
Under review as a conference paper at ICLR 2023

PSEUDO-DIFFERENTIAL INTEGRAL OPERATOR FOR
LEARNING SOLUTION OPERATORS OF PARTIAL DIF-
FERENTIAL EQUATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning mapping between two function spaces has attracted considerable research
attention. However, learning the solution operator of partial differential equations
(PDEs) remains a challenge in scientific computing. Fourier neural operator (FNO)
is recently proposed to learn the solution operators with an excellent performance.
In this study, we propose a novel pseudo-differential integral operator (PDIO) to
analyze and generalize the Fourier integral operator in FNO. PDIO is inspired by a
pseudo-differential operator, which is a generalization of a differential operator and
characterized by a certain symbol. We parameterize the symbol by using a neural
network and show that the neural-network-based symbol is contained in a smooth
symbol class. Subsequently, we prove that the PDIO is a bounded linear operator,
and thus is continuous in the Sobolev space. We combine the PDIO with the neural
operator to develop a pseudo-differential neural operator (PDNO) to learn the
nonlinear solution operator of PDEs. We experimentally validate the effectiveness
of the proposed model by using Darcy flow and the Navier-Stokes equation. The
results reveal that the proposed PDNO outperforms the existing neural operator
approaches in most experiments.

1 INTRODUCTION

In science and engineering, many physical systems and natural phenomena are described by par-
tial differential equations (PDEs) (Courant & Hilbert, 1953). Approximating the solution of the
underlying PDEs is critical to understand and predict a system. Conventional numerical methods,
such as finite difference methods (FDMs) and finite element methods, involve a trade-off between
accuracy and the time required. In many complex systems, it may be highly time-consuming to use
numerical methods to obtain accurate solutions. Furthermore, in some cases, the underlying PDE
may be unknown.

With remarkable advancements in deep learning, studies have focused on using deep learning to solve
PDEs (Nabian & Meidani, 2018; E & Yu, 2018; Sirignano & Spiliopoulos, 2018; Raissi et al., 2019;
Hwang et al., 2020; Lee et al., 2021). An example is an operator learning (Guo et al., 2016; Bhatnagar
et al., 2019; Khoo et al., 2021), which utilizes neural networks to parameterize the mapping from the
parameters (external force, initial, and boundary condition) of the given PDE to the solutions of that
PDE. Many studies employed different convolutional neural networks as surrogate models to solve
various problems, such as the uncertainty quantification tasks for PDEs (Zhu & Zabaras, 2018; Zhu
et al., 2019) and PDE-constrained control problems (Holl et al., 2020; Hwang et al., 2021). Based on
the universal approximation theorem of operator (Chen & Chen, 1995), DeepONet was introduced by
Lu et al. (2019). In follow-up works, an extension model of the DeepONet was proposed in Wang
et al. (2021); Kissas et al. (2022).

Another approach to operator learning is a neural operator, proposed in Li et al. (2020c;b;a). Li et al.
(2020c) proposed an iterative architecture inspired by Green’s function of elliptic PDEs. The iterative
architecture consists of a linear transformation, an integral operator, and a nonlinear activation
function, allowing the architecture to approximate complex nonlinear mapping. An extension of this
work, Li et al. (2020b) used a multi-pole method to develop a multi-scale graph structure. Gupta et al.
(2021) approximated the kernel of the integral operator using the multiwavelet transform.

1

Under review as a conference paper at ICLR 2023

Recently, Li et al. (2020a) proposed a Fourier integral operator using fast Fourier transform (FFT) to
reduce the cost of approximating the integral operator. They directly parametrize the kernel in Fourier
integral operator by its Fourier space coefficients which only depends on frequency mode. In this
study, we analyze the Fourier integral operator from the perspective of pseudo-differential operator
(PDO). PDOs are a generalization of linear partial differential operators and have been extensively
studied mathematically (Boutet de Monvel, 1971; Hörmander, 2007; Ruzhansky & Turunen, 2009;
Taylor, 2017). A pseudo-differential integral operator (PDIO) is proposed to generalize the Fourier
integral operator in the FNO based on the PDO. A neural network called a symbol network is used
to approximate the PDO symbols. The proposed symbol network is contained in a toroidal class of
symbols; thus, a PDIO is a continuous operator in the Sobolev space. Furthermore, the PDIO can be
applied to the solution operator of time-dependent PDEs using a time-dependent symbol network.

The main contributions of the study are as follows.

• The Fourier integral operator proposed in Li et al. (2020a) is interpreted from a PDO
perspective. The symbol of the Fourier integral operator is only depend on ξ and not depend
on position x. Furthermore, the symbol may not be contained in a toroidal symbol class so
that the Fourier integral operator cannot be guaraneteed to be a continuous operator.

• A novel PDIO is proposed based on the PDO to generalize the Fourier integral operator.
PDIO approximates the PDO using symbol networks. We show that the proposed symbol
network is contained in a toroidal symbol class of PDOs, implying that the PDIO with the
symbol network is a continuous operator in the Sobolev space.

• Time-dependent PDIO, a PDIO with time-dependent symbol networks, can be used to
approximate the solution operator of time-dependent PDEs. It approximates the solution
operator, including the solution for time t, which is not in the training data. Furthermore, it
is a continuous-in-time operator.

• A pseudo-differential neural operator (PDNO), which consists of a linear combination of our
PDIOs combined with the neural operator proposed in Li et al. (2020c), is developed. PDNO
outperforms the existing operator learning models, such as the Fourier neural operator in Li
et al. (2020a) and the multiwavelet-based operator in Gupta et al. (2021) in hard problems
(Darcy flow and Navier-Stokes equation). In particular, the PDNO reduces overfitting
compared to other models (Figure 1.

2 ANALYSIS OF FOURIER INTEGRAL OPERATOR BASED ON
PSEUDO-DIFFERENTIAL OPERATOR

Figure 1: Comparison of the train and the test relative L2

error by time horizon t = 10, ..., 19 on the Navier-Stokes
equation with ν = 1e − 5. FNO and MWT are highly
overfitted, while PDNO is not.

In this study, we aim to approximate an
operator G : A → U between two func-
tion spaces A and U . The operator G
can be considered as the solution oper-
ators of various parametric PDEs (See
Section 5 for examples). To find a map
from the function f(x) ∈ A to the so-
lution u(x) ∈ U , we introduce a neu-
ral operator architecture to learn infinite-
dimensional operators effectively.

2.1 NEURAL OPERATOR

Inspired by Green’s functions of elliptic
PDEs, Li et al. (2020c) proposed an iter-
ative neural operator to approximate the
solution operators of parametric PDEs.
First, the input f(x) is lifted to a higher
representation f0(x) = P (f(x)). Next,
the iterations f0 7→ f1.... 7→ fT are applied using the update ft 7→ ft+1 formulated using the
following expression:

ft+1(x) = σ (Wft(x) +Kϕ[ft](x)) , (1)

2

Under review as a conference paper at ICLR 2023

for t = 0, ..., T − 1, where W is a local linear transformation and σ is a nonlinear activation function.
Kϕ is an integral operator K parameterized by ϕ as

Kϕ[ft](x) =

∫
D

κϕ(x, y)ft(y)dy, (2)

where D is a bounded domain of input function. The output u(x) = Q(fT (x)) is the projection of
fT (x) by the local transformation Q. There are many studies considering how to choose the kernel
function κϕ and how to compute the corresponding integral operator. The integral operator Kϕ can
be parameterized using the message passing on graph networks (Li et al., 2020c). In this work, we
focus on the Fourier integral operator proposed by Li et al. (2020a).

2.2 FOURIER INTEGRAL OPERATOR

Li et al. (2020a) proposed a neural operator structure with the integral operator KR called Fourier
integral operator. By letting κ(x, y) = κ(x− y) and using the convolution theroem, they define the
Fourier integral operator as follows:

KR[ft](x) = F−1 [F [κ] · F [ft](ξ)] (x) = F−1 [R(ξ) · F [ft](ξ)] (x), (3)

where F is the Fourier transform and F−1 is its inverse. Note that the parameter R(ξ) is directly
parameterized on the discrete space ξ ∈ Zn. The Fourier integral operator can be interpreted as the
general conecept of differential operator, called pseudo-differential operator.

2.3 PSEUDO-DIFFERENTIAL OPERATOR

From 1960s, PDOs were derived from differential operators and have been studied. We consider a
PDE La[u(x)] = f(x) with a linear differential operator La =

∑
α cαD

α. To find a map T from f
to u, we apply the Fourier transform to obtain the following:

a(ξ)û
def
=

(∑
α

cα(iξ)
α

)
û = f̂ , (4)

where ξ ∈ Rn represents variables in the Fourier space and the f̂(ξ) is a Fourier transform of function
f(x). If a(ξ) never attains zero, we obtain the solution operator of the PDE as follows:

u(x) = T (f)(x)
def
=

∫
Rn

1

a(ξ)
f̂(ξ)e2πiξxdξ. (5)

A PDO can be defined as a generalization of differential operators by replacing 1
a(ξ) with a(x, ξ),

called a symbol (Hörmander, 2003; 2007). First, we define a symbol a(x, ξ) and a class of the
symbols.
Definition 2.1. Let 0 < ρ ≤ 1 and 0 ≤ δ < 1. A function a(x, ξ) is called a Euclidean symbol
on Tn × Rn in a class Sm

ρ,δ(Tn × Rn) if a(x, ξ) is smooth on Tn × Rn and satisfies the following
inequality:

|∂βx∂αξ a(x, ξ)| ≤ cαβ⟨ξ⟩m−ρ|α|+δ|β|, (6)
for all α, β ∈ Nn

0 , and for all x ∈ Tn and ξ ∈ Rn, where a constant cαβ may depend on α and β but
not on x and ξ. Here, ⟨ξ⟩ def

= (1 + ∥ξ∥2)1/2 with the Euclidean norm ∥ξ∥.

The PDO corresponding to the symbol class Sm
ρ,δ(Tn × Rn) can be defined as follows:

Definition 2.2. The Euclidean PDO Ta : A → U with the Euclidean symbol a(x, ξ) ∈ Sm
ρ,δ(Tn×Rn)

is defined as follows:
Ta(f)(x) =

∫
Rn

a(x, ξ)f̂(ξ)e2πiξxdξ, (7)

where f̂(ξ) is the Fourier transform of function f(x).

The Euclidean PDO can be re-written using the Fourier transform as follows:

Ta(f)(x) = F−1 [a(x, ξ)F [f](ξ)] . (8)

3

Under review as a conference paper at ICLR 2023

Figure 2: An architecture of a PDIO with symbol networks annθ1 (x) and annθ2 (ξ). Considering that
FFT and inverse FFT are used, both the input and output are in the form of uniform mesh. Each value
annθ1 (x) and annθ2 (ξ) is obtained from separate neural networks.

2.4 FOURIER INTEGRAL OPERATOR AND PSEUDO-DIFFERENTIAL OPERATOR

Comparing the Fourier integral operator KR (equation 3) and the Euclidean PDO Ta (equation 8),
there are two main differences. The parameters R(ξ) may not satisfy the condition of the toroidal
symbol (equation 10) in Definition 3.1 so that the Fourier integral operator cannot be guaranteed to
be a continuous operator. Furthermore, parameters R(ξ) only consider the dependency on ξ, while
the symbol a(x, ξ) has a dependency on x. To generalize the Fourier integral operator based on PDO,
the key idea of our method is to parametrize the Euclidean symbol using neural networks to render
the symbol smooth. This makes the model smooth, mitigating overfitting (Figure 1).

The following section introduces the PDO theory and the proposed model based on the PDO. We
also derive the smoothness of the proposed model from the smoothness of neural network.

3 PROPOSED INTEGRAL OPERATOR : PSEUDO-DIFFERENTIAL INTEGRAL
OPERATOR

3.1 SYMBOL NETWORK AND PDIO

The primary idea in our study is to parameterize the Euclidean symbol a(x, ξ) using neural networks
annθ (x, ξ). This network is called a symbol network. The symbol network annθ (x, ξ) is assumed to be
factorized into annθ (x, ξ) = annθ1 (x)a

nn
θ2

(ξ) (See Appendix C.1). Both smooth functions annθ1 (x) and
annθ2 (ξ) are parameterized by fully connected neural networks. We propose a PDIO to approximate
the Euclidean PDO using the symbol network and the Fourier transform as follows:

Ka[f](x) := F−1 [annθ (x, ξ)F [f](ξ)] = annθ1 (x)F
−1
[
annθ2 (ξ)F [f](ξ)

]
, (9)

where F is the Fourier transform and F−1 is its inverse. The diagram of the PDIO is explained in
Figure 2.

Practically, F and F−1 in equation 9 are approximated by the FFT, which is an effective algorithm
that computes the discrete Fourier transform (DFT). Although the symbol network annθ2 (ξ) is defined
on Rn, the inverse DFT is evaluated only on the discrete space Zn. Therefore, the symbol network
annθ (x, ξ) should be considered on the restricted domain Tn × Zn (See Appendix C.2 for details).
The following section details the definitions and properties of the symbol and PDO on Tn × Zn

to understand the PDIO on the domain Tn × Zn. Moreover, we introduce a theorem that connects
between the Euclidean symbol and the restricted Euclidean symbol.

3.2 PDOS ON Tn × Zn

Definition 3.1. A toroidal symbol class is a set Sm
ρ,δ(Tn × Zn) consisting of the toroidal symbols

a(x, ξ), which are smooth in x for all ξ ∈ Zn, and satisfy the following inequality:

| △α
ξ ∂

β
xa(x, ξ)| ≤ cαβ⟨ξ⟩m−ρ|α|+δ|β|, (10)

for all α, β ∈ Nn
0 , and for all (x, ξ) ∈ Tn × Zn. Here, △α

ξ are the difference operators.

4

Under review as a conference paper at ICLR 2023

The PDO corresponding to the symbol class Sm
ρ,δ(Tn × Zn) can be defined as follows:

Definition 3.2. The toroidal PDO Ta : A → U with the toroidal symbol a(x, ξ) ∈ Sm
ρ,δ(Tn × Zn) is

defined by the following equation:

Ta(f)(x) =
∑
ξ∈Zn

a(x, ξ)f̂(ξ)e2πiξx. (11)

It is well-known that the toroidal PDO Ta(f) with f ∈ C∞(Tn) is well defined and Ta(f) ∈ C∞(Tn)
(Ruzhansky & Turunen, 2009).

Here, it is necessary to prove that the restricted symbol network annθ |Tn×Zn belongs to a certain
toroidal symbol class. To connect the symbol network annθ and the restricted symbol network
annθ |Tn×Zn , we introduce a useful theorem that connects the symbols between the Euclidean symbol
and the toroidal symbol.
Theorem 3.3. (Ruzhansky & Turunen, 2009) (Connection between two symbols) Let 0 < ρ ≤ 1 and
0 ≤ δ ≤ 1. A symbol ã ∈ Sm

ρ,δ(Tn × Zn) is a toroidal symbol if and only if there exists a Euclidean
symbol a ∈ Sm

ρ,δ(Tn × Rn) such that ã = a|Tn×Zn .

Therefore, it is sufficient to consider whether the symbol network annθ (x, ξ) belongs to a certain
Euclidean symbol class.

3.3 PROPOSITIONS ON THE SYMBOL NETWORK AND PDIO

We show that the symbol network annθ (x, ξ) with the Gaussian error linear unit (GELU) activation
function is contained in a certain Euclidean symbol class using the following proposition:
Proposition 3.4. Suppose the symbol networks annθ1 (x) and annθ2 (ξ) are fully connected neural
networks with nonlinear activation GELU. Then, the symbol network annθ (x, ξ) = annθ1 (x)a

nn
θ2

(ξ)

is in S1
1,0(Tn × Rn). Therefore, the restricted symbol network ãnnθ

def
= annθ |Tn×Zn is in a toroidal

symbol class S1
1,0(Tn × Zn).

Remark 3.5. Here, we focus on the most important case where ρ = 1 and δ = 0, since Sm
ρ,δ ⊃ Sm

1,0

for 0 < ρ ≤ 1 and 0 ≤ δ < 1 (Hörmander, 2007). Although the proposition only considers the
symbol network with GELU, it can be proved for various activation functions (See Appendix E).

Proof. The fully connected neural network for the symbol network annθ1 (x) is denoted as follows:

Z
[l]
1 =W

[l]
1 A

[l−1]
1 + b

[l]
1 (l = 1, 2, ..., L1), A

[l]
1 = σ(Z

[l]
1) (l = 1, 2, ..., L1 − 1),

whereW [l]
1 is a weight matrix, b[l]1 is a bias vector in the l-th layer of the network, σ is an element-wise

activation function, and A[0]
1 = x is an input feature vector, and Z [L1]

1 = annθ1 (x) is an output of the

network with θ1 = {W [l]
1 , b

[l]
1 }L1

l=1. Similarly, we define W [l]
2 , b[l]2 , Z [l]

2 and A[l]
2 (l = 1, 2, ..., L2) for

the neural network annθ2 (ξ).

The neural network annθ1 (x) and its derivative are continuous on a compact set Tn. Therefore,
|∂βxannθ1 (x)| ≤ cβ for some constant cβ > 0 and for all β ∈ Nn

0 . For the case |α| = 0,

|∂αξ annθ2 (ξ)| = |annθ2 (ξ)| = |W [L2]
2 σ(Z

[L2−1]
2) + b

[L2]
2 | ≤ cα⟨ξ⟩, (12)

for some constant cα > 0 because the absolute value of GELU σ(z) is bounded by linear function
|z|. Notably,

∂eiξ a
nn
θ2 (ξ) =W

[L2]
1 diag

(
σ′
(
Z

[L2−1]
1

))
× · · · ×W

[2]
1 diag

(
σ′
(
Z

[1]
1

))
W

[1]
1 ei. (13)

This result implies that the multi-derivatives of symbol ∂αξ a
nn
θ2

(ξ) with |α| ≥ 1 consists of the product
of the weight matrix and the first or higher derivatives of the activation functions. Furthermore, the
derivative of GELU is bounded, and the second or higher derivatives of the function asymptotically
become zero rapidly, that is, σ(k) ∈ S(R) when k ≥ 2 (see Definition E.1). Thus, we have the
following inequality:

|∂αξ annθ2 (ξ)| ≤ cα⟨ξ⟩1−|α|, (14)

5

Under review as a conference paper at ICLR 2023

for all α ∈ Nn
0 with |α| ≥ 1 for some positive constants cα. Therefore, we bound the derivative of

the symbol network annθ (x, ξ) as follows:

|∂βx∂αξ a(x, ξ)| = |∂βxannθ1 (x)||∂
α
ξ a

nn
θ2 (ξ)| ≤ cαcβ︸︷︷︸

=cαβ

⟨ξ⟩1−|α|. (15)

Therefore, the symbol network annθ (x, ξ) is in S1
1,0(Tn × Rn) as defined in Definition 2.1. Finally,

using Theorem 3.3, we deduce that ãnn = ann|Tn×Zn is in S1
1,0(Tn × Zn).

We introduce the theorem on the boundedness of a toroidal PDO as follows:
Theorem 3.6. (Ruzhansky & Turunen, 2009) (Boundedness of a toroidal PDO in the Sobolev space)
Let m ∈ R and k ∈ N, which is the smallest integer greater than n

2 , and let a : Tn × Zn → C such
that

|∂βx △α
ξ a(x, ξ)| ≤ C⟨ξ⟩m−|α| for all (x, ξ) ∈ Tn × Zn, (16)

and all multi-indices α such that |α| ≤ k and all multi-indices β. Then the corresponding toroidal
PDO Ta defined in Definition 3.2 extends to a bounded linear operator from the Sobolev space
W p,s(Tn) to the Sobolev space W p,s−m(Tn) for all 1 < p <∞ and any s ∈ R.

The restricted symbol network ãnnθ is in a toroidal symbol class S1
1,0(Tn × Zn) from Proposition

3.4. Thus, it satisfies the condition in Theorem 3.6. Therefore, the PDIO Ka (equation 9) with the
restricted symbol network ãnnθ is a bounded linear operator from W p,s(Tn) to W p,s−1(Tn) for all
1 < p < ∞ and s ∈ R. This implies that the PDIO is a continuous operator between the Sobolev
spaces. Therefore, we expect that the PDIO can be applied to a neural operator (equation 1) to obtain
a smooth and general solution operator. A description of its application to neural operator is explained
in Section 4.1.

4 NEURAL OPERATOR WITH PDIOS

4.1 PSEUDO-DIFFERENTIAL NEURAL OPERATOR

Figure 3: Visualization of the learned
symbol from the time dependent PDIO
annθ1 (x, t)a

nn
θ2

(ξ, t) (top) and analytic sym-
bol a(x, ξ, t) = e−4×0.05π2ξ2t (bottom)
of the solution operator of the 1D heat
equation. Note that learned annθ1 (x, t) is
a constant function according to x. i.e.
annθ1 (x, t) = c(t) (See Figure 7). There-
fore, it does not require an x-coordinate to
plot the learned symbol.

Using the proposed integral operator (equation 9) with
the neural operator (equation 1), the combined model
is called a pseudo-differential neural operator (PDNO).
Consider the general case which the intput function
ft(x) and the output function ft+1(x) are multi-valued
function. Let ft(x) = [ft,i(x) : Rn → R]cini=1 ∈ Rcin

with the number of input channels cin and x ∈ Rn.
Then, the PDIO Ka is expressed as follows:

Ka(ft)(x) =[
cin∑
i=1

annθ1,ij(x)F
−1
[
annθ2,ij(ξ)F [ft,i](ξ)

]
(x)

]cout

j=1

,

(17)
where θ1, θ2 are the parameters of each symbol net-
work and the cout is the number of output channels
with ft+1(x) ∈ Rcout . Indeed, the symbol network
has cin × cout outputs for each channel as displayed in
Figure 6. In the experiments, we use three separate sym-
bol networks annθ1 (x), Re

(
annθ2 (ξ)

)
, and Im

(
annθ2 (ξ)

)
.

Each symbol network has input dimension x, ξ ∈ Rn

and output dimension cin × cout.

4.2 TIME DEPENDENT PDIO

Consider the time-dependent PDE
∂u

∂t
= Lu, u(x, 0) = u0(x), (x, t) ∈ Tn × [0,∞). (18)

6

Under review as a conference paper at ICLR 2023

This is well-posed and has the unique solution provided that the operator L is semi-bounded (Hes-
thaven et al., 2007). The solution is given by u(x, t) = etLu0(x). In the case of the 1D heat equation,
L is c∂xx with diffusivity constant c. Then, the solution of the heat equation is given by

u(x, t) =
∑
ξ∈Z

e−4π2ξ2ctû0(ξ)e
2πixξ. (19)

This shows that the mapping from u0(x) to u(x, t) is the PDO with the symbol e−4π2ξ2ct. Conse-
quently, we propose the time dependent PDIOs given as follows:

Ka[f](x, t) := annθ1 (x, t)F
−1
[
annθ2 (ξ, t)F [f](ξ)

]
, (20)

where annθ1 (x, t) and annθ2 (ξ, t) are time dependent symbol networks. In the experiment for heat
equation, we verify that the time dependent PDIOs approximate time dependent symbol accurately
even in a finer time grid than a time grid used for training. Furthermore, the time dependent
PDIO is applied to obtain the continuous-in-time solution operator of the PDEs (See experiment on
Navier-Stokes equation).

5 EXPERIMENTS

5.1 TOY EXAMPLE : 1D HEAT EQUATION

In this experiment, we verify whether the proposed time-dependent PDIO actually learns the symbol
of the analytic PDO. We consider the 1D heat equation given in equation 18. The solution operator
of the 1D heat equation is a PDO, which is given in equation 19. We aim to learn the mapping
from the initial state and time (u0(x), t) to the solution u(x, t). The initial state u0(x) is generated
from the Gaussian random field N (0, 74(−∆ + 72)−2.5) with the periodic boundary conditions.
∆ denotes the Laplacian. The diffusivity constant c and the spatial resolution are set to 0.05 and
210 = 1024, respectively. We use 1000 pairs of train data comprising 10 time grids t = 0.05 + 0.1n
(n = 0, 1, ..., 9) for each of the 100 initial states. We test for 20 initial states at finer time grids
t = 0.05 + 0.05n (n = 0, 1, ..., 19). The time dependent PDIO (equation 20) is used and achieves a
relative L2 error lower than 0.01 on both the traning and test sets. Figure 3 shows the symbol network
and the analytic symbol given in equation 19 on (ξ, t) ∈ [−12, 12]× [0.05, 1]. Although the PDIO
learns from a sparse time grid, it obtains an accurate symbol for all t ∈ [0.05, 1].

5.2 NONLINEAR SOLUTION OPERATORS OF PDES

In this section, we verify the PDNO on a nonlinear PDEs dataset. For all the experiments, we use the
PDNO that consists of four iterations of the network described in Figure 6 and equation 17 with a
nonlinear activation GELU. Fully connected neural networks are used for symbol networks up to
layer three and hidden dimension 64. The relative L2 error is used for the loss function. Detailed
hyperparameters are contained in Appendix B. We do not truncate the Fourier coefficient in any
of the layers, indicating that we use all of the available frequencies from −[s2] to ⌈ s

2⌉ − 1. This
is because PDNO does not require additional learning parameters, even if all frequencies are used.
However, because evaluations are required at numerous grid points, considerable memory is required
in the learning process. In practical settings, it is recommended to truncate the frequency space into
appropriate maximum modes kmax. We observed that there was little degradation in performance
even if truncation was used (See Appendix F.2). All experiments were conducted using up to five
NVIDIA A5000 GPUs with 24 GB memory.

Benchmark models We compare the proposed model with the multiwavelet-based model (MWT)
and the Fourier neural operator (FNO), which are the state-of-the-art approaches based on the neural
operator architecture. For the difference between PDNO (a(x, ξ)) and PDNO (a(ξ)), see Section
5.3. We conducted the experiments on PDEs, namely Darcy flow and the Navier-Stokes equation. In
the case of Navier-Stokes equation, we use the same data attached in Li et al. (2020a). In the case of
Darcy flow, we regenerate the data according to the same data generation scheme.

7

Under review as a conference paper at ICLR 2023

Table 1: Benchmark (relative L2 error) on Darcy flow on different resolution s.

Resolution Data PDNO (a(x, ξ)) PDNO (a(ξ)) MWT Leg FNO

s = 32
train 3.52× 10−3 4.08× 10−3 1.17× 10−3 2.65× 10−3

test 3.34× 10−3 3.82× 10−3 1.62× 10−2 1.78× 10−2

s = 64
train 2.59× 10−3 2.98× 10−3 1.81× 10−3 2.93× 10−3

test 2.52× 10−3 2.85× 10−3 1.08× 10−2 1.12× 10−2

s = 128
train 1.58× 10−3 2.57× 10−3 1.49× 10−3 2.77× 10−3

test 1.62× 10−3 2.45× 10−3 9.27× 10−3 1.04× 10−2

s = 256
train 1.54× 10−3 2.62× 10−3 1.34× 10−3 2.78× 10−3

test 1.41× 10−3 2.54× 10−3 8.83× 10−3 1.01× 10−2

s = 512
train 1.98× 10−3 2.25× 10−3 1.32× 10−3 2.80× 10−3

test 1.93× 10−3 2.17× 10−3 9.27× 10−3 1.02× 10−2

Table 2: Benchmark (relative L2 error) on the
Navier-Stokes equation on the various viscosity
ν, the time horizon T , and the number of data
N .

ν = 1e− 3 ν = 1e− 4 ν = 1e− 4 ν = 1e− 5
Networks T = 50 T = 30 T = 30 T = 20

N = 1000 N = 1000 N = 10000 N = 1000

PDNO (a(x, ξ)) 0.00903 0.1320 0.0679 0.1093
PDNO (a(x, ξ, t)) 0.0299 0.2296 0.1605 0.1852
MWT Leg 0.00625 0.1518 0.0667 0.1541
MWT Chb 0.00720 0.1574 0.0720 0.1667
FNO-2D 0.0128 0.1559 0.0973 0.1556
FNO-3D 0.0086 0.1918 0.0820 0.1893

Darcy flow The Darcy flow problem is a diffu-
sion equation with an external force, which de-
scribes the flow of a fluid through a porous medium.
The steady state of the Darcy flow on the unit box
is expressed as follows:{

∇ · (a(x)∇u(x)) = f(x), x ∈ [0, 1]2

u(x) = 0, x ∈ ∂(0, 1)2,
(21)

where u is density of the fluid, a(x) is the diffusion
coefficient, and f(x) is the external force. We aim
to learn the nonlinear mapping from a(x) to the
steady state u(x), fixing the external force f(x) = 1. The diffusion coefficient a(x) is generated
from ψ#N (0, (−∆+ 9I)−2), where ∆ is the Laplacian with zero Neumann boundary conditions,
and ψ# is the pointwise push forward, defined by ψ(x) = 12 if x > 0, 3 elsewhere. The coefficient
imposes the ellipticity on the differential operator ∇ · (a(x)∇)(·). We generate a(x) and u(x) using
the second order FDM on a 512× 512 grid. The lower resolution dataset is obtained by subsampling.
We use 1000 train pairs and 100 test pairs and fixed the hyperparameters for all resolutions.

The results on the Darcy flow are presented in Table 1 for various resolutions s. The proposed model
achieves the lowest relative error for all resolutions. In the case of s = 32, particularly, MWT and
FNO exhibit the highest errors. Furthermore, the proposed model maintains its performance even at
low resolutions.

Navier-Stokes equation Navier-Stokes equation describes the dynamics of a viscous fluid. In the
vorticity formulation, the incompressible Navier-Stokes equation on the unit torus can be expressed
as follows: 

∂w
∂t + u · ∇w − ν∆w = f, (x, t) ∈ (0, 1)2 × (0, T],

∇ · u = 0, (x, t) ∈ (0, 1)2 × [0, T],

w(x, 0) = w0(x), x ∈ (0, 1)2,

(22)

where w is the vorticity, u is the velocity field, ν is the viscosity, and f is the external force. We
use the same Navier-Stokes data used in Li et al. (2020a) to learn the nonlinear mapping from
w(x, 0),, w(x, 9) to w(x, 10), ..., w(x, T), fixing the force f(x) = 0.1(sin(2π(x1 + x2)) +
cos(2π(x1 + x2))). The initial condition w0(x) is sampled from N (0, 71.5(−∆ + 72I)−2.5)
with periodic boundary conditions. We experiment with four Navier-Stokes datasets:(ν, T,N) =
(10−3, 50, 1000), (10−4, 30, 1000), (10−4, 30, 10000), and (10−5, 20, 1000), where ν is the viscos-
ity, T is the final time to predict, and N is the number of training samples. Notably, the lower the
viscosity, the more difficult the prediction. All datasets comprise 64× 64 resolutions.

We employ a recurrent architecture to propagate along the time domain. From w(x, 0),, w(x, 9),
the model predicts the vorticity at t = 10, w̄(x, 10). Then, from w(x, 1), ..., w(x, 9), w̄(x, 10), the
model predicts the next vorticity w̄(x, 11). We repeat this process until t = T .

8

Under review as a conference paper at ICLR 2023

Figure 4: Example of a prediction on the Navier-Stokes data with ν=1e-5 showing the prediction
w(x, 19) from inputs [w(x, 0), ..., w(x, 9)]. Each value on the top of the figure is the relative L2 error
between the true w(x, 19) and each prediction.

For each experiment, we use 200 test samples. In the case of (ν, T,N) = (10−3, 50, 1000), we use a
batch size 10 or 20 otherwise. Furthermore, we use fixed hyperparameters for the four experiments.

The results on the Navier-Stokes equation are presented in Table 2. In all four datasets, the proposed
model exhibits comparable or superior performances. Notably, the relative error improves consider-
ably for (ν, T,N) = (10−5, 20, 1000), exhibiting the lowest viscosity. Figure 4 displays a sample
prediction at t = 19, which is highly unpredictable.

5.3 ADDITIONAL EXPERIMENTS

Figure 5: Examples of the real part of
learned symbol annij (ξ) from the Navier-
Stokes data with ν = 1e − 5. x-axis and
y-axis represent frequency domains. As we
used real valued functions, the second coor-
dinate is half the first.

On Darcy flow, we perform an additional experiment,
which does not use a symbol network annθ1 (x), but only
use annθ2 (ξ). In this case, the PDNO has the same
structure as FNO except for symbol networks. See
PDNO (a(ξ)) in Table 1. Although less than the orig-
inal PDNO, the results of the PDNO without the de-
pendency of the x-symbol perform better than the other
models, including FNO. This shows why the smooth-
ness of the symbol of PDNO is important. e compare
the train and test relative L2 error on Darcy flow prob-
lem in .

On the Navier-Stokes equation, we also show the results
with time dependent PDIO in Table 2. This shows a
relatively high error, but has the advantage of not using
a recursive structure. And, for Navier-Stokes equation
with ν = 1e − 5, we compare the train and the test
relative L2 errors along time t in Figure 1. All models
show that the test errors grow exponentially according to time t. Among them, PDNO consistently
demonstrates the least test errors for all time t. More notable is the difference between the solid lines
and the dashed lines, showing that MWT and FNO suffer from overfitting, whereas PDNO does not.
The same trend are observed for Darcy flow (See Table 1). This might be related to the smoothness of
the symbols of models. Furthermore, the symbols of PDNO and the FNO are visualized in Figure 5.

6 CONCLUSION

Based on the theory of PDO, we developed a novel PDIO and PDNO framework that efficiently learns
mappings between functions spaces. The proposed symbol networks are in a toroidal symbol class
that renders the corresponding PDIOs continuous between Sobolev spaces on the torus, which can
considerably improve the learning of the solution operators in most experiments. This study revealed
an excellent ability for learning operators based on the theory of PDO. However, there is room for
improvement in highly complex PDEs such as the Navier Stokes equation, and the time dependent
PDIOs are difficult to apply to nonlinear architecture. We expect to solve these problems by using
advanced operator theories (Duistermaat, 1996; Hörmander, 1971; Duistermaat & Hörmander, 1972),
and the operator learning will solve engineering and physical problems.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik. Pre-
diction of aerodynamic flow fields using convolutional neural networks. Comput. Mech., 64
(2):525–545, 2019. ISSN 0178-7675. doi: 10.1007/s00466-019-01740-0. URL https:
//doi.org/10.1007/s00466-019-01740-0.

Louis Boutet de Monvel. Boundary problems for pseudo-differential operators. Acta Math., 126
(1-2):11–51, 1971. ISSN 0001-5962. doi: 10.1007/BF02392024. URL https://doi.org/
10.1007/BF02392024.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks
with arbitrary activation functions and its application to dynamical systems. IEEE Transactions on
Neural Networks, 6(4):911–917, 1995.

R. Courant and D. Hilbert. Methods of mathematical physics. Vol. I. Interscience Publishers, Inc.,
New York, N.Y., 1953.

J. J. Duistermaat. Fourier integral operators, volume 130 of Progress in Mathematics. Birkhäuser
Boston, Inc., Boston, MA, 1996. ISBN 0-8176-3821-0.

J. J. Duistermaat and L. Hörmander. Fourier integral operators. II. Acta Math., 128(3-4):183–269,
1972. ISSN 0001-5962. doi: 10.1007/BF02392165. URL https://doi.org/10.1007/
BF02392165.

Weinan E and Bing Yu. The deep Ritz method: a deep learning-based numerical algorithm for solving
variational problems. Commun. Math. Stat., 6(1):1–12, 2018. ISSN 2194-6701. doi: 10.1007/
s40304-018-0127-z. URL https://doi.org/10.1007/s40304-018-0127-z.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp.
315–323. JMLR Workshop and Conference Proceedings, 2011.

Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow ap-
proximation. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pp. 481–490, 2016.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differential
equations. Advances in Neural Information Processing Systems, 34, 2021.

Jan S Hesthaven, Sigal Gottlieb, and David Gottlieb. Spectral methods for time-dependent problems,
volume 21. Cambridge University Press, 2007.

Philipp Holl, Vladlen Koltun, and Nils Thuerey. Learning to control pdes with differentiable physics.
arXiv preprint arXiv:2001.07457, 2020.

Lars Hörmander. Fourier integral operators. I. Acta Math., 127(1-2):79–183, 1971. ISSN 0001-5962.
doi: 10.1007/BF02392052. URL https://doi.org/10.1007/BF02392052.

Lars Hörmander. The analysis of linear partial differential operators. I. Classics in Mathematics.
Springer-Verlag, Berlin, 2003. ISBN 3-540-00662-1. doi: 10.1007/978-3-642-61497-2. URL
https://doi.org/10.1007/978-3-642-61497-2. Distribution theory and Fourier
analysis, Reprint of the second (1990) edition [Springer, Berlin; MR1065993 (91m:35001a)].

Lars Hörmander. The analysis of linear partial differential operators. III. Classics in Mathe-
matics. Springer, Berlin, 2007. ISBN 978-3-540-49937-4. doi: 10.1007/978-3-540-49938-1.
URL https://doi.org/10.1007/978-3-540-49938-1. Pseudo-differential opera-
tors, Reprint of the 1994 edition.

Hyung Ju Hwang, Jin Woo Jang, Hyeontae Jo, and Jae Yong Lee. Trend to equilibrium for the kinetic
Fokker-Planck equation via the neural network approach. J. Comput. Phys., 419:109665, 25, 2020.
ISSN 0021-9991. doi: 10.1016/j.jcp.2020.109665. URL https://doi.org/10.1016/j.
jcp.2020.109665.

10

https://doi.org/10.1007/s00466-019-01740-0
https://doi.org/10.1007/s00466-019-01740-0
https://doi.org/10.1007/BF02392024
https://doi.org/10.1007/BF02392024
https://doi.org/10.1007/BF02392165
https://doi.org/10.1007/BF02392165
https://doi.org/10.1007/s40304-018-0127-z
https://doi.org/10.1007/BF02392052
https://doi.org/10.1007/978-3-642-61497-2
https://doi.org/10.1007/978-3-540-49938-1
https://doi.org/10.1016/j.jcp.2020.109665
https://doi.org/10.1016/j.jcp.2020.109665

Under review as a conference paper at ICLR 2023

Rakhoon Hwang, Jae Yong Lee, Jin Young Shin, and Hyung Ju Hwang. Solving pde-constrained
control problems using operator learning. arXiv preprint arXiv:2111.04941, 2021.

Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving parametric PDE problems with artificial
neural networks. European J. Appl. Math., 32(3):421–435, 2021. ISSN 0956-7925. doi: 10.1017/
S0956792520000182. URL https://doi.org/10.1017/S0956792520000182.

Georgios Kissas, Jacob Seidman, Leonardo Ferreira Guilhoto, Victor M Preciado, George J Pappas,
and Paris Perdikaris. Learning operators with coupled attention. arXiv preprint arXiv:2201.01032,
2022.

Jae Yong Lee, Jin Woo Jang, and Hyung Ju Hwang. The model reduction of the Vlasov-Poisson-
Fokker-Planck system to the Poisson-Nernst-Planck system via the deep neural network approach.
ESAIM Math. Model. Numer. Anal., 55(5):1803–1846, 2021. ISSN 0764-583X. doi: 10.1051/
m2an/2021038. URL https://doi.org/10.1051/m2an/2021038.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Multipole graph neural operator for parametric partial differential
equations. arXiv preprint arXiv:2006.09535, 2020b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differential
equations. arXiv preprint arXiv:2003.03485, 2020c.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Mohammad Amin Nabian and Hadi Meidani. A deep neural network surrogate for high-dimensional
random partial differential equations. arXiv preprint arXiv:1806.02957, 2018.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: a deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations. J. Comput. Phys., 378:686–707, 2019. ISSN 0021-9991. doi: 10.1016/j.jcp.2018.10.045.
URL https://doi.org/10.1016/j.jcp.2018.10.045.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017.

Michael Reed and Barry Simon. Methods of modern mathematical physics. I. Functional analysis.
Academic Press, New York-London, 1972.

Michael Ruzhansky and Ville Turunen. Pseudo-differential operators and symmetries: background
analysis and advanced topics, volume 2. Springer Science & Business Media, 2009.

Justin Sirignano and Konstantinos Spiliopoulos. DGM: a deep learning algorithm for solving
partial differential equations. J. Comput. Phys., 375:1339–1364, 2018. ISSN 0021-9991. doi:
10.1016/j.jcp.2018.08.029. URL https://doi.org/10.1016/j.jcp.2018.08.029.

Michael Eugene Taylor. Pseudodifferential Operators (PMS-34). Princeton University Press, 2017.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric partial
differential equations with physics-informed deeponets. arXiv preprint arXiv:2103.10974, 2021.

Yinhao Zhu and Nicholas Zabaras. Bayesian deep convolutional encoder-decoder networks for
surrogate modeling and uncertainty quantification. J. Comput. Phys., 366:415–447, 2018. ISSN
0021-9991. doi: 10.1016/j.jcp.2018.04.018. URL https://doi.org/10.1016/j.jcp.
2018.04.018.

11

https://doi.org/10.1017/S0956792520000182
https://doi.org/10.1051/m2an/2021038
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1016/j.jcp.2018.04.018
https://doi.org/10.1016/j.jcp.2018.04.018

Under review as a conference paper at ICLR 2023

Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-
constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification
without labeled data. J. Comput. Phys., 394:56–81, 2019. ISSN 0021-9991. doi: 10.1016/j.jcp.
2019.05.024. URL https://doi.org/10.1016/j.jcp.2019.05.024.

A NOTATIONS

We list the main notations throughout this paper in Table 3.

Table 3: Notations

Notations Descriptions
A an input function space
U an output function space
G : A → U an operator from A to U
x ∈ Rn or Tn a variable in the spatial domain
ξ ∈ Rn or Zn a variable in the Fourier space
f̂(ξ) Fourier transform of function f(x)
Sm
ρ,δ an Euclidean (or toroidal) symbol class
a(x, ξ) ∈ Sm

ρ,δ an Euclidean (or toroidal) symbol
annθ (x, ξ) a symbol network parameterized by θ
Ta : A → U a PDO with the symbol a(x, ξ)
Ka : A → U a PDIO with a symbol network aθ(x, ξ)
KR : A → U a Fourier integral operator (Li et al., 2020a)
F : A → U ,F−1 : U → A Fourier transform and its inverse
∥ξ∥ Euclidean norm
⟨ξ⟩ (1 + ∥ξ∥2) 1

2

△α
ξ a difference operator of order α on ξ

kmax the maximum number of Fourier modes

B HYPERPARAMETERS

Table 4: Hyperparameters for learning PDNOs on each dataset. # layers, # hidden and activation are
for symbol networks.

DATA BATCH SIZE LEARNING RATE WEIGHT DECAY EPOCHS STEP SIZE # CHANNEL # LAYERS # HIDDEN ACTIVATION

HEAT EQUATION 20 1× 10−2 1× 10−6 10000 2000 1 2 40 GELU
DARCY FLOW 20 1× 10−2 1× 10−6 1000 200 20 3 32 GELU
NAVIER-STOKES EQUATION 20 5× 10−3 1× 10−6 1000 200 20 2 32 GELU

C ANALYSIS ON SYMBOL a(x, ξ)

C.1 DECOMPOSABLE ASSUMPTION ann(x, ξ) = ann(x)ann(ξ)

The reason that the symbol is assumed to be decomposable is because of computational costs. With
decomposable symbol network ann(x)ann(ξ), we need only one IFFT computation

Ka(f)(x) = ann(x)
∑
ξ∈Zn

ann(ξ)f̂(ξ)e2πiξx︸ ︷︷ ︸
IFFT

= ann(x)F−1
[
ann(ξ)f̂(ξ)

]
.

12

https://doi.org/10.1016/j.jcp.2019.05.024

Under review as a conference paper at ICLR 2023

With the symbol network ann(x, ξ), an input of IFFT depends on the spatial domain x. Hence, we
need IFFT computations as many times as the number of grids in the spatial domain x.

Ka(f)(x) =
∑
ξ∈Zn

ann(x, ξ)f̂(ξ)e2πiξx︸ ︷︷ ︸
IFFT

= F−1
[
ann(x, ξ)f̂(ξ)

]
.

Therefore, the non-decomposable symbols require the number of x grid points times the cost of
decomposable symbols.

C.2 THE REASON FOR CONSIDERING THE SYMBOL NETWORK ON DOMAIN Tn × Zn

In this section, we detail why the proposed model should be addressed in Tn×Zn instead of Tn×Rn.
For convenience, we assume that n = 1. Let f : T → R and its N points discretization f(1

N) = y0,
f(2

N) = y1, ... f(NN) = y(1) = yN−1. Then, the discrete Fourier transform (DFT) of the sequence
{yn}0≤n≤N−1 is expressed by the following:

ξk =
1

N

N−1∑
n=0

yne
−2πik n

N (23)

and the inverse discrete Fourier transform (IDFT) of {ξk}0≤k≤N−1 is expressed as follows:

yn =

N−1∑
k=0

ξke
2πik n

N . (24)

As N goes ∞, we can see that

lim
N→∞

ξk = lim
N→∞

1

N

N−1∑
n=0

f(
n+ 1

N
)e−2πik n

N →
∫ 1

0

f(x)e−2πikx dx = f̂(k) (25)

and

lim
N→∞

yn = lim
N→∞

f(
n

N︸︷︷︸
x

+
1

N
) = lim

N→∞

N−1∑
k=0

ξke
2πik n

N →
∞∑
k=0

f̂(k)e2πikx = f(x), (26)

where x = n
N . Thus, DFT is an approximation of integral on T and IDFT is an approximation of

infinity sum on Z. Therefore, the theory of PDO on Tn × Zn is more suited to our model.

D RESOURCE REQUIREMENTS

Table 5: Resource comparison of PDNO and FNO on NS data. PDNO uses 2 layers symbol network
with hidden dimension 32. The memory requirements is obtained from nvidia-smi command. We
used a single NVIDIA A5000 GPU.

MODEL kmax # CHANNELS MEMORY (TRAIN) # PARAMETERS TIME (SEC/EPOCH)

PDNO 12 20 9939 MB 1.90× 105 20.77
PDNO 12 30 17819 MB 3.91× 105 40.73
PDNO 32 20 10143 MB 1.90× 105 22.05
FNO 12 20 3625 MB 4.66× 105 4.58
FNO 12 30 3941 MB 1.05× 106 5.49
FNO 32 20 3957 MB 3.28× 106 4.80

In Table 5, we compared the memory requirement, the number of parameters and training time of
PDNO and FNO. PDNO requires more memory than FNO in training because it needs to compute
the symbol networks ann(x) and ann(ξ). On the other hand, PDNO has fewer parameters than FNO,
so it requires lower storage to save the trained model. If a faster inference is required, the evaluated
values of symbol network may be stored. To reduce memory resources during training, one possible
future work is to make the symbol network smooth through regularization on the parametric symbol
Rij in 3.

13

Under review as a conference paper at ICLR 2023

Figure 6: Structure of equation 1 using the integral operator Ka in equation 17 with cin = 3 and
cout = 2. Each black solid line represents a PDIO with symbol network annij .

E ACTIVATION FUNCTIONS FOR SYMBOL NETWORK

In this section, we discuss the activation function for the symbol network. We proved the Proposition
3.4 when GELU activation function is used for the symbol network. Not only GELU, but also other
activation functions can be used for the symbol network. To explain this, we first define the Schwartz
space (Reed & Simon, 1972) as follows:
Definition E.1. The Schwartz space S(Rn) is the topological vector space of functions f : Rn → C
such that f ∈ C∞(Rn) and

zα∂βf(z) → 0, as |z| → ∞, (27)
for every pair of multi-indices α, β ∈ Nn

0 .

That is, the Schwartz space consists of smooth functions whose derivatives decay at infinity faster
than any power. As mentioned in the proof of Proposition 3.4, it can be easily shown that the
second or higher derivatives of GELU is in the Schwartz space S(R). Because GELU is defined as
σ(z) = zΦ(z) with Φ(z) = 1√

2π

∫ z

−∞ exp(−u2/2)du, the second or higher derivatives of GELU is
the sum of exponential decay functions exp(−z2/2). Thus, the second or higher derivatives of the
function is in the Schwartz space, that is, σ(k) ∈ S(R) when k ≥ 2.

Next, we prove that another activation function ϕ(z) is in symbol class S1
1,0(Tn×Rn) if the difference

between the function ϕ(z) and GELU σ(z) is in the Schwartz space. We call a function like ϕ(z) a
GELU-like activation function. It can be easily shown that the function ϕ(z) is bounded by linear
function |z| because GELU is bounded by the linear function. Because the Schwartz space is closed
under differentiation, ϕ(z)− σ(z) ∈ S(R) implies ϕ(k)(z)− σ(k)(z) ∈ S(R) for k ∈ N. Because
GELU satisfies σ′(z) ≤ cα and σ(k) ∈ S(R) when k ≥ 2, the activation function ϕ(z) also satisfies
ϕ′(z) ≤ cα and ϕ(k) ∈ S(R) when k ≥ 2. Therefore, the proof of Proposition 3.4 can be obtained
by changing another activation function ϕ(z) instead of GELU σ(z). GELU-like activation functions,
such as the Softplus (Glorot et al., 2011), and Swish (Ramachandran et al., 2017) etc., satisfy the
aforementioned assumption so that it can be used for the symbol network in our PDIO.

We can easily show that the symbol network annθ (x, ξ) with tanh(z) = ez−e−z

ez+e−z is in S0
1,0(Tn ×Rn).

In the proof of Proposition 3.4, we used the characteristic of GELU and its high derivatives. Tanh
function is bounded and the first or higher derivatives of tanh function is in the Schwartz space.
Therefore, neural network annθ2 (ξ) satisfies the following boundedness:

|∂αξ annθ2 (ξ)| ≤ cα, if |α| = 0, (28)

|∂αξ annθ2 (ξ)| ≤ cα⟨ξ⟩−|α|, if |α| ≥ 1. (29)

Note that the boundedness of the neural network annθ1 (x) is same in the case of GELU. Thus, we can
bound the derivative of the symbol network annθ (x, ξ) as follows:

|∂βx∂αξ a(x, ξ)| ≤ cαβ⟨ξ⟩−|α|. (30)

14

Under review as a conference paper at ICLR 2023

Figure 7: Learned symbol annθ1 (x, t) from 1D heat equation.

Therefore, the symbol network with tanh activation function is in S0
1,0(Tn ×Rn). Similarly, it is easy

to prove that sigmoid function 1
1+e−z also is in a symbol class S0

1,0(Tn ×Rn). Therefore, the PDIOs
with these two activation functions are bounded linear operators from the Sobolev space W p,s(Tn)
to the Sobolev space W p,s(Tn) for all 1 < p <∞ and any s ∈ R.

F ADDITIONAL FIGURES AND EXPERIMENTS

Figure 8: A sample of prediction on 1D heat equation from a PDIO. The model is trained on 1024×10
dataset and evaluated on 1024× 20. Dashed lines on the surface are contour lines.

F.1 1D HEAT EQUATION : SYMBOL NETWORK annθ1 (x, t).

In 1D heat equation experiments, we assume that the symbol is decomposed by a(x, ξ, t) ≈
annθ1 (x, t) × annθ2 (ξ, t). In Figure 7, it shows the learned symbol network annθ1 (x, t) on (x, t) ∈
T× [0.05, 1]. We can see that annθ1 (·, t) is almost a constant function for each t ∈ [0.05, 1]. In this

15

Under review as a conference paper at ICLR 2023

Figure 9: Test relative L2 error that depends on maximum modes kmax of PDNO on Darcy flow
(resolution s = 256).

respect, annθ1 (x, t) is treated as a function of t by taking the average along x-dimension to visualize
annθ1 (x, t)a

nn
θ2

(ξ, t) in Figure 3.

In addition, Figure 8 visualizes a sample prediction on 1D heat equation.

F.2 CHANGES IN ERRORS ACCORDING TO kmax .

As mentioned in Section 5.2, we use all possible modes. Although PDNO does not require additional
parameters to use all modes, it demands more memory in the learning process. So, we perform an
additional experiments on Darcy flow by limiting the number of modes kmax. In Figure 9, changes
in test relative L2 error along kmax are shown. Even with small kmax, it still outperforms MWT and
FNO (Table 1). And, for kmax ≥ 20, PDNO obtains comparable relative L2 error on Darcy flow
problem.

F.3 NAVIER-STOKES EQUATION WITH ν = 1e− 5

Samples with the lowest and highest error Figure 11 and Figure 12 show the samples with the
highest and the lowest error, respectively. PDNOs consistently obtains the lowest error at all time
steps of both samples.

PDNO and FNO with different number of channels We compare the performance of PDNO and
FNO, which varies depending on the number of channels. For a fair comparison, the truncation is
not used in the Fourier space for both FNO and PDNO. Furthermore, PDNO utilizes only a single
symbol network annθ2 (ξ), not annθ1 (x). In Figure 10, as the number of channels increases, the test
error decreases in both models. PDNO achieves lower test error than FNO and also shows small gap
between the train error and the test error.

16

Under review as a conference paper at ICLR 2023

Figure 10: Training and test error of the proposed model and FNO on Navier-Stokes data with
ν = 1e− 5 according to the number of channels.

Figure 11: Comparison the prediction on Navier-Stokes equation with ν = 1e− 5. This test sample
shows the lowest relative L2 error on average of three models.

17

Under review as a conference paper at ICLR 2023

Figure 12: Comparison the prediction on Navier-Stokes equation with ν = 1e− 5. This test sample
shows the greatest relative L2 error on average of three models.

18

	Introduction
	Analysis of Fourier integral operator based on Pseudo-differential operator
	Neural operator
	Fourier integral operator
	Pseudo-differential operator
	Fourier integral operator and Pseudo-differential operator

	Proposed integral operator : Pseudo-differential integral operator
	Symbol network and PDIO
	PDOs on Lg
	Propositions on the symbol network and PDIO

	Neural operator with PDIOs
	Pseudo-differential neural operator
	Time dependent PDIO

	Experiments
	Toy example : 1D heat equation
	Nonlinear solution operators of PDEs
	Additional experiments

	Conclusion
	Notations
	Hyperparameters
	Analysis on symbol Lg
	Decomposable assumption Lg
	The reason for considering the symbol network on domain Lg

	Resource requirements
	Activation functions for symbol network
	Additional figures and experiments
	1D heat equation : Symbol network Lg.
	Changes in errors according to Lg.
	Navier-Stokes equation with Lg

