLgb(xt)≜∇b(xt)

⊤g(xt) denote the Lie derivatives of b along
f and g, respectively.

Lemma 1 (Forward Invariance of the Safe Set) Define CBF b as in Definition 1, such that the
initial state satisfies b(x0) ≥ 0. Any Lipschitz continuous controller ut that satisfies condition (7)
ensures forward invariance of the safe set C, i.e., b(xt) ≥ 0 for all t ≥ 0.

To select a control input that guarantees forward invariance of C as well as become close as possible
to some reference control input uref

t , a common approach is to solve a quadratic program (CBF-
QP) (Ames et al., 2019) at each time step:

u∗
t = argmin

ut∈U
∥ut−uref

t ∥2 subject to Lfb(xt)+Lgb(xt)ut + ϵ · sgn(b(xt))|b(xt)|ρ ≥ 0. (8)

This means the optimal solution u∗
t is the minimally modified control that guarantees the forward

invariance of the safe set C. Moreover, based on the finite-time stability theorem (Bhat & Bernstein,
2000), the finite-time convergence CBF can be used to ensure that states not only remain within the
safe set but also reach it within finite-time (Li et al., 2018; Srinivasan et al., 2018).

1Alternatively, higher-order ODE solvers can be used.
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3 SAFEFLOWMATCHER

Here, we present SafeFlowMatcher, a safe and fast planning framework that couples flow matching
with certified safety. First, in Section 3.1, we introduce a two-phase Prediction-Correction (PC) in-
tegrator which decouples generation and certification. Next, in Section 3.2, we formalize safety for
SafeFlowMatcher by employing control barrier functions (CBFs) and derive conditions that guar-
antee forward invariance and finite-time convergence to the safe set. The pseudocode of SafeFlow-
Matcher is in Algorithm 1.

Figure 2: Example of a local
trap in maze environment.

We introduce a crucial problem in non-autoregressive planner, par-
ticularly for generative-based planner. As shown in Figure 2, non-
autoregressive planners may fail to generate a complete path after
planning when using CBFs. Although the resulting path remains
safe (does not exceed safety constraints), it may be unable to reach
the goal because certain waypoints become locally trapped near the
barrier boundaries and cannot escape within the finite sampling or
integration time. We will show that SafeFlowMatcher can effec-
tively resolve this issue using a PC integrator.

Definition 2 (Local Trap) A local trap problem occurs during the
planning process if there exists k∈H such that ∥τ k

1 − τ k−1
1 ∥>ζ,

where ζ > 0 is a user-defined threshold depending on the planning
environment. 2

Algorithm 1 SafeFlowMatcher

Input: learned velocity field vt(·; θ), prediction and correction time horizon T p, T c, planning
horizonH, CBF parameters (ϵ, ρ), robustness parameter δ, and scale constant α
Output: Safe path τ c

1
Phase 1: Prediction

1: Sample initial noise τ p
0 ∼ N (0, I)

2: Compute predicted path τ p
1 ← Ψ

(Tp)
0→1(τ

p
0 ) by (9)

Phase 2: Correction
3: Initialize corrected path τ c

0 ← τ p
1

4: for each correction step t ∈ T (T c) do
5: for each waypoint k ∈ H do
6: Solve QP (16) to obtain (uk∗

t , rk∗t )
7: end for
8: Update velocity time-scaled flow dynamics (13) with u∗

t = {u0,∗
t , . . . ,uH,∗

t }
9: end for

10: Return safe final path τ c
1

3.1 PREDICTION-CORRECTION INTEGRATOR

SafeFlowMatcher divides the integration process into two phases: a prediction phase that generates
an approximate path without considering safety, and a correction phase that refines the path by
reducing integration error and adding safety constraints. Let τ ℓ

t ∈ DH+1 ⊆ Rd×(H+1) for ℓ ∈ {p, c}
denote the paths in the prediction and correction phases, with waypoints τ ℓ,k

t ∈D⊆Rd for k ∈ H.

Prediction phase aims to quickly approximate the target path starting from pure noise τ p
0 ∼

N (0, I), without considering safety constraints. Starting from the noise, we run Euler integration
to obtain the solution of the flow matching dynamics (1):

τ p
1 = Ψ

(T )
0→1(τ

p
0 ) = τ ⋆

1 + ε, (9)
where τ ⋆

1 is the exact solution of the flow matching dynamics and ε is the Euler integration (predic-
tion) error. To balance computational efficiency and reliability, we select small T (typically T = 1)
that places τ p

0 sufficiently close to τ ⋆
1 , making it a suitable initialization for the correction phase.

2The definition is slightly different from that of SafeDiffuser (Wei et al., 2025) to capture a broader class of
failure cases. See Appendix C for the details.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Correction phase starts from the path in the prediction phase τ c
0 = τ p

1 , unlike τ p
0 in the prediction

phase. In this phase, the path is refined by (i) decreasing the discretization error ε and (ii) enforcing
safety constraints.

We define a new flow dynamics, called vanishing time-scaled flow dynamics (VTFD), with scale
constant α ≥ 1:

dτ c
t

dt
= α (1− t) vt(τ c

t ; θ) ≜ ṽt(τ
c
t ; θ), (10)

where ṽt(τ c
t ; θ) denotes the vanishing time-scaled vector field. The (1 − t) factor gradually sup-

presses the dynamics as t → 1, ensuring that the path stabilizes close to the target rather than
drifting.

Lemma 2 Assume the prediction error ε ∼ pε has a symmetric, zero-mean distribution (e.g., Gaus-
sian) and that, in a neighborhood of ε = 0, the negative log-density − log pε is C2 with a positive-
definite Hessian A ≻ 0 (i.e., locally strongly convex). In addition, assume the target log-density
log p1 is C2. Suppose the correction phase is initialized near the target τ ⋆

1 :

τ c
t = τ ⋆

1 + (1− t) ε, ε = O(1). (11)

Then, E[τ1 | τ c
t ] = τ ⋆

1 +O(1− t).

(11) is a natural assumption under optimal transport, since OT path approaches τ1 as t → 1.
Lemma 2 ensures expectation of posterior contract towards target. The next lemma implies that
VTFD can reduce the prediction error.

Lemma 3 Under the assumptions of Lemma 2, let et ≜ τ c
t − τ ⋆

1 . If the flow dynamics follow the
vanishing time-scaled flow dynamics (10), then as t→ 1,

et = O((1− t)2) + ( ε+O(1) )e−αt. (12)

Lemma 3 implies that τ c
1 has only a tiny error. See proofs of Lemma 2 and Lemma 3 in Appendix A.

3.2 CONTROL BARRIER CERTIFICATE FOR SAFEFLOWMATCHER

To ensure that the generated waypoint τ c,k
t escapes from unsafe setD\C and remains within safe set

C, we introduce an additional perturbation to minimally intervene the flow matching dynamics (1):

dτ c
t

dt
= ṽt(τ

c
t ; θ) + ∆ut ≜ ut, (13)

where ut = {u0
t ,u

1
t , ...,u

H
t } ∈ DH+1(uk

t ∈ D), and ∆ut ∈ Rd×(H+1) is a perturbation term
that enforces safety constraints. For notational simplicity, we denote the right-hand side by ut ∈
Rd×(H+1). The original equation can be equivalently substituted in the following derivations without
affecting the results. We now formalize the concept of safety in flow matching using finite-time flow
invariance.

Definition 3 (Finite-Time Flow Invariance) Let b :D→R be a C1 function. The system (13) is
finite-time flow invariant if there exists tf ∈ [0, 1] such that b(τ c,k

t ) ≥ 0 for all k ∈ H, ∀t ≥ tf .

Theorem 1 (Forward Invariance for SafeFlowMatcher) Let b :D→R be a C1 function, and de-
fine the robust safety set Cδ ≜ {τ c,k ∈ D | b(τ c,k) ≥ δ} for some δ > 0. Suppose the system (13) is
controlled by ut satisfying the following barrier certificate for 0 < ρ < 1, ϵ > 0:

∇b(τ c,k
t )⊤uk

t + ϵ · sgn(b(τ c,k
t )− δ)|b(τ c,k

t )− δ|ρ + wk
t r

k
t ≥ 0,∀k ∈ H, ∀t ∈ [0, 1]. (14)

Here, wk
t : [0, 1] → R≥0 is a monotonically decreasing function with wk

t = 0 for all t ∈ [tw, 1]
(tw ∈ [0, 1)), and rkt ≥ 0 is a slack variable. Then the flow matching (13) achieves finite-time flow
invariance on Cδ .

The weightswk
t serve as functions that relax the CBF constraint in the early refining phase, providing

numerical stability by preventing infeasibility and reducing abrupt changes in the QP solution. Since
wk

t vanishes for t ≥ tw, the relaxation term has no effect afterwards, ensuring that the final path
satisfies certified safety.

5
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Proposition 1 (Finite Convergence Time for SafeFlowMatcher) Suppose Theorem 1 holds. Then
for any initial path τ c,k

tw ∈ D \ Cδ , the state path τ c,k
t converges to the safe set Cδ within finite time

T ≤ tw +
(δ − b(τ c,k

tw ))1−ρ

ϵ(1− ρ)
, (15)

and remains in the set thereafter.

Proposition 1 allows us to select parameters ϵ and ρ to guarantee flow invariance on the robust safe
set Cδ before the time (15). The proofs of Theorem 1 and Proposition 1 are in Appendix B

In order to enforce the invariance of the safety set Cδ with minimum intervention during planning,
we solve a quadratic program (QP) analogous to (8) at each sampling time t and planning step k:

uk∗
t , rk∗t = argmin

uk
t ,r

k
t

∥uk
t − ṽkt (τ c

t ; θ)∥2 + rkt
2

subject to (14), (16)

where ṽkt (τ
c
t ; θ) denotes the k-th column of ṽt(τ c

t ; θ). Since the QP (16) is equivalent to a Euclidean
projection problem with linear inequalities, closed-form solutions are available when it has at most
two inequalities (Luenberger, 1997; Boyd & Vandenberghe, 2004).

Remark 1 The Prediction–Correction integrator brings τ c
0 closer to the barrier boundary after

the prediction phase, and further reduces b(τ c
tw) during correction. By Proposition 1, this tighter

initialization shortens the required convergence time, allowing us a wider range of choices for (ρ, ϵ),
and more stable control inputs.

4 EXPERIMENTS

We evaluate SafeFlowMatcher through experiments designed to answer three key questions:

1. Does SafeFlowMatcher outperform state-of-the-art generative model based safe planning
baselines in terms of safety, planning performance, and efficiency?

2. Does SafeFlowMatcher really require a two-phase (prediction and correction) approach?
3. How well can SafeFlowMatcher generalize to more complex tasks (e.g., robot locomotion)?

We conduct experiments on a variety of planning domains: (i) Maze navigation
(maze-large-v1), (ii) OpenAI Gym locomotion (Walker2D-Medium-Expert-v2,
Hopper-Medium-Expert-v2) (Brockman et al., 2016; Todorov et al., 2012).

To fairly evaluate our proposed method, we extend SafeDiffuser (Wei et al., 2025) beyond its orig-
inal DDPM sampler. We introduce three additional safety-aware variants. For the first and second
variants, we adapt DDIM (Song et al., 2021a) into two versions, SafeDDIM(η=0.0 & 1.0), which
share the same training settings as SafeDiffuser; here, η controls the level of sampling randomness.
The last variant we develop is SafeFM, a flow-matching counterpart to SafeDiffuser which uses the
same model size and training setup as SafeFlowMatcher, but enforces safety directly during sam-
pling and without the prediction–correction step. For all flow-matching based methods, including
SafeFM and SafeFlowMatcher, we apply a simple covariance-aware guidance gcov-A with scale 1.0,
following prior work (Feng et al., 2025). When safety constraints are disabled, we drop the “Safe”
prefix. Additional details on experimental settings are provided in Appendix D.1.

For safety, we report Barrier Safety (BS) per constraint, the minimum value of the barrier function b
(which should remain non-negative), and Trap Rate, the rate of local trap occurrences. For planning
quality, we measure the overall Score, path Curvature (κ) averaged over the planning horizon, and
path Acceleration (a) averaged over the horizon. For efficiency, we report Time, the computation
time per path in milliseconds. Formal definitions of the metrics are provided in Appendix D.2.

4.1 MAIN RESULTS ON MAZE2D NAVIGATION

We first present the main performance comparison in the Maze2D setting, as shown in Figure 4,
where there are two safety constraints (red circles). As shown in Table 1 and Figure 3, SafeFlow-
Matcher demonstrates a superior trade-off across all metrics in the Maze2D environment. It achieves

6
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Method BS1(↑) BS2(↑) Score(↑) TIME TRAP κ(↓) a(↓)
(≥ 0) (≥ 0) (ms) RATE

Diffuser (Janner et al., 2022) -0.825 -0.784 1.572±0.288 3.70 0% 77.04±4.30 86.68±3.81
Truncation (Brockman et al., 2016) -0.999 -0.999 0.978±0.128 19.51 100% 1118.21±1093.96 9.043e5±8.988e6
CG (Dhariwal & Nichol, 2021b) -0.996 -0.999 0.505±0.092 19.13 100% 949.63±1103.62 959.71±1846.58
CG-ϵ (Dhariwal & Nichol, 2021b) -0.998 -0.999 0.499±0.104 19.87 100% 1027.28±1124.70 1.202e9±1.1961e10
ROS-SafeDiffuser (Wei et al., 2025) 0.010 0.010 1.435±0.502 4.67 100% 75.15±6.67 422.87±86.70
RES-SafeDiffuser (Wei et al., 2025) 0.010 0.010 1.442±0.451 4.72 72% 80.30±13.06 398.17±1060.86
TVS-SafeDiffuser (Wei et al., 2025) -0.003 -0.003 1.506±0.405 4.78 69% 78.72±7.80 124.51±34.22
ROS-SafeDDIM(η = 0.0) 0.010 0.010 1.132±0.556 4.79 100% 31.22±4.87 2073.84±1694.06
RES-SafeDDIM(η = 0.0) 0.010 0.010 1.405±0.494 4.83 96% 43.23±3.41 1153.81±2040.98
TVS-SafeDDIM(η = 0.0) -0.026 -0.026 1.522±0.295 4.79 90% 42.56±3.39 575.73±371.83
ROS-SafeDDIM(η = 1.0) 0.010 0.010 1.575±0.158 4.89 100% 56.30±2.93 668.17±69.19
RES-SafeDDIM(η = 1.0) 0.010 0.010 1.532±0.331 4.82 86% 61.73±4.80 1584.00±8085.06
TVS-SafeDDIM(η = 1.0) -0.026 -0.026 1.549±0.304 4.74 65% 60.29±3.41 27.23±43.20
ROS-SafeFM 0.010 0.010 1.138±0.556 4.68 100% 23.57±8.34 1.317e4±9.931e4
RES-SafeFM 0.010 0.010 1.401±0.429 4.74 12% 61.17±19.52 6724.64±5.304e4
TVS-SafeFM -0.002 -0.002 1.350±0.417 4.73 41% 60.29±3.41 768.71±2212.17
SafeFlowMatcher(ours) 0.010 0.010 1.632±0.003 4.71 0% 69.19±1.02 91.90±0.77

Table 1: Performance comparison of different methods. we evaluated all methods over 100 inde-
pendent trials under identical settings. SafeFlowMatcher exhibits consistently low variance across
metrics and maintains a zero trap rate. All baselines are reproduced by us.

Figure 3: Score versus number of sampling(integration) steps. Left (safety on): SafeFlowMatcher
attains the highest score across sampling steps. Right (safety off): FlowMatcher (FM + PC integrator)
remains more sampler-efficient than others. Overall, SafeFlowMatcher outperforms in terms of score
across all sampling steps.

the highest score while preserving safety, with comparably low computation time. Our method also
attains top scores across all sampling steps.

Figure 4 provides a visual comparison, illustrating that SafeFlowMatcher generates smooth, effi-
cient paths that effectively avoid obstacles, whereas baselines may produce unsafe, suboptimal, or
computationally expensive paths.

4.2 ABLATION STUDIES: WHY TWO PHASES ARE IMPORTANT

Effectiveness of the Two-Phase Prediction-Correction Architecture. To emphasize the neces-
sity of both the Prediction and the Correction phases in SafeFlowMatcher, we consider ablation
studies with each phase removed. The “Prediction-Only” variant suffers from low safety, while the
“Naive Safe FM” approach, which applies safety constraints from the beginning (like a “Correction-
Only” variant), struggles to find successful paths, resulting in a high trap rate. Our full model suc-
cessfully combines the strengths of both, achieving high task performance and safety.

Analysis on Number of Function Evaluations (NFE) Allocation. We analyze the trade-off be-
tween the number of function evaluations (NFE) allocated to the prediction phase (T p) and the
correction phase (T c). Table 2 reports the score after both phases for varying T p, and Figure 5 vi-
sualizes how T p shapes the prediction paths. Increasing T p yields slightly smoother predictions,
while incurring extra computation. A single-step prediction (T p=1) already suffices to initialize the
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Figure 4: Comparisons of the path generation process in Maze2D. Red circles indicate the safety
constraints the path should satisfy. (Top) RES-SafeDiffuser initializes samples all over the maze
and converges to a path that has local traps. (Bottom) SafeFlowMatcher (ours) initializes from near
target path after prediction phase, and converges to a higher-quality path with no local traps.3

corrector effectively and matches the performance of substantially larger T p (e.g., 16). We therefore
adopt T p=1 as the default, balancing performance and compute.

Table 2: Score versus T p. Score after both prediction and correction phases over T p.

Prediction NFE (T p) 1 2 4 8 16
score (↑) 1.632±0.008 1.520±0.340 1.468±0.434 1.362±0.480 1.632±0.003

Figure 5: Predicted path quality versus T p. The path at the end of the prediction phase for the
Maze2D environment over T p.

Importance of a Vanishing Scaling for Stable Correction. We empirically validate the role of
the vanishing time–scaled flow dynamics (10) used in the correction phase. We sweep the scaling
constant α and report scores in Table 3. Moderate scaling constant (α=2) yields the best trade-off:
larger α accelerates early convergence but can over-amplify the vector field and reduce stability,
while smaller α cannot effectively reduce error.

Table 3: Score versus scaling constant in correction phase.

Scaling constant α 1.0 1.5 2.0 2.5 3.0
Score (↑) 1.623±0.005 1.629±0.004 1.632±0.008 1.618±0.033 1.572±0.058

In Figures 6 and 7, we compare correction with and without vanishing time scaling. Figure 6 shows
that, as sampling steps increases, vanishing time-scaling helps to prevent score reduction. In Fig-
ure 7, the path without a vanishing scaling exhibits a sharp drift near t=1 and a larger gap between
τ c
0 and τ c

1 . These observations indicate that the vanishing time–scaled flow dynamics bounds the
effective velocity near t=1, ensuring stable integration even as the sampling budget increases.

3Diffusion-based samplers evolve backward on an interval [0, T ], whereas flow matching evolves forward
on [0, 1]; a natural correspondence can be established by normalizing T = 1 and reversing time.
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4 8 16 32 64 128 256
Sampling Steps

0.8

1.0

1.2

1.4

1.6

Sc
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e 
(

)

w/ vanishing time-scaling
w/o vanishing time-scaling

Figure 6: Score with and without a vanishing
time-scale. As the sampling steps increases, we
see that the score decreases in the absence of
vanishing time-scale.

Figure 7: Path quality with (a) and without (b)
a vanishing time-scale. The transparent path
represents τ c

0 , the solid path represents τ c
1 . The

black solid line represents the trajectory τ c
t from

to ∗ over the interval t ∈ [0, 1].

4.3 GENERALIZATION TO HIGH-DIMENSIONAL ROBOTIC TASKS

We assess generalization to high-dimensional control on Walker2D and Hopper. Across both tasks,
SafeFlowMatcher attains the highest score while maintaining BS ≥ 0 , indicating that the predic-
tion–correction design scales beyond static maze navigation. Note that the BS metric here is reported
in a different way than in Table 1; here, BS is a binary indicator (yes or no) of whether safety is guar-
anteed (≥ 0) or not (< 0). We only compared methods that directly incorporate safety guarantees,
hence BS≥ 0 is true for all of them, but this is not true of the other baselines we’ve considered so far
(see Table 1). Due to space limitations, we defer all details on the experiment setup and additional
algorithmic modifications to Appendix D.1.

Table 4: Performance on high-dimensional robotic tasks. SafeFlowMatcher maintains its advan-
tages in safety and score even for more complex settings.

Environment Method Score (↑) BS (≥ 0)
Walker2D SafeDiffuser (Wei et al., 2025) 0.321± 0.119 Yes

SafeFM 0.264± 0.127 Yes
Ours 0.331± 0.021 Yes

Hopper SafeDiffuser (Wei et al., 2025) 0.464± 0.028 Yes
SafeFM 0.675± 0.312 Yes

Ours 0.917± 0.026 Yes

5 CONCLUSION

We introduced SafeFlowMatcher, a planning framework that couples flow matching (FM) with CBF-
certified safety by employing a two-phase prediction–correction integrator. On the path generation
side, we proposed the vanishing time-scaled flow dynamics, which contracts the prediction error
toward the target path. On the safety side, we established a finite convergence time barrier certificate
for the flow system to ensure forward invariance of a safe set. The approach generates a candi-
date path with the learned FM dynamics and then refines only the executed path under safety con-
straints. This decoupling preserves the native generative dynamics, avoids distributional drift from
repeated interventions on latent states, and mitigates local trap failures near constraint boundaries.
Empirically, SafeFlowMatcher attains faster, smoother, and safer paths than various diffusion- and
FM-based baselines across maze navigation and robot locomotion tasks. Some directions of future
work include a more adaptive method of fine-tuning our hyperparameters, and the development of
SafeFlowMatcher without guidance or conditioning.
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A PROOFS OF LEMMA 2 AND LEMMA 3

Proof of Lemma 2.
Let ϕt(ε) = τ1 + δε, where δ ≜ 1− t. We have push forward of pε under ϕt:

pt(τ | τ1) = [ϕt]∗pε(ε) = pε(ϕ
−1
t (τ )) det

[
∂ϕ−1

t

∂τ
(τ )

]
=

1

δd(H+1)
pε

(
τ − τ1
δ

)
By Bayes’ rule,

p(τ1 | τ c
t ) ∝ p1(τ1) pε

(
τ c
t − τ1
δ

)
.

Since − log pε(z) is C2 near 0 with Hessian A ≻ 0 by the assumption,

− log pε(z) = 1
2z

⊤Az +O(∥z∥3).

Let y = τ1 − τ c
t . Substituting z = y/δ yields the posterior energy

Φδ(y) = 1
2δ2 y

⊤Ay − log p1(τ
c
t + y) +O(1).

The quadratic term dominates as δ → 0 (t→ 1), so the posterior concentrates in an O(δ) neighbor-
hood of τ c

t .

The stationarity condition ∇Φδ(y) = 0 gives

1

δ2
Ay −∇ log p1(τ

c
t + y) = 0.

Taylor expanding ∇ log p1 at τ c
t shows y = O(δ2). Thus the posterior mode is

τ̂1 = τ c
t + δ2A−1∇ log p1(τ

c
t ) +O(δ3).

Laplace’s approximation then yields the same expansion for the posterior mean:

E[τ1 | τ c
t ] = τ c

t + δ2A−1∇ log p1(τ
c
t ) +O(δ3).
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Under the assumption, we have τ c
t = τ ⋆

1 + δε with ∥ε∥ = O(1),

E[τ1 | τ c
t ] = τ ⋆

1 + δε+O(δ2) = τ ⋆
1 +O(δ).

This proves Lemma 2.

Proof of Lemma 3.
If the flow dynamics follow the vanishing time-scaled flow dynamics (10), then we have:

τ̇ c
t = α(1− t) vt(τ c

t ; θ) = α(E[τ1 | τ c
t ]− τ c

t ).

Let et ≜ τ c
t − τ ⋆

1 ∈ Rd×(H+1), and denote its k-th column by ek,t ∈ Rd. By Lemma 2, E[τ1 |
τ c
t ] = τ ⋆

1 +O(1− t) as t→ 1, hence we have

ėk,t = −αek,t +O(1− t).
Solving with an integrating factor gives

ek,t = e−αtek,0 + αe−αt

∫ t

0

eαsO(1− s) ds = (ek,0 +O(1))e−αt +O((1− t)2).

Combining the column vectors again yields the form

et = (e0 +O(1))e−αt +O
(
(1− t)2

)
, e0 = ε.

which proves Lemma 3.

B PROOF OF THEOREM 1 AND PROPOSITION 1

We drop the superscript c for simplicity, and choose the Lyapunov candidate function V (τ k
t ) ≜

max(δ − b(τ k
t ), 0). Since w(t) = 0 for all t ≥ tw, the barrier inequality (14) reduces on [tw, 1] to

ḃ(τ k
t ) + ϵ · sgn

(
b(τ k

t )− δ
) ∣∣b(τ k

t )− δ
∣∣ρ ≥ 0.

Case 1: If τ k
tw ∈ Cδ (i.e., b(τ k

tw) ≥ δ), then V (τ k
tw) = 0. For all t ≥ tw, if b(τ k

t ) > δ we have
V (τ k

t ) = 0. If b(τ k
t ) = δ, the barrier inequality (14) with sgn(0) = 0 reduces to ḃ(τ k

t ) ≥ 0, so the
path cannot exit Cδ by Nagumo’s principle (Nagumo, 1942)4. Therefore V (τ k

t ) = 0 for all t ≥ tw,
which implies τ k

t ∈ Cδ; the system stays in Cδ .

Case 2: If τ k
tw /∈ Cδ (i.e., b(τ k

tw) < δ), then V (τ k
t ) = δ − b(τ k

t ) > 0. The following finite-stability
condition holds

V̇ (τ k
t ) = −ḃ(τ k

t ) ≤ −ϵ(δ − b(τ k
t ))

ρ = −ϵV (τ k
t )

ρ.

Define the comparison system

ϕ̇(t) = −ϵϕ(t)ρ, ϕ(tw) = V (τ k
tw).

By the Comparison Lemma (See Lemma 3.4 in Khalil & Grizzle (2002)), we have:

V (τ k
t ) ≤ ϕ(t), ∀t ≥ tw.

The solution ϕ(t) is

ϕ(t) =
(
V (τ k

tw)
1−ρ − (1− ρ)ϵ(t− tw)

) 1
1−ρ , for t ≥ tw.

Thus,
V (τ k

t ) ≤
(
V (τ k

tw)
1−ρ − (1− ρ)ϵ(t− tw)

) 1
1−ρ .

Hence, the state reaches the robust safe set Cδ in finite time T that satisfies V (τ k
t ) ≤ ϕ(T ) = 0.

Moreover, we get the finite convergence time,

T = tw +
V (τ k

tw)
1−ρ

ϵ(1− ρ)
= tw +

(δ − b(τ k
tw))

1−ρ

ϵ(1− ρ)
.

Therefore, for all t ≥ T , we have V (τ k
t ) ≤ 0, implying x ∈ Cδ . This completes the proofs of both

Theorem 1 and Proposition 1.
4Nagumo’s theorem states that if the vector field at the boundary lies in the tangent cone of a set, then the

set is forward invariant.
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C DIFFERENCES IN LOCAL TRAP DEFINITIONS

Figure 8: Although some
waypoints do not violate con-
straints (i.e., b(τ k

t ) > 0),
it fails to reach the goal.
Our definition considers such
cases as local traps, while the
original definition does not.

We clarify the difference between the local trap definition used
in our SafeFlowMatcher and that of the baseline method SafeD-
iffuser (Wei et al., 2025).

Definition 4 (Local Trap in SafeDiffuser) A local trap problem
occurs during the planning process if there exists k∈H such that
b(τ k

1 )= 0 and ∥τ k
1 − τ k−1

1 ∥>ζ, where ζ > 0 is a user-defined
threshold depending on the planning environment.

In contrast, our definition of a local trap in SafeFlowMatcher re-
moves the condition b(τ k

1 ) = 0 and instead considers only the
abrupt discontinuity in the path. The reason for relaxing the con-
dition is illustrated in Figure 8. In this example, the generated path
is incomplete due to overly strong or early intervention of the CBF.
However, since the waypoints do not strictly lie on the boundary
(i.e., b(τ k

1 ) ̸= 0), the original SafeDiffuser definition fails to detect
this failure as a local trap. Therefore, we generalize the definition to
capture a wider class of failure cases.

D EXPERIMENTAL DETAILS

D.1 EXPERIMENTAL SETUP

All CBF constraints are enforced via the closed-form projection of the CBF-QP in (16). For each
model family, the safety-enabled variant (SafeDiffuser/ SafeDDIM or SafeFM/SafeFlowMatcher)
reuses the same trained weights as its non-safe counterpart. We match the total number of samples
seen during training across methods, batch size × #iterations = 6.4 × 107. Unless specified, the
default number of function evaluations (NFE) at inference time is 256.

Maze2D We first swept through several batch sizes to ensure that the number of data checked
during the training process was 6.4× 107, the same amount of data as used to train Diffuser Janner
et al. (2022). Our results are shown in Table 5; both Diffuser and FM performed best or on par at
128. Thus, for all models, including SafeDiffuser and its variants, we used batch size 128 for all our
Maze2D experiments. Other training and inference hyperparameters are shown in Tables 6 and 7.

Table 5: Scores by Batch Size for Maze2D for both Diffuser and FM.

Batch size 16 32 64 128 256
Score(↑) FlowMatcher 1.631± 0.003 1.628± 0.002 1.615± 0.031 1.631± 0.003 1.523± 0.196

Diffuser (Janner et al., 2022) 1.503± 0.424 1.438± 0.500 1.516± 0.316 1.537± 1.537 1.536± 0.338

Locomotion. Extending the insights gained from Maze2D, locomotion was also trained using the
same batch size of 128. SafeFlowMatcher and SafeFM shares the same hyperparameter values and
conditions as shown in Table 8.

We keep the total number of seen samples constant during batch-size sweeps: batch size ×
#iterations = 6.4 × 107. Both FlowMatcher and Diffuser achieved the best validation score at
batch size = 128 also, which we adopt throughout Maze2D and Locomotion tasks. Unless oth-
erwise stated, the number of function evaluations (NFE) during inference equals the number of
diffusion steps, 256.
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Table 6: Maze2D’s training hyper parameters

Train
Loss type L2
Training steps ntrain 5.0× 105

Steps per epoch 2500
Batch size 128
Learning rate 3× 10−4

Gradient accumulate every 1
EMA decay 0.995

Table 7: Maze2D’s evaluation hyper parameters

Evaluation
Horizon H 256
Diffusion steps T 256
NFE 256 (by default; equals T )

Table 8: Locomotion (Walker2d/Hopper)’s training hyperparameters

Train
Loss type l2
Training steps ntrain 2.5× 105

Steps per epoch 2500
Batch size 128
Learning rate 2× 10−4

Gradient accumulate every 1
EMA decay 0.995

Table 9: Locomotion value network’s training hyperparameters

Train Value
Loss type L2
Training steps ntrain 5.0× 104

Steps per epoch 2500
Batch size 128
Learning rate 2× 10−4

Gradient accumulate every 1
EMA decay 0.995

Table 10: Locomotion evaluation hyper parameters

Hyperparameter Value
Horizon H 600
Diffusion steps T 20
NFE 20

D.2 PERFORMANCE METRICS

BS measures safety constraint satisfaction using CBFs for each safety constraint in the environment.
Specifically, these metrics compute the minimum value of the barrier function b(τ k

t ) across some
total number N of test runs

min
i=1,2,...,N

min
k∈H

b(τ k
T ).
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There are two safety constraints in our Maze2D experiment. Their barrier functions are defined as

BS1 :

(
x− x0
a

)2

+

(
y − y0
b

)2

≥ 1,

BS2 :

(
x− x0
a

)4

+

(
y − y0
b

)4

≥ 1,

where (x, y) ∈ R2 denotes the agent’s 2D state, (x0, y0) ∈ R2 specifies the center of the obstacle,
and a, b > 0 are scaling parameters that shape the corresponding safety region.

The barrier function for our Locomotion tasks is defined as z + φvz ≤ hr, where hr > 0 denotes
the roof height, φ > 0 is a scaling parameter, and vz ∈ R is the robot head’s vertical velocity. This
speed-dependent constraint ensures that the head position z plus its velocity contribution remains
below the roof limit.

Score is a normalized, undiscounted performance metric that reflects task success. For Maze2D,
episodes have horizon H=1000; once the agent enters a goal neighborhood, it receives unit reward
for each remaining step, so the score equals the fraction of remaining steps and lies in [0, 1]. For lo-
comotion tasks, the score is proportional to forward displacement and is normalized so that reaching
the target position x=1 yields a score of 1.

Trap Rate measures the rate of local traps, i.e., the percentage of episodes in which the generated
path becomes stuck against barrier constraints; see Definition 2.

Time reports the average wall-clock time per sampling step. We use a uniform time discretiza-
tion with ∆t = 1/T for a total of T steps. For each method, we divide the total sampling time
(including all CBF/QP overheads) by the number of integration updates it performs Time =
Total sampling time (incl. CBF)

# of sampling steps .

• For diffusion-based baselines (e.g., SafeDiffuser) with T=256, the per-step time is Time =
Total/256.

• For SafeFlowMatcher (FM with prediction–correction), if we use T p prediction steps and
T c correction steps (e.g., T p=1, T c=256), then Time = Total

Tp+T c = Total
257 .

Curvature (κ) measures the directional change of a path. For each discrete segment, we compute
the angular deviation relative to the previous step. The metric is defined as the average curvature
along the path.

Acceleration (α) captures the change in velocity across consecutive time steps. It is computed as
the mean squared acceleration magnitude along the path.
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