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Figure 1. Compared to other methods, our model achieves more accurate details and better generalization in depth estimation. The final
row shows the point cloud generated from the estimated depth results, and the corresponding depth map can be referenced in Figure 5.

Abstract

Monocular Depth Estimation (MDE) is a fundamental
3D vision problem with numerous applications such as 3D
scene reconstruction, autonomous navigation, and Al con-
tent creation. However, robust and generalizable MDE re-
mains challenging due to limited real-world labeled data
and distribution gaps between synthetic datasets and real
data. Existing methods often struggle with real-world test
data with low efficiency, reduced accuracy, and lack of de-
tail. To address these issues, we propose an efficient MDE
approach named FiffDepth. The key feature of FiffDepth is
its use of diffusion priors. It transforms diffusion-based im-
age generators into a feed-forward architecture for detailed
depth estimation. FiffDepth preserves key generative fea-

tures and integrates the strong generalization capabilities
of models like DINOv2. Through benchmark evaluations,
we demonstrate that FiffDepth achieves exceptional accu-
racy, stability, and fine-grained detail, offering significant
improvements in MDE performance against state-of-the-art
MDE approaches.

1. Introduction

Monocular Depth Estimation (MDE) is a fundamental 3D
vision problem with numerous applications in 3D scene re-
construction [44], autonomous navigation [45], and more
recently in generating Al-based content [39]. MDE has
made significant progress in the era of deep learning [19, 32,
33, 50]. Neural networks trained from paired datasets of im-
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ages and pixel depth exhibit encouraging results and often
outperform non-deep learning based counterparts that build
on monocular depth cues. Despite significant progress,
fundamental challenges remain in efficiency, accuracy, and
generalization on diverse in-the-wild data. This is because
1) real depth datasets are usually noisy, and 2) while syn-
thetic data can be used, there exist domain gaps between
synthetic datasets and diverse in-the-wild data.

Specifically, current MDE research relies primarily on
synthetic data due to its high-quality annotations and con-
trolled environments. However, the scale and variety of syn-
thetic datasets remain insufficient for comprehensive train-
ing. To address this, synthetic-to-real transfer techniques
and the utilization of pre-trained models have emerged
as viable solutions. Among pre-trained models, genera-
tive networks [35] preserve intricate image details more
effectively than feed-forward networks (FFNs) like DI-
NOv2 [29], thus holding greater promise for dense predic-
tion models. However, generative models, while detail-rich,
often fall short in synthetic-to-real transfer due to their lim-
ited generalization capabilities outside the training domain.

Previous studies [13, 19] have adopted pre-trained diffu-
sion models, where the main idea is to directly finetuning
pre-trained RGB image diffusion models into depth map
diffusion generation models conditioned on images. How-
ever, this method may not be ideal, as dense prediction mod-
els require certainty over diversity. The introduction of any
noise or uncertainty during the generation process by these
methods is sub-optimal. In contrast, we observe that sim-
ply using the denoising diffusion module in a feedforward
manner yields better and more stable results. This method
capitalizes on extending the trajectories of image diffusion
models into the depth domain, representing a significant ad-
vancement in both accuracy and efficiency for generative
model-based depth estimation methods.

Specifically, we optimize diffusion trajectories for MDE
tasks. To enable the diffusion model to better retain certain
detailed generative features when fine-tuned into an MDE
model, we preserve the original generative training trajec-
tory while training the model for depth prediction, aim-
ing to maintain the detailed features of the original gener-
ative model as much as possible. Furthermore, recogniz-
ing the limitations of fintuned diffusion models in main-
taining robustness in diverse real-world images—with in-
accuracies in predicted depth occurring mainly in the low-
frequency components—we leverage the strengths of a DI-
NOvV2 [29] based model, which excels at predicting accurate
low-frequency depth despite its reduced fine detail. To ad-
dress this issue, we use the diffusion model itself to learn a
filter that refines its inaccurate predictions, producing low-
frequency outputs with a detail level similar to that of DI-
NOv2’s predictions, thereby matching DINOvV2’s results
and optimizing the low-frequency component of our output.

This approach allows us to incorporate a large amount of
real image data for training without sacrificing detail preser-
vation of generative models, while simultaneously leverag-
ing DINOV2’s strong generalization capabilities to enhance
the overall robustness and precision of our MDE models.

In summary, the contributions of our work are as follows:
1) We propose an improved approach for transforming gen-
erative models into dense prediction models, specifically for
depth prediction tasks, by leveraging diffusion model tra-
jectories in a more stable, feed-forward manner; 2) We in-
troduce a novel distillation method that transfers the robust
generalization capabilities of models like DINOvV?2 to diffu-
sion backbones; 3) Our method demonstrates higher stabil-
ity, accuracy, and efficiency in depth estimation compared
to other approaches based on generative models; 4) Com-
pared to other FFN models, our approach achieves more
detailed prediction results, marking a significant advance-
ment in the field of MDE.

2. Related Works
2.1. Depth Estimation

Depth estimation has always been a widely researched
topic, with numerous studies conducted in the past includ-
ing single-image [1, 11, 12, 22, 26, 30, 48] and video depth
estimation [8, 21, 41, 46, 52]. Early efforts in image depth
estimation, such as DIW [6] and OASIS [7], focused on
predicting relative (ordinal) depth. Subsequent approaches,
including MegaDepth [25] and DiverseDepth [54], used ex-
tensive collections of photographs from the Internet to de-
velop models that adapt to unseen data, while MiDaS [32]
improved generalization by incorporating a diverse range
of datasets during training. Recent advances, including
DPT [33] and Omnidata [10], adopted transformer-based
architectures to improve depth estimation performance.

However, due to limitations in models and data, these
methods exhibit very limited generalization in various
open-world scenes. Recently, some efforts [13, 19, 49, 50]
in image depth estimation have made open-world depth es-
timation feasible by leveraging the power of vast amounts
of unlabeled image data and the capabilities of pre-trained
generative models. Although these methods have achieved
remarkable progress in the field of depth estimation, chal-
lenges such as low efficiency, limited generalization, and
insufficient detail preservation remain.

2.2. Diffusion Models as Representation Learner

The diffusion model training process strongly resembles
that of denoising autoencoders (DAE) [2, 17, 43], as both
are designed to recover clean images from noise-corrupted
inputs. Recent studies have shown that semantic image
representations learned from diffusion models can be ef-
fectively used for various downstream recognition tasks,

ICCV

080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097

098

099

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

123

124
125
126
127
128
129



ICCV

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

148

149
150

151
152
153
154

ICCV 2025 Submission #-. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

x T do
Synthetic Image
N
t=0
Pseudo Label d* 4
I
é, "% Ground Truth dg
4
i
t=0 t=-1
| Feed-forward Depth Estimation | | Learnable Filter Distillation
I:I Inference Only | - | Depth Loss

Figure 2. Overview of the proposed method. To simplify the representation, all the images we used above correspond to the respective
latents. We transform the pre-trained diffusion model into a feed-forward approach for depth prediction, using only the result at ¢ = 0
as the output during inference. During training, at ¢ = 0, we use synthetic data to ensure detailed results, while at ¢ = —1, we leverage

pseudo-labels generated by DINOv2 for supervision.

such as correspondence [57], semantic segmentation [59],
and keypoint detection [51]. Notably, the features ex-
tracted from diffusion models tend to preserve more in-
tricate details, which has prompted the adoption of pre-
trained diffusion models for dense prediction tasks. Re-
cent studies, including Marigold [19] and GeoWizard [13],
rely on the standard diffusion framework and pre-trained
parameters to perform dense prediction tasks. Emerging
approaches [16, 47, 53] attempt to bypass the stochas-
tic phase of diffusion models by employing deterministic
frameworks. However, these adaptations lack deeper explo-
ration of the model’s potential, often leading to suboptimal
performance and the need for additional post-processing to
refine results. Moreover, diffusion-based techniques gen-
erally exhibit limited generalization capabilities. For in-
stance, BetterDepth [58] incorporates external depth priors
as inputs but remains a stochastic framework and heavily
depends on the quality of other models.

3. Method

3.1. Overview: Feed-forward Transformation of
Diffusion Models

Fundamentally, generative models construct mappings be-
tween a latent space and the ambient data space. These
mappings align closely with the needs of depth estimation
and other visual recognition tasks, where precise mappings

from image data to the corresponding labels are essential.
In these tasks, the scarcity of labeled data often limits the
precision of the trained models. In the context of learning
from a collection of unlabeled data instances, advanced gen-
erative models, trained on massive datasets, are capable of
learning robust mappings. They exhibit great promise for
transferring knowledge to other visual prediction applica-
tions [51, 57, 59]. Our work builds on this approach, further
exploring its application in depth estimation.

Specifically, we finetune a well-trained Stable Diffu-
sion (SD) [35] model to construct our model. A diffu-
sion process constructs multiple intermediate states by pro-
gressively adding noise to the data x(, defined as x; =
Vagxo + /1 — age, where € ~ N(0,I), and a; :=
Hizl 1 — B, with noise schedule {1, ..., Sr}. Then, dif-
fusion generative model gradually learns the mapping be-
tween two distributions by denoising each step, denoted as
rr — Tr—1 — --- — xo. The diffusion model is pri-
marily a denoising model €y that follows a loss function
Esimple = Ezo,e,t “|€ - 60(%:7 t)||2] .

In depth estimation, the mapping from visual images to
depth labels should ideally be deterministic. By leveraging
a robust, pre-trained mapping within the generative model,
there is no need to decompose the image-label mapping
into multiple steps during training. Instead, we can extend
the mapping trajectories of the existing diffusion model di-
rectly into the depth domain by adapting the learned diffu-
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sion process to act as a deterministic one-step feed-forward
network. Since our MDE model is built upon the diffusion
trajectory for its extension, we set the time step input as
t = 0 in this feed-forward step.

do = & (x0,t = 0). (1)

Since we use diffusion model’s parameters to construct our
network, we also use €y to represent our network model
here. The input x is the latent representation of RGB im-
age, and d is the latent representation of “depth image,”
following Marigold’s encoding approach. The depth latent
dy can be reconstructed into a depth map using the VAE
of SD with negligible error. While there have been prelim-
inary attempts [16, 47] to use similar approaches, they re-
main in a nascent stage and lack the precision, robustness,
and richness in detail needed for effective depth estimation.
In the following sections, we will delve into each step of
our method, detailing how we adapt the diffusion model to
enhance accuracy and detail in depth estimation tasks, such
as the key technical contributions of preserving diffusion
trajectories and improving synthetic-to-real robustness , as
discussed in Section 3.2 and Section 3.3, respectively. The
overall workflow of the method is illustrated in Figure 2.

3.2. Keeping Diffusion Trajectories

Since our approach leverages the trajectory of the diffusion
model, it is crucial to prevent degradation of this trajectory
during training. To achieve this, when fine-tuning the dif-
fusion model to transition it into a feed-forward depth es-
timator, we simultaneously maintain the feed-forward step
along with the preceding denoising training steps from the
original diffusion model. While this trajectory was initially
developed for image generation, directly applying it as-is
does not facilitate an optimal transition to the depth domain.
Thus, instead of predicting purely image-based latents, we
modify the target latent to be a blend of image and depth
representations.

bo = %o + (1 — 7)do,
bt:\/atb()—f—\/l—dtﬁ,te {1,7T}

Here, bg represents the blended latent. ~ controls the
balance between the image and depth latents. In this
process, we also use v-prediction re-parameterization ap-
proach [36] to define the training objective:

Vi = /€ — \/1 — O_[tbo,
L= |vi — & (b, )3, t € {1,...,T}.

2

3)

Intuitively, this approach forces the diffusion model to pre-
serve the shared features between the image generation task
and the depth estimation task, which are captured in the
blended training target. Therefore, it allows the diffusion

model to adapt more naturally to depth estimation while re-
taining essential generative features. Consequently, during
fine-tuning, the model maintains features that enhance the
accuracy and detail of depth predictions. This part is used
exclusively during training. At inference time, our model
functions as a fully deterministic framework.

3.3. Learnable Filter Distillation

Following previous methods, the above training process
only uses synthetic data because it provides high-quality
depth Ground Truth. However, this reliance limits both
Marigold [19] and our approach, as SD-based MDE models
trained solely on synthetic datasets often struggle to gen-
eralize well to in-the-wild data. Nevertheless, in this case,
the predictions produced by the SD-based MDE model still
retain the necessary details—precisely those details we ex-
pect to preserve in the final output. Therefore, enhancing
the model’s robustness essentially means improving the ac-
curacy of the low-frequency components in the model’s out-
put on real image.

Inspired by prior work [50], we observe that DINOv2
[29], trained on synthetic data, can generalize effectively
to real-world images. However, its depth estimates often
lack the necessary fine details—in other words, it can accu-
rately predict the low-frequency depth components for mas-
sive real images but misses the high-frequency details. This
characteristic aligns well with our needs, so we attempt to
leverage the abundance of labels generated by the DINOv2
model to enhance our model’s robustness. A straightfor-
ward method, as used in Depth Anything v2 [50], is to use
a fintuned DINOV2-G depth model to generate pseudo la-
bels, expanding the training set. However, since DINOv2’s
depth predictions lack fine detail, directly incorporating
these pseudo labels on the feed-forward output d risks ig-
noring the detailed features inherent to our model.

To address this, we propose learning a filter, denoted as
F'(dy) that processes our output to remove high-frequency
details (e.g., fine details). This filtering produces results at
a detail level similar to that of DINOv2, allowing us to fo-
cus supervision solely on the less accurate low-frequency
components. The filter I is obtained through learning. In
fact, we observed that the fine-tuned SD model itself al-
ready serves as an effective filter learner because the diffu-
sion model is inherently designed to model the subtle dif-
ferences across different time steps. Therefore, we directly
apply an additional SD step on the feed-forward output dg
to simulate this filter. To maintain consistency with the in-
puts and concepts used in the diffusion model, we represent
this filter F' : to — t_1 as the process that transforms the
output from £y to t_1:

d_y = €& (do,t = —1). )
At this stage, we can use the labels predicted by DINOv?2
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Figure 3. Filter learning. We use a learnable filter to map our
results to detail levels similar to DINOv2’s, matching its outputs
and thereby transferring DINOv2’s generalization capabilities to
our model without compromising our inherent details.

to supervise d_1, allowing us to transfer DINOv2’s robust-
ness without interfering with the detailed features in dg. In
this process, we use real-world image data for xq. Figure 3
illustrates the effects of Eq. (4).

3.4. Final Objective

For dj and d 1, we follow the method of MiDaS [32] using
MAE loss Lyag and gradient matching loss Ly as depth
loss. However, unlike the original approach, we apply these
losses in the latent space of Stable Diffusion instead:

Lyac (d,d*) MZ|d dr|, 5)

where d represents the ground truth latent, and d* is the
model’s predicted value. M denotes the number of pixels
in the depth latent.

1

M
Lam (d,d") = 2> (VaRi| + |V, Ri),  (©)
’L:1

where R; = d; —d]. Hence, the final objective is expressed
as a weighted sum of the losses Lyag, Loy, and Ly:

Lina = Y (Awaelmae (dy, df)
te{-1,0}

+ XomLowm (de, d})) + ALy, (D)

AMAE AgMm, and A are the weighting factors for their
respective loss term. df represents the ground truth (GT)
from the synthetic dataset, and d* ; represents the pseudo
label generated by DINOV2 for real images.

4. Experiments

4.1. Implementation Details

During the training process, we preserve the diffusion tra-
jectory while following the original DDPM noise sched-
uler [18] using 1000 diffusion steps. To better leverage
pre-trained models, we use the Depth Anything V2-Large
model as the DINO v2 model for supervision. This choice
was made because DAv2-Giant has not yet released the
weights, so we can only use other versions. Our training
dataset consists of two parts. For training at { = 0 and
during trajectory retention, we follow previous approaches
and use two synthetic datasets, Hypersim [34] and Virtual
KITTI [5], which cover both indoor and outdoor scenes,
with a total of 74K images. For training at t = —1, we
use real-world data from the LAION-Art dataset, a subset
of LAION-5B [38] containing 8 million samples. However,
we observed that training with only 0.2 million samples was
sufficient. Synthetic data and real data each account for half
of each batch. The parameters are set as follows: v = 0.5,
AMae = 1, Aam = 0.5, A\, = 0.2.

4.2. Comparison

Zero-shot affine-invariant depth. For the evaluation of
affine-invariant depth, we use the same datasets and evalu-
ation protocol as Marigold. These datasets include NYUv2
[40], ScanNet [9], KITTI [14], ETH3D [37], and DIODE
[42]. We compared FiffDepth with 14 methods that produce
affine-invariant depth maps/disparities, all claiming zero-
shot generalization capabilities. These include the earlier
methods [10, 32, 33, 54-56] , as well as the more recent
ones [13, 15, 16, 19, 27, 47, 49, 50]. As shown in Ta-
ble 1, FiffDepth achieves the best or state-of-the-art com-
parable results in most test scenarios. For visualization re-
sults, please refer to Figure 4. Our method not only accu-
rately predicts the relative depth relationships but also ex-
cels in identifying and predicting depth for very fine objects.
We also evaluate our method on the DA-2K introduced by
Depth Anything v2. On this dataset, our method also per-
forms comparably to Depth Anything v2.

Compared to methods like Depth Anything, which rely
on massive training datasets, our model achieves compa-
rable generalization to DAv2 while being trained on only a
small amount of real data. To validate the generalization ca-
pability of our method, we present some test examples from
special scenarios in Figure 5, including games, artworks,
Al-generated content, and movies. Our method shows com-
parable generalization to DAv2 while preserving more de-
tails. In contrast, other methods’ results are unsatisfactory
in both generalization and detail preservation.

Zero-shot boundaries. To further demonstrate the ac-
curacy of our method in predicting fine structures, we also
employ the Zero-shot Boundaries Metric introduced in the
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Method Training| NYUv2 KITTI ETH3D ScanNet  DIODE-Full DA-2K

Data |AbsRel | 01 1|AbsRel | 61 1|AbsRel | d1 T|AbsRel | J1 1|AbsRel | 61 1|Acc (%)
DiverseDepth 320K 117 875 19.0 704 228 694| 109 882 37.6 63.1| 793
MiDaS 2M 11.1 885 23.6 63.0/ 184 752| 121 84.6| 332 71.5| 80.6
LeReS 354K 9.0 91.6| 149 784 171 777, 9.1 917 27.1 176.6| 8l.1
Omnidata v2 12.2M 74 945 149 835 166 778 75 93.6/ 339 742| 76.8
HDN 300K 69 948 115 86.7| 12.1 833 8.0 939| 246 78.0| 857
DPT 1.4M 9.8 90.3| 100 90.1| 7.8 946 82 934| 182 75.8| 832
Marigold 74K* 55 964, 99 916 64 960 64 951 30.8 77.3| 86.8
e2e-ft 74K* 52 966 9.6 919 64 959/ 58 962 302 779| 836
DepthFM 74K* 6.5 956/ 83 934, 78 959, 6.8 949| 245 74.1| 858
GenPercept 74K* 56 960l 130 842 70 956/ 62 96.1| 30.7 77.6| 85.1
Lotus-D 59K* 53 967, 81 928 65 953 58 963| 299 78.1| 86.8
Lotus-G 59K* 54 966 85 877 62 96.1| 6.0 96.0| 294 78.5| 86.2
GeoWizard 280K* 52 96.6| 97 921 64 96.1| 6.1 953| 29.7 79.2| 88.1
DepthAnything v1-L| 62.6M* 43 981 7.6 947 127 882 42 98.0| 277 759| 88.5
DepthAnything v2-L| 62.6M* 45 979| 74 946| 13.1 86.5| 42 97.8| 262 754| 971
FiffDepth (Ours) | 274K* 44 978 73 935 7.1 972 42 979| 239 78.1| 97.1

Table 1. Quantitative comparison with other affine-invariant depth estimators on several zero-shot benchmarks. We use AbsRel (absolute

relative error: |d* — d| /d) and ;1 (percentage of max (d*/d,d/d*) < 1.25). All metrics are reported as percentages; bold numbers are

the best, underscored second best. Methods marked with an asterisk (*) utilize pre-trained models.

NYUv2

ETH3D KITTI

Scannet

DIODE

Figure 4. Qualitative comparison across different datasets. Our method is capable of predicting the depth of various fine objects, such

Input Image

FiffDepth

—

as lampposts, railings, and chair legs.
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DepthFM
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Depth Pro Lotus GeoWizard Depth Any. v2 FiffDepth Input Image

Marigold

Diffusion-e2e-ft

Figure 5. Qualitative comparison on special scenarios. In the special scenarios of games, artworks, Al-generated content, and movies,
our method demonstrates strong generalization capability and the ability to predict detailed depth.
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NN

Input Image Alpha Matte FiffDepth Depth Pro Depth Any v2 DepthFM
Figure 6. Boundary visualization comparison. These samples are from the AM-2k dataset.
Method Sintel F11  Spring F11 iBims F1 AMR{ P3MR{ DISR?
DepthAnything v2 0.228 0.056 0.111 0.107 0.131 0.056
Depth Pro 0.409 0.079 0.176 0.173 0.168 0.077
FiffDepth (Ours) 0.423 0.086 0.189 0.176 0.179 0.091

Table 2. Zero-shot boundary accuracy. We provide the F1 score for datasets containing ground-truth depth and boundary recall (R) for
those with matting or segmentation labels.
Method Marigold Marigold (LCM) GeoWizard DepthFM DepthAnything v2-L.  Depth Pro
Time (s) 103 1.7 19 0.39 0.026 0.23

Ours
0.092

Table 3. Running time comparison. We performe inference on 100 512 x 512 images using these methods and report the average time.

w/o blend w/o Ly FiffDepth Output

e

w/o DINO

Input Image

Input Image

DINO on d,, FiffDepth Output
Figure 7. Ablation studies. The generalization capability and
depth details of the method are affected when some essential com-
ponents are missing.

recent work Depth Pro [3] to evaluate boundary sharpness.
Following Depth Pro, we compute the depth average bound-
ary F1 score for datasets with ground truth and the boundary
recall (R) for datasets with matting or segmentation anno-
tations. The former datasets include Sintel [4], Spring [28],
and iBims [20], while the latter include AM-2k [24], P3M-
10k [23], and DIS-5k [31]. For details on the boundaries
metric and its computation, please refer to the Depth Pro
paper for further details. Quantitative comparisons in Ta-
ble 2 demonstrate that our method surpasses Depth Pro and
other approaches in boundary prediction. Additionally, the
visual results in Figure 6 further validate that our method
predicts more accurate boundaries. Please refer to the sup-
plementary materials for the results of other methods.

Running time. Generative MDE models adopt the dif-
fusion paradigm, and the resulting instability necessitates

test-time assembly, leading to a lengthy inference time. In
contrast, our feed-forward approach provides significant ef-
ficiency advantages. We evaluate the average inference
time for a 512 x 512 image on an NVIDIA Titan RTX
GPU. As shown in Table 3, our method significantly out-
performs other generative approaches in terms of efficiency
and achieves performance comparable to DAv2. We tested
these methods using their default settings.

Ablation studies. We conduct ablation studies to vali-
date components of our method. Keeping the diffusion tra-
jectory but predicting purely image latents affects the rela-
tive depth relationships between objects (1st row, 1st result
in Fig. 7). Without keeping trajectory, some details are lost
(1st row, 2nd result in Fig. 7). Omitting DINO supervision
impacts the model’s generalization ability (2nd row, 1st re-
sult in Fig. 7). Using DINO supervision at d also reduces
details (2nd row, 2nd result in Fig. 7). Please refer to sup-
plementary materials for quantitative ablation studies.

5. Conclusion

In this work, we transform diffusion models into sta-
ble, feed-forward depth estimators, achieving significant
improvements in accuracy and efficiency over generative
model-based methods. By combining the detail preserva-
tion of generative models with the robust generalization of
FFN models like DINOvV2, our hybrid approach bridges the
synthetic-to-real gap, enhancing stability, predictability, and
resolution in MDE for diverse real-world scenarios.
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