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Abstract

Event detection (ED), aiming to detect events
from texts and categorize them, is vital to
understanding the actual happenings in real
life. Recently, ED without triggers has been
proposed and gained benefits since it relieves
the tedious effort of data labeling. However,
it still suffers from several formidable chal-
lenges: multi-label, insufficient clues, and im-
balanced event types. We, therefore, propose a
novel Derangement mechanism on a machine
Reading Comprehension (DRC) framework to
tackle the above challenges. More specially,
we treat the input text as Context and concate-
nate it with all event types that are deemed
as Answers with an omitted default question.
Thus, by appending input text and event types
simultaneously, we can facilitate the power of
self-attention in pre-trained language models,
e.g., BERT, to absorb the semantic relation
among them. Moreover, we design a simple
yet effective derangement mechanism to re-
lieve the imbalanced training. By introducing
such perturbation mainly on major events, we
can prohibit major events from excessive learn-
ing or implicitly under-sample the instances
of the major events. This yields a more bal-
anced training to resolve the imbalanced learn-
ing issue. The empirical results show that:
(1) our proposed framework attains state-of-
the-art performance over previous competitive
models, and (2) by-product, our model can sig-
nify the connection of triggers and arguments
to events for further analysis.

1 Introduction

The task of event detection (ED), aiming to spot the
appearance of predefined event types from texts and
classify them, is vital to understanding the actual
happenings in real life (Edouard, 2017; Saeed et al.,
2019). Take an example from ACE (Automatic
Context Extraction):

S: And they sent him to Baghdad and
killed.

This sentence consists of two events, Transport and
Die. A desired ED system should correctly identify
these two events simultaneously. At first glance,
this task can be arduous and challenging because
event types implicitly exist in sentences.

In the literature, researchers usually tackle this
problem via a two-stage trigger-based framework.
That is, triggers (i.e., words or phrases provid-
ing the most clear indication of an event occur-
rence) are first identified and then events are recog-
nized accordingly (Ahn, 2006; Li et al., 2013; Chen
et al., 2015). For example, in the above example,
“sent” and “killed” are the triggers for Transport
and Die, respectively. Following this line, vari-
ous methods have been proposed, including such
as extracting syntactic, discourse, and other hand-
engineered features as inputs for structured pre-
diction (Li et al., 2013; Yang and Mitchell, 2016;
Liu et al., 2018b) and neural architecture for joint
tasks optimization (Nguyen et al., 2016; Nguyen
and Nguyen, 2019; Wadden et al., 2019; Liu et al.,
2018a). However, trigger identification is an in-
termediate step for event detection and requires
demanding effort on annotation. After discovering
triggers are nonessential to event detection, trigger-
free methods, e.g., the Type-aware Bias Neural Net-
work with Attention Mechanisms (TBNNAM) (Liu
et al., 2019), have been proposed.

In this paper, we focus on event detection with-
out triggers due to the light need of data labeling.
We aim at tackling the following formidable chal-
lenges: (1) Multi-label issue: Each input sentence
may hold zero or multiple events, which can be for-
mulated into a challenging machine learning task,
or multi-label classification task. (2) Insufficient
clues: Triggers are of significance to attain good
performance on event detection (Zhang et al., 2020;
Ebner et al., 2020). Without explicitly including
triggers, we may lack sufficient clues to identify
the event types and need to seek alternatives to
shed light on the correlation between words and



the event types. (3) Imbalanced events distribu-
tion: As shown in Fig. 2, events may follow the
Matthew effect. That is, some events dominate the
data while others contain only several instances.
The imbalanced event distribution brings signifi-
cant obstacles to detect minor events.

Hence, we propose a Derangement mechanism
on a machine Reading Comprehension (DRC)
framework to tackle the challenges. Figure 1 il-
lustrates our proposed framework with three main
modules: the RC encoder, the event derangement
module (EDM), and the multi-label classifier. In
the RC encoder, the input sentence, deemed as
“Context”, and all event tokens, appended as “An-
swers”, are fed into BERT (Devlin et al., 2019)
together. Such design allows the model to observe
all available information without the need of ex-
plicitly indicating triggers and enables the model
to automatically learn helpful semantic relations
between input texts and event tokens through the
self-attention mechanism of Transformer (Vaswani
et al., 2017). During training, the EDM is acti-
vated only when the grand-truth event is a major
event with a certain probability. By perturbing
the order of other major event tokens, the model
can prevent excessively updating the instances of
major events, which implicitly under-samples the
training instances of the major events and yields a
more balanced training to resolve the imbalanced
learning issue. Finally, the learned contextual repre-
sentations of event tokens are fed into a multi-label
classifier to produce the probabilities of the input
text to each event type.

In summary, the contribution of our work is
threefold: (1) We propose a competitive paradigm
to an important task, namely multi-label event de-
tection without triggers. Through a simplified ma-
chine reading comprehension framework, we can
directly capture the semantic relation between input
texts and event types without explicitly including
triggers. (2) During training, we implement a sim-
ple yet effective mechanism, i.e., the derangement
mechanism, to overcome the imbalanced training
issue. By perturbing the order of major event to-
kens, we implicitly under-samples the training in-
stances from the major events and fulfill a more
balanced training. (3) We report that our proposal
achieves the state-of-the-art performance at event
detection on the public benchmark dataset. The
results also exhibit the potential of our proposal to
link the triggers to the corresponding events and

simultaneously signify the necessary arguments.

2 Related Work

Event Extraction (EE) A major stream of ap-
proaches focus on event extraction to identify both
triggers and arguments, which can be categorized
as trigger-based approaches. For example, in (Li
et al., 2013), structured Perceptron has been ex-
ploited on hand-made features to identify triggers
and arguments. In (Nguyen et al., 2016), triggers
and arguments are jointly identified by utilizing
bidirectional recurrent neural networks. In (Zhang
et al., 2019), reinforcement learning is deployed
with generative adversarial networks for entity and
event extraction. Furthermore, witnessing the suc-
cess of attention mechanism, many approaches
have tried to integrate attention into the proposed
models. For example, in (Liu et al., 2018b), syn-
tactic contextual representations are learned by
graph convolutional networks to extract triggers
by self-attention. In (Wadden et al., 2019), a BERT-
based model was proposed to multi-task learning
for named-entity recognition, relation extraction,
and event extraction. Another stream of trigger-
based approaches formulate the EE task as a ma-
chine reading comprehension or question answer-
ing task (Du and Cardie, 2020; Liu et al., 2020). For
example, in (Du and Cardie, 2020), a predefined
question template concatenating with the input sen-
tence is fed into BERT to identify the correspond-
ing triggers and arguments. In (Liu et al., 2020),
similar framework is proposed with different tem-
plate design. However, this kind of implementation
has to search optimal results from multiple prede-
fined templates during inference.

Event Detection without Triggers The above
trigger-based methods heavily rely on manually an-
notated triggers, which is time-consuming. There-
fore, researchers have explored alternative trigger-
free methods for event detection. The Type-aware
Bias Neural Network with Attention Mechanisms
(TBNNAM) (Liu et al., 2019) has been proposed to
utilize the attention mechanism to incorporate infor-
mation of event types to input sentences. One short-
coming is that it turns a multi-label event detection
into binary classification on each event, which can
be tedious and inefficient during inference.
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Figure 1: Our proposed DRC is on top of BERT. It consists of three main modules: RC encoder, the event de-
rangement module (EDM), and the multi-label classifier. The EDM is amplified in the upper-left corner for better

illustration; see more description in the main text.

3 Methodology

3.1 Task Definition

Following (Ahn, 2006; Ji and Grishman, 2008;
Liu et al., 2019), we are given a set of training
data, {(zi,y:)},, where N is the number of
sentence-event pairs. T = WjiwW;2 ... Wjg,| 18
the i-th sentence with |z;| tokens and y; C S is
an event set, which records all related event(s).
S = {ejy,ea,...,e,} consists of all n events, in-
cluding an additional “negative” event meaning
that sentences do not contain any events. Our goal
is to train a model to detect the corresponding event
type(s) as accurate as possible given an input sen-
tence. This can be formulated as the multi-label
classification task in machine learning. Our tasks
lie in (1) how to learn more precise representations
to embed the semantic information between texts
and event types? (2) How to deliver the multi-task
classification task effectively?

Major Events vs. Minor Events Imbalanced
event distribution is a major issue in our setting.
Traditionally, Imbalance Ratio (IR) (Galar et al.,
2012) is a typical metric to estimate the imbalance
of the data. However, IR provides little distribution
information about the middle classes (Ortigosa-
Hernandez et al., 2017). To articulate the differ-
ences of major events and minor events, we borrow
its definition in (Dong et al., 2018) to distinguish
them. We first sort all event types in descending

order with respect to the number of instances in
each class and obtain the sorted sequence:

SSA = €1...€En, where ‘61‘ Z ‘€i+1‘. (1)
Here, e; denotes the i-th event type with |e;| in-
stances.

Then, we define the set of major events as the
top-k elements in Ss, while the remaining elements
as the minor events:

EMajor - {ez ‘ 7/ - 1,2,...]{7}7
EMinur - {ei ’ Z - k + 1, n}’

2
3)
where k is determined by a hyperparamter of « by
rounding to the nearest integer if it is a float. Here,

« indicates the percentage of the major events in
all N sentence-event pairs:

k
ax N = Z lei].
i=1

Usually, o is simply set to 0.5 as (Dong et al., 2018).

“)

3.2 Our Proposal

Figure 1 outlines the overall structure of our pro-
posed DRC, which consists of three main modules:
the RC encoder, the multi-label classifier, and the
event derangement module (EDM) for training.



RC Encoder Our proposal is based on BERT
due to its power in learning the contextual repre-
sentation in the sequence of tokens (Devlin et al.,
2019). We present a simplified machine reading
comprehension (MRC) framework:

[CLS] Context [SEP] Answers

where Context is the input sentence and Answers
sequence all the event types. This setup is close to
MRC with the multiple choices option. That is, it
views the input sentence as Context and event types
as the multiple choices (or Answers) with an omit-
ted default question: “What is the event type/what
are the event types in the Context?”. With both
input texts and event tokens for the input of BERT,
we can utilize BERT to automatically capture the
relation between input texts and event types with-
out explicitly indicating the triggers.

Algorithm 1 Event Derangement

Require: Input sentence x; The initial event se-
quence S,;; The descending sorted sequence
of all event types Ss,; Possibility ¢; Number r
Ensure: Deranged sequence of event tokens S,
1: Initialize Eg; as the set of the ground truth
event types implied by x
2: Initialize E, with r events that are not in Egp
from the beginning sequence of S,
3: Initialize Bty = () # a helper set to record the
selected event types during derangement

4: Initialize Sp, = |]
5: Generate rand uniformly from [0, 1]
6: if Egr N Eyyor 7 0 and rand < g then
7. for ey in S,y do
8: if e.yrr in B then
9: Randomly select e from E}, and e #
Ecurr and e ¢ Etmp
10 Append e to S,
11: Add e to Eyyyy
12: else
13: Append ey to Sy
14: end if
15:  end for
16: else
17 So = Sinil
18: end if
19: Return S,

In the implementation, given a training set, we
first generate a random event order index [, =
S1 ...Sp,whichis apermutationof {1,...,n}, and

obtain its initial sequence of event tokens S;; =
es, - - - €s, . Without specifying, the event sequence
is kept fixed for both training and testing. Hence,
given a sentence & = wj . .. Wj|, we obtain

Input=[CLS]w; ... wy,| [SEP]es, ... es,. (5)

To avoid word-piece segmentation, we employ a
square bracket around an event type, e.g., the event
token of Transport is converted to “[Transport]”.
This allows us to learn more precise event token
representations and yield better performance; see
more discussion in Appendix A.1. Next, we apply
position embeddings based on the order of event
tokens following the standard setup of BERT, al-
though linguistically, there should be no sequential
difference to event types.
After that, we learn the hidden representations:

h[CLS}v h’llﬂv ey hﬁép h[SEP]a hia cee 7h7i
= BERT(Input), (6)

where h;’ is the hidden state of the i-th input token
and hf is the hidden state of the corresponding
event type, namely e, .

Multi-label Classifier After learning the contex-
tualized representations of the Input, we turn to con-
struct the multi-label classifier. Traditional meth-
ods usually apply a Multi-Layer Perception (MLP)
on the [CLS] token to yield the classifier. Differ-
ently, we feed all hidden states of event types to
a MLP for the classification due to the supportive
evaluation in Appendix A.2. Hence, given an input
sentence x, we compute the predicted probability
for the corresponding events by

p=o (MLP(h,...,hS)). (7

Since p is normalized to the range of 0 and 1, for
simplicity, we follow (Liu et al., 2019) to determine
the event labels when p > 0.5.

Our model can then be trained by minimizing
the following loss:

N n
Lo =Y (pijlog(pij)+(1—pij) log(1—pij))

i=1 j=1

(®)
where p;; = 1 represents the corresponding event
for the ¢-th input text. Different from (Liu et al.,
2019) that converts the multi-label classification
task into a series of binary classification tasks, our
proposal can outputs all event type(s) simultane-
ously.
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Figure 2: The distribution of event main types and event subtypes on the ACE2005 training data.

EDM The event derangement module is the key
to resolve the imbalanced learning issue. Derange-
ment is a term in combinatorics, where a permu-
tation of the elements in a set makes no element
appearance in its original position. In the imple-
mentation, when the target (i.e., the ground-truth)
events are major events, we deliver the derange-
ment procedure with probability ¢; see line 6 of
Algo. 1. Moreover, only events in £}, and not pre-
selected are selected from derangement; see line 9
of Algo. 1. It is noted that Ej, is r events excluding
the target events in Fjg; from the beginning of S,
(i.e., usually the deranged events are major events;
see the definition in line 2 of Algo. 1). The param-
eter  allows us to determine the number of the
events for derangement.

The underlying effect of derangement is to com-
press the learning of major events, which is close to
under-sampling the training instances from major
events. This can yield a more balanced training pro-
cess and resolve the imbalanced learning issue. We
provide more supporting results and explanations
in Sec. 5.2.

4 Experiments

We present the experimental setups and overall
performance in the following.

4.1 Experimental Setups

Dataset and Evaluation We conducted exper-
iments on the ACE2005 English corpus. The
ACE2005 corpus consists of 8 event main types
and 33 subtypes. As shown in Fig. 2, the corpus
follows the imbalanced event distribution and is
more imbalanced (IR~605.5) for the event sub-
types than that (IR~13.1) in the event main types.
For example, the types of Attack, Transport, and

Die account for over half of the total training data.
For fair comparison, we follow the evaluation of (Li
et al., 2013; Liu et al., 2019, 2020), i.e., randomly
selecting 30 articles from different genres as the
validation set, subsequently delivering a blind test
on a separate set of 40 ACE2005 newswire doc-
uments, and using the remaining 529 articles as
the training set. The standard metrics: Precision
(P), Recall (R), and F1 scores (F1), are applied to
evaluate the model performance.

Implementation Details Our implementation is
in PyTorch!. The bert-base-uncased from Hug-
ging Face (Wolf et al., 2019) is adopted as the
backbone model. The MLP consists of two layers
with the hidden size being 768 and yields an output
of 34 dimension to predict the probability of the
input sentence assigned to the corresponding 34
classes. We follow (Dong et al., 2018) to set v as
0.5 and round k to the nearest integer based on the
calculation by Eq. (4). In EDM, the derangement
probability ¢ is set to 0.2 and r is 24 from empir-
ical selection. The batch size is 8. The dropout
rate is 0.1. ADAM is the optimizer (Kingma and
Ba, 2015) with a learning rate of 2 x 107°. We
train our models for 10 epochs to give the best per-
formance. All experiments are conducted on an
NVIDIA A100 GPU in around 1.5 hours.

4.2 Overall Performance

We compare our proposed BERT_RC and
BERT_DRC with several competitive baselines:
TBNNAM (Liu et al., 2019): an LSTM model
detecting events without triggers, and BERT-
based models for both trigger detection and event

"https://www.dropbox.com/s/
4h4p0d1263ha7q6/DRC.zip?2d1=0


https://www.dropbox.com/s/4h4p0dl26jha7q6/DRC.zip?dl=0
https://www.dropbox.com/s/4h4p0dl26jha7q6/DRC.zip?dl=0

Subtypes (%) Main (%)
Methods P R FI| P R Fl
TBNNAM (Liu et al., 2019) 76.2 64.5 69.9 - - -
| DYGIE++, BERT + LSTM (Wadden etal., 2019) | - - 689 | - - - |

DYGIE++, BERT Finetune (Wadden et al., 2019) - - 69.7 - - -
BERT_RC_Trigger (Du and Cardie, 2020) 717 7377 723 - - -
DMBERT (Wang et al., 2019) 77.6 718 74.6 - - -
RCEE_ER (Liu et al., 2020) 75.6 742 749 - - -
DMBERT + Boot (Wang et al., 2019) 779 725 775.1 - - -
BERT Finetune 72.8 68.7 70.7 | 780 70.8 74.2
Our BERT_RC 76.9 723 747 | 789 754 77.1
Our BERT_DRC 79.5 768 78.1 | 78.7 79.0 789

Table 1: Event detection results on both the event subtypes and event main types of the ACE2005 corpus.

detection: DYGIE++ (Wadden et al., 2019):
a BERT-based framework modeling text spans;
BERT_RC_Trigger (Du and Cardie, 2020) and
RCEE_ER (Liu et al., 2020): both BERT-based
models converting event extraction as an MRC task;
DMBERT (Wang et al., 2019): a BERT-based
model leveraging adversarial training for weakly
supervised events, where DMBERT Boot stands
for bootstrapped DMBERT.

Table 1 reports the overall performance on the
ACE2005 corpus. It shows that (1) previous mod-
els only evaluate the performance on the event
subtypes. Although our proposed BERT_RC does
not access to the triggers, it attains significant bet-
ter performance than TBNNAM, DYGIE++, and
BERT_RC_Trigger. Its performance is also com-
petitive to DMBERT and RCEE_ER, with 74.7%
F1 score, only 0.4% less F1 score than that in the
best baseline, DMBERT Boot. The result shows
that our proposed RC framework is effective to
learn the semantic information between given texts
and event types. (2) After introducing the derange-
ment mechanism, our proposed BERT_DRC can
significantly outperform all compared methods in
all three metrics. Especially, it attains 3.0% more
F1 score than the best baseline. (3) To verify the
generalization of our proposal, we also conduct
experiments to evaluate the performance on event
main types. The setting of the model parameter
is the same as that on the event subtypes, except
r = 3 for DRC. The results show that our pro-
posed BERT_RC and BERT_DRC gain further im-
provement, i.e., 2.9% and 4.7% F1 score over the
finetuned BERT, respectively. The results show
the consistence of our proposal and it seems that
BERT_DRC can attain better performance when

the dataset (the event subtypes) is more imbalanced;
see more supporting results in Appendix A.3.

P R F1
BERT_RC_Same 757 716 73.6

| BERTRC | 769 723 747 |

| BERT_RC_Shuffle_Test | 182 92 12.2|
BERT_DRC_Shuffle_Test | 66.0 45.1 53.6

| BERT DRC | 79.5 768 78.1 |

Table 2: Evaluation results for event orders.

5 More Analysis

We try to discover the underlying mechanism of our
proposed derangement and provide more analysis
on our proposal.

5.1 Effect of Event Orders

Table 2 reports the effect of the event orders in
different cases. The first two rows record the re-
sults of BERT_RC_Same and BERT_RC, where
BERT_RC_Same applies the same position embed-
deding to all event types to eliminate the difference
in event orders. On the contrary, BERT_RC ap-
plies varied position embeddeding to each event
type. The results show that by leveraging the event
order, BERT_RC gains around 1% improvement
on the F1 score.

We further show that our BERT_RC is order-
sensitive. This can be verified by the results of
BERT_RC and BERT_RC_Shuffle_Test. Here,
BERT_ RC_Shuffle_Test is trained with the same
event order of BERT_RC, but tested with a shuf-
fled event order. By confusing BERT_RC with a
different event order during inference, we obtain
a significant drop on the F1 score to 12.2%. This
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Figure 3: Fig. 3(a) shows the losses of BERT_DRC and BERT_RC on major events and minor events, respectively.
Fig. 3(b) shows the compared F1 score of BERT_RC (colored by blue) and BERT_DRC (colored by red) on the
test set. For better visualization, we only show parts of events and set the label segmentation to 2.

further implies that our BERT_RC tends to rely on
the event order to recognize the events.
Furthermore, by performing derangement on
BERT_RC_Shuffle_Test, we obtain the result
of BERT_DRC_Shuffle_Test. It shows that
BERT_DRC_Shuffle_Test obtains much better per-
formance than BERT_RC_Shuffle_Test. We con-
clude that BERT_DRC learns more semantic in-
formation than BERT_RC. In other words, the de-
rangement mechanism can help BERT_RC to re-
lieve the reliance of remembering event orders.

5.2 Effect of EDM

We show the effect of EDM to understand the un-
derlying mechanism of how EDM works. Fig. 3(a)
shows the losses of BERT _DRC and BERT _RC
on major events and minor events, respectively. To
amplify the effect, we set ¢ = 1.0, an extreme
case of EDM, where the event derangement is con-
ducted on each training batch. It shows that due
to the interference of the derangement, the loss
of BERT_DRC on the major events drops much
faster and is much smaller (close to zero) than the
counterpart of BERT_RC. We conjecture that the
swift convergence of BERT_DRC on major events
comes from the leak of the position hint implied by
derangement, because our model is order-sensitive.
During derangement, the position of ground-truth
(major) events is reserved while other events are
deranged. Hence, this yields low loss and less gradi-
ent update on major events in BERT_DRC than that
in BERT_RC. In other words, derangement pro-
hibits major events from being excessively learned.
The derangement procedure implicitly implements

under-sampling the instances of major classes dur-
ing training and thus fulfills a more balanced learn-
ing process. Our EDM may echo the mechanism
in response to sensory deprivation (Merabet and
Pascual-Leone, 2010): neurons in human brain
are reorganized to functioning regions (i.e. minor
events in our case), which, for instance, makes the
blind have stronger hearing.

Figure 3(b) further reports the performance of
each event by setting the derangement probabil-
ity ¢ to 0.2 and the size of derangement set 7
to 24, which achieves the best performance of
BERT_DRC. Via derangement or a more balanced
training, BERT_DRC attains an F1 score of 78.1%,
a 3.4% improvement over BERT_RC. By examin-
ing the details, the main improvement comes from
recognizing the minor events, i.e., improving the
F1 score from 69.1% to 72.4%.
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Figure 4: Effect of ¢ and r when evaluated on
ACE2005.



5.3 Effect of Hyperparameters

In this section, we test the derangement probability
q and the size of the derangement set , where ¢
is selected from {0.1, 0.2, 0.4, 0.5, 0.7} and r is
selected from {3,6, ..., 33}, i.e., equally dividing
all event types into 10 buckets. We ignore larger
¢’s because they usually fail the model on detecting
major events. Figure 4 shows that the best perfor-
mance is attained when ¢ = 0.2 and » = 24. The
trends also show that a smaller g can usually yield
better performance than a larger one while 7 is
selected in the range of 15 and 25 because r can de-
termine the scale of perturbation. A smaller r may
cause negligible perturbation and a larger » may
affect the disturbance of the minor events. Though
usually, these two parameters are data-oriented, we
observe similar trend for the TAC-KBP corpus; see
more results in Appendix A.5.
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Figure 5: Gradient visualization of words in a sentence
with respect to five typical event types; see more de-
scription in the main text.

5.4 Gradient Explanation

In the literature, the gradient explanation has been
verified as a more stable method to explain the at-
tention model (Adebayo et al., 2018) than the atten-
tion weights in BERT because the attention weights
may be misleading (Jain and Wallace, 2019) or are
not directly interpretable (Brunner et al., 2020). We
then compute the gradient with respect to the input
text embeddings, which quantifies the influence of
changes in the tokens on the predictions. Here, we
pick the example in Sec. 1 and select five typical
events: “Die” and “Transport” are the target events;
“Negative” and “Attack™ are two common event
types; and “Execute” is a minor event. Figure 5
clearly shows that
¢ For the event of “Die”, our BERT_DRC can
automatically focus on its trigger word “killed”

while for the event “Transport”, the trigger
“sent” is also noticed by model. But for non-
target events, our BERT_DRC attains low gra-
dients on the triggers or gets high gradients
on unrelated tokens, such as “to” and “.”.
More importantly, our BERT_DRC can sur-
prisingly spot the related arguments for the
events. For example, for the event of “Die”,
“Baghdad” yields a significant higher gradi-
ent, which corresponds to the argument of
PLACE. Similarly, for the event of “Trans-
port”, “they” and “him” also yield relatively
larger gradients, which exactly correspond to
the argument of ARTIFACT and AGENT, re-
spectively.

The observations shows the potential power of our
proposal in not only linking triggers to the corre-
sponding events, but also highlighting the corre-
sponding event arguments. Our proposal can be a
better tool to signify these words than traditional
trigger-based methods.

6 Conclusion and Future Work

In this paper, we propose a novel Derangement
Question Answering (DRC) framework on top of
BERT to detect events without triggers and under
the imbalanced setting. By treating the input text
as a Context and directly concatenating it with all
event types as Answers, we utilize the power of
self-attention in BERT to absorb the semantic rela-
tion between the original input text and the event
type(s). Moreover, we propose a simple yet effec-
tive derangement mechanism to relieve the imbal-
anced training. By delivering perturbation when
the target event is a major event, we train prohibit
the training and implicitly under-sample the train-
ing instance. We conduct sufficient evaluation and
show that our proposed framework attains state-of-
the-art performance over previous methods and can
automatically link the triggers with the event types
while signifying the related arguments.

Several interesting directions can be considered
in the future. First, since our proposal is event-
order-sensitive, it is worthy to explore how to gen-
erate an optimal initial event order. Second, the
gradient explanation is effective to signify triggers
and arguments. It is meaningful to merge it in our
proposal to extract the key information of events.
Third, it would be worthwhile to adapt our proposal
to other information extraction tasks to extend its
application scope.
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A Appendix

We provide more analysis to support our proposal.
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Conversion | P R F1

Original 752 67.6 T1.7

New 773 682 725
Table 3: Results of different conversion ways of event
tokens.

A.1 Effect of Event Tokens Conversion

There are two intuitive ways to treat the event to-
kens in our proposed framework. One is to treat
them as old words in the BERT dictionary, so that
we can initialize the event representations by uti-
lizing BERT’s pre-trained word embeddings. The
other way is to treat them as new words, so that we
can learn the event representations from scratch.
Hence, we can directly feed the original event
words in the DRC framework or add a square
bracket around the event words to convert them
into new words, e.g., “Transport” to “[ Transport]”,
in the BERT dictionary.

Table 3 reports the compared results and shows
that converting event types into new words can at-
tain substantial improvement in all three metrics
than treating them as the original words in BERT
dictionary. We conjecture that it may arise from
WordPiece (Wu et al., 2016) in BERT implemen-
tation because BERT will separate an event word
into several pieces when it is relatively long. This
brings the difficulty in precisely absorbing the se-
mantic relation between the words in input texts
and event types. On the contrary, when we treat
an event word as a new word, BERT will deem
them as a whole. Though BERT learns the event
representations from scratch, it is still helpful to
establish the semantic relationship between words
and event types.

A.2 Inputs for the Multi-label Classifier

There are two kinds of inputs for the multi-label
classifier: the representation of the [CLS] token, or
the event representations. We feed these two inputs
into the same MLP to predict the probability of an
input sentence x to the corresponding events.

P R F1
773 682 725
769 723 747

Input
[CLS]
All event tokens

Table 4: Results of different inputs for the multi-label
classifier.
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Table 4 reports the performance of different in-
puts for the multi-label classifier and shows that
by feeding the event representations as the input,
our BERT_RC can significantly improve the perfor-
mance on Recall and the F1 score with competitive
Precision score than only using the representation
of the [CLS] token. We conjecture that the event
representations have injected more information into
the multi-label classifier than only using the repre-
sentation of the [CLS] token.

A.3 Limitation of EDM

250
200
150
100

50

Figure 6: Data distribution of seven balanced event sub-
types.

We conduct evaluation on a more balanced
dataset to investigate the limitation of EDM. We
first select seven relatively balance event types,
yielding an imbalance ratio around 1.8, from the
subtypes of the ACE2005 corpus; see the data dis-
tribution in Fig. 6. In the experiment, we set g to 0.2
and r to 6 for good performance on BERT_DRC.

Model P R F1
BERT_RC 764 T77.8 T7.1
BERT_DRC | 75.0 76.3 75.6

Table 5: The performance of our BERT_RC and

BERT_DRC on a more balanced dataset.

Table 5 reports the comparison results of
BERT_RC and BERT_DRC and shows that
BERT_RC attains satisfactory results and beats
BERT_DRC in all three metrics. The results imply
that the derangement procedure plays an important
role when the dataset is more imbalanced. When
the dataset is relatively balanced, we can turn to
BERT_RC and attain good performance due to the
power of self-attention in BERT.



A.4 Error Analysis

We conduct error analysis on test dataset in this

section. There are three main kinds of errors:

— The main error comes from event mis-
classification, accounting for 52.9% of the total
errors. The error also includes that BERT DRC
detects more event types than the ground truth.
The most event type that BERT_DRC over-
predicts is the event of Attack. A typical example
is given below:

S: The officials, who spoke on ... 26
words omitted ... on the U.S.-backed
war resolution.

BERT_DRC deems this sentence belonging to
the event of Attack, where the ground truth is
the event of Meet. This error is normal be-
cause the word “war” is a common trigger to the
event of Attack, which yields BERT_DRC mis-
classifying it. In this dataset, the event of Attack
is the most dominating event type, which makes
it likely to classify the texts of other events as
Attack when the texts hold some similar words
to the triggers of Attack.

The second type of errors is that BERT_DRC
outputs fewer event types than the ground truth,
which accounts for 28.9% of errors. The fre-
quently missing event types are Transfer-Money
and Transfer-Ownership. One typical example is

S: Until Basra, U.S. and British troops

6 words omitted... they seized
nearby Umm RCsr ... 3 words omit-
ted... secure key oil fields.

BERT_DRC fails to identify the event of
Transfer-Ownership, which is indicated by the
trigger, “secure”, while recognizing the event of
Attack, implied by the trigger if “seized”. On
the one hand, the Imbalanced Ratio of Atfack
and Transfer-Ownership is 14.2. There are much
fewer training data for BERT_DRC to learn the
patterns of Transfer-Ownership than those of Az-
tack. On the other hand, deeper semantic knowl-
edge is needed for understanding the event of
Transfer-Ownership, whose trigger words are
more diverse and changeable. The triggers for
Transfer-Ownership may include “sold”, “ac-
quire”, and “bid”, etc.

The third type of errors lies in outputting none-
event sentences. When there are no event types
in a sentence, BERT_DRC may fail to classify it
as the type of negative. This is because there is
no sufficient clues for BERT DRC to learn the
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Methods P R F1

MSEP-EMD (Peng et al., 2016) | 69.2 47.8 56.6
BERT Finetune 84.1 650 71.7
Our BERT_RC 774 748 76.1
Our BERT_DRC 79.8 752 774

Table 6: The results of our BERT_RC and BERT_DRC
when evaluated on TAC-KBP 2015.

patterns from the type of negative. BERT_DRC
also turns out to give low predicted probabilities
on all event types.

800
700
600
500
400
300
200

) HHHHH“lIIIIImm....

100

Figure 7: The event type distribution in TAC-KBP.

A.5 Evaluation on TAC-KBP

We evaluate our BERT RC and BERT DRC on
the TAC-KBP-2015 corpus (Ellis et al., 2015). The
corpus is annotated with event nuggets that fall
into 38 types. We process the data following (Peng
et al., 2016). The data distribution is shown in
Fig. 7 and is more balanced than ACE2005 with
IR = 61.5. We implement our BERT_RC and
BERT_DRC by setting the configuration in align
with that on the ACE2005 dataset (see Section. 4.1).
The results are shown in Table 6. It can be ob-
served that our BERT_RC can greatly outperform
the finetuned base BERT by 4.4% in F1 score. Our
BERT_RC is thus a framework proven capable in
both the ACE2005 English dataset and the TAC-
KBP-2015 dataset. The EDM can further improve
our BERT_DRC by 1.3%. But the increment is rel-
atively smaller than that on the ACE2005 dataset,
which may be caused by the different corpus and
data distribution of two datasets.

Based on the TAC-KBP-2015 dataset, we investi-
gate the effect of ¢ and » in EDM on BERT_DRC'’s



(a) “sentence” as the trigger of the event: (b) “nominated” as the trigger of the (c) “leaked” as the trigger of the event:
“justice:sentence” event: “transaction:nominate” “contact:contact”

Figure 8: Gradient visualization of words in randomly selected sentences with respect to predicted event types; see
more description in the main text.

types in practice.
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Figure 9: Effects of ¢ and » when evaluated on TAC-
KBP 2015.

performance. We select ¢ from {0.1, 0.2, 0.3}
and r from {3,6,...,33}.

Figure 9 shows the performance with respect to
r for different q. It is shown that the best perfor-
mance is attained when ¢ = 0.2 and r = 21, reach-
ing 77.8% for F1 score. The trends remain largely
the same as those on the ACE2005 dataset. The
best performances also occur when 7 is selected
in the range of 15 and 25 because r can indicate
the scale of perturbation. A smaller » may cause
negligible perturbation and a larger » may affect
the disturbance of the minor events.

We then conduct gradient explanation on our
DRC framework as in Sec. 5.4. We randomly
choose instances from the test set and visualize gra-
dients respect to the correctly predicted event types
by our BERT_DRC. As shown in Fig. 8, “nomi-
nated”, “leaked” and “sentences” are respectively
triggers for those three sentences and receive signif-
icant positive gradients compared with other words.
This shows that our DRC framework can automati-
cally learn to spot triggers and relate them to event
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