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Figure 1. Compared to other methods, our model achieves more accurate details and better generalization in depth estimation. The final
row shows the point cloud generated from the estimated depth results, and the corresponding depth map can be referenced in Figure 5.

Abstract

Monocular Depth Estimation (MDE) is a fundamental001
3D vision problem with numerous applications such as 3D002
scene reconstruction, autonomous navigation, and AI con-003
tent creation. However, robust and generalizable MDE re-004
mains challenging due to limited real-world labeled data005
and distribution gaps between synthetic datasets and real006
data. Existing methods often struggle with real-world test007
data with low efficiency, reduced accuracy, and lack of de-008
tail. To address these issues, we propose an efficient MDE009
approach named FiffDepth. The key feature of FiffDepth is010
its use of diffusion priors. It transforms diffusion-based im-011
age generators into a feed-forward architecture for detailed012
depth estimation. FiffDepth preserves key generative fea-013

tures and integrates the strong generalization capabilities 014
of models like DINOv2. Through benchmark evaluations, 015
we demonstrate that FiffDepth achieves exceptional accu- 016
racy, stability, and fine-grained detail, offering significant 017
improvements in MDE performance against state-of-the-art 018
MDE approaches. 019

1. Introduction 020

Monocular Depth Estimation (MDE) is a fundamental 3D 021
vision problem with numerous applications in 3D scene re- 022
construction [44], autonomous navigation [45], and more 023
recently in generating AI-based content [39]. MDE has 024
made significant progress in the era of deep learning [19, 32, 025
33, 50]. Neural networks trained from paired datasets of im- 026
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ages and pixel depth exhibit encouraging results and often027
outperform non-deep learning based counterparts that build028
on monocular depth cues. Despite significant progress,029
fundamental challenges remain in efficiency, accuracy, and030
generalization on diverse in-the-wild data. This is because031
1) real depth datasets are usually noisy, and 2) while syn-032
thetic data can be used, there exist domain gaps between033
synthetic datasets and diverse in-the-wild data.034

Specifically, current MDE research relies primarily on035
synthetic data due to its high-quality annotations and con-036
trolled environments. However, the scale and variety of syn-037
thetic datasets remain insufficient for comprehensive train-038
ing. To address this, synthetic-to-real transfer techniques039
and the utilization of pre-trained models have emerged040
as viable solutions. Among pre-trained models, genera-041
tive networks [35] preserve intricate image details more042
effectively than feed-forward networks (FFNs) like DI-043
NOv2 [29], thus holding greater promise for dense predic-044
tion models. However, generative models, while detail-rich,045
often fall short in synthetic-to-real transfer due to their lim-046
ited generalization capabilities outside the training domain.047

Previous studies [13, 19] have adopted pre-trained diffu-048
sion models, where the main idea is to directly finetuning049
pre-trained RGB image diffusion models into depth map050
diffusion generation models conditioned on images. How-051
ever, this method may not be ideal, as dense prediction mod-052
els require certainty over diversity. The introduction of any053
noise or uncertainty during the generation process by these054
methods is sub-optimal. In contrast, we observe that sim-055
ply using the denoising diffusion module in a feedforward056
manner yields better and more stable results. This method057
capitalizes on extending the trajectories of image diffusion058
models into the depth domain, representing a significant ad-059
vancement in both accuracy and efficiency for generative060
model-based depth estimation methods.061

Specifically, we optimize diffusion trajectories for MDE062
tasks. To enable the diffusion model to better retain certain063
detailed generative features when fine-tuned into an MDE064
model, we preserve the original generative training trajec-065
tory while training the model for depth prediction, aim-066
ing to maintain the detailed features of the original gener-067
ative model as much as possible. Furthermore, recogniz-068
ing the limitations of fintuned diffusion models in main-069
taining robustness in diverse real-world images—with in-070
accuracies in predicted depth occurring mainly in the low-071
frequency components—we leverage the strengths of a DI-072
NOv2 [29] based model, which excels at predicting accurate073
low-frequency depth despite its reduced fine detail. To ad-074
dress this issue, we use the diffusion model itself to learn a075
filter that refines its inaccurate predictions, producing low-076
frequency outputs with a detail level similar to that of DI-077
NOv2’s predictions, thereby matching DINOv2’s results078
and optimizing the low-frequency component of our output.079

This approach allows us to incorporate a large amount of 080
real image data for training without sacrificing detail preser- 081
vation of generative models, while simultaneously leverag- 082
ing DINOv2’s strong generalization capabilities to enhance 083
the overall robustness and precision of our MDE models. 084

In summary, the contributions of our work are as follows: 085
1) We propose an improved approach for transforming gen- 086
erative models into dense prediction models, specifically for 087
depth prediction tasks, by leveraging diffusion model tra- 088
jectories in a more stable, feed-forward manner; 2) We in- 089
troduce a novel distillation method that transfers the robust 090
generalization capabilities of models like DINOv2 to diffu- 091
sion backbones; 3) Our method demonstrates higher stabil- 092
ity, accuracy, and efficiency in depth estimation compared 093
to other approaches based on generative models; 4) Com- 094
pared to other FFN models, our approach achieves more 095
detailed prediction results, marking a significant advance- 096
ment in the field of MDE. 097

2. Related Works 098

2.1. Depth Estimation 099

Depth estimation has always been a widely researched 100
topic, with numerous studies conducted in the past includ- 101
ing single-image [1, 11, 12, 22, 26, 30, 48] and video depth 102
estimation [8, 21, 41, 46, 52]. Early efforts in image depth 103
estimation, such as DIW [6] and OASIS [7], focused on 104
predicting relative (ordinal) depth. Subsequent approaches, 105
including MegaDepth [25] and DiverseDepth [54], used ex- 106
tensive collections of photographs from the Internet to de- 107
velop models that adapt to unseen data, while MiDaS [32] 108
improved generalization by incorporating a diverse range 109
of datasets during training. Recent advances, including 110
DPT [33] and Omnidata [10], adopted transformer-based 111
architectures to improve depth estimation performance. 112

However, due to limitations in models and data, these 113
methods exhibit very limited generalization in various 114
open-world scenes. Recently, some efforts [13, 19, 49, 50] 115
in image depth estimation have made open-world depth es- 116
timation feasible by leveraging the power of vast amounts 117
of unlabeled image data and the capabilities of pre-trained 118
generative models. Although these methods have achieved 119
remarkable progress in the field of depth estimation, chal- 120
lenges such as low efficiency, limited generalization, and 121
insufficient detail preservation remain. 122

2.2. Diffusion Models as Representation Learner 123

The diffusion model training process strongly resembles 124
that of denoising autoencoders (DAE) [2, 17, 43], as both 125
are designed to recover clean images from noise-corrupted 126
inputs. Recent studies have shown that semantic image 127
representations learned from diffusion models can be ef- 128
fectively used for various downstream recognition tasks, 129
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Figure 2. Overview of the proposed method. To simplify the representation, all the images we used above correspond to the respective
latents. We transform the pre-trained diffusion model into a feed-forward approach for depth prediction, using only the result at t = 0
as the output during inference. During training, at t = 0, we use synthetic data to ensure detailed results, while at t = −1, we leverage
pseudo-labels generated by DINOv2 for supervision.

such as correspondence [57], semantic segmentation [59],130
and keypoint detection [51]. Notably, the features ex-131
tracted from diffusion models tend to preserve more in-132
tricate details, which has prompted the adoption of pre-133
trained diffusion models for dense prediction tasks. Re-134
cent studies, including Marigold [19] and GeoWizard [13],135
rely on the standard diffusion framework and pre-trained136
parameters to perform dense prediction tasks. Emerging137
approaches [16, 47, 53] attempt to bypass the stochas-138
tic phase of diffusion models by employing deterministic139
frameworks. However, these adaptations lack deeper explo-140
ration of the model’s potential, often leading to suboptimal141
performance and the need for additional post-processing to142
refine results. Moreover, diffusion-based techniques gen-143
erally exhibit limited generalization capabilities. For in-144
stance, BetterDepth [58] incorporates external depth priors145
as inputs but remains a stochastic framework and heavily146
depends on the quality of other models.147

3. Method148

3.1. Overview: Feed-forward Transformation of149
Diffusion Models150

Fundamentally, generative models construct mappings be-151
tween a latent space and the ambient data space. These152
mappings align closely with the needs of depth estimation153
and other visual recognition tasks, where precise mappings154

from image data to the corresponding labels are essential. 155
In these tasks, the scarcity of labeled data often limits the 156
precision of the trained models. In the context of learning 157
from a collection of unlabeled data instances, advanced gen- 158
erative models, trained on massive datasets, are capable of 159
learning robust mappings. They exhibit great promise for 160
transferring knowledge to other visual prediction applica- 161
tions [51, 57, 59]. Our work builds on this approach, further 162
exploring its application in depth estimation. 163

Specifically, we finetune a well-trained Stable Diffu- 164
sion (SD) [35] model to construct our model. A diffu- 165
sion process constructs multiple intermediate states by pro- 166
gressively adding noise to the data x0, defined as xt = 167√
ᾱtx0 +

√
1− ᾱtϵ, where ϵ ∼ N (0, I), and ᾱt := 168∏t

s=1 1− βs with noise schedule {β1, . . . , βT }. Then, dif- 169
fusion generative model gradually learns the mapping be- 170
tween two distributions by denoising each step, denoted as 171
xT → xT−1 → · · · → x0. The diffusion model is pri- 172
marily a denoising model ϵθ that follows a loss function 173
Lsimple = Ex0,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥2

]
. 174

In depth estimation, the mapping from visual images to 175
depth labels should ideally be deterministic. By leveraging 176
a robust, pre-trained mapping within the generative model, 177
there is no need to decompose the image-label mapping 178
into multiple steps during training. Instead, we can extend 179
the mapping trajectories of the existing diffusion model di- 180
rectly into the depth domain by adapting the learned diffu- 181
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sion process to act as a deterministic one-step feed-forward182
network. Since our MDE model is built upon the diffusion183
trajectory for its extension, we set the time step input as184
t = 0 in this feed-forward step.185

d0 = ϵ̂θ (x0, t = 0) . (1)186

Since we use diffusion model’s parameters to construct our187
network, we also use ϵ̂θ to represent our network model188
here. The input x0 is the latent representation of RGB im-189
age, and d0 is the latent representation of “depth image,”190
following Marigold’s encoding approach. The depth latent191
d0 can be reconstructed into a depth map using the VAE192
of SD with negligible error. While there have been prelim-193
inary attempts [16, 47] to use similar approaches, they re-194
main in a nascent stage and lack the precision, robustness,195
and richness in detail needed for effective depth estimation.196
In the following sections, we will delve into each step of197
our method, detailing how we adapt the diffusion model to198
enhance accuracy and detail in depth estimation tasks, such199
as the key technical contributions of preserving diffusion200
trajectories and improving synthetic-to-real robustness , as201
discussed in Section 3.2 and Section 3.3, respectively. The202
overall workflow of the method is illustrated in Figure 2.203

3.2. Keeping Diffusion Trajectories204

Since our approach leverages the trajectory of the diffusion205
model, it is crucial to prevent degradation of this trajectory206
during training. To achieve this, when fine-tuning the dif-207
fusion model to transition it into a feed-forward depth es-208
timator, we simultaneously maintain the feed-forward step209
along with the preceding denoising training steps from the210
original diffusion model. While this trajectory was initially211
developed for image generation, directly applying it as-is212
does not facilitate an optimal transition to the depth domain.213
Thus, instead of predicting purely image-based latents, we214
modify the target latent to be a blend of image and depth215
representations.216

b0 = γx0 + (1− γ)d0,

bt =
√
ᾱtb0 +

√
1− ᾱtϵ, t ∈ {1, . . . , T}.

(2)217

Here, b0 represents the blended latent. γ controls the218
balance between the image and depth latents. In this219
process, we also use v-prediction re-parameterization ap-220
proach [36] to define the training objective:221

vt =
√
ᾱtϵ−

√
1− ᾱtb0,

Lk = ∥vt − ϵ̂θ (bt, t)∥22 , t ∈ {1, . . . , T}.
(3)222

Intuitively, this approach forces the diffusion model to pre-223
serve the shared features between the image generation task224
and the depth estimation task, which are captured in the225
blended training target. Therefore, it allows the diffusion226

model to adapt more naturally to depth estimation while re- 227
taining essential generative features. Consequently, during 228
fine-tuning, the model maintains features that enhance the 229
accuracy and detail of depth predictions. This part is used 230
exclusively during training. At inference time, our model 231
functions as a fully deterministic framework. 232

3.3. Learnable Filter Distillation 233

Following previous methods, the above training process 234
only uses synthetic data because it provides high-quality 235
depth Ground Truth. However, this reliance limits both 236
Marigold [19] and our approach, as SD-based MDE models 237
trained solely on synthetic datasets often struggle to gen- 238
eralize well to in-the-wild data. Nevertheless, in this case, 239
the predictions produced by the SD-based MDE model still 240
retain the necessary details—precisely those details we ex- 241
pect to preserve in the final output. Therefore, enhancing 242
the model’s robustness essentially means improving the ac- 243
curacy of the low-frequency components in the model’s out- 244
put on real image. 245

Inspired by prior work [50], we observe that DINOv2 246
[29], trained on synthetic data, can generalize effectively 247
to real-world images. However, its depth estimates often 248
lack the necessary fine details—in other words, it can accu- 249
rately predict the low-frequency depth components for mas- 250
sive real images but misses the high-frequency details. This 251
characteristic aligns well with our needs, so we attempt to 252
leverage the abundance of labels generated by the DINOv2 253
model to enhance our model’s robustness. A straightfor- 254
ward method, as used in Depth Anything v2 [50], is to use 255
a fintuned DINOv2-G depth model to generate pseudo la- 256
bels, expanding the training set. However, since DINOv2’s 257
depth predictions lack fine detail, directly incorporating 258
these pseudo labels on the feed-forward output d0 risks ig- 259
noring the detailed features inherent to our model. 260

To address this, we propose learning a filter, denoted as 261
F (d0) that processes our output to remove high-frequency 262
details (e.g., fine details). This filtering produces results at 263
a detail level similar to that of DINOv2, allowing us to fo- 264
cus supervision solely on the less accurate low-frequency 265
components. The filter F is obtained through learning. In 266
fact, we observed that the fine-tuned SD model itself al- 267
ready serves as an effective filter learner because the diffu- 268
sion model is inherently designed to model the subtle dif- 269
ferences across different time steps. Therefore, we directly 270
apply an additional SD step on the feed-forward output d0 271
to simulate this filter. To maintain consistency with the in- 272
puts and concepts used in the diffusion model, we represent 273
this filter F : t0 → t−1 as the process that transforms the 274
output from t0 to t−1: 275

d−1 = ϵ̂θ (d0, t = −1) . (4) 276

At this stage, we can use the labels predicted by DINOv2 277
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Figure 3. Filter learning. We use a learnable filter to map our
results to detail levels similar to DINOv2’s, matching its outputs
and thereby transferring DINOv2’s generalization capabilities to
our model without compromising our inherent details.

to supervise d−1, allowing us to transfer DINOv2’s robust-278
ness without interfering with the detailed features in d0. In279
this process, we use real-world image data for x0. Figure 3280
illustrates the effects of Eq. (4).281

3.4. Final Objective282

For d0 and d−1, we follow the method of MiDaS [32] using283
MAE loss LMAE and gradient matching loss LGM as depth284
loss. However, unlike the original approach, we apply these285
losses in the latent space of Stable Diffusion instead:286

LMAE (d,d
∗) =

1

M

M∑
i=1

|di − d∗
i |, (5)287

where d represents the ground truth latent, and d∗ is the288
model’s predicted value. M denotes the number of pixels289
in the depth latent.290

LGM (d,d∗) =
1

M

M∑
i=1

(|∇xRi|+ |∇yRi|) , (6)291

where Ri = di−d∗
i . Hence, the final objective is expressed292

as a weighted sum of the losses LMAE, LGM, and Lk:293

Lfinal =
∑

t∈{−1,0}

(λMAELMAE (dt,d
∗
t )294

+ λGMLGM (dt,d
∗
t )) + λkLk. (7)295

λMAE λGM, and λk are the weighting factors for their296
respective loss term. d∗

0 represents the ground truth (GT)297
from the synthetic dataset, and d∗

−1 represents the pseudo298
label generated by DINOv2 for real images.299

4. Experiments 300

4.1. Implementation Details 301

During the training process, we preserve the diffusion tra- 302
jectory while following the original DDPM noise sched- 303
uler [18] using 1000 diffusion steps. To better leverage 304
pre-trained models, we use the Depth Anything V2-Large 305
model as the DINO v2 model for supervision. This choice 306
was made because DAv2-Giant has not yet released the 307
weights, so we can only use other versions. Our training 308
dataset consists of two parts. For training at t = 0 and 309
during trajectory retention, we follow previous approaches 310
and use two synthetic datasets, Hypersim [34] and Virtual 311
KITTI [5], which cover both indoor and outdoor scenes, 312
with a total of 74K images. For training at t = −1, we 313
use real-world data from the LAION-Art dataset, a subset 314
of LAION-5B [38] containing 8 million samples. However, 315
we observed that training with only 0.2 million samples was 316
sufficient. Synthetic data and real data each account for half 317
of each batch. The parameters are set as follows: γ = 0.5, 318
λMAE = 1, λGM = 0.5, λk = 0.2. 319

4.2. Comparison 320

Zero-shot affine-invariant depth. For the evaluation of 321
affine-invariant depth, we use the same datasets and evalu- 322
ation protocol as Marigold. These datasets include NYUv2 323
[40], ScanNet [9], KITTI [14], ETH3D [37], and DIODE 324
[42]. We compared FiffDepth with 14 methods that produce 325
affine-invariant depth maps/disparities, all claiming zero- 326
shot generalization capabilities. These include the earlier 327
methods [10, 32, 33, 54–56] , as well as the more recent 328
ones [13, 15, 16, 19, 27, 47, 49, 50]. As shown in Ta- 329
ble 1, FiffDepth achieves the best or state-of-the-art com- 330
parable results in most test scenarios. For visualization re- 331
sults, please refer to Figure 4. Our method not only accu- 332
rately predicts the relative depth relationships but also ex- 333
cels in identifying and predicting depth for very fine objects. 334
We also evaluate our method on the DA-2K introduced by 335
Depth Anything v2. On this dataset, our method also per- 336
forms comparably to Depth Anything v2. 337

Compared to methods like Depth Anything, which rely 338
on massive training datasets, our model achieves compa- 339
rable generalization to DAv2 while being trained on only a 340
small amount of real data. To validate the generalization ca- 341
pability of our method, we present some test examples from 342
special scenarios in Figure 5, including games, artworks, 343
AI-generated content, and movies. Our method shows com- 344
parable generalization to DAv2 while preserving more de- 345
tails. In contrast, other methods’ results are unsatisfactory 346
in both generalization and detail preservation. 347

Zero-shot boundaries. To further demonstrate the ac- 348
curacy of our method in predicting fine structures, we also 349
employ the Zero-shot Boundaries Metric introduced in the 350
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Method Training NYUv2 KITTI ETH3D ScanNet DIODE-Full DA-2K
Data AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ Acc (%)

DiverseDepth 320K 11.7 87.5 19.0 70.4 22.8 69.4 10.9 88.2 37.6 63.1 79.3
MiDaS 2M 11.1 88.5 23.6 63.0 18.4 75.2 12.1 84.6 33.2 71.5 80.6
LeReS 354K 9.0 91.6 14.9 78.4 17.1 77.7 9.1 91.7 27.1 76.6 81.1

Omnidata v2 12.2M 7.4 94.5 14.9 83.5 16.6 77.8 7.5 93.6 33.9 74.2 76.8
HDN 300K 6.9 94.8 11.5 86.7 12.1 83.3 8.0 93.9 24.6 78.0 85.7
DPT 1.4M 9.8 90.3 10.0 90.1 7.8 94.6 8.2 93.4 18.2 75.8 83.2

Marigold 74K∗ 5.5 96.4 9.9 91.6 6.4 96.0 6.4 95.1 30.8 77.3 86.8
e2e-ft 74K∗ 5.2 96.6 9.6 91.9 6.4 95.9 5.8 96.2 30.2 77.9 83.6

DepthFM 74K∗ 6.5 95.6 8.3 93.4 7.8 95.9 6.8 94.9 24.5 74.1 85.8
GenPercept 74K∗ 5.6 96.0 13.0 84.2 7.0 95.6 6.2 96.1 30.7 77.6 85.1

Lotus-D 59K∗ 5.3 96.7 8.1 92.8 6.5 95.3 5.8 96.3 29.9 78.1 86.8
Lotus-G 59K∗ 5.4 96.6 8.5 87.7 6.2 96.1 6.0 96.0 29.4 78.5 86.2

GeoWizard 280K∗ 5.2 96.6 9.7 92.1 6.4 96.1 6.1 95.3 29.7 79.2 88.1
DepthAnything v1-L 62.6M∗ 4.3 98.1 7.6 94.7 12.7 88.2 4.2 98.0 27.7 75.9 88.5
DepthAnything v2-L 62.6M∗ 4.5 97.9 7.4 94.6 13.1 86.5 4.2 97.8 26.2 75.4 97.1

FiffDepth (Ours) 274K∗ 4.4 97.8 7.3 93.5 7.1 97.2 4.2 97.9 23.9 78.1 97.1

Table 1. Quantitative comparison with other affine-invariant depth estimators on several zero-shot benchmarks. We use AbsRel (absolute
relative error: |d∗ − d| /d) and δ1 (percentage of max (d∗/d, d/d∗) < 1.25 ). All metrics are reported as percentages; bold numbers are
the best, underscored second best. Methods marked with an asterisk (*) utilize pre-trained models.
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Figure 4. Qualitative comparison across different datasets. Our method is capable of predicting the depth of various fine objects, such
as lampposts, railings, and chair legs.
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Figure 5. Qualitative comparison on special scenarios. In the special scenarios of games, artworks, AI-generated content, and movies,
our method demonstrates strong generalization capability and the ability to predict detailed depth.
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FiffDepth Depth Any. v2Depth Pro DepthFMInput Image Alpha Matte

Figure 6. Boundary visualization comparison. These samples are from the AM-2k dataset.

Method Sintel F1↑ Spring F1↑ iBims F1↑ AM R↑ P3M R↑ DIS R↑
DepthAnything v2 0.228 0.056 0.111 0.107 0.131 0.056
Depth Pro 0.409 0.079 0.176 0.173 0.168 0.077
FiffDepth (Ours) 0.423 0.086 0.189 0.176 0.179 0.091

Table 2. Zero-shot boundary accuracy. We provide the F1 score for datasets containing ground-truth depth and boundary recall (R) for
those with matting or segmentation labels.

Method Marigold Marigold (LCM) GeoWizard DepthFM DepthAnything v2-L Depth Pro Ours
Time (s) 103 1.7 19 0.39 0.026 0.23 0.092

Table 3. Running time comparison. We performe inference on 100 512× 512 images using these methods and report the average time.

Input Image

Input Image

w/o 𝐿!w/o blend

w/o DINO DINO on 𝑑"

FiffDepth Output

FiffDepth Output

Figure 7. Ablation studies. The generalization capability and
depth details of the method are affected when some essential com-
ponents are missing.

recent work Depth Pro [3] to evaluate boundary sharpness.351
Following Depth Pro, we compute the depth average bound-352
ary F1 score for datasets with ground truth and the boundary353
recall (R) for datasets with matting or segmentation anno-354
tations. The former datasets include Sintel [4], Spring [28],355
and iBims [20], while the latter include AM-2k [24], P3M-356
10k [23], and DIS-5k [31]. For details on the boundaries357
metric and its computation, please refer to the Depth Pro358
paper for further details. Quantitative comparisons in Ta-359
ble 2 demonstrate that our method surpasses Depth Pro and360
other approaches in boundary prediction. Additionally, the361
visual results in Figure 6 further validate that our method362
predicts more accurate boundaries. Please refer to the sup-363
plementary materials for the results of other methods.364

Running time. Generative MDE models adopt the dif-365
fusion paradigm, and the resulting instability necessitates366

test-time assembly, leading to a lengthy inference time. In 367
contrast, our feed-forward approach provides significant ef- 368
ficiency advantages. We evaluate the average inference 369
time for a 512 × 512 image on an NVIDIA Titan RTX 370
GPU. As shown in Table 3, our method significantly out- 371
performs other generative approaches in terms of efficiency 372
and achieves performance comparable to DAv2. We tested 373
these methods using their default settings. 374

Ablation studies. We conduct ablation studies to vali- 375
date components of our method. Keeping the diffusion tra- 376
jectory but predicting purely image latents affects the rela- 377
tive depth relationships between objects (1st row, 1st result 378
in Fig. 7). Without keeping trajectory, some details are lost 379
(1st row, 2nd result in Fig. 7). Omitting DINO supervision 380
impacts the model’s generalization ability (2nd row, 1st re- 381
sult in Fig. 7). Using DINO supervision at d0 also reduces 382
details (2nd row, 2nd result in Fig. 7). Please refer to sup- 383
plementary materials for quantitative ablation studies. 384

5. Conclusion 385

In this work, we transform diffusion models into sta- 386
ble, feed-forward depth estimators, achieving significant 387
improvements in accuracy and efficiency over generative 388
model-based methods. By combining the detail preserva- 389
tion of generative models with the robust generalization of 390
FFN models like DINOv2, our hybrid approach bridges the 391
synthetic-to-real gap, enhancing stability, predictability, and 392
resolution in MDE for diverse real-world scenarios. 393
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