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ABSTRACT

Human object interaction (HOI) detection plays a crucial role in human-centric
scene understanding and serves as a fundamental building-block for many vi-
sion tasks. One generalizable and scalable strategy for HOI detection is to use
weak supervision, learning from image-level annotations only. This is inherently
challenging due to ambiguous human-object associations, large search space of
detecting HOIs and highly noisy training signal. A promising strategy to address
those challenges is to exploit knowledge from large-scale pretrained models (e.g.,
CLIP), but a direct knowledge distillation strategy (Liao et al., 2022) does not per-
form well on the weakly-supervised setting. In contrast, we develop a CLIP-guided
HOI representation capable of incorporating the prior knowledge at both image
level and HOI instance level, and adopt a self-taught mechanism to prune incorrect
human-object associations. Experimental results on HICO-DET and V-COCO
show that our method outperforms the previous works by a sizable margin, showing
the efficacy of our HOI representation.

1 INTRODUCTION

Human object interaction detection aims to simultaneously localize the human-object regions in an
image and to classify their interactions, which serves as a fundamental building-block in a wide range
of tasks in human-centric artificial intelligence, such as human activity recognition (Heilbron et al.,
2015; Tina et al., 2021), human motion tracking (Wafae et al., 2019; Nishimura et al., 2021) and
anomalous behavior detection (Liu et al., 2018; Pang et al., 2020).

Usually, HOI detection adopts a supervised learning paradigm (Gupta & Malik, 2015; Chao et al.,
2018; Wan et al., 2019; Gao et al., 2020; Zhang et al., 2021c). This requires detailed annotations
(i.e. human and object bounding boxes and their interaction types) in the training stage. However,
such HOI annotations are expensive to collect and prone to labeling errors. In contrast, it is much
easier to acquire image-level descriptions of target scenes. Consequently, a more scalable strategy
for HOI detection is to learn from weak annotations at the image level, known as weakly-supervised
HOI detection (Zhang et al., 2017). Learning under such weak supervision is particularly challenging
mainly due to the lack of accurate visual-semantic associations, large search space of detecting HOIs
and highly noisy training signal from only image level supervision.

Most existing works (Zhang et al., 2017; Baldassarre et al., 2020; Kumaraswamy et al., 2021) attempt
to tackle the weakly-supervised HOI detection in a Multiple Instance Learning (MIL) framework (Ilse
et al., 2018). They first utilize an object detector to generate human-object proposals and then train an
interaction classifier with image-level labels as supervision. Despite promising results, these methods
suffer from several weaknesses when coping with diverse and fine-grained HOIs. Firstly, they usually
rely on visual representations derived from the external object detector, which mainly focus on the
semantic concepts of the objects in the scene and hence are insufficient for capturing the concept of
fine-grained interactions. Secondly, as the image-level supervision tends to ignore the imbalance
in HOI classes, their representation learning is more susceptible to the dataset bias and dominated
by frequent interaction classes. Finally, these methods learn the HOI concepts from a candidate set
generated by pairing up all the human and object proposals, which is highly noisy and often leads to
erroneous human-object associations for many interaction classes.

∗Equal Contribution. Code is available at https://github.com/bobwan1995/Weakly-HOI.
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To address the aforementioned limitations, we introduce a new weakly-supervised HOI detection
strategy. It aims to incorporate the prior knowledge from pretrained foundation models to facilitate
the HOI learning. In particular, we propose to integrate CLIP (Radford et al., 2021b), a large-scale
vision-language pretrained model. This allows us to exploit the strong generalization capability of
the CLIP representation for learning a better HOI representation under weak supervision. Compared
to the representations learned by the object detector, the CLIP representations are inherently less
object-centric, hence more likely to incorporate also aspects about the human-object interaction, as
evidenced by Appendix A. Although a few works have successfully exploited CLIP for supervised
HOI detection in the past, experimentally we find they do not perform well in the more challenging
weakly-supervised setting (c.f. Appendix.B). We hypothesize this is because they only transfer
knowledge at image level, and fail without supervision at the level of human-object pairs.

To this end, we develop a CLIP-guided HOI representation capable of incorporating the prior
knowledge of HOIs at two different levels. First, at the image level, we utilize the visual and linguistic
embeddings of the CLIP model to build a global HOI knowledge bank and generate image-level HOI
predictions. In addition, for each human-object pair, we enrich the region-based HOI features by
the HOI representations in the knowledge bank via a novel attention mechanism. Such a bi-level
framework enables us to exploit the image-level supervision more effectively through the shared HOI
knowledge bank, and to enhance the interaction feature learning by introducing the visual and text
representations of the CLIP model.

We instantiate our bi-level knowledge integration strategy as a modular deep neural network with
a global and local branch. Given the human-object proposals generated by an off-the-shelf object
detector, the global branch starts with a backbone network to compute image feature maps, which
are used by a subsequent HOI recognition network to predict the image-wise HOI scores. The local
branch builds a knowledge transfer network to extract the human-object features and augment them
with the CLIP-guided knowledge bank, followed by a pairwise classification network to compute their
relatedness and interaction scores 1. The relatedness scores are used to prune incorrect human-object
associations, which mitigates the issue of noisy proposals. Finally, the outputs of the two branches
are fused to generate the final HOI scores.

To train our HOI detection network with image-level annotations, we first initialize the backbone
network and the HOI knowledge bank from the CLIP encoders, and then train the entire model in
an end-to-end manner. In particular, we devise a novel multi-task weak supervision loss consisting
of three terms: 1) an image-level HOI classification loss for the global branch; 2) an MIL-like loss
for the interaction scores predicted by the local branch, which is defined on the aggregate of all
the human-object pair predictions; 3) a self-taught classification loss for the relatedness of each
human-object pair, which uses the interaction scores from the model itself as supervision.

We validate our methods on two public benchmarks: HICO-DET (Chao et al., 2018) and V-
COCO (Gupta & Malik, 2015). The empirical results and ablative studies show our method con-
sistently achieves state-of-the-art performance on all benchmarks. In summary, our contributions
are three-fold: (i) We exploit the CLIP knowledge to build a prior-enriched HOI representation,
which is more robust for detecting fine-grained interaction types and under imbalanced data dis-
tributions. (ii) We develop a self-taught relatedness classification loss to alleviate the problem of
mis-association between human-object pairs. (iii) Our approach achieves state-of-the-art performance
on the weakly-supervised HOI detection task on both benchmarks.

2 RELATED WORKS

HOI detection: Most works on supervised HOI detection can be categorized in two groups:
two-stage and one-stage HOI detection. Two-stage methods first generate a set of human-object
proposals with an external object detector, then classify their interactions. They mainly focus on
exploring additional human pose information (Wan et al., 2019; Li et al., 2020a; Gupta et al., 2019),
pairwise relatedness (Li et al., 2019a; Zhou et al., 2020) or modeling relations between object and
human (Gao et al., 2020; Zhang et al., 2021c; Ulutan et al., 2020; Zhou & Chi, 2019), to enhance
the HOI representations. One-stage methods predict human & object locations and their interaction
types simultaneously in an end-to-end manner, which are currently dominated by transformer-based
architectures (Carion et al., 2020; Kim et al., 2022; Dong et al., 2022; Zhang et al., 2021a;b).

1Relatedness indicates whether a human-object pair has a relation, and interaction scores are multi-label
scores on the interaction space.
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Figure 1: Model Overview: There are four modules in our network: a backbone Network, an HOI recognition
network, a knowledge transfer network and a pairwise classification network.

Supervised methods show superior performance, but require labor-intensive HOI annotations that are
infeasible to obtain in many scenarios. Thus, in this work we focus on HOI detection under weak
supervision.

Weakly-supervised HOI detection: Weakly-supervised HOI detection aims to learn instance-
level HOIs with only image-level annotations. (Prest et al., 2011) learns a set of binary action
classifiers based on detected human-object pairs, where human proposal is obtained from a part-
based human detector and object is derived from the relative position with respect to the human.
PPR-FCN (Zhang et al., 2017) employs a parallel FCN to perform pair selection and classification.
Explainable-HOI (Baldassarre et al., 2020) adopts graph nets to capture relations for better image-
level HOI recognition, and uses backward explanation for instance-level HOI detection. MX-
HOI (Kumaraswamy et al., 2021) proposes a momentum-independent learning strategy to utilize
strong & weak labels simultaneously. AlignFormer (Kilickaya & Smeulders, 2021) proposes an
align layer in transformer framework, which utilizes geometric & visual priors to generate pseudo
alignments for training. Those methods focus on learning HOIs with advanced network structures
or better pseudo alignments. However, they still suffer from noisy human-object associations and
ambiguous interaction types. To address those challenges, we exploit prior knowledge from CLIP to
build a discriminative HOI representations.

Knowledge exploitation of pretrained V&L models: Recently, CLIP (Radford et al., 2021a)
model has demonstrated strong generalization to various downstream tasks (Ghiasi et al., 2021; Du
et al., 2022; Gu et al., 2021). Some works also explore CLIP knowledge in supervised HOI detection,
e.g., CATN (Dong et al., 2022) initializes the object query with category-aware semantic information
from CLIP text encoder, and GEN-VLTK (Liao et al., 2022) employs image feature distillation and
classifier initialization with HOI prompts. However, they only exploit CLIP knowledge at a coarse
level and require detailed annotations of human-object pairs. It is non-trivial to extend such strategies
to the weak supervision paradigm due to highly noisy training signals. In our work, we build a deep
connection between CLIP and HOI representation by incorporating the prior knowledge of HOIs at
both image and HOI instance levels.

3 METHOD

3.1 PROBLEM SETUP AND METHOD OVERVIEW

Problem setup Given an input image I , the task of weakly-supervised HOI detection aims to
localize and recognize the human-object interactions, while only the corresponding image-level HOI
categories are available for training. Formally, we aim to learn a HOI detector M, which takes
an image I as input and generates a set of tuples O = {(xh,xo, co, ah,o, R

a
h,o)}, i.e., O = M(I).

Here each tuple indicates a HOI instance, in which xh,xo ∈ R4 represent human and object
bounding boxes, co ∈ {1, ..., C} is the object category, ah,o ∈ {1, ..., A} denotes the interaction
class associated with xh and xo, and Ra

h,o ∈ R is the HOI score. For the weakly-supervised setting,
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each training image is annotated with a set of HOI categories R = {r∗} at the image level only,
where r∗ ∈ {1, ..., N} is an index to a combination of ground-truth object category c∗ and interaction
category a∗, and N denotes the number of all possible HOI combinations defined on the dataset.
Method Overview As we lack supervision for the HOI locations, we adopt a typical hypothesize-
and-recognize strategy (Zhang et al., 2017; Baldassarre et al., 2020; Kumaraswamy et al., 2021) for
HOI detection: first we generate a set of human and object proposals with an off-the-shelf object
detector (Ren et al., 2015) and then predict the interaction class for all human-object combinations.

Unlike other methods, we do not re-use the feature maps of the object or human detector - we only
keep the bounding boxes. Instead, we learn a new representation optimized for the HOI task. This is
challenging under the weak setting as the model learning is noisy, but feasible by leveraging the rich
semantic knowledge from a pretrained large-scale multimodal model, like CLIP. However, the naive
knowledge integration strategies for supervised setting fail when directly applied in the weak setting,
as evidenced by our experiments in Appendix.B

Our framework adopts two philosophies to address the challenges in the weakly-supervised HOI task:
the first is to integrate the prior knowledge into discriminative representation learning, and the second
is to suppress noise in learning. For the first philosophy, we utilize the prior knowledge from CLIP
to guide the representation learning in both global image-level and fine-grained human-object pairs,
which is instantiated by a bi-level knowledge integration strategy. For the second philosophy, we
adopt an effective self-taught learning mechanism to suppress the irrelevant pairs.

We instantiate the bi-level knowledge integration strategy with a two-branch deep network. Our
detection pipeline starts with a set of human proposals with detection scores {(xh, sh)}, and object
proposals with their categories and detection scores {(xo, co, so)}. Then, the global branch performs
image-level HOI recognition by utilizing a CLIP-initialized HOI knowledge bank as a classifier. This
allows us to exploit both visual and text encoders from CLIP to generate better HOI representations.
In parallel, for each human-object pair (xh,xo), the local branch explicitly augments the pairwise
HOI features with the HOI knowledge bank to then identify their relatedness and interaction classes.

To train our model, we use a multi-task loss, which incorporates a HOI recognition loss defined on
image-wise HOIs for the visual encoder and knowledge bank finetuning, and a self-taught relatedness
classification for suppressing the background human-object associations, on top of the standard
MIL-based loss. We first present model details in Sec.3.2, followed by the training strategy in Sec.3.3.

3.2 MODEL DESIGN

Now we introduce our bi-level knowledge integration strategy, where the aim is to exploit CLIP
textual embeddings of HOI labels as a HOI knowledge bank for the HOI representation learning,
and to transfer such knowledge both at image level as well as at the level of human-object pairs for
interaction predictions. Specifically, as shown in Fig. 1, our network consists of a global branch
and a local branch. The global branch includes a backbone network (Sec.3.2.1) that extracts image
features, and a HOI recognition network (Sec.3.2.2) that uses a HOI knowledge bank based on CLIP
to predict image-level HOI scores. For each human-object proposal generated by an off-the-shelf
object detector, the local branch employs a knowledge transfer network (Sec.3.2.3) to compute its
feature representation with enhancement from the HOI knowledge bank, and a pairwise classification
network (Sec.3.2.4) to compute their relatedness and interaction scores. Finally, we generate the final
HOI detection scores by combining global HOI scores with local predictions (Sec. 3.2.5).

HOI Knowledge Bank Generation CLIP builds a powerful vision-language model by pretraining
on large-scale image-text pairs. It consists of a visual encoder FV and textual encoder FT , mapping
both visual and textual inputs to a shared latent space. Here, we exploit CLIP to generate a HOI
knowledge bank. We take a similar prompt strategy as in CLIP, adopting a common template ‘a
person {verb} a/an {object}’ to convert HOI labels into text prompts (e.g., converting ‘drive car’ to
‘a person driving a car’). Then we input the sentences into the CLIP textual encoder FT to initialize
the HOI knowledge bank WT ∈ RN ·D, with D denoting the feature dimension. One can think of
WT as a set of ‘prototypes’ in feature space, one for each HOI in the dataset.

3.2.1 GLOBAL BRANCH: BACKBONE NETWORK

To incorporate CLIP for feature extraction, we initialize the backbone network (e.g., a ResNet-101 (He
et al., 2016)) with CLIP’s visual encoder FV to generate a feature map Γ for the input image I . We
further compute a global feature vector vg ∈ RD with self-attention operation (Radford et al., 2021b).
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Figure 2: The knowledge transfer network explicitly transfers the discriminative relation-level semantic
knowledge derived from CLIP to the pairwise HOI representations. Pseudo relatedness label generation uses
the pairwise interaction scores to generate the pseudo association labels for self-taught relatedness classification

3.2.2 GLOBAL BRANCH: HOI RECOGNITION NETWORK

We perform an image-wise HOI recognition task with the HOI knowledge bank WT . We obtain
global HOI scores sg ∈ RN by computing the inner product between the image feature vg and the
knowledge bank WT : sg = WT × vg, where × is matrix multiplication. This has the effect of
adapting the visual encoder and knowledge bank parameters to the HOI recognition task, fully taking
advantage of the knowledge from CLIP.

3.2.3 LOCAL BRANCH: KNOWLEDGE TRANSFER NETWORK

Given the CLIP-initialized visual encoder, a standard HOI representation can be formed by concate-
nating the human and object appearance features along with their spatial encoding. However, even
after the finetuning as described above, such a representation still mainly focuses on object-level
semantic cues rather than relation-level concepts. In this module, we explicitly exploit the HOI
knowledge bank WT to learn a local relation-specific HOI representation. To achieve this, we propose
an attention-based architecture as shown in Fig.2(a).

Specifically, for each human proposal xh and object proposal xo, we use RoI-Align (He et al., 2017)
to crop the feature maps from Γ followed by a self-attention operation to compute their appearance
features vh, vo ∈ RD. Then we compute a spatial feature vsp by encoding the relative positions of
their bounding boxes (xh,xo)

2. The holistic HOI representation vp ∈ RD is an embedding of the
human and object appearance features and their spatial feature, i.e., vp = FE([vh; vo; vsp]), where
[; ] is the concatenation operation and FE is a multi-layer perceptron (MLP).

To enhance relation-level concepts, we further compute its union region xu ∈ R4 (see Fig. 2a) and
extract the corresponding appearance feature vu ∈ RD via RoI-align over the feature map Γ. The
union region is important as it encodes relational context cues, but it potentially also contains a large
amount of background that is noisy for model learning. We thus devise an attention module that is
similar in design to the HOI recognition network, but uses the union feature vu as query to extract
a meta-embedding vmeta ∈ RD from the HOI knowledge bank WT . The final HOI representation
v̂p ∈ RD is built by fusing the holistic representation vp and vmeta with a MLP FK .

α = Softmax(WT × vu); vmeta = α⊺ ×WT ; v̂p = FK(vp + vmeta). (1)

Here α ∈ RN is the normalized attention weight and ⊺ is the transpose operation. vmeta encodes a
discriminative representation from CLIP and facilitates feature sharing between HOI classes.

3.2.4 LOCAL BRANCH: PAIRWISE CLASSIFICATION NETWORK

Given the relation-aware HOI representation v̂p , our final module performs a coarse-level clas-
sification on human-object association and a fine-level classification for interaction recognition.
Specifically, we use two MLPs FP and FB to predict the interaction scores sp ∈ RA and the
relatedness score sb ∈ R for each human-object pair:

sp = FP (v̂p); sb = FB(v̂p) (2)

2For details c.f. the appendix C
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To train the model under weak supervision (see Sec. 3.3), we further aggregate the pairwise interaction
scores into image-level interaction scores . Assume we have M pairs of human-object proposals for
a given image, and denote the interaction scores for the m-th pair as smp . We first concatenate all the
interaction scores to compose a bag S = [s1p; ...; s

M
p ] ∈ RM ·A, then we maximize over all pairs to

obtain the image-wise interaction scores: s̃p = max
m

S.

3.2.5 MODEL INFERENCE

During model inference, we do not use the local interaction scores sp directly. Instead, we normalize S
with a Softmax operation defined on all pairs: S̄ = Softmax

m
(S), and then compute the normalized

pairwise interaction scores ep = σ(s̃p) · s̄p, where s̄p is a row from S̄ and σ is Sigmoid function.
This has the effect of measuring the contribution of a given pair, in case of multiple pairs in an image
share the same interaction.

The final interaction score sah,o for human-object pair (xh,xo) combines multiple scores, including
the global HOI scores sg , the normalized pairwise interaction scores ep, and the relatedness score sb.
The overall HOI score Ra

h,o is a combination of the interaction score and the object detection scores.

sah,o = σ(sa,cog ) · eap · σ(sb); Ra
h,o = (sh · so)γ · sah,o (3)

where sa,cog is the HOI score corresponding to a-th interaction and co-th object category in sg, eap
is the score of a-th interaction in ep, and γ is a hyper-parameter to balance the scores (Zhang et al.,
2021c; Li et al., 2019b).

3.3 LEARNING WITH WEAK SUPERVISION

To train our deep network in a weakly supervised setting, we use a multi-task loss defined on three
different levels. Specifically, our overall loss function L consists of three terms: i) an image-wise
HOI recognition loss Lg to adapt CLIP features to the task of human-object interaction detection;
ii) a pairwise interaction classification loss Lp to guide the knowledge transfer towards fine-grained
relation-aware representations; and iii) a self-taught relatedness classification loss Lb to prune
non-interacting human-object combinations. Formally, the overall loss is written as:

L = Lg + Lp + Lb (4)
Image-wise HOI recognition loss Lg: Given the HOI scores sg and ground-truth HOI categories
R, Lg is a standard binary cross-entropy loss for multi-label classification: Lg = LBCE(sg,R).

Pairwise interaction classification loss Lp: We adopt a MIL strategy that first aggregates the
pairwise interaction scores and supervises this with image-level interaction labels as A = {a∗}.
Given the image-wise interaction scores s̃p, Lp is a standard binary cross-entropy loss for multi-label
classification as: Lp = LBCE(s̃p,A).

Self-taught relatedness classification loss Lb: As human-object associations are not annotated,
we devise a novel pseudo relatedness label generation mechanism for training a self-taught binary
classifier to identify valid human-object associations. Specifically, we observe that the human-object
pairs with confident interaction scores are often associated after a short period of initial training
without self-taught classification loss. Motivated by this, we use the interaction scores sp from the
model under training to supervise the relatedness classification.

Concretely, we generate pseudo labels B = {b1, ..., bM} for all human-object pairs in an image,
where bm ∈ {0, 1} indicates the relatedness for the m-th combination. To this end, as illustrated
in Fig.2(b), we first propose a binary mask Z ∈ {0, 1}M ·A for all interaction scores S with respect
to the ground-truth object categories C = {c∗}. For each human-object pair where the object
label co is included in C, we consider it as a potential interactive combination and thus assign the
corresponding row in Z as 1, and other rows as 0. For the latter, we also immediately set bm = 0.
Then we generate pairwise scores ta ∈ RM for each ground-truth interaction a∗ by selecting the
corresponding row from S ⊙ Z. The pseudo label for the pair with the highest score is assigned as
1, i.e., ma = argmax

m
ta and bma

= 1. We only select one positive pair3 for each a∗. Finally, Lb is

defined as a binary cross-entropy loss: Lb =
∑
m

LBCE(s
m
b , bm), where smb is the relatedness score

for the m-th pair.
3We also explore top-K selection in Appendix F
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Table 1: mAP comparison on HICO-DET and V-COCO test set. - denotes the results are not available. * stands
for the method we re-evaluate with the correct evaluation protocol (see Appendix.I for details) and †means our
re-implementation. For V-COCO, all object detectors are pretrained on MSCOCO dataset by default, and details
about the evaluation metrics APS1&2 c.f. Appendix H. IN-1K denotes ImageNet with 1000 classes.

Methods Backbone Detector HICO-DET (%) V-COCO (%)
Full Rare Non-Rare APS1

role APS2
role

supervised
iCAN (Gao et al., 2018) RN50 (IN-1K&COCO) FRCNN (COCO) 14.84 10.45 16.15 45.30 52.40
PMFNet (Wan et al., 2019) RN50-FPN (IN-1K&COCO) FRCNN (COCO) 17.46 15.56 18.00 52.00 -
TIN (Li et al., 2019b) RN50-FPN (IN-1K&COCO) FRCNN (COCO) 17.22 13.51 18.32 47.80 54.20
DJ-RN (Li et al., 2020a) RN50 (IN-1K&COCO) FRCNN (COCO) 21.34 18.53 21.18 53.30 60.30
IDN (Li et al., 2020b) RN50 (IN-1K&COCO) FRCNN (HICO-DET) 26.29 22.61 27.39 53.30 60.30
SCG (Zhang et al., 2021c) RN50-FPN (IN-1K&HICO-DET) FRCNN (HICO-DET) 31.33 24.72 33.31 54.20 60.90
HOTR (Kim et al., 2021) RN50+Transformer (IN-1K&COCO) DETR (HICO-DET) 25.10 17.34 27.42 55.20 64.40
QPIC (Tamura et al., 2021) RN101+Transformer (IN-1K&COCO) DETR (COCO) 29.90 23.92 31.69 58.30 60.70
CATN (Dong et al., 2022) RN50+Transformer (IN-1K&HICO-DET&COCO) DETR (HICO-DET) 31.86 25.15 33.84 60.10 -
MSTR (Kim et al., 2022) RN50 + Transformer (IN-1K&COCO) DETR(HICO-DET) 31.17 25.31 33.92 62.00 65.20
DisTr (Zhou et al., 2022) RN50+Transformer (IN-1K&COCO) DETR (HICO-DET) 31.75 27.45 33.03 66.20 68.50
SSRT (Iftekhar et al., 2022) R101+Transformer (IN-1K&COCO) DETR (COCO) 31.34 24.31 33.32 65.00 67.10
GEN-VLKT (Liao et al., 2022) RN101+Transformer (IN-1K&HICO-DET) DETR (HICO-DET) 34.95 31.18 36.08 63.58 65.93
between supervised & weakly-supervised setting, learning with image-level HOIs and box annotations
AlignFormer (Kilickaya & Smeulders, 2021) RN101+Transformer (IN-1K&HICO-DET) DETR (HICO-DET) 20.85 18.23 21.64 15.82 16.34
weakly-supervised
Explanation-HOI* (Baldassarre et al., 2020) ResNeXt101 (IN-1K&COCO) FRCNN (COCO) 10.63 8.71 11.20 - -
MX-HOI (Kumaraswamy et al., 2021) RN101 (IN-1K&COCO) FRCNN (COCO) 16.14 12.06 17.50 - -
PPR-FCN† (Zhang et al., 2017) RN50 (CLIP dataset) FRCNN (COCO) 17.55 15.69 18.41 - -
ours RN50 (CLIP dataset) FRCNN (COCO) 22.89 22.41 23.03 42.97 48.06
ours RN101 (CLIP dataset) FRCNN (COCO) 25.70 24.52 26.05 44.74 49.97

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets: We benchmark our model on two public datasets: HICO-DET and V-COCO. HICO-DET
consists of 47776 images (38118 for training and 9658 for test). It has N = 600 HOI categories,
which are composed of C = 80 common objects (the same as MSCOCO (Lin et al., 2014)) and
A = 117 unique interaction categories. V-COCO is a subset of MSCOCO, consisting of 2533 images
for training, 2867 for validation and 4946 for test. It has 16199 human instances, each annotated with
binary labels for A = 26 interaction categories.

Evaluation Metric: Following (Chao et al., 2015), we use mean average precision (mAP) to evaluate
HOI detection performance. A human-object pair is considered as positive when both predicted
human and object boxes have at least 0.5 IoU with their ground-truth boxes, and the HOI class is
classified correctly.

4.2 IMPLEMENTATION DETAILS

We use an off-the-shelf Faster R-CNN (Ren et al., 2015) pretrained on MSCOCO to generate at
most 100 object candidates for each image. For V-COCO, it is worth noting that we train the object
detector by removing the images in MSCOCO that overlap with V-COCO to prevent information
leakage. The backbone network is initialized with the visual encoder from CLIP-RN101 model and
the feature dimension D = 1024.

For model learning, we set the detection score weight γ = 2.8 as default by following previous
works (Zhang et al., 2021c; Li et al., 2019b), then optimize the entire network with AdamW and an
initial learning rate of 1e-5 for backbone parameters and 1e-4 for others. We detach the parameters of
the knowledge bank on the local branch for better model learning. We train up to 60K iterations with
batch-size 24 in each on 4 NVIDIA 2080TI GPUs, and decay the learning rate by 10 times in 12K
and 24K iteration.
4.3 QUANTITATIVE RESULTS

For HICO-DET (Tab.1), our approach outperforms the previous state of the arts on the weakly
supervised setting by a clear margin, achieving 22.89 mAP with ResNet-50 and 25.70 mAP with
ResNet-101 as backbone. For a fair comparison, we also re-implement PPR-FCN with CLIP visual
encoder. The results show that we still outperform PPR-FCN by a sizeable margin, which validates
the superiority of our framework. Besides, we even perform comparably with HOTR and IDN under
an inferior experimental setting where HOTR adopts a more advanced transformer encoder-decoder
architecture, and both methods are trained with strong supervision. Furthermore, the mAP gap
between Rare (training annotations < 10) and Non-rare HOI classes in our results is much smaller
than other methods, demonstrating the superior generalization capability of our HOI representation
for solving the long-tailed distribution issue. In detail, we achieve a 0.62 mAP gap with ResNet-50
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Table 2: Ablation study on HICO-DET dataset. “RN50-FPN(COCO)” denotes the backbone initialized
with Faster R-CNN parameters pretrained on MSCOCO dataset while “CLIP RN50” stands for the backbone
initialized with CLIP visual encoder. Besides, we construct the knowledge bank WT with random initialization,
or computing HOI prompts by RoBERTa or CLIP text transformer.

Methods Parameter initialization CLIP Knowledge SRC mAP (%)
Backbone knowledge bank HOI recognition KTN score fusion Full Rare Non-Rare

baseline CLIP RN50 - - - - - 19.52 16.58 20.40
Exp 1 CLIP RN50 CLIP Text ✓ - - - 20.31 18.34 20.90
Exp 2 CLIP RN50 CLIP Text ✓(freeze WT ) - - - 20.09 18.23 20.64
Exp 3 CLIP RN50 CLIP Text ✓ ✓ - - 20.86 18.40 21.60
Exp 4 CLIP RN50 CLIP Text ✓ ✓ ✓ - 22.40 20.70 22.90
Exp 5 CLIP RN50 - - - - ✓ 19.88 17.45 20.61
Exp 6 CLIP RN50 CLIP Text ✓ - - ✓ 20.75 19.38 21.16
Exp 7 CLIP RN50 CLIP Text ✓ ✓ - ✓ 21.53 20.05 21.97
ours CLIP RN50 CLIP Text ✓ ✓ ✓ ✓ 22.89 22.41 23.03

Exp 8 RN50-FPN (COCO) - - - - - 19.44 16.20 20.41
Exp 9 RN50-FPN (COCO) random ✓ ✓ ✓ ✓ 19.61 15.57 20.82

Exp 10 RN50-FPN (COCO) RoBERTa ✓ ✓ ✓ ✓ 20.45 16.46 21.65

and 1.53 with ResNet-101 backbone, which is much smaller than AlignFormer (3.14) and PPR-FCN
(2.64), and supervised methods SSRT (9.01) and GEN-VLKT (4.9).

For V-COCO dataset, we report the performance of AProle in both scenario1 and scenario2 for a
complete comparison, which are 42.97 / 48.06 AProle with ResNet-50 and 44.74 / 49.97 AProle with
ResNet-101 as backbone. As shown in Tab.1, our model achieves significant improvement compared
with AlignFormer, and even is comparable with supervised methods TIN and iCAN.

4.4 ABLATION STUDY

In this section, we mainly validate the effectiveness of each component with detailed ablation studies
on HICO-DET dataset. We use ResNet-50 as the backbone network to reduce experimental costs.

Baseline: The baseline adopts the visual encoder from CLIP-RN50 to generate the vanilla HOI
representation vp, which is directly used to predict the interaction scores sp. Only pairwise interaction
classification loss Lp is used for model learning.

HOI recognition: We augment the baseline with a HOI recognition network and observe the full
mAP improves from 19.52 to 20.41, as reported in Exp 1 of Tab. 2. It suggests that the learnable
knowledge bank WT serves as a powerful classifier to perform image-level HOI recognition and
update the visual encoder for better HOI representation. We visualize the learned parameters of
knowledge bank in Appendix D to demonstrate its effectiveness. Furthermore, as in Exp 2, the
performance slightly decreases from 20.31 to 20.09 when we freeze the training of the knowledge
bank, indicating that joint learning of visual features and the knowledge bank is more appropriate for
HOI detection.

Knowledge Transfer Network (KTN): KTN explicitly transfers the CLIP meta-knowledge to
pairwise HOI features. As a result, it contributes 0.55 Full mAP improvement (Exp 3 v.s. Exp 1) and
most of the performance gains come from Non-rare classes. This result shows KTN is capable of
extracting discriminative features from the relational knowledge bank to our HOI representation. We
also study the effectiveness of the attention mechanism of KTN in Appendix E.

Score fusion: In Tab. 2, we largely improve the Full mAP from 20.86 (Exp 3) to 22.40 (Exp 4) by
fusing the global HOI scores sg to pairwise interaction score sp. As the HOI recognition network
seamlessly inherits the visual-linguistic features from CLIP and directly adopts image labels as
supervision, the global interaction scores are pretty accurate and largely enhance the pairwise scores,
demonstrating its strong capabilities to cope with long-tailed and fine-grained HOI recognition.

Self-taught Relatedness Classification (SRC): Self-taught classification aims to identify the
relatedness between human and objects. The improvements from Exp 4 to ours show the effectiveness
of our self-taught strategy, which is capable of figuring out the irrelevant human-object pairs and
suppressing their interaction scores during inference.

Combining KTN & SRC: The ablation results of Exp 5-7 in Tab. 2 show the KTN and SRC are
able to facilitate each other. In detail, the SRC obtains 0.49 Full mAP improvement when the KTN
is introduced (ours v.s. Exp 4), which is only 0.36 without KTN (Exp 5 v.s. baseline). Similarly,
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Figure 3: Visualization of HOI detection results on HICO-DET test set. Red scores denote the negative HOI
predictions. We mainly demonstrate the model’s capabilities on four aspects: (a) coping with imbalanced HOI
distribution; (b) distinguishing subtle differences among interaction types; (c) suppressing background HOI
classes, and (d) pruning irrelevant human-object associations. The numbers reported are normalized pairwise
interaction score, global HOI score and relatedness score.

the KTN contributes 0.78 Full mAP improvement with SRC (Exp 7 v.s. Exp 6), which is only 0.55
without SRC (Exp 3 v.s. Exp 1).

Parameter initialization: Our visual encoder and knowledge bank are both initialized from CLIP.
We also explore different parameter initialization strategy in Exp 8-10. Specifically, we initialize the
visual encoder with a ResNet50-FPN pretrained on COCO detection task for the baseline (Exp 8), and
the knowledge bank with random parameters (Exp 9) or embeddings of HOI labels from RoBERTa
model (Exp 10) for the final model. We observe severe drops with all these initialization methods
compared with ours, demonstrating the effectiveness and generalization ability of CLIP model. It is
worth noting that the mAP of Rare classes decreases from 16.20 in Exp 8 to 15.57 in Exp 9, which
suggests the randomly initialized knowledge bank even aggravates the imbalance issue in final model.

4.5 QUALITATIVE RESULTS

We show some qualitative results of our method in Fig.3. For each HOI prediction, we report (i)
normalized pairwise interaction score, (ii) global HOI score and (iii) relatedness score for ours, and
only pairwise interaction score for baseline. In Fig.3(a), ours interaction scores are more confident
than baseline in Rare HOI classes, demonstrating the generalization ability of our CLIP-guided
HOI representation. Besides, when incorporating relational knowledge bank into pairwise HOI
representation, our method is capable of distinguishing the subtle differences among similar HOIs in
Fig.3(b) (e.g., repair_truck:0.23 v.s. inspect_truck:0.48 in the bottom figure). Moreover, in Fig.3(c),
the global branch suppresses background HOIs by predicting low global scores for them (e.g., the
global HOI score is 0.033 for sit_on_motorcycle while the ground-truth is sit_on_bicycle). Finally, in
Fig.3(d), our self-taught relatedness classification strategy shows strong capability at recognizing the
ambiguous human-object associations (e.g., 0.079 v.s. 0.994 in the upper figure).

5 CONCLUSION

In this paper, we propose a bi-level knowledge integration strategy that incorporates the prior
knowledge from CLIP for weakly-supervised HOI detection. Specifically, we exploit CLIP textual
embeddings of HOI labels as a relational knowledge bank, which is adopted to enhance the HOI
representation with an image-wise HOI recognition network and a pairwise knowledge transfer
network. We further propose the addition of a self-taught binary pairwise relatedness classification
loss to overcome ambiguous human-object association. Finally, our approach achieves the new state
of the art on both HICO-DET and V-COCO benchmarks under the weakly supervised setting.
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APPENDIX

In this appendix, we first describe the spatial feature generation, and then supplement more ex-
perimental results of different CLIP knowledge integration strategies for weakly-supervised HOI
detection. For Explanation-HOI (Baldassarre et al., 2020), we further clarify the difference between
their mAP evaluation protocol and the standard one. Finally, we demonstrate the limitations, potential
negative societal impacts as well as the result error bars of our method.

A THE ADVANTAGE OF OUR HOI REPRESENTATION

To verify the improvement obtained with our CLIP-based HOI representation, we visualize the HOI
representation v̂p in feature space with t-SNE(van der Maaten & Hinton, 2008). For clarity, we
randomly sample 80 HOI categories, and collect 50 samples for each category. For comparison, we
also demonstrate the object-based HOI representation derived from ‘Exp 9’ in Tab.2 (i.e., the model
without CLIP knowledge and using a random knowledge bank). As shown in Fig.4, we observe
that CLIP-based HOI representations for different HOI categories are diverse and well separated in
feature space, which is better for HOI detection. In contrast, the object-based representations are not
well separated in feature space (see the red box region in Fig.4b). Besides, the experimental results in
the ablation study (ours v.s. ‘Exp 9’) also validate the advantage of CLIP-based HOI representation,
improving full mAP from 19.61 to 22.89.

B ABLATION ON CLIP KNOWLEDGE INTEGRATION

To further demonstrate the superiority of our CLIP knowledge integration strategy, we study several
proven techniques for CLIP knowledge transfer in Tab. 3. In Abl 1, for each human-object pair, we
directly infer the HOI scores with CLIP by computing the cross-modal similarities between their
visual union region and the HOI prompts. Without introducing any HOI priors, the promising results
indicate the powerful generalization ability of CLIP and motivate the design of incorporating CLIP
knowledge for weakly-supervised HOI detection. In Abl 2, we duplicate the experiment setting and
results from Exp 8 in Tab. 2 of the main paper. It is a simplified baseline model but initializes the
visual encoder with a ResNet50-FPN pretrained on COCO detection task. Then we introduce three
different CLIP knowledge transfer strategies (Abl 3-4 and ours) based on Abl 2.

In Abl 3, we directly enhance baseline scores in Abl 2 with the CLIP similarity scores in Abl 1 on the
inference stage. Without bells and whistles, we obtain 1.12 gain in Full mAP.

Furthermore, in Abl 4, we adopt a similar knowledge transfer strategy as GEN-VLKT (Liao et al.,
2022), where we initialize the HOI classifier FP with HOI prompt and regularize the global HOI
representation with CLIP image feature vg . In detail, we first compute the global HOI representation
vmean with mean pooling on all pairwise HOI representations, i.e., vmean = MeanPool

m
({vmp }Mm=1).

Here vmp is the holistic HOI representation (c.f. Sec. 3.2.3 in the main paper) for m-th human-object
pair. Then we develop an additional L2 loss Lreg to transfer the knowledge from CLIP to HOI
representations: Lreg = L2(vmean, vg). The performance even decreases slightly from 19.44 to
19.39, which might be caused by the incompatibility of parameters between backbone network
(ResNet50-FPN pretrained on COCO) and FP (HOI prompt embeddings from CLIP). When directly
applying the knowledge transfer strategy of GEN-VLKT to a weakly-supervised setting, it is difficult
to map the unmatched HOI representation and classification weights to a joint space as the supervisory
signals are noisy.

Finally, our approach achieves the best performance compared with other strategies, demonstrating
the effectiveness of our bi-level knowledge integration strategy.

C SPATIAL FEATURE GENERATION

Following (Zhang et al., 2021c), we generate the spatial feature vsp ∈ RD for each pair of human-
object proposals (xh,xo). Specifically, we first compute the bounding boxes information for xh

and xo separately, including their center coordinates, widths, heights, aspect ratios and areas, all
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Figure 4: The t-SNE visualization of CLIP-based HOI representation and object-based HOI represen-
tation.

Table 3: Ablation of different CLIP knowledge integration strategies on HICO-DET dataset.
Methods Experimental setting mAP (%)

Full Rare Non-Rare
Abl 1 CLIP inference score 11.84 13.72 11.27
Abl 2 RN50-FPN (COCO) + FP random init. 19.44 16.20 20.41
Abl 3 RN50-FPN (COCO) + FP random init. + CLIP inference score 20.56 18.19 21.27
Abl 4 RN50-FPN (COCO) + FP HOI prompt init. + CLIP visual regularization 19.39 15.12 20.66
ours CLIP RN50 + HOI recognition + KTN + self-taught relatedness cls. 22.89 22.41 23.03

normalized by the corresponding dimension of the image. We also encode their relative spatial
relations by estimating the intersection over union (IoU), a ratio of the area of xh and xo, a directional
encoding and the distance between center coordinates of xh and xo. We concatenate all the above-
mentioned preliminary spatial cues and obtain a spatial encoding p ∈ R18

+ . To encode the second and
higher order combinations of different terms, the spatial encoding is concatenated with its logarithm
and then embedded to vsp: vsp = Fsp([p; log(p+ ϵ)]). Where ϵ > 0 is a small constant to guarantee
the numerical stability, and Fsp is a multi-layer fully connected network.

D VISUALIZATION OF HOI KNOWLEDGE BANK WT

To further understand WT , we visualize the knowledge bank features initialized by CLIP (Fig.5(a))
and learned from scratch (Fig.5(b)) in feature space by t-SNE. It is worth noting that the knowledge
bank learned from scratch is derived from ‘Exp 9’ in Tab.2. As shown in Fig.5, we observe that
the knowledge features of HOI classes initialized with CLIP are more discriminative than random
initialized, and show a better clustering result (e.g. the HOI classes in red box regions).

E DIFFERENT DESIGNS OF KTN

To further validate the effectiveness of our attention mechanism in KTN, we compare our design
with some variants in Tab. 4. First of all, we directly encode the relation-level features within the
union region to enhance the pairwise representation rather than the external knowledge bank. As a
result, the mAP even decreases a little bit from 20.75 (Exp 6) to 20.69 (Exp 11). The potential reason
is that the union region contains more ambiguous visual relations and background clutters, which
are difficult to learn in a weak setting. Besides, we also explore different normalization strategies in
KTN. The results in Tab. 4 demonstrate that Softmax operation (ours) performs better than uniform
attention (Exp 12) or Sigmoid operation (Exp 13), indicating our attention mechanism is non-trivial
and more effective on aggregating the relational cues from HOI knowledge bank.
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Figure 5: The t-SNE visualization of knowledge bank WT . (a) is the knowledge bank distribution in
feature space based on our CLIP-based HOI representation while (b) is the knowledge bank learned
from scratch (the model in Tab.2-Exp 9) based on object-based HOI representation.

Table 4: Different network design of Knowledge Transfer Network (KTN).
Methods Parameter initialization CLIP Knowledge SRC mAP (%)

Backbone knowledge bank HOI recognition KTN score fusion Full Rare Non-Rare
Exp 11 CLIP RN50 CLIP Text ✓ ✓(union) - ✓ 20.69 19.55 21.04
Exp 12 CLIP RN50 CLIP Text ✓ ✓(uniform) - ✓ 21.14 19.82 21.53
Exp 13 CLIP RN50 CLIP Text ✓ ✓(sigmoid) - ✓ 21.28 19.27 21.88

ours CLIP RN50 CLIP Text ✓ ✓ - ✓ 21.53 20.05 21.97

F TOP-K POSITIVE PAIR SELECTION FOR SRC

In this section we show the results of selecting top-2 and top-5 pairs as positive in Tab. 5. We notice
that there is a small performance drop, which is likely to be caused by mislabeling more negative
pairs as positive, resulting in model learning with more noise.

G THE PROMPT GENERATION FOR V-COCO

For the V-COCO dataset, each action has two different semantic roles (’instrument’ and ’object’)
for different objects, like ‘cut cake’ and ‘cut with knife’. We use two different prompt templates to
convert a HOI label to a language sentence. For the former one, we take template “a person verb a/an
object”, and use “a person verb with object” for the latter.

H EVALUATION METRIC FOR V-COCO

V-COCO dataset has two scenarios for role AP evaluation. In Tab. 1, APS1&2 refer to ‘Average
Precision in scenario 1&2’. V-COCO dataset has two different annotations for HOIs: the first is a
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Table 5: Ablation of top-K positive pair selection for SRC on HICO-DET dataset.

Methods mAP (%)
Full Rare Non-Rare

Top-5 22.45 21.61 22.70
Top-2 22.49 21.83 22.69

ours (Top-1) 22.89 22.41 23.03

Figure 6: The screenshot of the evaluation code in Explanation-HOI. (a) is the original code while (b)
is the correct one based on the standard evaluation code. We use red rectangle boxes to highlight the
most important differences

full label of (human location, interaction type, object location, object type), and the second misses
target object (also denoted as ‘role’ in the original paper (Gupta & Malik, 2015)) annotations, and the
label only includes (human location, interaction type). For the second case, there are two different
evaluation protocols (scenarios) when taking a prediction as correct 4: In scenario 1, it requires the
interaction is correct & the overlap between the human boxes is > 0.5 & the corresponding role is
empty, which is more restricted; in scenario 2, it only requires the interaction is correct & the overlap
between the person boxes is > 0.5.

I EVALUATION OF EXPLANATION-HOI

The Explanation-HOI (Baldassarre et al., 2020) has a misunderstanding of mAP evaluation protocol.
As shown in Fig.6(a) L200-L205, the Explanation-HOI only takes some specific predicted HOIs into
the evaluation process, which has the same HOI labels as groundtruth HOIs. Thus, they ignore lots
of false-positive HOI predictions when calculating mAP, leading to an untrustable high mAP score
(reported in their original paper). In Fig.6(b) L204-L208, we evaluate all predicted HOIs, which is
the same as the standard evaluation protocol proposed in HICO-DET (Chao et al., 2015). The correct
results have already been reported in Tab.1 in the main paper.

J LIMITATIONS

As described in Sec. 3.1, we adopt an external object detector to generate human-object proposals
and then recognize their interactions. Consequently, our method is faced with two limitations brought
by erroneous object detection results. Firstly, the positive human-object pairs are not recalled if the
human or object proposals are not detected. Secondly, the proposals are kept fixed during learning,
which leads to the problem of inaccurate localization and object types.

4https://github.com/s-gupta/v-coco
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K RISK OF USING CLIP

For all the methods that adopt CLIP in their model design, there is a potential risk of data leakage as
CLIP has seen quite a lot of data during pretraining. For HOI detection task, we cannot get access to
CLIP dataset and do not know the exact overlap between CLIP and HOI benchmarks (i.e., HICO-DET
and V-COCO), we carefully read Sec. 5 (Data Overlap Analysis) of the CLIP paper (Radford et al.,
2021b), including an analysis of the overlap between its dataset with 35 popular datasets (HICO-DET
and V-COCO are not included). It shows the overlap is small (median is 2.2% and average is 3.2%)
and the influence is limited (“overall accuracy is rarely shifted by more than 0.1% with only 7 datasets
above this threshold”). Besides, the training text accompanying an image in the CLIP dataset is often
not related to the HOI annotations. Thus, we think the risk is limited.

L LICENSE

The licenses of the assets used in our work are listed below, including open-sourced CLIP model,
HICO-DET dataset, and V-COCO dataset. As for HICO-DET, we cannot find its license in the paper
and the official project page. Thus we provide the official project page instead here for clarity.

1. CLIP: https://github.com/openai/CLIP MIT License
2. VCOCO: https://github.com/s-gupta/v-coco/ MIT License
3. HICO-DET: http://www-personal.umich.edu/ ywchao/hico/ No license
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