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ABSTRACT

Generative planners based on flow matching (FM) produce high-quality paths in
a single or a few ODE steps, but their sampling dynamics offer no formal safety
guarantees and can yield incomplete paths near constraints. We present SafeFlow-
Matcher, a planning framework that couples FM with control barrier functions
(CBFs) to achieve both real-time efficiency and certified safety. SafeFlowMatcher
uses a two-phase prediction–correction (PC) integrator: (i) a prediction phase in-
tegrates the learned FM once (or a few steps) to obtain a candidate path without
intervention; (ii) a correction phase refines this path with a vanishing time-scaled
vector field and a CBF-based quadratic program that minimally perturbs the vector
field. We prove a barrier certificate for the resulting flow system, establishing for-
ward invariance of a robust safe set and finite-time convergence to the safe set. In
addition, by enforcing safety only on the executed path—rather than all interme-
diate latent paths—SafeFlowMatcher avoids distributional drift and mitigates lo-
cal trap problems. Moreover, SafeFlowMatcher attains faster, smoother, and safer
paths than diffusion- and FM-based baselines on maze navigation, locomotion,
and robot manipulation tasks. Extensive ablations corroborate the contributions of
the PC integrator and the barrier certificate.

1 INTRODUCTION

Figure 1: Overview of SafeFlowMatcher Ver-
sus Existing Certification-Based Methods. Di-
rectly constraining intermediate samples during
generation (top) can cause paths to be distorted or
trapped, whereas SafeFlowMatcher (bottom) de-
couples generation and certification, producing a
complete and certified-safe path.

Robotic path planning must simultaneously
achieve real-time responsiveness and strong
safety guarantees. Recently, generative mod-
els such as diffusion (Ho et al., 2020; Dhari-
wal & Nichol, 2021; Song et al., 2021b) and
flow matching (FM) (Lipman et al., 2023) have
gained attention for path planning, thanks to
their expressive modeling of multi-modal ac-
tion distributions (Carvalho et al., 2023; Braun
et al., 2024) and low-latency inference (Qureshi
et al., 2019; Liu et al., 2024) compared to classi-
cal sampling- and optimization-based planners.
However, the sampling dynamics of these mod-
els are governed by implicitly learned rules and
can produce paths that violate physical safety
constraints, leading to task interruptions or col-
lisions. Therefore, integrating certified safety
into generative planning is essential for deploy-
ment in real-world robotic systems.

Several approaches have attempted to enforce
safety in generative planning. Safety-guidance
methods regulate the sampling process through learned safety scores (often called guidance, e.g.,
classifier(-free) guidance(Dhariwal & Nichol, 2021; Ho & Salimans, 2021), or value/reward guid-
ance (Yang et al., 2024; Chen et al., 2024)), but their reliance on data-driven proxy prevents them
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from providing strong safety guarantees. More explicitly, certification-based methods incorporate
functions such as Control Barrier Functions (CBFs) directly into the generative process (Xiao et al.,
2025). Unlike guidance-based approaches, these methods can guarantee safety at deployment with-
out requiring additional training. However, a key challenge in such certification-based methods is
a semantic misalignment: certification concerns the executed physical path (its waypoints over the
horizon), whereas interventions are often applied to intermediate latent states that are never executed.
Constraining such latents is unnecessary for certification. As a result, repeated interventions distort
the learned flow and often yield incomplete (locally trapped) paths. Finally, although diffusion sam-
plers can be accelerated (Lu et al., 2022; Zhang & Chen, 2022; Liu et al., 2022), their SDE-based
denoising requires many steps, making real-time planning expensive. In contrast, FM casts sampling
as deterministic ODE integration, generating accurate paths in a single or a few steps.

To address these limitations, we propose SafeFlowMatcher, a planning framework that combines
flow matching with CBFs, particularly for finite-time convergence CBFs, to achieve certified safety
before the completion of generation, while maintaining the efficiency of FM. Our key idea is a
prediction–correction (PC) integrator that decouples distributional drift from safety certification. In
the prediction phase, we propagate the flow once (or a few steps) to obtain a candidate path without
any safety intervention. In the correction phase, we refine this path by (i) compensating for integra-
tion error through a modified vector field, and (ii) enforcing safety through CBFs. Rather than con-
straining all intermediate samples from pure noise to the target during prediction, SafeFlowMatcher
enforces safety only in the correction phase. This preserves the native FM dynamics and prevents
distributional drift when generating the target path. Also, it avoids local traps caused by repeatedly
pushing intermediate waypoints onto the barrier boundary and stalling near safety constraints.

Our main contributions are as follows:

• We introduce SafeFlowMatcher, a novel planning framework that integrates finite-time con-
vergence CBF-based certification with flow matching to enforce hard safety constraints,
while preserving the efficiency of flow matching.

• We propose prediction–correction integrator that decouples path generation from certifica-
tion: FM first generates paths without intervention, and then CBF-based corrections enforce
finite-time convergence to the safe set while compensating for integration errors.

• We validate SafeFlowMatcher in maze navigation, locomotion, and robot manipulation
tasks with extensive ablation studies, showing consistent improvements over both FM- and
diffusion-based planners in efficiency, safety, and path quality.

2 RELATED WORK & PRELIMINARIES

2.1 FLOWMATCHER: FLOW MATCHING FOR PLANNING

FM has recently been proposed as a powerful alternative to diffusion, originally in the image gen-
eration domain (Lipman et al., 2023; Song et al., 2021b), and has shown promise for efficient path
planning and robotic control (Ye & Gombolay, 2024; Zhang & Gienger, 2024; Chisari et al., 2024;
Xing et al., 2025). Unlike diffusion, FM directly learns a time-varying vector field that maps noise
to the target distribution via forward integration, making the sampling process efficient and flexible.

We adapt standard flow matching (FM) (Lipman et al., 2023) to the planning context. Let H ∈ N
be the planning horizon and H ≜ {0, . . . ,H}. A path is a stacked vector τ = (τ 0, τ 1, . . . , τH) ∈
DH+1 ⊆ Rd×(H+1), where each waypoint τ k ∈ D ⊆ Rd encodes the state at step k.

Let vt(·; θ) : DH+1 → DH+1 be a time-dependent vector field. The flow ψ : [0, 1] × DH+1 →
DH+1 is defined as the solution of the ODE

d

dt
ψt(τ ) = vt(ψt(τ ); θ), ψ0(τ ) = τ , (1)

which transports a simple prior p0 (e.g. N (0, I)) to a target p1. Following conditional flow
matching (CFM), we train vt(·; θ) by regressing it to a conditional vector field that generates
a fixed conditional probability path. We adopt the optimal transport (OT) path pt(τ | τ1) =
N
(
τ ; µt(τ1), σ

2
t I

)
, µt(τ1)= t τ1, σt =1− t, whose generating OT-conditional vector field is

ut(τ | τ1) =
τ1 − τ

1− t
. (2)
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Let q denote the data distribution over the target paths τ1. Sampling t∼Unif[0, 1], τ0∼ p0, τ1∼ q
and defining τt ≜ ψt(τ0) = (1− t)τ0 + t τ1 (conditioned on τ1), we have by (2) that ut(τt | τ1) =
τ1 − τ0. Hence, we train vt(·; θ) with the CFM loss:

L(θ) = Et, q(τ1), p0(τ0)

∥∥ vt(ψ(τ0); θ)− (τ1 − τ0)
∥∥2
2
. (3)

Further details are in Lipman et al. (2023).

For numerical integration, we discretize 0= t0< · · · <tT =1 with the sampling horizon T ∈N
(Collectively T (T ) = {t0, . . . , tT }) and define step sizes ∆ti = ti+1 − ti. We define T -step in-
tegrator Ψ

(T )
0→1 : DH+1 → DH+1 (e.g., Euler integrator 1) which integrates the flow matching

dynamics from τ0 to τ1 as

Ψ
(T )
0→1(τ0) = τ0 +

T−1∑
i=0

∆ti vti(τti ; θ). (4)

2.2 CONTROL BARRIER FUNCTIONS

Safety filters (Hsu et al., 2023; Wabersich et al., 2023) are a real-time intervention mechanism to
ensure that an autonomous agent operates within some predefined safety sets, overriding its nominal
behavior only when it is about to violate the sets. Various approaches exist for constructing safety
filters, but among these, control barrier functions (CBFs) (Ames et al., 2019) are especially popular,
as they provide a systematic way to guarantee forward invariance of safe sets by solving a real-time
optimization problem at each control step. Additional recent work on CBFs, including non-convex
safe sets and learning-based CBFs, are summarized in Appendix A.

Here, we review only the standard finite-time convergence CBF preliminaries that are necessary for
the rest of this paper. To this end, we consider an arbitrary control-affine system

ẋt = f(xt) + g(xt)ut, (5)
where xt ∈ D ⊂ Rd, ut ∈ U ⊂ Rd, and f : Rd → Rd and g : Rd → Rd×d are locally Lipschitz
continuous.

Define the safe set C as the superlevel set of a continuously-differentiable (C1) function b : D → R,
C ≜ {xt ∈ D | b(xt) ≥ 0}. (6)

System safety is often mathematically prescribed by ensuring that a system’s state safely converges
to the targeted safe set within finite time.

Definition 1 (Finite-Time Convergence CBF) Given the system (5) and the safe set (6), C1 func-
tion b is called a finite-time convergence CBF if there exist parameters ρ ∈ [0, 1) and ϵ > 0 such
that for all xt ∈ D,

sup
ut∈U

[Lfb(xt) + Lgb(xt)ut + ϵ · sgn(b(xt))|b(xt)|ρ] ≥ 0, (7)

whereLfb(xt)≜∇b(xt)
⊤f(xt) andLgb(xt)≜∇b(xt)

⊤g(xt) denote the Lie derivatives of b along
f and g, respectively.

Lemma 1 (Forward Invariance of the Safe Set) Define CBF b as in Definition 1, such that the
initial state satisfies b(x0) ≥ 0. Any Lipschitz continuous controller ut that satisfies condition (7)
ensures forward invariance of the safe set C, i.e., b(xt) ≥ 0 for all t ≥ 0.

Lemma 1 ensures that once the state first enters the safe set, it remains there thereafter. To select a
control input that guarantees forward invariance of C as well as become close as possible to some
reference control input uref

t , a common approach is to solve a quadratic program (CBF-QP) (Ames
et al., 2019) at each time step:
u∗
t = argmin

ut∈U
∥ut−uref

t ∥2 subject to Lfb(xt)+Lgb(xt)ut + ϵ · sgn(b(xt))|b(xt)|ρ ≥ 0. (8)

This means the optimal solution u∗
t is the minimally modified control that guarantees the forward

invariance of the safe set C. Moreover, based on the finite-time stability theorem (Bhat & Bernstein,
2000), the finite-time convergence CBF can be used to ensure that states not only remain within the
safe set but also reach it within finite-time (Li et al., 2018; Srinivasan et al., 2018).

1Alternatively, higher-order ODE solvers can be used.
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3 SAFEFLOWMATCHER

Here, we present SafeFlowMatcher, a safe and fast planning framework that couples flow matching
with certified safety in settings where neither the dynamics nor cost map are known. First, in Sec-
tion 3.1, we introduce a two-phase prediction–correction (PC) integrator which decouples genera-
tion and certification. Next, in Section 3.2, we formalize safety for SafeFlowMatcher by employing
control barrier functions (CBFs) and derive conditions that guarantee forward invariance and finite-
time convergence to the safe set. The pseudocode of SafeFlowMatcher is in Algorithm 1, and full
generation processes for two Maze environments are visualized in Appendix F.5.

Figure 2: Local trap. Exam-
ple of a local trap in maze en-
vironment.

We introduce a crucial problem in non-autoregressive planner, par-
ticularly for a generative-based planner. As shown in Figure 2, non-
autoregressive planners may fail to generate a complete path after
planning when using CBFs. Although the resulting path remains
safe (does not exceed safety constraints), it may be unable to reach
the goal because certain waypoints become locally trapped near the
barrier boundaries and cannot escape within the finite sampling or
integration time. We will show that SafeFlowMatcher can effec-
tively resolve this issue using a PC integrator.

Definition 2 (Local Trap) A local trap problem occurs during the
planning process if there exists k∈H such that ∥τ k

1 − τ k−1
1 ∥>ζ,

where ζ > 0 is a user-defined threshold depending on the planning
environment. 2

Algorithm 1 SafeFlowMatcher

Input: learned velocity field vt(·; θ), prediction and correction horizon T p, T c, planning horizon
H, CBF parameters (ϵ, ρ), robustness parameter δ, and scale constant α
Output: Safe path τ c

1
Phase 1: Prediction

1: Sample initial noise τ p
0 ∼ N (0, I)

2: Compute predicted path τ p
1 ← Ψ

(Tp)
0→1(τ

p
0 ) by (9)

Phase 2: Correction
3: Initialize corrected path τ c

0 ← τ p
1

4: for each correction step t ∈ T (T c) do
5: ṽt ← α (1− t) vt(τ c

t ; θ)
6: for each waypoint k ∈ H do
7: Solve QP (17) to obtain (uk∗

t , rk∗t ), using ṽt
8: end for
9: Update velocity time-scaled flow dynamics (13) with u∗

t = {u0,∗
t , . . . ,uH,∗

t }
10: end for
11: Return safe final path τ c

1

3.1 PREDICTION–CORRECTION INTEGRATOR

SafeFlowMatcher divides the integration process into two phases: a prediction phase that generates
an approximate path without considering safety, and a correction phase that refines the path by
reducing integration error and adding safety constraints. Let τ ℓ

t ∈ DH+1 ⊆ Rd×(H+1) for ℓ ∈ {p, c}
denote the paths in the prediction and correction phases, with waypoints τ ℓ,k

t ∈D⊆Rd for k ∈ H.
Additionally, we denote by T = T p+T c the total sampling horizon, where T p and T c are the number
of sampling (integration) steps allocated to the prediction and correction phases, respectively.

The Prediction phase aims to quickly approximate the target path starting from pure noise τ p
0 ∼

N (0, I), without considering safety constraints. Starting from the noise, we run Euler integration to

2The definition is slightly different from that of SafeDiffuser (Xiao et al., 2025) to capture a broader class
of failure cases. See Appendix D for the details.

4
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obtain the solution of the flow matching dynamics (1):

τ p
1 = Ψ

(Tp)
0→1(τ

p
0 ) = τ ⋆

1 + ε, (9)

where τ ⋆
1 is the exact solution of the flow matching dynamics and ε is the Euler integration (pre-

diction) error. To balance computational efficiency and reliability, we select small T p (typically
T p = 1) that places τ p

1 sufficiently close to τ ⋆
1 , making it a suitable initialization for the correction

phase.

The Correction phase starts from the path in the prediction phase τ c
0 = τ p

1 , unlike τ p
0 in the

prediction phase. In this phase, the path is refined by (i) reducing the discretization error ε and (ii)
enforcing safety constraints.

To achieve (i), we introduce the vanishing time-scaled flow dynamics (VTFD)
dτ c

t

dt
= α (1− t) vt(τ c

t ; θ) ≜ ṽt(τ
c
t ; θ), (10)

where the factor (1− t) gradually suppresses the vector field as t→ 1 with scaling constant α > 0.
Intuitively, this produces a contraction effect: the path is driven toward the target direction in the
early correction steps, while the dynamics become increasingly stable near t=1, preventing drift
and allowing the prediction error to decay. This mechanism is formalized in Lemma 2 and Lemma 3.

Lemma 2 Assume the prediction error ε ∼ pε has a symmetric, zero-mean distribution (e.g., Gaus-
sian) and that, in a neighborhood of ε = 0, the negative log-density − log pε is C2 with a positive-
definite Hessian A ≻ 0 (i.e., locally strongly convex). In addition, assume the target log-density
log p1 is C2. Suppose the correction phase is initialized near the target τ ⋆

1 :

τ c
t = τ ⋆

1 + (1− t) ε, ε = O(1). (11)

Then, E[τ1 | τ c
t ] = τ ⋆

1 +O(1− t).

We empirically verify the validity of the symmetric zero-mean assumption on the prediction error ε
in Appendix B.1. (11) is a natural result under optimal transport, since OT path approaches τ1 as
t→ 1. Lemma 2 ensures that the posterior expectation contracts toward the target.

Lemma 3 Under the assumptions of Lemma 2, let et ≜ τ c
t − τ ⋆

1 . If the flow dynamics follow the
vanishing time-scaled flow dynamics (10), then as t→ 1,

et = O((1− t)2) + ( ε+O(1) )e−αt. (12)

Lemma 3 implies that VTFD reduces the prediction error of τ c
1 . See the proofs of Lemma 2 and

Lemma 3 in Appendix B.2.

3.2 CONTROL BARRIER CERTIFICATE FOR SAFEFLOWMATCHER

To ensure the safety constraints hold during the correction phase, we introduce an additional pertur-
bation to minimally intervene the flow dynamics (10):

dτ c
t

dt
= ṽt(τ

c
t ; θ) + ∆ut, (13)

where ṽt is VTFD defined in (10), and ∆ut = {∆u0
t ,∆u1

t , ...,∆uH
t }∈Rd×(H+1) (∆uk

t ∈Rd) is a
perturbation term that enforces safety constraints. Importantly, the safety constraint is applied in a
waypoint-wise fashion: the CBF condition is enforced independently for each waypoint τ c,k

t so that
it remains within safe set C. Thus, we can split the dynamics (13) into

dτ c,k
t

dt
= ṽkt (τ

c
t ; θ) + ∆uk

t ≜ uk
t , (14)

where ṽkt (τ
c
t ; θ) denotes the k-th column of ṽt(τ c

t ; θ). For notational simplicity, we denote the right-
hand side by ut = {u0

t ,u
1
t , ...,u

H
t } ∈ Rd×(H+1)(uk

t ∈ Rd). 3 We now formalize the concept of
safety in flow matching using finite-time flow invariance.

3(14) is a control-affine system with drift f(τ c,k
t ) = ṽkt and input matrix g = I . Thus, at the waypoint

level, the structure coincides with the standard control-affine system used in Section 2.2.

5
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Definition 3 (Finite-Time Flow Invariance) Let b :D→R be a C1 function. The system (13) is
finite-time flow invariant if there exists tf ∈ [0, 1] such that b(τ c,k

t ) ≥ 0 for all k ∈ H, ∀t ≥ tf .

Theorem 1 (Forward Invariance for SafeFlowMatcher) Let b :D→R be a C1 function, and de-
fine the robust safety set Cδ ≜ {τ c,k ∈ D | b(τ c,k) ≥ δ} for some δ > 0. Suppose the system (13) is
controlled by ut satisfying the following barrier certificate for 0 < ρ < 1, ϵ > 0:

∇b(τ c,k
t )⊤uk

t + ϵ · sgn(b(τ c,k
t )− δ)|b(τ c,k

t )− δ|ρ + wk
t r

k
t ≥ 0,∀k ∈ H, ∀t ∈ [0, 1]. (15)

Here, wk
t : [0, 1] → R≥0 is a monotonically decreasing function with wk

t = 0 for all t ∈ [tw, 1]
(tw ∈ [0, 1)), and rkt ≥ 0 is a slack variable. Then the flow matching (13) achieves finite-time flow
invariance on Cδ .

The weightswk
t serve as functions that relax the CBF constraint in the early refining phase, providing

numerical stability by preventing infeasibility and reducing abrupt changes in the QP solution. Since
wk

t vanishes for t ≥ tw, the relaxation term has no effect afterwards, ensuring that the final path
satisfies certified safety.

Proposition 1 (Finite Convergence Time for SafeFlowMatcher) Suppose Theorem 1 holds. Then
for any initial path τ c,k

tw ∈ D \ Cδ , the state path τ c,k
t converges to the safe set Cδ within finite time

T ≤ tw +
(δ − b(τ c,k

tw ))1−ρ

ϵ(1− ρ)
, (16)

and remains in the set thereafter.

Proposition 1 allows us to select parameters ϵ and ρ to guarantee flow invariance on the robust safe
set Cδ before the time (16). The proofs of Theorem 1 and Proposition 1 are in Appendix C.

In order to enforce the invariance of the safety set Cδ with minimum intervention during planning,
we solve a quadratic program (QP) analogous to (8) at each sampling time t and planning step k:

uk∗
t , rk∗t = argmin

uk
t ,r

k
t

∥uk
t − ṽkt (τ c

t ; θ)∥2 + rkt
2

subject to (15), (17)

where uk
t and ṽkt (τ

c
t ; θ) are defined in (14). Since the QP (17) is equivalent to a Euclidean projec-

tion problem with linear inequalities, closed-form solutions are available when it has at most two
inequalities (Luenberger, 1997; Boyd & Vandenberghe, 2004). Moreover, the computational time
can be reduced further by decreasing the correction horizon T c or balancing (T p, T c), as discussed
in Appendix F.1.

Remark 1 The PC integrator brings τ c
0 closer to the barrier boundary after the prediction phase.

By Proposition 1, this improved initialization reduces the required convergence time, allowing us
a wider range of choices for (ρ, ϵ), and more stable control inputs. We empirically validate this in
Appendix F.2.

Remark 2 The relaxation term is mainly necessary in environments where the planner is prone to
becoming locally stuck due to complex safety constraints. In particular, it is essential in Maze2D,
where the safe set is highly non-convex, leading to frequent local traps. In contrast, in relatively
open or convex environments such as locomotion or robot manipulation tasks in our experiments,
the relaxation is typically unnecessary. In such cases, the relaxation term wk

t remains zero, and the
slack variable rkt can be removed from (15).

4 EXPERIMENTS

We evaluate SafeFlowMatcher through experiments designed to answer three key questions:

1. Does SafeFlowMatcher outperform state-of-the-art generative model based safe planning
baselines in terms of safety, planning performance, and efficiency?

2. Does SafeFlowMatcher really require a two-phase (prediction and correction) approach?

6
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3. How well can SafeFlowMatcher generalize to more complex and high-dimensional tasks
(e.g., robot locomotion and manipulation)?

We conduct experiments on a variety of planning domains: (i) Maze navigation
(maze-large-v1), (ii) OpenAI Gym locomotion (Walker2D-Medium-Expert-v2,
Hopper-Medium-Expert-v2) (Brockman et al., 2016; Todorov et al., 2012), and (iii) a robot
manipulation task (block stacking) (Janner et al., 2022).

To fairly evaluate our proposed method, we extend SafeDiffuser (Xiao et al., 2025) beyond its orig-
inal DDPM sampler. We introduce three additional safety-aware variants. For the first and second
variants, we adapt DDIM (Song et al., 2021a) into two versions, SafeDDIM(η=0.0 & 1.0), which
share the same weights as SafeDiffuser; here, η controls the level of sampling randomness. The
last variant we develop is SafeFM, a flow-matching counterpart to SafeDiffuser which uses the
same weights as SafeFlowMatcher, but enforces safety directly during sampling and without the
prediction–correction integrator. When safety constraints are disabled, we drop the “Safe” prefix.
Additional details on experimental settings are provided in Appendix E.1.

For safety, we report Barrier Safety (BS) per constraint, the minimum value of the barrier function b
(which should remain non-negative), and Trap Rate, the rate of local trap occurrences. For planning
quality, we measure the overall Score, the average path Curvature (κ), and the average path Accel-
eration (a) over the planning horizon. For efficiency, we report S-Time, the computation time per
sampling step during generation, and T-Time, the total computation time to generate an entire path.
Formal definitions of the metrics are provided in Appendix E.2.

4.1 MAIN RESULTS ON MAZE2D NAVIGATION

We first present the main performance comparison in the Maze2D setting, as shown in Figure 3,
where there are two safety constraints (red circles). Our results illustrate that SafeFlowMatcher
generates smooth, efficient paths that effectively avoid obstacles, whereas baselines may produce
unsafe, suboptimal, or computationally-expensive paths.

Figure 3: Comparisons of the path generation process in Maze2D. Red circles indicate the safety
constraints the path should satisfy. (Top) RES-SafeDiffuser initializes samples all over the maze
and converges to a path that has local traps. (Bottom) SafeFlowMatcher (ours) initializes from near
target path after prediction phase, and converges to a higher-quality path with no local traps.4

As shown in Table 1, SafeFlowMatcher achieves the highest score while preserving safety, with
almost no local traps. Local traps remain rare even with far more than two constraints; Appendix F.1
shows the case with six constraints.

Moreover, Figure 4 demonstrates that our method consistently outperforms all baselines, both safety-
enabled and -disabled versions, across all sampling horizons. As detailed in Appendix F.3, regarding

4Diffusion-based samplers evolve backward on an interval [0, T ], whereas flow matching evolves forward
on [0, 1]; a natural correspondence can be established by normalizing T = 1 and reversing time.

7
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both safety and efficiency, our method also maintains 100% safety even at very short sampling hori-
zons. Especially, when T c = 4 and using the closed-form solution, our method achieves 50× faster
T-Time than SafeDiffuser (0.023s vs. 1.208s), while SafeDiffuser still suffers from severe local
traps that lead to incomplete paths. When using the QP solver, SafeDiffuser completes generation in
9.998s, whereas SafeFlowMatcher completes generation in just 0.157s. Notably, the QP-based Safe-
FlowMatcher is still about 8× faster than even the closed-form version of SafeDiffuser (1.208s),
while achieving high task performance. We further analyze the distributional drift introduced by
CBF-based corrections in Appendix F.4.

Method BS1 (↑) BS2 (↑) Score (↑) S-TIME TRAP κ (↓) a (↓)
(≥ 0) (≥ 0) (ms) RATE

Diffuser (Janner et al., 2022) -0.825 -0.784 1.572±0.288 3.70 0% 77.04±4.30 86.68±3.81
DDIM(η = 0.0) -0.642 -0.902 1.474±0.106 3.63 0% 64.51±4.35 57.46±2.46
DDIM(η = 1.0) -0.595 -0.899 1.565±0.140 3.72 0% 64.21±5.00 57.15±1.96
FM -1.000 -1.000 1.422±0.359 3.51 0% 52.09±22.02 33.96±22.95
FlowMatcher -0.324 -0.904 1.632±0.003 3.51 0% 73.51±1.02 88.45±0.60
Truncation (Brockman et al., 2016) -0.999 -0.999 0.978±0.128 19.51 100% 1118.21±1093.96 9.043e5±8.988e6
CG (Dhariwal & Nichol, 2021) -0.996 -0.999 0.505±0.092 19.13 100% 949.63±1103.62 959.71±1846.58
CG-ϵ (Dhariwal & Nichol, 2021) -0.998 -0.999 0.499±0.104 19.87 100% 1027.28±1124.70 1.202e9±1.1961e10
ROS-SafeDiffuser (Xiao et al., 2025) 0.010 0.010 1.435±0.502 4.67 100% 75.15±6.67 422.87±86.70
RES-SafeDiffuser (Xiao et al., 2025) 0.010 0.010 1.442±0.451 4.72 72% 80.30±13.06 398.17±1060.86
TVS-SafeDiffuser (Xiao et al., 2025) -0.003 -0.003 1.506±0.405 4.78 69% 78.72±7.80 124.51±34.22
ROS-SafeDDIM(η = 0.0) 0.010 0.010 1.132±0.556 4.79 100% 31.22±4.87 2073.84±1694.06
RES-SafeDDIM(η = 0.0) 0.010 0.010 1.405±0.494 4.83 96% 43.23±3.41 1153.81±2040.98
TVS-SafeDDIM(η = 0.0) -0.026 -0.026 1.522±0.295 4.79 90% 42.56±3.39 575.73±371.83
ROS-SafeDDIM(η = 1.0) 0.010 0.010 1.575±0.158 4.89 100% 56.30±2.93 668.17±69.19
RES-SafeDDIM(η = 1.0) 0.010 0.010 1.532±0.331 4.82 86% 61.73±4.80 1584.00±8085.06
TVS-SafeDDIM(η = 1.0) -0.026 -0.026 1.549±0.304 4.74 65% 60.29±3.41 27.23±43.20
ROS-SafeFM 0.010 0.010 1.138±0.556 4.68 100% 23.57±8.34 1.317e4±9.931e4
RES-SafeFM 0.010 0.010 1.401±0.429 4.74 12% 61.17±19.52 6724.64±5.304e4
TVS-SafeFM -0.002 -0.002 1.350±0.417 4.73 41% 60.29±3.41 768.71±2212.17
SafeFlowMatcher w/o relaxation (ours) 0.010 0.010 1.622±0.065 4.76 2% 71.73±3.54 108.43±167.36
SafeFlowMatcher (ours) 0.010 0.010 1.632±0.003 4.71 0% 69.19±1.02 91.90±0.77

Table 1: Performance comparison of different methods. we evaluated all methods over 100 inde-
pendent trials under identical settings. For all safety-aware methods, we set the robustness margin
to δ=0.01, meaning that a method is considered safe only if b(τ)≥ δ. This ensures robust rather
than marginal safety. FlowMatcher-variants use T p =1 and T c =256, and others use T =256. The
closed-form CBF-QP computation takes 1.14 ms on average. All baselines are reproduced by us.
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Figure 4: Score versus sampling horizon T . Left (safety on): SafeFlowMatcher attains the highest
score across all sampling horizons. Right (safety off): FlowMatcher (FM + PC integrator) also re-
mains more efficient than the other cases.

4.2 ABLATION STUDIES ON PC INTEGRATOR

Effect of Using Two Phases. To highlight the necessity of both the prediction and correction
phases, we discuss the results of FlowMatcher (prediction-only), SafeFM (correction-only), and
SafeFlowMatcher (PC integrator) in Table 1. The prediction-only behavior achieves good task per-
formance but lacks safety. Conversely, the correction-only behavior enforces safety from the be-
ginning but often fails to generate complete paths, resulting in a high trap rate. SafeFlowMatcher
combines the strengths of both phases, achieving superior performance while ensuring safety.

Effect of Prediction Horizon (T p). We analyze how the prediction horizon T p affects overall
performance while keeping the correction horizon fixed at T c =256. Table 2 reports the qualities
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of fully generated paths and the total computation time across different values of T p, and Figure 5
visualizes how increasing T p shapes the predicted path before correction. As T p increases, the path
quality remains largely unchanged, while the computation cost increases due to additional prediction
steps.

Table 2: Effect of prediction horizon T p. We compare path quality metrics (score, curvature, and
acceleration) and the total computation time, measured after one full path generation.

Prediction horizon (T p) 1 2 4 8 16
Score(↑) 1.632±0.008 1.520±0.340 1.468±0.434 1.404±0.538 1.632±0.003
T-TIME (s) 1.209 1.220 1.230 1.249 1.287
Curvature κ(↓) 69.19±1.02 68.84±3.32 68.70±4.62 68.26±4.77 67.73±4.97
Acceleration a(↓) 91.90±2.77 93.76±2.30 93.18±3.52 91.99±3.83 92.61±3.81

Figure 5: Predicted paths under different prediction horizon T p. Each shows the predicted path
after the prediction phase. As prediction horizon T p increases, prediction error ε decreases.

Effect of Vanishing Time-Scale. We first analyze the role of the scaling constant α in VTFD (10).
As shown in Table 3 and Figure 6, increasing α consistently reduces both curvature and acceleration,
indicating that larger scaling factors suppress the prediction error more aggressively. This trend is
consistent with the theoretical result from Lemma 3.

However, we observe that a larger α introduces bias in the final path. This effect is visible in Figure 6,
where the red path region stays relatively stable up to a certain critical value but becomes increas-
ingly distorted once α exceeds this threshold. In our Maze2D setup, this occurs around α ≈ 2. This
shows that α should not simply be maximized in practice; instead, one can start from α = 1 and
increase it until we identify the point just before the sharp distortion begins.

Figure 7 shows how the score changes with increasing correction horizon T c when T p = 1. With
vanishing time-scale, the score remains stable even as T c grows, whereas removing the scaling
causes the score to deteriorate steadily. Figure 8 provides the corresponding path visualization. With
vanishing time-scale, the correction path moves from τ c

0 to τ c
1 along a straight direction. In contrast,

without scaling, the path exhibits sharp drift near t=1, and some segments of the path become
largely distorted. These results demonstrate that vanishing time-scale is essential for preventing
late-stage drift and maintaining stable refinement behavior.

Table 3: Effect of scaling constant α. Path qualities are measured after full generation.

Scaling constant α 1.0 1.5 2.0 2.5 3.0
Score (↑) 1.623±0.005 1.629±0.004 1.632±0.008 1.618±0.033 1.572±0.058
Curvature κ (↓) 85.10±3.73 83.91±2.00 69.28±1.04 55.16±0.83 44.08±0.62
Acceleration a (↓) 173.22±5.62 123.49±1.86 92.05±0.59 71.89±0.42 58.05±0.24

Figure 6: Generated paths under different scaling constant α. Each snapshot shows the fully
generated path after the two phases. As the scaling constant α increases, the path becomes smoother
but can be distorted.
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Figure 7: Score with and without a vanish-
ing time-scale. When T p = 1, as the correction
horizon T c increases, we see that the score de-
creases in the absence of vanishing time-scale.

Figure 8: Generation process with (a) and with-
out (b) a vanishing time-scale. The transparent
path represents τ c

0 , the solid path represents τ c
1 .

The black line represents the path τ c
t from ◦ to •

over the interval t ∈ [0, 1]. The path’s segments
in the black circles are largely distorted in the ab-
sence of a vanishing time-scale.

4.3 GENERALIZATION TO HIGH-DIMENSIONAL ROBOTIC TASKS

We evaluate the generalization capability of SafeFlowMatcher on high-dimensional robotic tasks,
including two locomotion environments (Walker2D and Hopper) and a robot manipulation task
(Block Stacking). Across all three tasks, SafeFlowMatcher attains the highest score while main-
taining BS≥0 , indicating that the PC integrator scales beyond static maze navigation. The detailed
comparison across locomotion and manipulation tasks is summarized in Table 4. Note that the BS
metric here is reported in a different way than in Table 1; here, BS is a binary indicator (yes or no)
of whether safety is guaranteed (≥ 0) or not (< 0).

Table 4: Performance on high-dimensional robotic tasks. SafeFlowMatcher maintains its advan-
tages in both locomotion and robot manipulation settings.

Category Environment Method Score (↑) BS (≥ 0)

Locomotion

SafeDiffuser (Xiao et al., 2025) 0.283± 0.135 Yes
Walker2D SafeFM 0.264± 0.127 Yes

Ours 0.331± 0.021 Yes
SafeDiffuser (Xiao et al., 2025) 0.435± 0.068 Yes

Hopper SafeFM 0.675± 0.312 Yes
Ours 0.917± 0.026 Yes

Robot Manipulation Block Stacking
SafeDiffuser (Xiao et al., 2025) 0.72± 0.055 Yes

SafeFM 0.73± 0.056 Yes
Ours 0.76± 0.053 Yes

5 CONCLUSION

We introduced SafeFlowMatcher, a planning framework that couples flow matching (FM) with CBF-
certified safety by employing a two-phase prediction–correction integrator. On the path generation
side, we proposed the vanishing time-scaled flow dynamics, which contracts the prediction error to-
ward the target path. On the safety side, we established a finite-time convergence barrier certificate
for the flow system to ensure forward invariance of a safe set. The approach generates a candidate
path with the learned FM dynamics and then refines only the executed path under safety constraints.
This decoupling preserves the native generative dynamics, avoids distributional drift from repeated
interventions on latent states, and mitigates local trap failures near constraint boundaries. Empir-
ically, SafeFlowMatcher attains faster, smoother, and safer paths than various diffusion- and FM-
based baselines across maze navigation, locomotion, and robot manipulation tasks. Incorporating
data-driven certificates is a promising direction for extending certified generative planning to more
dynamic and complex environments.
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Reproducibility Statement. All baseline results reported in this paper are fully reproduced by us
using our own implementations or publicly available code, ensuring a fair and controlled compar-
ison on the same hardware. To facilitate reproducibility, we provide anonymized source code for
training and evaluation in the supplementary material. For fair comparisons under matched compu-
tational budgets, our model architectures strictly adhere to those in prior work (Janner et al., 2022;
Xiao et al., 2025) and their official implementations(Code: https://github.com/jannerm/diffuser,
https://github.com/Weixy21/SafeDiffuser). Our experiments are conducted on the Maze2D environ-
ment, locomotion tasks (Hopper, Walker2d) and a robot manipulation (block stacking). All hyper-
parameters for training and evaluation, including optimizer settings, learning rates, and rollout con-
figurations, are detailed in Appendix E. For each experimental setting, we perform 100 independent
trials and report the mean and standard deviation across these runs in Table 1 and Table 4. All exper-
iments were run on a machine equipped with an AMD EPYC9354 CPU and an NVIDIA RTX4090
(24GB) GPU. Additional ablation studies are provided in Appendix F.
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A ADDITIONAL RELATED WORK ON CONTROL BARRIER FUNCTIONS

Control Barrier Functions have been developed and extended in a wide range of directions, and
existing results show that CBF-based safety filter does not rely on perfectly known, smooth, or
analytically specified safety sets. Discrete-time CBFs have been applied to hybrid locomotion and
time-varying safety constraints (Agrawal & Sreenath, 2017), and duality-based DCBF methods en-
able safe control even with nonsmooth, polytopic, or nonconvex obstacle geometries (Liao et al.,
2023). Perception noise and state-estimation uncertainty can be handled using measurement-robust
and probabilistic CBF formulations (Cosner et al., 2021; Long et al., 2022). Moreover, CBFs have
been extended to dynamic-obstacle environments, explicitly incorporating obstacle motion predic-
tion and enabling real-time avoidance of moving obstacles (Jian et al., 2023).

In addition to analytic formulations, a growing line of work develops learning-based CBFs that
construct safety certificates directly from data rather than hand-crafted functions. These methods
learn barrier functions from RGB-D observations (Abdi et al., 2023), LiDAR scans (Srinivasan
et al., 2020; Long et al., 2021; Harms et al., 2024), or expert demonstrations (Robey et al., 2020;
Lindemann et al., 2024), enabling implicit representations of safety sets in dynamic and unstructured
environments. While SafeFlowMatcher currently leverages analytic CBFs, its correction phase only
requires evaluating a barrier constraint, making the framework compatible with these learned or
perception-driven CBFs.

Beyond their theoretical development, CBF-based safety filters have also been applied across a wide
range of robotic domains. They have seen successful use in autonomous driving (Ames et al., 2016),
legged locomotion (Kim et al., 2023), and multi-robot coordination (Wang et al., 2017).

B THEORETICAL AND EMPIRICAL SUPPORT FOR THE CORRECTION PHASE

B.1 EMPIRICAL VALIDATION OF THE PREDICTION ERROR ASSUMPTION IN LEMMA 2

Lemma 2 and Lemma 3 assume that the prediction error ε follows a symmetric, zero-mean distribu-
tion in a neighborhood around the target path. We empirically validate this assumption by evaluating
the distribution of ε under different prediction horizons T p ∈ {1, 2, 4, 8, 16, 32} in the Maze2D en-
vironment. For each configuration, we generate 1,000 predicted paths, resulting in a total of 384,000
waypoints, and evaluated the prediction error with respect to a high-accuracy FM solution τ⋆1 , which
is computed using the Dormand-Prince 5(4) method (Dorpi5) with 256 steps.

Figure 9 visualizes our results. Across all values of Tp, the distribution of ε remains centered at zero
and exhibits symmetry, directly supporting the symmetric zero-mean (Gaussian-like) assumption
used in both lemmas. Validating whether this assumption still holds for higher-dimensional, complex
tasks is a subject of future work. However, we anticipate that while the final refined path may be
biased if the prediction error is biased, overall safety is still unaffected because the CBF-QP enforces
forward invariance regardless of any bias. Moreover, if the bias is heavy-tailed, the local strong
convexity of − log pε becomes weaker, which may slow down the contraction rate in the correction
phase. Again, this only affects path refinement speed, not safety guarantees, and increasing α to
introduce deliberate path distortion against the error (see Table 3 and Figure 6) might help the
prediction error reduction.

B.2 PROOFS OF LEMMA 2 AND LEMMA 3

Proof of Lemma 2.
Let ϕt(ε) = τ1 + δε, where δ ≜ 1− t. We have pushforward of pε under ϕt:

pt(τ | τ1) = [ϕt]#pε(ε) = pε(ϕ
−1
t (τ )) det

[
∂ϕ−1

t

∂τ
(τ )

]
=

1

δd(H+1)
pε

(
τ − τ1
δ

)
By Bayes’ rule,

p(τ1 | τ c
t ) ∝ p1(τ1) pε

(
τ c
t − τ1
δ

)
.

Since − log pε(z) is C2 near 0 with Hessian A ≻ 0 by the assumption,

− log pε(z) = 1
2z

⊤Az +O(∥z∥3).
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Let y = τ1 − τ c
t . Substituting z = y/δ yields the posterior energy

Φδ(y) = 1
2δ2 y

⊤Ay − log p1(τ
c
t + y) +O(1).

The quadratic term dominates as δ → 0 (t→ 1), so the posterior concentrates in an O(δ) neighbor-
hood of τ c

t .

The stationarity condition ∇Φδ(y) = 0 gives

1

δ2
Ay −∇ log p1(τ

c
t + y) = 0.

Taylor expanding ∇ log p1 at τ c
t shows y = O(δ2). Thus the posterior mode is

τ̂1 = τ c
t + δ2A−1∇ log p1(τ

c
t ) +O(δ3).

Laplace’s approximation then yields the same expansion for the posterior mean:

E[τ1 | τ c
t ] = τ c

t + δ2A−1∇ log p1(τ
c
t ) +O(δ3).

Under the assumption, we have τ c
t = τ ⋆

1 + δε with ∥ε∥ = O(1),

E[τ1 | τ c
t ] = τ ⋆

1 + δε+O(δ2) = τ ⋆
1 +O(δ).

This proves Lemma 2.

Proof of Lemma 3.
If the flow dynamics follow the vanishing time-scaled flow dynamics (10), then we have:

τ̇ c
t = α(1− t) vt(τ c

t ; θ) = α(E[τ1 | τ c
t ]− τ c

t ).

Let et ≜ τ c
t − τ ⋆

1 ∈ Rd×(H+1), and denote its k-th column by ek,t ∈ Rd. By Lemma 2, E[τ1 |
τ c
t ] = τ ⋆

1 +O(1− t) as t→ 1, hence we have

ėk,t = −αek,t +O(1− t).

Solving with an integrating factor gives

ek,t = e−αtek,0 + αe−αt

∫ t

0

eαsO(1− s) ds = (ek,0 +O(1))e−αt +O((1− t)2).

Combining the column vectors again yields the form

et = (e0 +O(1))e−αt +O
(
(1− t)2

)
, e0 = ε.

which proves Lemma 3.

C PROOF OF THEOREM 1 AND PROPOSITION 1

We drop the superscript c for simplicity, and choose the Lyapunov candidate function V (τ k
t ) ≜

max(δ − b(τ k
t ), 0). Since w(t) = 0 for all t ≥ tw, the barrier inequality (15) reduces on [tw, 1] to

ḃ(τ k
t ) + ϵ · sgn

(
b(τ k

t )− δ
) ∣∣b(τ k

t )− δ
∣∣ρ ≥ 0.

Case 1: If τ k
tw ∈ Cδ (i.e., b(τ k

tw) ≥ δ), then V (τ k
tw) = 0. For all t ≥ tw, if b(τ k

t ) > δ we have
V (τ k

t ) = 0. If b(τ k
t ) = δ, the barrier inequality (15) with sgn(0) = 0 reduces to ḃ(τ k

t ) ≥ 0, so the
path cannot exit Cδ by Nagumo’s principle (Nagumo, 1942)5. Therefore V (τ k

t ) = 0 for all t ≥ tw,
which implies τ k

t ∈ Cδ; the system stays in Cδ .

Case 2: If τ k
tw /∈ Cδ (i.e., b(τ k

tw) < δ), then V (τ k
t ) = δ − b(τ k

t ) > 0. The following finite-stability
condition holds

V̇ (τ k
t ) = −ḃ(τ k

t ) ≤ −ϵ(δ − b(τ k
t ))

ρ = −ϵV (τ k
t )

ρ.

5Nagumo’s theorem states that if the vector field at the boundary lies in the tangent cone of a set, then the
set is forward invariant.
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Figure 9: Empirical distribution of the prediction error ε over prediction horizon T p. The
six subfigures correspond to T p = 1, 2, 4, 8, 16, 32 (from top-left to bottom-right). Each subplot
visualizes the joint density of (εx, εy) with its marginal distributions. As T p increases, the error
distribution becomes more concentrated around zero while maintaining symmetry, validating the
symmetric zero-mean assumption used in Lemma 2 and Lemma 3.
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Define the comparison system

ϕ̇(t) = −ϵϕ(t)ρ, ϕ(tw) = V (τ k
tw).

By the Comparison Lemma (See Lemma 3.4 in Khalil & Grizzle (2002)), we have:

V (τ k
t ) ≤ ϕ(t), ∀t ≥ tw.

The solution ϕ(t) is

ϕ(t) =
(
V (τ k

tw)
1−ρ − (1− ρ)ϵ(t− tw)

) 1
1−ρ , for t ≥ tw.

Thus,
V (τ k

t ) ≤
(
V (τ k

tw)
1−ρ − (1− ρ)ϵ(t− tw)

) 1
1−ρ .

Hence, the state reaches the robust safe set Cδ in finite time T that satisfies V (τ k
t ) ≤ ϕ(T ) = 0.

Moreover, we get the finite convergence time,

T = tw +
V (τ k

tw)
1−ρ

ϵ(1− ρ)
= tw +

(δ − b(τ k
tw))

1−ρ

ϵ(1− ρ)
.

Therefore, for all t ≥ T , we have V (τ k
t ) ≤ 0, implying x ∈ Cδ . This completes the proofs of both

Theorem 1 and Proposition 1.

D DIFFERENCES IN LOCAL TRAP DEFINITIONS

Figure 10: Local trap occur-
ring away from the safety
boundary. Although some
waypoints do not violate con-
straints (i.e., b(τ k

t ) > 0),
it fails to reach the goal.
Our definition considers such
cases as local traps, while the
original definition does not.

We clarify the difference between the local trap definition used
in our SafeFlowMatcher and that of the baseline method SafeD-
iffuser (Xiao et al., 2025).

Definition 4 (Local Trap in SafeDiffuser) A local trap problem
occurs during the planning process if there exists k∈H such that
b(τ k

1 )= 0 and ∥τ k
1 − τ k−1

1 ∥>ζ, where ζ > 0 is a user-defined
threshold depending on the planning environment.

In contrast, our definition of a local trap in SafeFlowMatcher re-
moves the condition b(τ k

1 ) = 0 and instead considers only the
abrupt discontinuity in the path. The reason for relaxing the con-
dition is illustrated in Figure 10. In this example, the generated path
is incomplete due to overly strong or early intervention of the CBF.
However, since the waypoints do not strictly lie on the boundary
(i.e., b(τ k

1 ) ̸= 0), the original SafeDiffuser definition fails to detect
this failure as a local trap. Therefore, we generalize the definition to
capture a wider class of failure cases.

E EXPERIMENTAL DETAILS

E.1 EXPERIMENTAL SETUP

All CBF constraints are enforced via the closed-form projection of the CBF-QP in (17). For each
model family, the safety-enabled variants reuse the same trained weights as their safety-disabled
counterparts. Specifically, SafeDiffuser and SafeDDIM share the weights trained for Diffuser and
DDIM, respectively, while SafeFM and SafeFlowMatcher share the weights trained for FM and
FlowMatcher. All experiments are run using an AMD EPYC 9354 CPU and an NVIDIA RTX 4090
GPU (24GB).

Maze2D. To match the total amount of training data used in Diffuser (Janner et al., 2022), we
first swept across several batch sizes while fixing the total number of samples processed during
training to 6.4 × 107. As shown in Table 5, both Diffuser and FM performed best or on par at
batch size 128, so for all models and Maze2D experiments, we used batch size 128. Other training
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and inference hyperparameters are shown in Tables 6. For the correction phase, we set the scaling
constant to α = 2, and use (δ, ε, ρ) = (0.01, 0.5, 0.9) for the CBF parameters. Additionally, for
the relaxation schedule, tw is chosen according to the correction horizon T c. Specifically, we use
tw ∈{0, 0.5, 0.75, 0.9, 0.9, 0.9, 0.99} for T c ∈{4, 8, 16, 32, 64, 128, 256}, respectively. The relax-
ation function is defined as wk

t = 200(1 − e3(t/tw−1)) for t ≤ tw, and wk
t = 0 otherwise. For

Maze2D, the planner is conditioned on the start and goal state observations, which are provided as
the condition for each rollout.

Table 5: Scores by batch size for Maze2D for both Diffuser and FM.

Method 16 32 64 128 256
FlowMatcher 1.631± 0.003 1.628± 0.002 1.615± 0.031 1.631± 0.003 1.523± 0.196
Diffuser (Janner et al., 2022) 1.503± 0.424 1.438± 0.500 1.516± 0.316 1.537± 1.537 1.536± 0.338

Locomotion. Following the observations from Maze2D, we also train all locomotion models us-
ing a batch size of 128. SafeFlowMatcher, SafeFM, and SafeDiffuser share the same hyperparameter
settings, summarized in Table 7. To provide score-based guidance to all flow-matching based meth-
ods, including SafeFM and SafeFlowMatcher, we apply a simple covariance-aware guidance gcov-A

with scale 1.0, following prior work (Feng et al., 2025). During planning, we condition the model at
each environment step on the current state observation and use the task score as a guidance signal to
encourage forward progress.

(a) Walker2D planning result with SafeFlowMatcher.

(b) Hopper planning result with SafeFlowMatcher.

Figure 11: SafeFlowMatcher on locomotion tasks. Planning results for Walker2D (top) and Hop-
per (bottom). In both figures, the red horizontal line indicates the roof height hr in the CBF barrier
function (z ≤ hr) used in the BS metric (Appendix E.2).

Robot Manipulation (Block-Stacking). For the block stacking task, we followed the training
parameters from Diffuser Janner et al. (2022) (batch size 32 with 2-step gradient accumulation,
equivalent to batch size 64 without accumulation). rather than 128, while maintaining the number
of training steps for training SafeFlowMatcher(SafeFM sharing weights with SafeFlowMatcher)
and SafeDiffuser. Other hyperparameter values and conditions are shown in Table 8. For the block
stacking task, the condition includes the initial robot joint configuration together with the observed
states of the four blocks.
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(a) T p = 1 / T c = 999

(b) T p = 600 / T c = 400

Figure 12: Block stacking visual comparison based on the prediction and correction horizons.
For each subfigure, the left shows the predicted path τ p

1 and the right shows the corrected path τ c
1 .

Under the same planning horizon H = 128, we compare different allocations of T p and T c. In
(a), using T p =1 and T c =999 leads to poor prediction quality due to the short prediction phase,
resulting in a large prediction error and ultimately a failed path. In contrast, (b) uses T p =600 and
T c =400 which yields a small prediction error and successfully produces a safe and complete path,
where the yellow block is being stacked on top of the green block.

Table 6: Maze2D’s training and evaluation hyperparameters

Training
Loss type L2
Training steps ntrain 5.0× 105

Steps per epoch 2500
Batch size 128
Learning rate 3× 10−4

EMA decay 0.995

Evaluation Others
Planning Horizon H 384
Sampling Horizon T 256

Evaluation SafeFlowMatcher
Planning Horizon H 384
Prediction Horizon T p 1
Correction Horizon T c 256

E.2 PERFORMANCE METRICS

BS quantifies the degree of safety constraint satisfaction using CBFs for each safety constraint in
the environment. For each rollout, we evaluate the minimum barrier value over all waypoints, and
then take the worst case across all N test episodes:

min
i=1,2,...,N

min
k∈H

b(τ k
1 ).
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Table 7: Locomotion (Walker2d/Hopper) hyperparameters

Training
Loss type L2
Training steps ntrain 2.5× 105

Steps per epoch 2500
Batch size 128
Learning rate 2× 10−4

EMA decay 0.995

Value Network Training
Loss type L2
Training steps ntrain 5.0× 104

Steps per epoch 2500
Batch size 128
Learning rate 2× 10−4

EMA decay 0.995

Evaluation Others
Planning Horizon H 600
Sampling Horizon T 20

Evaluation SafeFlowMatcher
Planning Horizon H 600
Prediction Horizon T p 1
Correction Horizon T c 20

Table 8: Robot manipulation (block stacking) hyperparameters

Training
Loss type L2
Training steps ntrain 7.0× 105

Batch size 64
Learning rate 2× 10−5

EMA decay 0.995

Evaluation Others
Planning Horizon H 128
Sampling Horizon T 1000

Evaluation SafeFlowMatcher
Planning Horizon H 128
Prediction Horizon T p 600
Correction Horizon T c 400

A value BS ≥ 0 indicates that the path remains entirely within the safe set. Maze2D contains two
obstacle-based safety constraints, given by the barrier functions:

BS1 :

(
x− x0
a

)2

+

(
y − y0
b

)2

≥ 1, BS2 :

(
x− x0
a

)4

+

(
y − y0
b

)4

≥ 1.

where (x, y)∈R2 denotes the agent’s 2D state, (x0, y0)∈R2 specifies the center of the obstacle,
and a, b > 0 are scaling parameters that shape the corresponding safety region. For locomotion tasks
(Walker2D, Hopper), the barrier function is defined as z≤hr, where hr > 0 denotes the roof height.
For robot manipulation (block stacking), the safety constraints enforce joint limits. the barrier func-
tions are defined as qmin≤q≤qmax, where q∈R7 denotes the joint-angle and qmin,qmax ∈R7

are the per-joint limits.
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Score is a normalized, undiscounted performance metric that reflects task success. In Maze2D,
episodes last up to 800 environment steps while planning is performed over a horizon of H =384;
once the agent enters a goal neighborhood, it receives a unit reward for each remaining step, making
the score proportional to the remaining horizon. For locomotion tasks, the score is proportional
to forward displacement and normalized such that reaching the target position x=1 yields a score
of 1. We evaluate locomotion in a receding-horizon manner, continuing until the agent either reaches
x=1, falls, or reaches the maximum episode limit of 1000 steps. For a robot manipulation (block
stacking), planning is performed with horizon H =128, and each episode attempts a single stacking
action. An episode receives a score of 1 upon a successful stack and 0 otherwise.

Trap Rate measures the rate of local traps, i.e., the percentage of episodes in which the generated
path becomes stuck against barrier constraints; see Definition 2.

T-Time & S-Time. We report two timing metrics: the total computation time (T-Time) and the per-
step sampling time (S-Time), both of which include all computational overheads such as CBF-QP
evaluations. T-Time measures the total wall-clock time required to generate an entire path, including
all prediction and correction steps when applicable. S-Time reports the average wall-clock time per
sampling step, computed as S-Time = T-Time/T , where T is the total sampling horizon.

Curvature (κ) measures local path bending using the Menger curvature computed from triplets of
consecutive points. We report the average curvature along the path.

Acceleration (α) captures the change in velocity across consecutive time steps. It is computed as
the mean squared acceleration magnitude along the path. We approximate it via the second-order
finite difference of the 2D position and define the metric as the average acceleration magnitude
along the path.

F ADDITIONAL ABLATION STUDIES

F.1 HANDLING MULTIPLE CBF CONSTRAINTS AND MITIGATING COMPUTATION
BOTTLENECK

We considered only two CBF constraints so far. When more than two constraints are present, no
closed-form solution is available, and a QP solver must be used to compute the CBF-QP at every
step. This inevitably increases computational overhead and can become a bottleneck.

Figure 13 presents the path generation results with six CBF constraints, under a fixed sampling
horizon T = 256, while varying the allocation between prediction and correction horizon (T p, T c).
The corresponding T-TIME and Trap Rate for each configuration are also reported. We observe
that SafeFlowMatcher maintains a trap rate of 0% across all settings. However, as T c increases, the
T-TIME grows due to repeated CBF-QP solves during the correction phase.

A key advantage of SafeFlowMatcher is that the PC integrator naturally mitigates this computational
bottleneck. Since CBF-QP computations occur only in the correction phase, T p and T c can be
adjusted to reduce the number of QP evaluations while maintaining safety. In contrast, SafeDiffuser
and SafeFM require CBF-QP computations at every generation step, resulting in significantly higher
overhead when many constraints are present. Moreover, SafeDiffuser becomes unstable in high-
constraint settings. As presented in Table 1, local traps are already problematic in the two constraints
setting, they occur even more frequently as the number of safety constraints increases. In the six CBF
constraints setting, SafeDiffuser required T-TIME = 10.269 s and exhibited a 100% trap rate over
100 runs. These observations highlight that the PC integrator enables SafeFlowMatcher to scale
efficiently and robustly to environments with many CBF constraints, both in terms of computational
latency and safe path generation.

F.2 EXPLORING THE FEASIBLE RANGE OF CBF HYPERPARAMETERS ρ AND ϵ

We examine the sensitivity of SafeFlowMatcher and SafeFM to the CBF hyperparameters ρ and ϵ.
Smaller ρ or larger ϵ induce more aggressive safety corrections, which can help fast convergence to
a safe set but may also increase curvature. When excessively strong, these corrections can even lead
to unstable or oscillatory behavior.
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Tp = 32, T c = 224
T-TIME: 9.025s, TRAP: 0%

Tp = 64, T c = 192
T-TIME: 7.913s, TRAP: 0%

Tp = 96, T c = 160
T-TIME: 6.671s, TRAP: 0%

Tp = 128, T c = 128
T-TIME: 5.556s, TRAP: 0%

Tp = 160, T c = 96
T-TIME: 4.384s, TRAP: 0%

Tp = 192, T c = 64
T-TIME: 3.222s, TRAP: 0%

Tp = 224, T c = 32
T-TIME: 2.070s, TRAP: 0%

Tp = 240, T c = 16
T-TIME: 1.473s, TRAP: 0%

Figure 13: Balancing prediction and correction horizon in narrow-corrider setting. Visualiza-
tion of the prediction–correction trade-off under a fixed total sampling horizon T = T p+T c = 256.
Each result shows the resulting path for a different allocation of prediction steps T p and correction
steps T c in the narrow-corridor setting.

Across a sweep of ρ∈{0.1, 0.3, 0.5, 0.7, 0.9} and ϵ∈{0.25, 0.50, 1.00, 2.50, 5.00, 10.00}, Safe-
FlowMatcher which include PC integrator remains stable over a significantly broader hyperparame-
ter range than SafeFM (the correction-only variant), making it substantially easier to tune in practice.
This behavior is consistent with Remark 1, which explains that the prediction phase places the path
closer to a region where safety enforcement is feasible and well-conditioned, resulting in more ro-
bust behavior under different CBF strengths.

Table 9: Comparison between SafeFlowMatcher and SafeFM on CBF hyperparameters. Sub-
set of the (ρ, ϵ) hyperparameter grid in Maze2D, comparing SafeFlowMatcher (ours) and SafeFM
(w/o PC). Each entry reports mean ± std over 100 rollouts for Score, Trap Rate, curvature (κ), ac-
celeration (a), and minimum barrier values (BS1, BS2).

ρ ϵ
Score Trap Rate κ (↓) a (↓) BS1 BS2

Ours w/o PC Ours w/o PC Ours w/o PC Ours w/o PC Ours w/o PC Ours w/o PC

0.1 0.25 1.632 ± 0.003 0.446 ± 0.649 0% 100% 76.640 ± 1.446 1.766 ± 0.209 94.579 ± 1.116 2.180e+04 ± 1.083e+04 0.010 -0.058 0.009 -0.101
0.1 0.50 1.633 ± 0.003 0.526 ± 0.673 0% 100% 77.919 ± 1.570 1.961 ± 0.257 96.953 ± 1.408 2.713e+04 ± 4.833e+04 0.010 -0.189 0.009 -0.211
0.1 1.00 1.632 ± 0.003 0.639 ± 0.691 0% 100% 78.349 ± 1.561 2.275 ± 0.317 102.139 ± 3.267 2.530e+04 ± 4.340e+04 0.010 -0.041 0.010 -0.200
0.1 2.50 1.633 ± 0.005 0.709 ± 0.699 0% 100% 79.337 ± 1.898 3.041 ± 0.413 109.303 ± 6.840 1.755e+04 ± 1.035e+04 0.010 -0.022 0.010 -0.383
0.1 5.00 1.633 ± 0.004 1.025 ± 0.613 5% 100% 80.416 ± 1.605 3.871 ± 0.556 141.126 ± 16.164 1.418e+04 ± 2.735e+03 0.010 -0.111 0.009 -0.107
0.1 10.00 1.633 ± 0.003 1.215 ± 0.539 50% 100% 81.395 ± 1.435 5.147 ± 0.581 174.368 ± 31.192 1.160e+04 ± 2.497e+03 0.010 -0.888 0.010 -0.111

0.3 0.25 1.632 ± 0.003 0.628 ± 0.685 0% 100% 73.121 ± 1.286 2.205 ± 0.334 92.501 ± 0.775 1.885e+04 ± 4.554e+03 0.010 -0.036 0.008 0.014
0.3 0.50 1.632 ± 0.004 0.702 ± 0.727 0% 100% 75.438 ± 1.267 2.765 ± 0.386 93.140 ± 0.740 1.895e+04 ± 1.503e+04 0.010 -0.056 0.009 0.017
0.3 1.00 1.632 ± 0.003 0.812 ± 0.669 0% 100% 77.971 ± 1.377 4.105 ± 0.561 93.835 ± 0.949 4.505e+04 ± 1.266e+05 0.010 -0.050 0.009 0.021
0.3 2.50 1.634 ± 0.003 1.136 ± 0.588 0% 100% 78.486 ± 1.510 7.826 ± 1.181 95.123 ± 1.614 1.333e+04 ± 3.713e+04 0.010 -0.045 0.009 0.029
0.3 5.00 1.633 ± 0.003 1.323 ± 0.503 0% 100% 79.055 ± 1.453 15.566 ± 3.422 101.603 ± 3.888 3.710e+03 ± 8.006e+02 0.010 -0.122 0.009 0.067
0.3 10.00 1.633 ± 0.003 1.323 ± 0.438 0% 100% 79.345 ± 1.786 21.111 ± 4.519 113.198 ± 8.455 3.093e+03 ± 1.456e+03 0.010 -0.240 0.010 0.071

0.5 0.25 1.632 ± 0.003 1.083 ± 0.581 0% 100% 70.276 ± 1.101 4.186 ± 0.607 92.016 ± 0.787 1.953e+04 ± 3.482e+04 0.009 -0.005 0.008 -0.005
0.5 0.50 1.631 ± 0.007 1.318 ± 0.481 0% 100% 72.149 ± 1.218 8.378 ± 1.172 92.333 ± 0.676 4.498e+04 ± 2.718e+05 0.010 -0.044 0.008 -0.047
0.5 1.00 1.632 ± 0.005 1.356 ± 0.418 0% 100% 74.715 ± 1.251 25.105 ± 8.403 92.021 ± 0.760 5.606e+03 ± 1.862e+04 0.010 -0.190 0.009 -0.181
0.5 2.50 1.632 ± 0.004 1.404 ± 0.363 0% 94% 77.517 ± 1.436 62.906 ± 16.457 91.634 ± 0.676 1.370e+03 ± 5.066e+03 0.010 -0.550 0.009 -0.623
0.5 5.00 1.633 ± 0.003 1.424 ± 0.419 0% 100% 78.220 ± 1.389 48.093 ± 6.626 92.980 ± 1.315 1.015e+03 ± 2.653e+02 0.010 -0.529 0.010 -0.813
0.5 10.00 1.632 ± 0.009 1.334 ± 0.474 0% 100% 78.742 ± 1.554 31.623 ± 4.874 96.749 ± 2.255 2.011e+03 ± 1.126e+03 0.010 -0.478 0.010 -0.634

0.7 0.25 1.632 ± 0.005 1.416 ± 0.423 0% 97% 69.277 ± 1.121 46.769 ± 16.247 92.030 ± 0.821 3.148e+03 ± 9.812e+03 0.010 0.075 -0.039 0.004
0.7 0.50 1.632 ± 0.003 1.318 ± 0.511 0% 29% 70.150 ± 1.057 63.292 ± 20.617 92.006 ± 0.832 4.445e+03 ± 2.939e+04 0.009 0.129 0.008 -0.002
0.7 1.00 1.632 ± 0.003 1.381 ± 0.453 0% 49% 71.967 ± 1.215 70.206 ± 21.172 91.808 ± 0.642 1.733e+04 ± 1.123e+05 0.010 0.042 0.008 -0.083
0.7 2.50 1.632 ± 0.004 1.389 ± 0.450 0% 90% 74.581 ± 1.317 69.241 ± 15.931 90.505 ± 0.637 4.953e+04 ± 4.876e+05 0.010 -0.037 0.008 -0.552
0.7 5.00 1.633 ± 0.003 1.277 ± 0.525 0% 100% 76.222 ± 1.362 52.326 ± 9.061 90.312 ± 0.615 9.065e+02 ± 3.554e+02 0.010 -0.064 0.009 -0.767
0.7 10.00 1.632 ± 0.007 1.363 ± 0.394 0% 100% 77.335 ± 1.329 35.424 ± 5.417 91.406 ± 0.738 1.606e+03 ± 3.131e+02 0.010 -0.094 0.009 -0.716

0.9 0.25 1.631 ± 0.011 1.321 ± 0.526 0% 17% 71.163 ± 1.132 59.639 ± 20.682 91.879 ± 0.629 1.688e+04 ± 1.575e+05 -0.010 -0.055 -0.101 -0.047
0.9 0.50 1.632 ± 0.004 1.421 ± 0.380 0% 25% 69.218 ± 0.897 58.677 ± 20.838 92.114 ± 0.786 1.040e+03 ± 3.773e+03 0.010 0.010 0.010 0.011
0.9 1.00 1.632 ± 0.006 1.335 ± 0.473 0% 26% 70.471 ± 0.955 63.532 ± 21.366 91.757 ± 0.777 4.596e+03 ± 3.320e+04 0.010 0.002 0.010 -0.011
0.9 2.50 1.632 ± 0.003 1.406 ± 0.428 0% 79% 72.022 ± 1.198 70.335 ± 17.711 90.333 ± 0.703 433.667 ± 572.690 0.010 -0.514 0.008 -0.553
0.9 5.00 1.633 ± 0.003 1.391 ± 0.410 0% 100% 72.987 ± 1.284 57.745 ± 10.115 89.935 ± 0.688 743.566 ± 262.536 0.010 -0.530 0.008 -0.691
0.9 10.00 1.632 ± 0.003 1.419 ± 0.361 0% 100% 74.981 ± 1.450 40.196 ± 5.018 89.995 ± 0.664 1.350e+03 ± 255.700 0.010 -0.434 0.009 -0.759
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F.3 EFFICIENCY OF SAFEFLOWMATCHER ACROSS CORRECTION HORIZONS

Table 10: Closed-Form CBF Solver: Computation time across correction horizons. Comparison
of RES-SafeDiffuser with a fixed sampling horizon T =256 and SafeFlowMatcher for a fixed pre-
diction horizon T p =1 and varying correction horizons T c ∈{4, 8, 16, 32, 64, 128, 256} in Maze2D,
when using the closed-form solution of CBF-QP. Each entry reports mean ± std over 100 rollouts.

Method (Closed-Form CBF) Score (↑) T-Time (s) Trap Rate κ (↓) a (↓) BS1&BS2 (≥ 0)

RES-SafeDiffuser (Xiao et al., 2025) 1.442± 0.451 1.208 72% 80.30± 13.06 398.17± 1060.86 Yes
SafeFlowMatcher (T c=4) 1.610± 0.029 0.023 17% 79.26± 2.29 252.01± 18.19 Yes
SafeFlowMatcher (T c=8) 1.627± 0.018 0.042 0% 75.72± 1.64 114.03± 6.33 Yes
SafeFlowMatcher (T c=16) 1.634± 0.002 0.078 0% 67.96± 1.11 89.29± 0.96 Yes
SafeFlowMatcher (T c=32) 1.634± 0.003 0.155 0% 67.48± 1.09 87.33± 0.85 Yes
SafeFlowMatcher (T c=64) 1.633± 0.003 0.299 0% 68.03± 1.01 89.09± 0.73 Yes
SafeFlowMatcher (T c=128) 1.632± 0.003 0.617 0% 69.72± 0.98 91.01± 0.90 Yes
SafeFlowMatcher (T c=256) 1.632± 0.003 1.215 0% 69.19± 1.02 91.90± 0.77 Yes

Table 11: QP-Based CBF Solver: Computation time across correction horizons. Comparison of
RES-SafeDiffuser with a fixed sampling horizon T =256 and SafeFlowMatcher for a fixed predic-
tion horizon T p =1 and varying correction horizons T c ∈{4, 8, 16, 32, 64, 128, 256} in Maze2D,
when using the QP solver solution of CBF-QP. Each entry reports mean ± std over 100 rollouts.

Method (QP CBF Solver) Score (↑) T-Time (s) Trap Rate κ(↓) a(↓) BS1&BS2 (≥ 0)
RES-SafeDiffuser (Xiao et al., 2025) 1.468± 0.353 9.998 85% 76.06± 38.73 4776.45± 2430.48 Yes
SafeFlowMatcher (T c=4) 1.606± 0.029 0.157 12% 77.31± 2.52 276.02± 39.01 Yes
SafeFlowMatcher (T c=8) 1.632± 0.004 0.315 4% 76.93± 1.11 137.31± 11.00 Yes
SafeFlowMatcher (T c=16) 1.634± 0.003 0.613 0% 67.94± 1.31 118.72± 9.65 Yes
SafeFlowMatcher (T c=32) 1.632± 0.007 1.247 0% 68.54± 1.22 154.20± 14.70 Yes
SafeFlowMatcher (T c=64) 1.632± 0.003 2.464 2% 69.54± 1.44 158.70± 23.97 Yes
SafeFlowMatcher (T c=128) 1.631± 0.004 4.892 11% 70.59± 1.46 174.57± 34.67 Yes
SafeFlowMatcher (T c=256) 1.630± 0.004 9.957 13% 67.80± 1.42 183.47± 28.39 Yes

Across both the closed-form and QP-based CBF solvers, SafeFlowMatcher exhibits exceptionally
low generation time (T-Time), even when the correction horizon is small. The tables show that Safe-
FlowMatcher remains effective and safe over a wide range of T c values, whereas RES-SafeDiffuser
is much slower and frequently suffers from severe local traps. At T c =4, SafeFlowMatcher may
exhibit minor oscillations near constraint boundaries due to overcorrections caused by the small cor-
rection steps (see Figure 14). Although this falls under the definition of the local trap in 2, its impact
is minimal, in contrast to SafeDiffuser, whose early safety enforcement often leads to hard traps and
incomplete paths (see Figure 16).

Figure 14: Local trap of SafeFlowMatcher at T c =4. Local traps observed at small correction
horizons T c =4 in Maze2D. These traps manifest as mild boundary oscillations near obstacles, yet
the path remains complete and reaches the goal. Unlike SafeDiffuser depicted in Figure 16, which
often fails with incomplete paths under early safety enforcement, SafeFlowMatcher maintains path
completeness despite minor oscillations.
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F.4 ENERGY-DISTANCE ANALYSIS OF DISTRIBUTIONAL DRIFT INDUCED BY CONTROL
BARRIER FUNCTIONS

We quantify how much each perturbation ∆uk
t affects the generative process by measuring an energy

distance between paths with and without safety intervention. For each model pair (FlowMatcher
vs. SafeFlowMatcher, FM vs. SafeFM, Diffuser (Janner et al., 2022) vs. SafeDiffuser (Xiao et al.,
2025)), we generate N = 100 paths from both the baseline and the corresponding safe variants,
starting from the same initial conditions. We define the distance between two paths as the average
waypoint-wise Euclidean distance

δ(τ , τ ′) =
1

H + 1

H∑
k=0

∥∥τ k − τ ′ k∥∥
2
.

Given {τ base
1,i }Ni=1 and {τ safe

1,j }Nj=1, where τ1,(·) denotes the final generated path6, the (sample) energy
distance between the two path distributions is

D̂E =
2

N2

N∑
i=1

N∑
j=1

δ(τ base
1,i , τ

safe
1,j )−

1

N2

N∑
i=1

N∑
j=1

δ(τ base
1,i , τ

base
1,j )− 1

N2

N∑
i=1

N∑
j=1

δ(τ safe
1,i , τ

safe
1,j ).

Larger values indicate stronger distributional drift between the baseline and safe path distributions.
For each waypoint k, we similarly define a per-waypoint energy distance D̂k

E by replacing δ(τ , τ ′)

with δk(τ , τ ′) = ∥τ k − τ k′∥2 in the above definition of D̂E .
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Figure 15: Per-waypoint drift between baseline and safe path. For each model pair (Flow-
Matcher/SafeFlowMatcher, FM/SafeFM, Diffuser/SafeDiffuser), the plot shows the mean per-
waypoint deviation between paths produced by the baseline and its corresponding safe variant. The
pink band marks the region where the baseline path violates the CBF constraint at the final time; for
clarity, a single common band is shown, although the exact violation interval may differ by several
steps across models.

Figure 15 plots the per-waypoint energy distance D̂k
E between the baseline and safe paths. Across the

three model pairs, the resulting energy distances D̂E are 0.061 (SafeFlowMatcher), 0.097 (SafeFM),
and 0.229 (SafeDiffuser), showing that SafeFlowMatcher induces the smallest distributional drift
while still enforcing safety. The pink band indicates the segment in which the baseline path violates
the CBF constraint at the final time. Outside this safety-critical region, SafeDiffuser shows large
drift, and SafeFM still exhibits noticeable spillover, suggesting that their safety interventions propa-
gate to parts of the path that do not require correction. In contrast, SafeFlowMatcher keeps the drift
close to zero outside the pink band.

In SafeFM and SafeDiffuser, the perturbation is applied not only at t = 1, but also to intermediate
generative states τ k

t for t ∈ [0, 1) that are never executed. Once these perturbed intermediate states
6For diffusion-based samplers, the final path is obtained at t = 0 rather than t = 1, but we use the unified

notation τ1,(·) for consistency.
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are fed back into the velocity field and integrated forward, the resulting deviations can accumulate
and propagate through the generative dynamics, producing drift at waypoints far outside the final-
time violation interval. However, PC integrator in SafeFlowMatcher naturally separate correction
from the prediction. It can mitigate this kind of drift effectively.

F.5 VISUALIZATION AND QUALITATIVE ANALYSIS OF LOCAL TRAPS

Following the Definition 2, a path is locally trapped if the corrected waypoint exhibits a large dis-
continuity between two successive corrected path:

∥τ k
1 − τ k−1

1 ∥ > ζ,

for some threshold ζ > 0. Intuitively, this corresponds to path that get stuck near safety boundaries
and consequently produce a large jump to escape, often resulting in incomplete paths.

SafeDiffuser applies the CBF constraint to each waypoint at every sampling step, starting from pure
noise. Because the initial waypoints are sampled i.i.d., neighboring waypoints τ k

t and τ k−1
t often

differ significantly. Since CBFs depend on the state, such large discrepancies cause the resulting CBF
corrections to vary greatly across waypoints. Although the diffuser aims to generate a continuous
path (i.e., ∥τ k

t −τ k−1
t ∥ ≤ ζ), applying the CBF constraint independently at each waypoint can break

this continuity, pushing different waypoints toward different constraint boundaries and creating local
traps. This behavior is clearly visualized in Figures 16 and 17.

SafeFlowMatcher, in contrast, begins the correction phase from a semi-continuous path τ c
0 (i.e.,

∥τ c,k
0 − τ c,k−1

0 ∥ ≤ η for some small η ≥ ζ). Because neighboring waypoints are already close to
each other, the resulting CBF corrections vary smoothly across the path. This keeps all waypoints
moving in a consistent direction, preserving the path’s continuity and preventing local traps. As
visualized in Figures 18 and 19, the path maintains forward progress without stalling.
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Figure 16: Path Generation Process of SafeDiffuser (Xiao et al., 2025) in Maze2D environment
with two constraints. From the top-left to the bottom-right, we visualize τt on a uniform time
discretization of [T, 0], excluding the midpoint t = 0.5T .
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Figure 17: Path Generation Process of SafeDiffuser (Xiao et al., 2025) in Maze2D environment
with six constraints. From the top-left to the bottom-right, we visualize τt on a uniform time dis-
cretization of [T, 0], excluding the midpoint t = 0.5T .
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Figure 18: Path Generation Process of SafeFlowMatcher in Maze2D environment with two
constraints. Top-left presents the predicted path τ p

1 = τ c
0 from a noise sample. From the top-left to

the bottom-right, we visualize τ c
t on a uniform time discretization of [0, 1], excluding the midpoint

t = 0.5.
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Figure 19: Path Generation Process of SafeFlowMatcher in Maze2D environment with six con-
straints. Top-left presents the predicted path τ p

1 = τ c
0 from a noise sample. From the top-left to

the bottom-right, we visualize τ c
t on a uniform time discretization of [0, 1], excluding the midpoint

t = 0.5.
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