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Abstract

Preference optimization methods like DPO
have achieved remarkable performance in LLM
alignment. However, the evaluation for these
methods relies on a single response and over-
looks other potential outputs, which could
also be generated in real-world applications
within this hypothetical space. To address
this issue, this paper presents a Hypothesis-
based PrEference-aware Analysis Framework
(HEAL), a novel evaluation paradigm that for-
mulates preference alignment as a re-ranking
process within hypothesis spaces. The frame-
work incorporates two complementary metrics:
ranking accuracy for evaluating ordinal consis-
tency and preference strength correlation for
assessing continuous alignment. To facilitate
this framework, we develop UniHypoBench, a
unified hypothesis benchmark constructed from
diverse instruction-response pairs. Through ex-
tensive experiments based on HEAL, with a
particular focus on the intrinsic mechanisms
of preference learning, we demonstrate that
current preference learning methods can effec-
tively capture preferences provided by proxy
models while simultaneously suppressing neg-
ative samples. These findings contribute to
preference learning research through two sig-
nificant avenues. Theoretically, we introduce
hypothesis space analysis as an innovative
paradigm for understanding preference align-
ment. Practically, HEAL offers researchers ro-
bust diagnostic tools for refining preference op-
timization methods, while our empirical results
identify promising directions for developing
more advanced alignment algorithms capable
of comprehensive preference capture.

1 Introduction

Direct preference optimization (DPO) has emerged
as the predominant method for aligning large lan-
guage models (LLMs) with human preferences
(Rafailov et al., 2024). Recent research on DPO has
also explored various variants, including SimPO

(Meng et al., 2024), ORPO (Hong et al., 2024), and
KTO (Ethayarajh et al., 2024). To evaluate the ef-
fectiveness of these preference alignment methods,
researchers typically rely on downstream bench-
marks such as AlpacaEval (Dubois et al., 2024)
and MT-Bench (Bai et al., 2024). In the evalua-
tion process using these benchmarks, we typically
follow a standard procedure: given a prompt, we
first generate a response from the aligned model
using a temperature-based sampling method (Gu
et al., 2024). Next, we employ a proxy model (such
as GPT-4) to compare this response with the ref-
erence response, evaluating whether the model is
effectively aligned.

However, this procedure faces a fundamental
limitation because this sampling-based evaluation
approach only examines single responses sampled
from target LLMs. But in practice, the LLMs are
commonly expected to generate a wide spectrum
of diverse responses, which cannot be sufficiently
covered by several sampled responses. This mis-
alignment between evaluation and real-world LLM
development prohibits researchers and developers
from assessing the LLMSs’ performance accurately.
Furthermore, this paradigm also neglects the rela-
tive comparison of responses, which is fundamen-
tally modeled in preference learning scenarios.

To address these limitations in the evaluation,
we propose HEAL (Hypothesis-based prEference-
aware AnalLysis), a novel framework that evalu-
ates LLMs through the lens of ranked hypothesis
spaces. Inspired by the ranking-based evaluation
approaches such as RewardBench (Lambert et al.,
2024), HEAL conceptualized preference alignment
as a dynamic re-ranking process within the hypoth-
esis space, enabling comprehensive assessment
through two complementary quantitative methods:
(1) The first metric is ranking accuracy, which
is measured via Kendall’s Tau between the pol-
icy model’s rankings and proxy preference model
rankings (used for training data annotation). This



metric evaluates ordinal consistency in preference
learning and directly assesses whether the model
preserves the relative ordering of hypotheses as
intended by the preference signals. (2) The sec-
ond one is preference strength correlation. We use
Pearson correlation between generation likelihoods
and gold-standard preference scores as the metric.
This metric captures continuous alignment preci-
sion. Unlike binary or ordinal measures, it quanti-
fies the model’s sensitivity to fine-grained prefer-
ence distinctions, ensuring quantified relationships
in preference strength are maintained across hy-
potheses.

We evaluate mainstream preference learning
methods using HEAL to address three key re-
search questions. (RQ1): Do these methods ef-
fectively capture preference information? While
ranking accuracy confirms that LLMs acquire pref-
erences through optimization, results reveal in-
complete learning. To elaborate, current meth-
ods struggle to fully absorb all preference sig-
nals. (RQ2): Can LLMs discern proxy model-
specific preferences? Experiments demonstrate
that LLMs successfully learn distinct preference
patterns from different proxy models, showcasing
HEAL’s sensitivity to subtle inter-model variations.
(RQ3): How do learned preferences vary across
methods? All tested methods achieve strong in-
distribution alignment with proxy models, but out-
of-distribution performance degrades significantly,
except for SimPO, which exhibits notable general-
ization. These results validate the partial efficacy
of preference alignment while underscoring critical
limitations, particularly in robustness and complete-
ness of learned preferences.

Our main contributions are:

* To the best of our knowledge, we are the first
to present a systematic study assessing how
effectively LLMs capture proxy model prefer-
ences through a hypothesis lens.

* We construct HEAL, a hypothesis-based
preference-aware analysis framework that
quantifies the preference modeling analysis
into two metrics: ranking accuracy and pref-
erence strength correlation. Furthermore, we
construct a Unified Hypothesis Benchmark
(UniHypoBench) to support the evaluation
pipeline of HEAL.

* Comprehensive experiments demonstrating
HEAL’s effectiveness while revealing key lim-

itations in current preference learning meth-
ods, particularly regarding robustness and
preference completeness.

2 Preliminary

2.1 Sequence Likelihood

In the literature of LLMs, a model parameterized
with 6 is essentially a generative large language
model, which is applied to generate a response
sequence y when prompted with input x. The re-
sponse y is typically generated by sampling the
next tokens auto-regressively from a probabilistic
distribution. At each time step in this procedure,
the model selects the next token randomly to form
a new input. Under this approach, the likelihood of
generating a specific sentence can be obtained by
computing the conditional probability, which can
be written as:

|yl
mo(ylz) = [ Poynly<n, ) (1

n=0

where the term Py(yy,|y<n, ) represents the prob-
ability of the n—th token of response y. The se-
quence likelihood reflects how an LLM tends to
generate a specific response, and this likelihood
also serves as a core component of other metrics,
such as perplexity (PPL).

2.2 Human Preference Alignment

In the realm of LLMs, the training process gener-
ally encompasses three key stages: pre-training, su-
pervised fine-tuning, and human preference align-
ment (Ouyang et al., 2022). Recent advancements
have demonstrated that alignment can be effectively
achieved through two branches of RLHF: reward-
based methods and reward-free methods. Through-
out the training process, LLMs inherently learn
human preferences either through reward scores
provided by a reward model or by utilizing ranked
pairs of responses. However, the reward-based
methods often require extensive reward modeling
and face challenges in scalability and generaliza-
tion (Gao et al., 2022). Consequently, recent work
has shifted towards reward-free methods, which
directly optimize preferences without explicit re-
ward signals. This shift highlights the growing im-
portance of reward-free approaches in addressing
the limitations of traditional reward-based meth-
ods, offering a more scalable and efficient path for
aligning LLMs with human preferences.



Reward Modeling. To effectively capture human
preferences, a widely adopted approach involves
training a reward model using human preference
datasets. In the context of RLHF, a reward model is
generally formulated as a function 74 (z, y), where
¢ represents model parameters, x denotes the in-
struction, and y corresponds to the response. To
develop such a reward model, a foundation LLM
is optimized by minimizing the Bradley-Terry loss
(Stiennon et al., 2020), as follows:

Lieward = _E(I7yw7yl)’\/pp log(
o (re(2,yw) = ro(z, 1)) (2)

Here, D, represents the human preference dataset,
which comprises input tuples containing an instruc-
tion x and a pair of responses (v, y;) with pref-
erence ¥, > ¥, where y,, > y; indicates that y,,
is preferred over y; according to human or model-
based annotations. This dataset serves as the foun-
dation for training the reward model, enabling it to
capture human preferences effectively.

Although it has been discussed that recent work
has increasingly focused on reward-free methods,
reward models continue to play a significant role
in alignment. For instance, a robust reward model
can act as a reliable human proxy, which is capa-
ble of constructing high-quality preference data for
reward-free methods such as DPO. The training
of reward models lays the groundwork for under-
standing and optimizing human preferences, which
will be further explored in the context of preference
optimization in subsequent sections.

Preference Optimization. Building on the dis-
cussion of reward models and their role in align-
ment, Rafailov et al. (Rafailov et al., 2024) intro-
duced DPO, a novel approach that inherently inte-
grates the reward model within the policy model
itself. In DPO, the policy model is directly opti-
mized using a preference dataset, which can also
serve as the basis for training a reward model. This
dual-purpose utilization of the dataset highlights
the flexibility and efficiency of the DPO. The DPO
loss function can be given by:

Lopo(m0) = ~E(z,y,.5)~D,
[loga (ﬂlog 7o (Yuw|2) ~ Blog o (yi| %) )]
7Tref(yw‘x) 7Tr6f(yl|x)

3)

where (5 denotes a parameter that controls the
strength of constraints, ensuring the optimized pol-
icy mg(y|x) does not deviate excessively from the

reference policy 7,.f(y|z). Notably, there is a
significant conceptual similarity between the loss
functions of DPO and reward modeling loss as
introduced in Eq. 2. Although the specific objec-
tives of Eq. 2 and Eq. 3 differ in formulation,
their underlying goals are fundamentally aligned:
Maximize the likelihood of generating responses
preferred by humans while minimizing the probabil-
ity of producing dispreferred ones. In conclusion,
understanding the shared principles of preference
modeling between reward-based and reward-free
methods is crucial for uncovering the fundamental
mechanisms of alignment in LLMs.

3 HEAL: A Hypothesis-based Analysis
Framework

We propose HEAL (hypothesis-based analysis), il-
lustrated in Figure 1. The framework models pref-
erence patterns as ranked hypothesis spaces and
evaluates them through two complementary met-
rics: (1) ranking accuracy for ordinal consistency
and (2) preference strength correlation for contin-
uous alignment, which we detail in this section
respectively.

3.1 Ranking in Hypothesis Space

In the current evaluation procedure, recent research
studies the behavior of LLMs directly from their
generated content. However, as mentioned in Sec.
2.1, generation is naturally a random process that
hardly produces stable outputs.

Definition 1 (Hypothesis Space). In the genera-
tion phase, the responses possibly differ within a
constrained set Y, due to variations in hyperparam-
eter configurations. To study these responses, we
extend the term hypothesis to LLMs by analogy
to natural language understanding (NLU), where
this terminology denotes a candidate sentence sam-
pled from the output space (Proebsting and Poliak,
2024). Here, we consider the constrained set Y,
as the hypothesis space for the given x, which con-
tains all possible responses (i.e. hypotheses). The
hypothesis space is formulated as follows:

Yo={yie JV"I(x,91) >
n=0

where V' denotes the vocabulary set defining the
hypothesis space. Formally, Y, constitutes a set
comprising (potentially infinite) textual hypotheses
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Figure 1: The overview of HEAL. We conceptualize preference learning as an alignment process between the
original preference pattern and the standard preference sampled from the proxy model. The framework employs
two evaluation metrics - ranking accuracy and preference strength correlation.

generated from V. These hypotheses are ordered
by an indicator function I(x,y), which assigns a
comparable scalar value to each hypothesis y. Typ-
ical instantiations of I(z, y) include the generation
probability 7y (y|x) under the model parameter 6,
or a preference score given by a human annotator
(or a strong LLM). With these instantiations, the
hypothesis space Y, is structured as an ordered set,
where hypotheses are ranked in descending order.
Consequently, hypotheses positioned earlier in Y,
exhibit a higher likelihood of being selected during
generation.

Definition 2 (Gold-Standard Hypothesis Space).
From the perspective of generation probabilities,
the alignment algorithms optimize the generation
probabilities to favor preferred responses while sup-
pressing the dispreferred ones, thus we can con-
clude alignment as reordering the hypothesis space
Y, to better match a gold-standard hypothesis space
Yi.gola. Formally, the gold-standard hypothesis
space Yy.go1q 18 defined as:

Yx;gold = {yz S U v | GS(x’yl) > ...
n=0

> GS(z,y;) > -+, i€ Nyt (5)

where the gold scoring function GS(z, y) quanti-
fies the alignment quality of response y to instruc-
tion z, as evaluated by either reward models or hu-
man annotators (Lambert et al., 2024; Zhou et al.,

2023). From a formal perspective, GS(z,y) rep-
resents a specialized instantiation of the indicator
function I(z, y), optimized to reflect ideal human
preferences. In conclusion, this space serves as the
theoretical optimum for alignment objectives.

3.2 Quantitative Analysis Method

Ranking Accuracy. In Section 3.1, we formally
defined both the hypothesis space Y, and the gold-
standard hypothesis space Yy.g01q. These spaces
differ only in their internal ranking criteria, while
their elements remain identical (Chen et al., 2024).
To quantify the alignment quality between an
LLM’s outputs and gold-standard preferences, we
propose measuring the ordinal discrepancy be-
tween Y, and Yioq. Specifically, we adapt
Kendall’s Tau-b correlation coefficient as our
metric for comparing their partial orders. The
Kendall’s Tau-b statistic is formally expressed as:
(YD, v, )

x x

V(T = T (vi)(To - To(vi?))

where:

. Yq;(l) and Y;,;(Q) denote two hypothesis spaces
sharing identical response elements but poten-
tially differently ordered by their respective
indicator functions I (x, y) and Is(x, y).



 C(+,-) counts concordant pairs - cases where
the relative ordering of (y;,y;) is consistent
between both spaces, while D(-, -) counts dis-
cordant pairs with contradictory orderings.

* To = () represents the total possible pairs.

» Ty(-) and Ty(-) are tie correction terms for
each hypothesis space.

The ranking of responses y;, y; in each space
is determined by comparing their indicator values
I(x,y;) and I(z,y;). The denominator’s adjust-
ment for ties ensures robustness when the indicator
function produces discrete scores. This metric pro-
vides a unified comparison capability, applicable to
any system generating comparable I(z, y;) values.

Definition 3 (Ranking Accuracy). Furthermore, we
notice that Kendall’s Tau differs from the ranking
accuracy in range. Therefore, we map the original
metric to obtain an accuracy ratio, as follows:

RA(D)

YV, V) 41

= By y@)ep 2 7

where the term 73(+, ) is computed based on Egq.
(6). Here, D denotes the input dataset consisting
of tuples (z, Yx(l), Yx(z)). The mapping operation
is equal to assigning a zero-valued weight to the
discordant pairs since they do not contribute to the
accuracy computation.

Preference Strength Correlation. In human
preference modeling, beyond relative ranking, pref-
erence strength correlation plays a critical role by
quantifying the strength of preferences through con-
tinuous numerical values. However, the current
reward-free alignment paradigm often disregards
this scalar information, focusing solely on ordinal
comparisons. This omission leads to a loss of pref-
erence modeling, which may result in LLMs that
fail to accurately capture the subtle variance in hu-
man preferences. Consequently, such models can
exhibit suboptimal calibration in generation likeli-
hoods or reward predictions (Zhou et al., 2024).

Definition 4 (Preference Strength Correlation).
We consider that if an LLM is perfectly aligned
with a gold-standard hypothesis space, its indicator
function values should exhibit a strong linear cor-
relation with those derived from the gold standard.
To quantify the correlation at the dataset level, we

propose an expectation-based Pearson correlation
metric, as follows:

PSC(D) =
E[I1 2] — E[L]E[]2]

01,01,

E

(.Y ) ®)
where the function I; (-, -) and I(-, -) represent the
indicator functions (generation likelihoods or re-
ward scores) of hypothesis spaces Yx(l) and Yx@)
respectively. Consequently, a well-aligned model
would yield a Pearson correlation coefficient ap-
proaching 1, reflecting high agreement in prefer-
ence strength correlation.

4 Experiments

4.1 Setups

We evaluated three widely adopted preference op-
timization algorithms, including DPO (Rafailov
et al., 2024), SimPO (Meng et al., 2024), and
ORPO (Hong et al., 2024), using our proposed
framework. For preference annotation and evalu-
ation, we employed ArmoRM-LLaMA-3-8B-v0.1
(Wang et al., 2024a) as our primary gold-standard
proxy model, ensuring consistency between train-
ing and evaluation preference distributions. To
investigate the influence of optimization methods
across different preference distributions, we addi-
tionally utilized GRM-LLaMA3-8B-rewardmodel-
ft (Yang et al., 2024) as a comparative proxy model
with a distinct preference distribution.

Datasets. We employed the following datasets
for training and evaluation:

(1) UltraFeedback (Cui et al., 2023): A large-
scale preference dataset comprising 64k prompts
and 256k responses. We performed preference op-
timization on the training split and utilized its vali-
dation set for in-distribution evaluation.

(2) HelpSteer2-Preference (Wang et al., 2024b):
A high-quality dataset annotated with preference
directions, strength scores, and textual justifica-
tions. Similarly, we conducted the evaluation on its
validation split.

(3) UniHypoBench: To address the limitation
of the existing evaluation sets (which typically pro-
vide less than 4 responses per prompt), we con-
structed the Unified Hypothesis Benchmark (Uni-
HypoBench), as detailed in Appendix A.1. Cu-
rated from RewardBench (Lambert et al., 2024), it
extends the evaluation scope with 2,985 prompts,
each containing more than 8 responses sampled



Model/Method

w/o Length Normalization

w/ Length Normalization

UniHypo HelpSteer2  UltraFeedback UniHypo HelpSteer2  UltraFeedback
RA PSC RA PSC RA PSC RA PSC RA PSC RA PSC
Alignment with ArmoRM-Llama3-8B-v0.1 (Same Preference Distribution)
LLaMA-3.2-3B-Instruct  54.64 0.152 46.79 -0.063 53.09 0.079 4822 -0.048 50.69 0.013 49.44 -0.017
+DPO 54.72  0.154 46.79 -0.063 53.17 0.081 4829 -0.046 5138 0.027 49.38 -0.016
+ORPO 5455 0.151 46.68 -0.065 53.12 0.080 48.19 -0.049 50.69 0.013 49.28 -0.018
+SimPO  54.61 0.152 46.68 -0.066 53.22 0.080 4821 -0.048 51.16 0.023 4931 -0.017
LLaMA-3-8B-Instruct 54.15 0.124 4736 -0.051 53.13 0.079 49.81 0.031 50.81 0.016 49.86 -0.011
+DPO 54.16 0.138 49.31 -0.013 64.62 0.368 47.66 -0.033 5576 0.112 59.87 0.251
+ORPO  52.67 0.084 4839 -0.031 63.28 0.341 4837 -0.029 5333 0.065 64.45 0.065
+SimPO  63.59 0.502 53.32 0.065 66.70 0419 7330 0.598 66.51 0.319 71.51 0.545
Alignment with GRM-Llama3-8B-rewardmodel-ft (Different Preference Distribution)
LLaMA-3.2-3B-Instruct  51.65  0.059 53.14 0.063 50.78 0.021 52.08 0.066 48.42 -0.031 51.16 0.030
+DPO 51.64 0.059 5291 0.058 50.77 0.021 52.08 0.066 48.65 -0.027 51.29 0.031
+ORPO  51.65 0.059 53.14 0.063 50.74 0.021 52.08 0.066 48.65 -0.027 51.21 0.032
+SimPO  51.65 0.059 53.14 0.063 50.84 0.022 52.08 0.066 48.19 -0.036 51.29 0.033
LLaMA-3-8B-Instruct ~ 51.68  0.056 52.58 0.051 49.92 0.008 52.67 0.076 4853 -0.029 50.13 0.013
+DPO 5129 0.049 54.48 0.089 50.54 0.014 51.78 0.054 47.52 -0.049 50.31 0.007
+ORPO  51.56 0.053 5247 0.049 50.10 0.009 5242 0.072 49.66 -0.007 50.01 0.007
+SimPO  49.50 -0.031 55.03 0.100 50.46 0.013 50.73 -0.008 48.98 -0.020 50.99 0.023

Table 1: Experimental results on different preference optimization methods. RA and PSC denote ranking accuracy
and preference strength correlation, respectively. The best results for each group are in bold. The second-best

results for each group are with underline.

from diverse commercial and open-source LLMs,
enabling more comprehensive analysis.

Models. We evaluated our approach using three
models, including LLaMA-3.2-3B-Instruct and
LLaMA-3-8B-Instruct. For the LLaMA-3.2-3B-
Instruct model base, we conducted preference
optimizations. Concurrently, the LLaMA-3-8B-
Instruct models were evaluated using the pre-
optimized weights released by Meng et al. (2024).

Training Settings. We conducted preference op-
timization using an effective batch size of 128
and a maximum sequence length of 1024. The
learning rate follows a cosine decay schedule with
10% warmup steps over one training epoch. For
method-specific hyperparameters, we performed a
grid search to determine the optimal configuration.

4.2 Main Results

We conduct an evaluation of diverse preference
learning methods using our proposed framework.
To ensure the preference consistency, we maintain
identical rating proxy models between training and
evaluation phases, thereby guaranteeing that all
compared methods learn from and are assessed
against the same preference distribution. Addi-
tionally, we establish the original instruction-tuned
models as baseline comparisons, which enables a

quantitative assessment of the performance gains
achieved through explicit preference learning. We
present the main results in Table 1. The results
demonstrate:

Preference Optimization Effectively Captures
the Preference Information. Our results show
that preference optimization methods generally
outperform baselines in both ranking accuracy
and preference strength correlation, confirming
their effectiveness in capturing preference distri-
butions. The LLaMA-3-8B-Instruct model bene-
fits most significantly, with SimPO achieving over
10% improvement across all datasets. However,
even SimPO’s best performance (66.70% on Ultra-
Feedback) remains suboptimal, aligning with Chen
et al.’s observation that current methods still have
substantial room for improvement.

Preference Optimization Learns Model-Specific
Preference Patterns. Our evaluation reveals that
while preference optimization improves alignment
with the training proxy model, these gains often
fail to generalize to other proxy models with differ-
ent distributions. In some cases, we even observe
performance degradation when evaluating against
alternative proxies. These findings demonstrate
that current methods primarily learn model-specific
judging patterns rather than general preferences.
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Figure 2: Upset plots of preference intersections on the OOD test set (UniHypo). The upper bar chart displays
the amount of preference overlaps between different methods, while the lower connection matrix identifies the
constituent subsets of each intersection. Full results can be found in Figure 5.

This specificity poses a fundamental challenge for
the LLM-based evaluation, as different evaluators
may employ conflicting preference criteria, com-
plicating the assessment of alignment quality.

Length Normalization is Potential in Preference
Modeling. Our analysis indicates that length
normalization generally impairs ranking accu-
racy. However, the normalized SimPO version of
LLaMA-3-8B-Instruct achieves a 73.3% accuracy,
surpassing the performance of unnormalized mod-
els. This demonstrates that length-aware objectives
can learn better preference representations, suggest-
ing their value for future methods.

Capturing Subtle Preference Correlation is
Challenging. Current alignment methods exhibit
strong ranking accuracy but exhibit a weak correla-
tion with preference strength, typically below 0.3.
This result highlights the challenges in quantifying
preference strength. However, SimPO stands out as
an exception, achieving a preference strength corre-
lation of 0.419 on UltraFeedback (up from 0.079),
demonstrating that improved strength modeling is
achievable.

4.3 Analysis

Visualization of Preference Intersections. We
employ upset plots (Lex et al., 2014) to analyze
preference intersections across hypothesis spaces
(Figure 2), presenting both in-distribution (a) and
out-of-distribution (b) results. For clarity, we focus
on the plot’s forepart, where solid-connected points
mark shared preference tendencies across response
pairs. Our key observations of the in-distribution
test set include: (1) The largest intersection demon-
strates fundamental preference knowledge shared

by all optimization methods and the proxy model.
(2) The substantial second intersection indicates
significant unlearned preferences. (3) The fourth
intersection shows that methods successfully cap-
ture novel preferences from the proxy model with
notable behavioral deviation.

In parallel, we conduct the identical visualization
on the out-of-distribution test set. Apart from the
observations in Figure 2 (a), we find that: (1) Un-
learned preferences increase proportionally, reveal-
ing domain-shift effects. (2) While most methods
degrade, SimPO maintains the largest intersection,
demonstrating superior generalization. (3) The
overall performance decline underscores the need
for more robust preference learning paradigms.
These visual analyses provide intuitive mechanistic
insights that corroborate our quantitative findings
in Section 4.2.

Alignment in LLM’s Internal Preference Dis-
tribution. To gain deeper insights into the align-
ment effects, we analyze the internal preference
distribution using UniHypoBench. We sample re-
sponses from aligned LLaMA-3-8B-Instruct-based
models (with the SFT base model as baseline) at
a temperature of 0.75 to ensure sufficient diver-
sity. The generation likelihoods are then extracted
to compute both ranking accuracy and preference
strength correlation, as listed in Table 2. Surpris-
ingly, the results reveal that performance shows
no significant improvement even when evaluated
on the model’s own preference distribution. More
notably, we observe performance degradation in
some cases, particularly for the SimPO-aligned
model. We assume that this phenomenon probably
stems from the scarcity of the diversity of these
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Figure 3: Violin plots comparing generation likelihood distributions across different alignment methods (including
the SFT base model as baseline). The plot width represents probability density, with the central white line marking
the median value for each distribution. To enhance the readability of the chart, we employ length normalization.

Metric/Method SFT DPO ORPO SimPO
RA w/o LN 5593 5599 55.01 61.50
PSC w/o LN 0.164 0.153 0.123 0.301
RA w/LN 54.12 5149 5474 59.70
PSC w/ LN 0.100 0.044 0.108 0.252

Table 2: Experimental results of LLaMA-3-8B-Instruct-
based models’ internal preference distribution. The best
results for each group are in bold. LN denotes length
normalization.

sampled hypotheses. This finding also notes that
distinguishing the subtle difference between similar
hypotheses is a challenge for further development
of the preference learning method.

To gain deeper insight into the mechanisms of
preference learning, we conduct a density-based
analysis of generation likelihood distributions. Fig-
ure 3 presents violin plots of these distributions
across different alignment approaches, with the
density curves estimated using kernel density meth-
ods. As shown in Figure 3 (a), which visualizes
the internal preference distributions, we observe
remarkably consistent patterns across all optimiza-
tion methods. The finding indicates that these op-
timization methods probably do not vary much in
their internal preference distributions.

Our analysis of external preference distributions
in Figure 3 (b) reveals distinct patterns that contrast
with the internal consistency observed previously.
The distributions exhibit a clear dichotomy: while
SFT and ORPO maintain near-uniform distribu-
tions, DPO and SimPO obtain spindle-shaped dis-
tributions, reflecting their enhanced capability to

suppress negative samples through preference opti-
mization. This successful suppression of undesir-
able outputs represents a significant advancement
in alignment techniques.

However, closer examination reveals a critical
limitation - none of the methods achieve the theoret-
ically optimal bimodal distribution that would fully
separate preferred and rejected responses. This
persistent unimodality suggests that while current
approaches can effectively downweight negative
samples, they struggle to develop truly discrimi-
native representations that clearly partition the hy-
pothesis space. The gap between empirical results
and theoretical expectations points to fundamen-
tal constraints in existing optimization frameworks,
which appear to learn primarily through global like-
lihood adjustment rather than developing more so-
phisticated, robust representations of preference
structure.

5 Conclusion

In this paper, we have explored evaluation and anal-
ysis methods for preference learning via preference-
aware evaluation. Specifically, we first developed
a hypothesis-based analysis framework contain-
ing two complementary metrics, HEAL. Based on
HEAL, we then evaluate how effectively the LLMs
capture preferences through preference learning.
Furthermore, we construct UniHypoBench to sup-
port our evaluation pipeline. Extensive experiments
demonstrate the effectiveness of our evaluation and
analysis methods.



Limitations

While our proposed HEAL framework provides a
novel hypothesis-based approach for preference-
aware analysis, several limitations require dis-
cussion. First, our experimental validation,
though demonstrating practical utility for resource-
constrained scenarios, was conducted on a limited
set of models, with LLaMA-3-8B-Instruct serv-
ing as the primary exemplar due to its consistently
strong performance. Second, while ranking ac-
curacy and preference strength correlation prove
effective as evaluation metrics, future work may
identify more sophisticated measures that better
capture the nuances of preference learning. Finally,
our current analysis does not examine the train-
ing dynamics of these metrics during optimization,
leaving open questions about their evolution and re-
lationship to model convergence. These limitations
point to valuable directions for future research, par-
ticularly in developing more comprehensive analy-
sis approaches and investigating the inherent mech-
anism of preference alignment.

Ethics Statement

This work does not need ethical considerations. Al-
though in this work we construct data as described
in Appendix A.1, this input is all from open-source
data, and the output is also obtained based on open-
source or commercial models.
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Name Commercial

Claude-3-Haiku

GPT-40

DeepSeek-V2-Lite
Qwen2.5-32B

Qwen-14B
Mixtral-8x7B-Instruct-v0.1
LLaMA-3-8B-Instruct
ChatGLM3-6B

Open-source

™ X X X X X AN
CUC RN %

Table 3: Models selected for UniHypoBench construc-
tion.

A Implementation Details

A.1 Construction of UniHypoBench

We construct UniHypoBench based on the Reward-
Bench instruction set, leveraging its comprehensive
coverage of diverse task types. Our benchmark con-
struction process begins by collecting hypothesis
samples from multiple powerful commercial and
open-source LLMs, as specified in Table 3.

To enhance the response diversity while main-
taining quality, we configured the sampling param-
eters with a temperature setting of 0.75 and top-p
value of 0.95, with all responses truncated at 768
tokens. Following generation, we implemented a
filtering process to remove low-quality and empty
responses, thereby ensuring the benchmark’s relia-
bility and consistency.

A.2 Experimental Setups

Our implementation leverages LLaMA-Factory
(Zheng et al., 2024) for model training and
vLLM (Kwon et al., 2023) for efficient inference.
All experiments were conducted on 2xNVIDIA
3090 GPUs, with additional optimization through
DeepSpeed (Rajbhandari et al., 2020) ZeRO-2 to
minimize computational overhead and accelerate
training. Following established practices in prefer-
ence optimization (Meng et al., 2024), we maintain
an effective batch size of 128 and employed a co-
sine learning rate schedule with 10% warmup steps.
To balance computational efficiency with model
performance, we set the training sequence length
to 1024 tokens.

Before final model training, we performed ex-
tensive hyperparameter tuning to identify optimal
configurations for each method. We first search the
learning rates invidually in the range of [3e-7, 7e-7,
le-6]. Then we search method-specific parameters
whose search ranges are detailed in Table 4.
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B More Analysis

Preference Learning Achieves Limited Improve-
ments with Confident LLMs. Building upon
the main results presented in Table 1, we observe
that preference optimization yields limited im-
provement for LLaMA-3.2-3B-Instruct, with both
ranking accuracy and preference strength showing
marginal gains or even performance degradation.
This unexpected outcome suggests potential over-
fitting to the original training corpus during earlier
optimization stages. More fundamentally, these
findings reveal an important relationship between
a base model’s core capabilities and its capacity
for effective preference learning - implying that
successful alignment may be constrained by the
underlying model’s basic capabilities before fine-
tuning.

More Results of the Main Experiment To fur-
ther validate our findings, we extend the evaluation
to Mistral-7B-Instruct, a widely adopted founda-
tion model in contemporary LLM research, utiliz-
ing the optimized weights provided by Meng et al.
(2024). As evidenced in Table 5, the experimental
outcomes exhibit some divergence from our pri-
mary results. We hypothesize that these discrepan-
cies stem from fundamental differences in both the
base model architecture and the composition of the
training corpus, highlighting the model-dependent
nature of preference optimization efficacy.

C More Upset Plots

This section presents the complete upset plot vi-
sualizations in Figure 4, along with their length-
normalized counterparts in Figure 5. The observed
patterns remain consistent with our preliminary
analysis in Figure 2, further validating our earlier
conclusions regarding preference alignment behav-
iors. Notably, we find that the length normalization
has smoothed the distribution of the intersections,
which could be valuable for further study.

D Joint Distribution of Reward Scores
and Generation Likelihoods

Figure 6 presents the joint distribution of reward
scores and generation likelihoods, revealing sev-
eral key insights about preference learning dynam-
ics. Consistent with our previous observations, all
examined methods demonstrate the capability to
effectively suppress likelihoods for undesired re-
sponses, confirming this as a fundamental mecha-



Method Objective Hyperparameter

DPO  —logo (ﬁ log Zeltel), _ g)0g Toluile) ) 3 € [0.01,0.05,0.1]

Tref yw\x) Wlef(ylkc)

(Yw|z) (yilz)
ORPO log po(ywlr) — Alogo <log 13;921(1/5\90) log 1Pi)9?/(lyﬁx)> ’

A €[0.1,0.5,1.0]
where pg(y|z) = exp (ﬁ log W@(Q\@)

- Cowe (£ s ~ 5 € [2.0,2.5,3.0,5.0,10.0],
SimPO. —logo (g logm(yule) — i log mo(ula) —7) v €10.3,05,1.0]

Table 4: Optimization objectives and hyperparameter search ranges of applied preference learning methods

w/o Length Normalization w/ Length Normalization
UniHypo HelpSteer2  UltraFeedback UniHypo HelpSteer2  UltraFeedback
RA PSC RA PSC RA PSC RA PSC RA PSC RA PSC
Alignment with ArmoRM-Llama3-8B-v0.1 (Different Preference Distribution)

Mistral-7B-Instruct 62.30 0356 52.52 0.049 54.36 0.117 54.40 0.135 55.17 0.100 50.17 0.009
+DPO 65.99 0.489 53.79 0.074 56.27 0.165 5845 0.202 57.01 0.136 51.78 0.052
+ORPO  63.66 0.421 53.21 0.063 55.43 0.143 57.17 0.180 57.80 0.152 52.08 0.049
+SimPO  63.00 0.412 5276 0.054 56.22 0.162 57.64 0.188 58.53 0.165 52.53 0.070

Model/Method

Table 5: Experimental results on different preference optimization methods. The best results for each group are in
bold. The second-best results for each group are with underline.

nism of preference alignment. However, the distri-
butions exhibit notable differences: while SimPO
shows an unintended reduction in likelihoods for
preferred responses, DPO achieves superior sepa-
ration through what appears to be a linear reorga-
nization of the probability space. This distinctive
pattern suggests DPO’s particularly effective trans-
formation of the model’s internal representation
space for preference modeling. The comparative
performance highlights DPO’s ongoing potential
for preference alignment tasks and underscores the
value of further investigating its underlying opti-
mization dynamics.
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Figure 4: Upset plots of generation likelihoods without length normalization.
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Figure 6: Joint plots of generation likelihoods and reward scores.
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