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Abstract001

Preference optimization methods like DPO002
have achieved remarkable performance in LLM003
alignment. However, the evaluation for these004
methods relies on a single response and over-005
looks other potential outputs, which could006
also be generated in real-world applications007
within this hypothetical space. To address008
this issue, this paper presents a Hypothesis-009
based PrEference-aware AnaLysis Framework010
(HEAL), a novel evaluation paradigm that for-011
mulates preference alignment as a re-ranking012
process within hypothesis spaces. The frame-013
work incorporates two complementary metrics:014
ranking accuracy for evaluating ordinal consis-015
tency and preference strength correlation for016
assessing continuous alignment. To facilitate017
this framework, we develop UniHypoBench, a018
unified hypothesis benchmark constructed from019
diverse instruction-response pairs. Through ex-020
tensive experiments based on HEAL, with a021
particular focus on the intrinsic mechanisms022
of preference learning, we demonstrate that023
current preference learning methods can effec-024
tively capture preferences provided by proxy025
models while simultaneously suppressing neg-026
ative samples. These findings contribute to027
preference learning research through two sig-028
nificant avenues. Theoretically, we introduce029
hypothesis space analysis as an innovative030
paradigm for understanding preference align-031
ment. Practically, HEAL offers researchers ro-032
bust diagnostic tools for refining preference op-033
timization methods, while our empirical results034
identify promising directions for developing035
more advanced alignment algorithms capable036
of comprehensive preference capture.037

1 Introduction038

Direct preference optimization (DPO) has emerged039

as the predominant method for aligning large lan-040

guage models (LLMs) with human preferences041

(Rafailov et al., 2024). Recent research on DPO has042

also explored various variants, including SimPO043

(Meng et al., 2024), ORPO (Hong et al., 2024), and 044

KTO (Ethayarajh et al., 2024). To evaluate the ef- 045

fectiveness of these preference alignment methods, 046

researchers typically rely on downstream bench- 047

marks such as AlpacaEval (Dubois et al., 2024) 048

and MT-Bench (Bai et al., 2024). In the evalua- 049

tion process using these benchmarks, we typically 050

follow a standard procedure: given a prompt, we 051

first generate a response from the aligned model 052

using a temperature-based sampling method (Gu 053

et al., 2024). Next, we employ a proxy model (such 054

as GPT-4) to compare this response with the ref- 055

erence response, evaluating whether the model is 056

effectively aligned. 057

However, this procedure faces a fundamental 058

limitation because this sampling-based evaluation 059

approach only examines single responses sampled 060

from target LLMs. But in practice, the LLMs are 061

commonly expected to generate a wide spectrum 062

of diverse responses, which cannot be sufficiently 063

covered by several sampled responses. This mis- 064

alignment between evaluation and real-world LLM 065

development prohibits researchers and developers 066

from assessing the LLMs’ performance accurately. 067

Furthermore, this paradigm also neglects the rela- 068

tive comparison of responses, which is fundamen- 069

tally modeled in preference learning scenarios. 070

To address these limitations in the evaluation, 071

we propose HEAL (Hypothesis-based prEference- 072

aware AnaLysis), a novel framework that evalu- 073

ates LLMs through the lens of ranked hypothesis 074

spaces. Inspired by the ranking-based evaluation 075

approaches such as RewardBench (Lambert et al., 076

2024), HEAL conceptualized preference alignment 077

as a dynamic re-ranking process within the hypoth- 078

esis space, enabling comprehensive assessment 079

through two complementary quantitative methods: 080

(1) The first metric is ranking accuracy, which 081

is measured via Kendall’s Tau between the pol- 082

icy model’s rankings and proxy preference model 083

rankings (used for training data annotation). This 084
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metric evaluates ordinal consistency in preference085

learning and directly assesses whether the model086

preserves the relative ordering of hypotheses as087

intended by the preference signals. (2) The sec-088

ond one is preference strength correlation. We use089

Pearson correlation between generation likelihoods090

and gold-standard preference scores as the metric.091

This metric captures continuous alignment preci-092

sion. Unlike binary or ordinal measures, it quanti-093

fies the model’s sensitivity to fine-grained prefer-094

ence distinctions, ensuring quantified relationships095

in preference strength are maintained across hy-096

potheses.097

We evaluate mainstream preference learning098

methods using HEAL to address three key re-099

search questions. (RQ1): Do these methods ef-100

fectively capture preference information? While101

ranking accuracy confirms that LLMs acquire pref-102

erences through optimization, results reveal in-103

complete learning. To elaborate, current meth-104

ods struggle to fully absorb all preference sig-105

nals. (RQ2): Can LLMs discern proxy model-106

specific preferences? Experiments demonstrate107

that LLMs successfully learn distinct preference108

patterns from different proxy models, showcasing109

HEAL’s sensitivity to subtle inter-model variations.110

(RQ3): How do learned preferences vary across111

methods? All tested methods achieve strong in-112

distribution alignment with proxy models, but out-113

of-distribution performance degrades significantly,114

except for SimPO, which exhibits notable general-115

ization. These results validate the partial efficacy116

of preference alignment while underscoring critical117

limitations, particularly in robustness and complete-118

ness of learned preferences.119

Our main contributions are:120

• To the best of our knowledge, we are the first121

to present a systematic study assessing how122

effectively LLMs capture proxy model prefer-123

ences through a hypothesis lens.124

• We construct HEAL, a hypothesis-based125

preference-aware analysis framework that126

quantifies the preference modeling analysis127

into two metrics: ranking accuracy and pref-128

erence strength correlation. Furthermore, we129

construct a Unified Hypothesis Benchmark130

(UniHypoBench) to support the evaluation131

pipeline of HEAL.132

• Comprehensive experiments demonstrating133

HEAL’s effectiveness while revealing key lim-134

itations in current preference learning meth- 135

ods, particularly regarding robustness and 136

preference completeness. 137

2 Preliminary 138

2.1 Sequence Likelihood 139

In the literature of LLMs, a model parameterized 140

with θ is essentially a generative large language 141

model, which is applied to generate a response 142

sequence y when prompted with input x. The re- 143

sponse y is typically generated by sampling the 144

next tokens auto-regressively from a probabilistic 145

distribution. At each time step in this procedure, 146

the model selects the next token randomly to form 147

a new input. Under this approach, the likelihood of 148

generating a specific sentence can be obtained by 149

computing the conditional probability, which can 150

be written as: 151

πθ(y|x) =
|y|∏
n=0

Pθ(yn|y<n, x) (1) 152

where the term Pθ(yn|y<n, x) represents the prob- 153

ability of the n−th token of response y. The se- 154

quence likelihood reflects how an LLM tends to 155

generate a specific response, and this likelihood 156

also serves as a core component of other metrics, 157

such as perplexity (PPL). 158

2.2 Human Preference Alignment 159

In the realm of LLMs, the training process gener- 160

ally encompasses three key stages: pre-training, su- 161

pervised fine-tuning, and human preference align- 162

ment (Ouyang et al., 2022). Recent advancements 163

have demonstrated that alignment can be effectively 164

achieved through two branches of RLHF: reward- 165

based methods and reward-free methods. Through- 166

out the training process, LLMs inherently learn 167

human preferences either through reward scores 168

provided by a reward model or by utilizing ranked 169

pairs of responses. However, the reward-based 170

methods often require extensive reward modeling 171

and face challenges in scalability and generaliza- 172

tion (Gao et al., 2022). Consequently, recent work 173

has shifted towards reward-free methods, which 174

directly optimize preferences without explicit re- 175

ward signals. This shift highlights the growing im- 176

portance of reward-free approaches in addressing 177

the limitations of traditional reward-based meth- 178

ods, offering a more scalable and efficient path for 179

aligning LLMs with human preferences. 180
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Reward Modeling. To effectively capture human181

preferences, a widely adopted approach involves182

training a reward model using human preference183

datasets. In the context of RLHF, a reward model is184

generally formulated as a function rϕ(x, y), where185

ϕ represents model parameters, x denotes the in-186

struction, and y corresponds to the response. To187

develop such a reward model, a foundation LLM188

is optimized by minimizing the Bradley-Terry loss189

(Stiennon et al., 2020), as follows:190

Lreward = −E(x,yw,yl)∼Dp
log(191

σ(rϕ(x, yw)− rϕ(x, yl))) (2)192

Here, Dp represents the human preference dataset,193

which comprises input tuples containing an instruc-194

tion x and a pair of responses (yw, yl) with pref-195

erence yw ≻ yl, where yw ≻ yl indicates that yw196

is preferred over yl according to human or model-197

based annotations. This dataset serves as the foun-198

dation for training the reward model, enabling it to199

capture human preferences effectively.200

Although it has been discussed that recent work201

has increasingly focused on reward-free methods,202

reward models continue to play a significant role203

in alignment. For instance, a robust reward model204

can act as a reliable human proxy, which is capa-205

ble of constructing high-quality preference data for206

reward-free methods such as DPO. The training207

of reward models lays the groundwork for under-208

standing and optimizing human preferences, which209

will be further explored in the context of preference210

optimization in subsequent sections.211

Preference Optimization. Building on the dis-212

cussion of reward models and their role in align-213

ment, Rafailov et al. (Rafailov et al., 2024) intro-214

duced DPO, a novel approach that inherently inte-215

grates the reward model within the policy model216

itself. In DPO, the policy model is directly opti-217

mized using a preference dataset, which can also218

serve as the basis for training a reward model. This219

dual-purpose utilization of the dataset highlights220

the flexibility and efficiency of the DPO. The DPO221

loss function can be given by:222

LDPO(πθ) = −E(x,yw,yl)∼Dp
223 [

log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
(3)

224

where β denotes a parameter that controls the225

strength of constraints, ensuring the optimized pol-226

icy πθ(y|x) does not deviate excessively from the227

reference policy πref (y|x). Notably, there is a 228

significant conceptual similarity between the loss 229

functions of DPO and reward modeling loss as 230

introduced in Eq. 2. Although the specific objec- 231

tives of Eq. 2 and Eq. 3 differ in formulation, 232

their underlying goals are fundamentally aligned: 233

Maximize the likelihood of generating responses 234

preferred by humans while minimizing the probabil- 235

ity of producing dispreferred ones. In conclusion, 236

understanding the shared principles of preference 237

modeling between reward-based and reward-free 238

methods is crucial for uncovering the fundamental 239

mechanisms of alignment in LLMs. 240

3 HEAL: A Hypothesis-based Analysis 241

Framework 242

We propose HEAL (hypothesis-based analysis), il- 243

lustrated in Figure 1. The framework models pref- 244

erence patterns as ranked hypothesis spaces and 245

evaluates them through two complementary met- 246

rics: (1) ranking accuracy for ordinal consistency 247

and (2) preference strength correlation for contin- 248

uous alignment, which we detail in this section 249

respectively. 250

3.1 Ranking in Hypothesis Space 251

In the current evaluation procedure, recent research 252

studies the behavior of LLMs directly from their 253

generated content. However, as mentioned in Sec. 254

2.1, generation is naturally a random process that 255

hardly produces stable outputs. 256

Definition 1 (Hypothesis Space). In the genera- 257

tion phase, the responses possibly differ within a 258

constrained set Yx due to variations in hyperparam- 259

eter configurations. To study these responses, we 260

extend the term hypothesis to LLMs by analogy 261

to natural language understanding (NLU), where 262

this terminology denotes a candidate sentence sam- 263

pled from the output space (Proebsting and Poliak, 264

2024). Here, we consider the constrained set Yx 265

as the hypothesis space for the given x, which con- 266

tains all possible responses (i.e. hypotheses). The 267

hypothesis space is formulated as follows: 268

Yx = {yi ∈
∞⋃
n=0

V n | I(x, y1) ≥ · · · 269

≥ I(x, yi) ≥ · · · , i ∈ N+} (4) 270

where V denotes the vocabulary set defining the 271

hypothesis space. Formally, Yx constitutes a set 272

comprising (potentially infinite) textual hypotheses 273
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Figure 1: The overview of HEAL. We conceptualize preference learning as an alignment process between the
original preference pattern and the standard preference sampled from the proxy model. The framework employs
two evaluation metrics - ranking accuracy and preference strength correlation.

generated from V . These hypotheses are ordered274

by an indicator function I(x, y), which assigns a275

comparable scalar value to each hypothesis y. Typ-276

ical instantiations of I(x, y) include the generation277

probability πθ(y|x) under the model parameter θ,278

or a preference score given by a human annotator279

(or a strong LLM). With these instantiations, the280

hypothesis space Yx is structured as an ordered set,281

where hypotheses are ranked in descending order.282

Consequently, hypotheses positioned earlier in Yx283

exhibit a higher likelihood of being selected during284

generation.285

Definition 2 (Gold-Standard Hypothesis Space).286

From the perspective of generation probabilities,287

the alignment algorithms optimize the generation288

probabilities to favor preferred responses while sup-289

pressing the dispreferred ones, thus we can con-290

clude alignment as reordering the hypothesis space291

Yx to better match a gold-standard hypothesis space292

Yx;gold. Formally, the gold-standard hypothesis293

space Yx;gold is defined as:294

Yx;gold = {yi ∈
∞⋃
n=0

V n |GS(x, y1) ≥ · · ·295

≥ GS(x, yi) ≥ · · · , i ∈ N+} (5)296

where the gold scoring function GS(x, y) quanti-297

fies the alignment quality of response y to instruc-298

tion x, as evaluated by either reward models or hu-299

man annotators (Lambert et al., 2024; Zhou et al.,300

2023). From a formal perspective, GS(x, y) rep- 301

resents a specialized instantiation of the indicator 302

function I(x, y), optimized to reflect ideal human 303

preferences. In conclusion, this space serves as the 304

theoretical optimum for alignment objectives. 305

3.2 Quantitative Analysis Method 306

Ranking Accuracy. In Section 3.1, we formally 307

defined both the hypothesis space Yx and the gold- 308

standard hypothesis space Yx;gold. These spaces 309

differ only in their internal ranking criteria, while 310

their elements remain identical (Chen et al., 2024). 311

To quantify the alignment quality between an 312

LLM’s outputs and gold-standard preferences, we 313

propose measuring the ordinal discrepancy be- 314

tween Yx and Yx;gold. Specifically, we adapt 315

Kendall’s Tau-b correlation coefficient as our 316

metric for comparing their partial orders. The 317

Kendall’s Tau-b statistic is formally expressed as: 318

τb(Y
(1)
x , Y (2)

x ) 319

=
C(Y

(1)
x , Y

(2)
x )−D(Y

(1)
x , Y

(2)
x )√

(T0 − T1(Y
(1)
x ))(T0 − T2(Y

(2)
x ))

(6) 320

where: 321

• Y
(1)
x and Y

(2)
x denote two hypothesis spaces 322

sharing identical response elements but poten- 323

tially differently ordered by their respective 324

indicator functions I1(x, y) and I2(x, y). 325
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• C(·, ·) counts concordant pairs - cases where326

the relative ordering of (yi, yj) is consistent327

between both spaces, while D(·, ·) counts dis-328

cordant pairs with contradictory orderings.329

• T0 =
(
n
2

)
represents the total possible pairs.330

• T1(·) and T2(·) are tie correction terms for331

each hypothesis space.332

The ranking of responses yi, yj in each space333

is determined by comparing their indicator values334

I(x, yi) and I(x, yj). The denominator’s adjust-335

ment for ties ensures robustness when the indicator336

function produces discrete scores. This metric pro-337

vides a unified comparison capability, applicable to338

any system generating comparable I(x, yi) values.339

Definition 3 (Ranking Accuracy). Furthermore, we340

notice that Kendall’s Tau differs from the ranking341

accuracy in range. Therefore, we map the original342

metric to obtain an accuracy ratio, as follows:343

RA(D)344

= E
(x,Y

(1)
x ,Y

(2)
x )∼D

τb(Y
(1)
x , Y

(2)
x ) + 1

2
(7)345

where the term τb(·, ·) is computed based on Eq.346

(6). Here, D denotes the input dataset consisting347

of tuples (x, Y (1)
x , Y

(2)
x ). The mapping operation348

is equal to assigning a zero-valued weight to the349

discordant pairs since they do not contribute to the350

accuracy computation.351

Preference Strength Correlation. In human352

preference modeling, beyond relative ranking, pref-353

erence strength correlation plays a critical role by354

quantifying the strength of preferences through con-355

tinuous numerical values. However, the current356

reward-free alignment paradigm often disregards357

this scalar information, focusing solely on ordinal358

comparisons. This omission leads to a loss of pref-359

erence modeling, which may result in LLMs that360

fail to accurately capture the subtle variance in hu-361

man preferences. Consequently, such models can362

exhibit suboptimal calibration in generation likeli-363

hoods or reward predictions (Zhou et al., 2024).364

Definition 4 (Preference Strength Correlation).365

We consider that if an LLM is perfectly aligned366

with a gold-standard hypothesis space, its indicator367

function values should exhibit a strong linear cor-368

relation with those derived from the gold standard.369

To quantify the correlation at the dataset level, we370

propose an expectation-based Pearson correlation 371

metric, as follows: 372

PSC(D) = 373

E
(x,Y

(1)
x ,Y

(2)
x )∼D

[
E[I1I2]− E[I1]E[I2]

σI1σI2

]
(8) 374

where the function I1(·, ·) and I2(·, ·) represent the 375

indicator functions (generation likelihoods or re- 376

ward scores) of hypothesis spaces Y
(1)
x and Y

(2)
x 377

respectively. Consequently, a well-aligned model 378

would yield a Pearson correlation coefficient ap- 379

proaching 1, reflecting high agreement in prefer- 380

ence strength correlation. 381

4 Experiments 382

4.1 Setups 383

We evaluated three widely adopted preference op- 384

timization algorithms, including DPO (Rafailov 385

et al., 2024), SimPO (Meng et al., 2024), and 386

ORPO (Hong et al., 2024), using our proposed 387

framework. For preference annotation and evalu- 388

ation, we employed ArmoRM-LLaMA-3-8B-v0.1 389

(Wang et al., 2024a) as our primary gold-standard 390

proxy model, ensuring consistency between train- 391

ing and evaluation preference distributions. To 392

investigate the influence of optimization methods 393

across different preference distributions, we addi- 394

tionally utilized GRM-LLaMA3-8B-rewardmodel- 395

ft (Yang et al., 2024) as a comparative proxy model 396

with a distinct preference distribution. 397

Datasets. We employed the following datasets 398

for training and evaluation: 399

(1) UltraFeedback (Cui et al., 2023): A large- 400

scale preference dataset comprising 64k prompts 401

and 256k responses. We performed preference op- 402

timization on the training split and utilized its vali- 403

dation set for in-distribution evaluation. 404

(2) HelpSteer2-Preference (Wang et al., 2024b): 405

A high-quality dataset annotated with preference 406

directions, strength scores, and textual justifica- 407

tions. Similarly, we conducted the evaluation on its 408

validation split. 409

(3) UniHypoBench: To address the limitation 410

of the existing evaluation sets (which typically pro- 411

vide less than 4 responses per prompt), we con- 412

structed the Unified Hypothesis Benchmark (Uni- 413

HypoBench), as detailed in Appendix A.1. Cu- 414

rated from RewardBench (Lambert et al., 2024), it 415

extends the evaluation scope with 2,985 prompts, 416

each containing more than 8 responses sampled 417
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Model/Method
w/o Length Normalization w/ Length Normalization

UniHypo HelpSteer2 UltraFeedback UniHypo HelpSteer2 UltraFeedback

RA PSC RA PSC RA PSC RA PSC RA PSC RA PSC

Alignment with ArmoRM-Llama3-8B-v0.1 (Same Preference Distribution)

LLaMA-3.2-3B-Instruct 54.64 0.152 46.79 -0.063 53.09 0.079 48.22 -0.048 50.69 0.013 49.44 -0.017
+DPO 54.72 0.154 46.79 -0.063 53.17 0.081 48.29 -0.046 51.38 0.027 49.38 -0.016
+ORPO 54.55 0.151 46.68 -0.065 53.12 0.080 48.19 -0.049 50.69 0.013 49.28 -0.018
+SimPO 54.61 0.152 46.68 -0.066 53.22 0.080 48.21 -0.048 51.16 0.023 49.31 -0.017

LLaMA-3-8B-Instruct 54.15 0.124 47.36 -0.051 53.13 0.079 49.81 0.031 50.81 0.016 49.86 -0.011
+DPO 54.16 0.138 49.31 -0.013 64.62 0.368 47.66 -0.033 55.76 0.112 59.87 0.251
+ORPO 52.67 0.084 48.39 -0.031 63.28 0.341 48.37 -0.029 53.33 0.065 64.45 0.065
+SimPO 63.59 0.502 53.32 0.065 66.70 0.419 73.30 0.598 66.51 0.319 71.51 0.545

Alignment with GRM-Llama3-8B-rewardmodel-ft (Different Preference Distribution)

LLaMA-3.2-3B-Instruct 51.65 0.059 53.14 0.063 50.78 0.021 52.08 0.066 48.42 -0.031 51.16 0.030
+DPO 51.64 0.059 52.91 0.058 50.77 0.021 52.08 0.066 48.65 -0.027 51.29 0.031
+ORPO 51.65 0.059 53.14 0.063 50.74 0.021 52.08 0.066 48.65 -0.027 51.21 0.032
+SimPO 51.65 0.059 53.14 0.063 50.84 0.022 52.08 0.066 48.19 -0.036 51.29 0.033

LLaMA-3-8B-Instruct 51.68 0.056 52.58 0.051 49.92 0.008 52.67 0.076 48.53 -0.029 50.13 0.013
+DPO 51.29 0.049 54.48 0.089 50.54 0.014 51.78 0.054 47.52 -0.049 50.31 0.007
+ORPO 51.56 0.053 52.47 0.049 50.10 0.009 52.42 0.072 49.66 -0.007 50.01 0.007
+SimPO 49.50 -0.031 55.03 0.100 50.46 0.013 50.73 -0.008 48.98 -0.020 50.99 0.023

Table 1: Experimental results on different preference optimization methods. RA and PSC denote ranking accuracy
and preference strength correlation, respectively. The best results for each group are in bold. The second-best
results for each group are with underline.

from diverse commercial and open-source LLMs,418

enabling more comprehensive analysis.419

Models. We evaluated our approach using three420

models, including LLaMA-3.2-3B-Instruct and421

LLaMA-3-8B-Instruct. For the LLaMA-3.2-3B-422

Instruct model base, we conducted preference423

optimizations. Concurrently, the LLaMA-3-8B-424

Instruct models were evaluated using the pre-425

optimized weights released by Meng et al. (2024).426

Training Settings. We conducted preference op-427

timization using an effective batch size of 128428

and a maximum sequence length of 1024. The429

learning rate follows a cosine decay schedule with430

10% warmup steps over one training epoch. For431

method-specific hyperparameters, we performed a432

grid search to determine the optimal configuration.433

4.2 Main Results434

We conduct an evaluation of diverse preference435

learning methods using our proposed framework.436

To ensure the preference consistency, we maintain437

identical rating proxy models between training and438

evaluation phases, thereby guaranteeing that all439

compared methods learn from and are assessed440

against the same preference distribution. Addi-441

tionally, we establish the original instruction-tuned442

models as baseline comparisons, which enables a443

quantitative assessment of the performance gains 444

achieved through explicit preference learning. We 445

present the main results in Table 1. The results 446

demonstrate: 447

Preference Optimization Effectively Captures 448

the Preference Information. Our results show 449

that preference optimization methods generally 450

outperform baselines in both ranking accuracy 451

and preference strength correlation, confirming 452

their effectiveness in capturing preference distri- 453

butions. The LLaMA-3-8B-Instruct model bene- 454

fits most significantly, with SimPO achieving over 455

10% improvement across all datasets. However, 456

even SimPO’s best performance (66.70% on Ultra- 457

Feedback) remains suboptimal, aligning with Chen 458

et al.’s observation that current methods still have 459

substantial room for improvement. 460

Preference Optimization Learns Model-Specific 461

Preference Patterns. Our evaluation reveals that 462

while preference optimization improves alignment 463

with the training proxy model, these gains often 464

fail to generalize to other proxy models with differ- 465

ent distributions. In some cases, we even observe 466

performance degradation when evaluating against 467

alternative proxies. These findings demonstrate 468

that current methods primarily learn model-specific 469

judging patterns rather than general preferences. 470
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Figure 2: Upset plots of preference intersections on the OOD test set (UniHypo). The upper bar chart displays
the amount of preference overlaps between different methods, while the lower connection matrix identifies the
constituent subsets of each intersection. Full results can be found in Figure 5.

This specificity poses a fundamental challenge for471

the LLM-based evaluation, as different evaluators472

may employ conflicting preference criteria, com-473

plicating the assessment of alignment quality.474

Length Normalization is Potential in Preference475

Modeling. Our analysis indicates that length476

normalization generally impairs ranking accu-477

racy. However, the normalized SimPO version of478

LLaMA-3-8B-Instruct achieves a 73.3% accuracy,479

surpassing the performance of unnormalized mod-480

els. This demonstrates that length-aware objectives481

can learn better preference representations, suggest-482

ing their value for future methods.483

Capturing Subtle Preference Correlation is484

Challenging. Current alignment methods exhibit485

strong ranking accuracy but exhibit a weak correla-486

tion with preference strength, typically below 0.3.487

This result highlights the challenges in quantifying488

preference strength. However, SimPO stands out as489

an exception, achieving a preference strength corre-490

lation of 0.419 on UltraFeedback (up from 0.079),491

demonstrating that improved strength modeling is492

achievable.493

4.3 Analysis494

Visualization of Preference Intersections. We495

employ upset plots (Lex et al., 2014) to analyze496

preference intersections across hypothesis spaces497

(Figure 2), presenting both in-distribution (a) and498

out-of-distribution (b) results. For clarity, we focus499

on the plot’s forepart, where solid-connected points500

mark shared preference tendencies across response501

pairs. Our key observations of the in-distribution502

test set include: (1) The largest intersection demon-503

strates fundamental preference knowledge shared504

by all optimization methods and the proxy model. 505

(2) The substantial second intersection indicates 506

significant unlearned preferences. (3) The fourth 507

intersection shows that methods successfully cap- 508

ture novel preferences from the proxy model with 509

notable behavioral deviation. 510

In parallel, we conduct the identical visualization 511

on the out-of-distribution test set. Apart from the 512

observations in Figure 2 (a), we find that: (1) Un- 513

learned preferences increase proportionally, reveal- 514

ing domain-shift effects. (2) While most methods 515

degrade, SimPO maintains the largest intersection, 516

demonstrating superior generalization. (3) The 517

overall performance decline underscores the need 518

for more robust preference learning paradigms. 519

These visual analyses provide intuitive mechanistic 520

insights that corroborate our quantitative findings 521

in Section 4.2. 522

Alignment in LLM’s Internal Preference Dis- 523

tribution. To gain deeper insights into the align- 524

ment effects, we analyze the internal preference 525

distribution using UniHypoBench. We sample re- 526

sponses from aligned LLaMA-3-8B-Instruct-based 527

models (with the SFT base model as baseline) at 528

a temperature of 0.75 to ensure sufficient diver- 529

sity. The generation likelihoods are then extracted 530

to compute both ranking accuracy and preference 531

strength correlation, as listed in Table 2. Surpris- 532

ingly, the results reveal that performance shows 533

no significant improvement even when evaluated 534

on the model’s own preference distribution. More 535

notably, we observe performance degradation in 536

some cases, particularly for the SimPO-aligned 537

model. We assume that this phenomenon probably 538

stems from the scarcity of the diversity of these 539

7
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(a) Internal Preference Distribution
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(b) External Preference Distribution

Figure 3: Violin plots comparing generation likelihood distributions across different alignment methods (including
the SFT base model as baseline). The plot width represents probability density, with the central white line marking
the median value for each distribution. To enhance the readability of the chart, we employ length normalization.

Metric/Method SFT DPO ORPO SimPO

RA w/o LN 55.93 55.99 55.01 61.50
PSC w/o LN 0.164 0.153 0.123 0.301

RA w/ LN 54.12 51.49 54.74 59.70
PSC w/ LN 0.100 0.044 0.108 0.252

Table 2: Experimental results of LLaMA-3-8B-Instruct-
based models’ internal preference distribution. The best
results for each group are in bold. LN denotes length
normalization.

sampled hypotheses. This finding also notes that540

distinguishing the subtle difference between similar541

hypotheses is a challenge for further development542

of the preference learning method.543

To gain deeper insight into the mechanisms of544

preference learning, we conduct a density-based545

analysis of generation likelihood distributions. Fig-546

ure 3 presents violin plots of these distributions547

across different alignment approaches, with the548

density curves estimated using kernel density meth-549

ods. As shown in Figure 3 (a), which visualizes550

the internal preference distributions, we observe551

remarkably consistent patterns across all optimiza-552

tion methods. The finding indicates that these op-553

timization methods probably do not vary much in554

their internal preference distributions.555

Our analysis of external preference distributions556

in Figure 3 (b) reveals distinct patterns that contrast557

with the internal consistency observed previously.558

The distributions exhibit a clear dichotomy: while559

SFT and ORPO maintain near-uniform distribu-560

tions, DPO and SimPO obtain spindle-shaped dis-561

tributions, reflecting their enhanced capability to562

suppress negative samples through preference opti- 563

mization. This successful suppression of undesir- 564

able outputs represents a significant advancement 565

in alignment techniques. 566

However, closer examination reveals a critical 567

limitation - none of the methods achieve the theoret- 568

ically optimal bimodal distribution that would fully 569

separate preferred and rejected responses. This 570

persistent unimodality suggests that while current 571

approaches can effectively downweight negative 572

samples, they struggle to develop truly discrimi- 573

native representations that clearly partition the hy- 574

pothesis space. The gap between empirical results 575

and theoretical expectations points to fundamen- 576

tal constraints in existing optimization frameworks, 577

which appear to learn primarily through global like- 578

lihood adjustment rather than developing more so- 579

phisticated, robust representations of preference 580

structure. 581

5 Conclusion 582

In this paper, we have explored evaluation and anal- 583

ysis methods for preference learning via preference- 584

aware evaluation. Specifically, we first developed 585

a hypothesis-based analysis framework contain- 586

ing two complementary metrics, HEAL. Based on 587

HEAL, we then evaluate how effectively the LLMs 588

capture preferences through preference learning. 589

Furthermore, we construct UniHypoBench to sup- 590

port our evaluation pipeline. Extensive experiments 591

demonstrate the effectiveness of our evaluation and 592

analysis methods. 593

8



Limitations594

While our proposed HEAL framework provides a595

novel hypothesis-based approach for preference-596

aware analysis, several limitations require dis-597

cussion. First, our experimental validation,598

though demonstrating practical utility for resource-599

constrained scenarios, was conducted on a limited600

set of models, with LLaMA-3-8B-Instruct serv-601

ing as the primary exemplar due to its consistently602

strong performance. Second, while ranking ac-603

curacy and preference strength correlation prove604

effective as evaluation metrics, future work may605

identify more sophisticated measures that better606

capture the nuances of preference learning. Finally,607

our current analysis does not examine the train-608

ing dynamics of these metrics during optimization,609

leaving open questions about their evolution and re-610

lationship to model convergence. These limitations611

point to valuable directions for future research, par-612

ticularly in developing more comprehensive analy-613

sis approaches and investigating the inherent mech-614

anism of preference alignment.615

Ethics Statement616

This work does not need ethical considerations. Al-617

though in this work we construct data as described618

in Appendix A.1, this input is all from open-source619

data, and the output is also obtained based on open-620

source or commercial models.621
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Name Commercial Open-source

Claude-3-Haiku ✓ ✗

GPT-4o ✓ ✗

DeepSeek-V2-Lite ✗ ✓
Qwen2.5-32B ✗ ✓
Qwen-14B ✗ ✓
Mixtral-8x7B-Instruct-v0.1 ✗ ✓
LLaMA-3-8B-Instruct ✗ ✓
ChatGLM3-6B ✗ ✓

Table 3: Models selected for UniHypoBench construc-
tion.

A Implementation Details733

A.1 Construction of UniHypoBench734

We construct UniHypoBench based on the Reward-735

Bench instruction set, leveraging its comprehensive736

coverage of diverse task types. Our benchmark con-737

struction process begins by collecting hypothesis738

samples from multiple powerful commercial and739

open-source LLMs, as specified in Table 3.740

To enhance the response diversity while main-741

taining quality, we configured the sampling param-742

eters with a temperature setting of 0.75 and top-p743

value of 0.95, with all responses truncated at 768744

tokens. Following generation, we implemented a745

filtering process to remove low-quality and empty746

responses, thereby ensuring the benchmark’s relia-747

bility and consistency.748

A.2 Experimental Setups749

Our implementation leverages LLaMA-Factory750

(Zheng et al., 2024) for model training and751

vLLM (Kwon et al., 2023) for efficient inference.752

All experiments were conducted on 2×NVIDIA753

3090 GPUs, with additional optimization through754

DeepSpeed (Rajbhandari et al., 2020) ZeRO-2 to755

minimize computational overhead and accelerate756

training. Following established practices in prefer-757

ence optimization (Meng et al., 2024), we maintain758

an effective batch size of 128 and employed a co-759

sine learning rate schedule with 10% warmup steps.760

To balance computational efficiency with model761

performance, we set the training sequence length762

to 1024 tokens.763

Before final model training, we performed ex-764

tensive hyperparameter tuning to identify optimal765

configurations for each method. We first search the766

learning rates invidually in the range of [3e-7, 7e-7,767

1e-6]. Then we search method-specific parameters768

whose search ranges are detailed in Table 4.769

B More Analysis 770

Preference Learning Achieves Limited Improve- 771

ments with Confident LLMs. Building upon 772

the main results presented in Table 1, we observe 773

that preference optimization yields limited im- 774

provement for LLaMA-3.2-3B-Instruct, with both 775

ranking accuracy and preference strength showing 776

marginal gains or even performance degradation. 777

This unexpected outcome suggests potential over- 778

fitting to the original training corpus during earlier 779

optimization stages. More fundamentally, these 780

findings reveal an important relationship between 781

a base model’s core capabilities and its capacity 782

for effective preference learning - implying that 783

successful alignment may be constrained by the 784

underlying model’s basic capabilities before fine- 785

tuning. 786

More Results of the Main Experiment To fur- 787

ther validate our findings, we extend the evaluation 788

to Mistral-7B-Instruct, a widely adopted founda- 789

tion model in contemporary LLM research, utiliz- 790

ing the optimized weights provided by Meng et al. 791

(2024). As evidenced in Table 5, the experimental 792

outcomes exhibit some divergence from our pri- 793

mary results. We hypothesize that these discrepan- 794

cies stem from fundamental differences in both the 795

base model architecture and the composition of the 796

training corpus, highlighting the model-dependent 797

nature of preference optimization efficacy. 798

C More Upset Plots 799

This section presents the complete upset plot vi- 800

sualizations in Figure 4, along with their length- 801

normalized counterparts in Figure 5. The observed 802

patterns remain consistent with our preliminary 803

analysis in Figure 2, further validating our earlier 804

conclusions regarding preference alignment behav- 805

iors. Notably, we find that the length normalization 806

has smoothed the distribution of the intersections, 807

which could be valuable for further study. 808

D Joint Distribution of Reward Scores 809

and Generation Likelihoods 810

Figure 6 presents the joint distribution of reward 811

scores and generation likelihoods, revealing sev- 812

eral key insights about preference learning dynam- 813

ics. Consistent with our previous observations, all 814

examined methods demonstrate the capability to 815

effectively suppress likelihoods for undesired re- 816

sponses, confirming this as a fundamental mecha- 817
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Method Objective Hyperparameter

DPO − log σ
(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)
β ∈ [0.01, 0.05, 0.1]

ORPO
− log pθ(yw|x)− λ log σ

(
log pθ(yw|x)

1−pθ(yw|x) − log pθ(yl|x)
1−pθ(yl|x)

)
,

λ ∈ [0.1, 0.5, 1.0]
where pθ(y|x) = exp

(
1
|y| log πθ(y|x)

)
SimPO − log σ

(
β

|yw| log πθ(yw|x)−
β
|yl| log πθ(yl|x)− γ

) β ∈ [2.0, 2.5, 3.0, 5.0, 10.0],
γ ∈ [0.3, 0.5, 1.0]

Table 4: Optimization objectives and hyperparameter search ranges of applied preference learning methods

Model/Method
w/o Length Normalization w/ Length Normalization

UniHypo HelpSteer2 UltraFeedback UniHypo HelpSteer2 UltraFeedback

RA PSC RA PSC RA PSC RA PSC RA PSC RA PSC

Alignment with ArmoRM-Llama3-8B-v0.1 (Different Preference Distribution)

Mistral-7B-Instruct 62.30 0.356 52.52 0.049 54.36 0.117 54.40 0.135 55.17 0.100 50.17 0.009
+DPO 65.99 0.489 53.79 0.074 56.27 0.165 58.45 0.202 57.01 0.136 51.78 0.052
+ORPO 63.66 0.421 53.21 0.063 55.43 0.143 57.17 0.180 57.80 0.152 52.08 0.049
+SimPO 63.00 0.412 52.76 0.054 56.22 0.162 57.64 0.188 58.53 0.165 52.53 0.070

Table 5: Experimental results on different preference optimization methods. The best results for each group are in
bold. The second-best results for each group are with underline.

nism of preference alignment. However, the distri-818

butions exhibit notable differences: while SimPO819

shows an unintended reduction in likelihoods for820

preferred responses, DPO achieves superior sepa-821

ration through what appears to be a linear reorga-822

nization of the probability space. This distinctive823

pattern suggests DPO’s particularly effective trans-824

formation of the model’s internal representation825

space for preference modeling. The comparative826

performance highlights DPO’s ongoing potential827

for preference alignment tasks and underscores the828

value of further investigating its underlying opti-829

mization dynamics.830
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(a) UniHypo (w/o Length Normalized)

(b) HelpSteer2 (w/o Length Normalized)

(c) UltraFeedback (w/o Length Normalized)

Figure 4: Upset plots of generation likelihoods without length normalization.
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(a) UniHypo (w/ Length Normalized)

(b) HelpSteer2 (w/ Length Normalized)

(c) UltraFeedback (w/ Length Normalized)

Figure 5: Upset plots of generation likelihoods with length normalization.
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Help 
dpo

(e) HelpSteer2 - DPO
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Help 
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Figure 6: Joint plots of generation likelihoods and reward scores.
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