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Abstract
Vision Language Models (VLMs) are impressive
at visual question answering and image caption-
ing. But they underperform on multi-step visual
reasoning—even compared to LLMs on the same
tasks presented in text form—giving rise to per-
ceptions of modality imbalance or brittleness. To-
wards a systematic study of such issues, we intro-
duce a synthetic framework for assessing the abil-
ity of VLMs to perform algorithmic visual reason-
ing, comprising three tasks: Table Readout, Grid
Navigation, and Visual Analogy. Each has two lev-
els of difficulty, SIMPLE and HARD, and even the
SIMPLE versions are difficult for frontier VLMs.
We propose strategies for training on the SIM-
PLE version of tasks that improve performance
on the corresponding HARD task, i.e., simple-to-
hard (S2H) generalization. This controlled setup,
where each task also has an equivalent text-only
version, allows a quantification of the modality
imbalance and how it is impacted by training strat-
egy. We show that 1) explicit image-to-text con-
version is important in promoting S2H general-
ization on images, by transferring reasoning from
text; 2) conversion can be internalized at test time.
We also report results of mechanistic study of
this phenomenon. We identify measures of gradi-
ent alignment that can identify training strategies
that promote better S2H generalization. Ablations
highlight the importance of chain-of-thought 1.

1. Introduction
Many Vision Language Models (VLMs) (e.g., LLaVA-
series (Liu et al., 2023c;b; 2024a)) fuse an LLM with visual
encoders which allows them to harness the impressive
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1Code is available at VLM-S2H PLI codebase

reasoning abilities of pre-trained LLMs towards solving
visual reasoning tasks (Monajatipoor et al., 2023; Carbune
et al., 2024; Zhang et al., 2024a). However, VLMs are
usually felt to exhibit more brittle reasoning than the
underlying LLM, and recent works have tried to understand
this as a modality imbalance problem (Peng et al., 2022;
Huang et al., 2022; Fan et al., 2023; Wei et al., 2024). For
example, presenting the task in an image form can lead to
a lower performance than when the same task is presented
in a text form (Zhang et al., 2023; 2024c; Wang et al.,
2024b; Zhang et al., 2024d; Fu et al., 2024). Mitigating this
modality imbalance is still an open problem.
Here, we introduce a concrete methodology to precisely
study such issues. First, we design visual tasks where
the image information relevant to the task can also be
represented as text (e.g., LaTeX code). This allows a
direct comparison of the effect of training strategies in
individual modalities and combinations. Second, to allow
a clear comparison of different training strategies, we
measure the brittleness of learning with simple-to-hard
(S2H) generalization, where models are trained on SIMPLE
examples of a task and evaluated on HARD examples.
We create a set of synthetic tasks2 that involve algorithmic
visual reasoning (Ghosal et al., 2024; Cherian et al., 2023;
Zhang et al., 2024b): Table Readout (reading out table en-
tries in an order specified visually), Grid Navigation (finding
valid paths through grid-like structures while avoiding obsta-
cles), and Visual Analogy (identifying logical patterns across
sets of abstract visual examples and applying analogical rea-
soning). Each task requires many reasoning steps while
dynamically shifting attention over a sequence of small re-
gions in the image. SIMPLE and HARD examples differ in
the length and complexity of the necessary reasoning steps.
The SIMPLE tasks are difficult for current frontier VLMs
such as GPT-4o and Claude-3.5 Sonnet (Achiam et al.,
2023; Anthropic, 2024) (Appendix I.1). Since we work with
smaller open-parameter models, our methodology consists
of using supervised training to precisely inject capability at
a task in one modality and then study how variations in train-
ing affect the gap in S2H generalization between modalities.

2Creating such tasks was more nontrivial than expected, for
reasons described in Appendix C.6.
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Figure 1. (Left) Example Data Point for Consecutive Table Readout. Input table can be provided as an image or LaTeX code. The task
is to sequentially read numbers from a start cell to an end cell in row major order. (Right) Illustration of Key Concepts using examples
from Consecutive Table Readout. We observe that current models can S2H generalize on text – when trained to read short sequences from
small LaTeX-formatted tables, the models can read longer paths from larger tables, also provided in LaTeX code. However, they fail to
length-generalize on images. To address the generalization gap and imbalanced learning of different modalities, our goal is to transfer the
generalization behavior from text to image modality.

Since the tasks are difficult for frontier VLMs, we expect
the takeaways from our study to be of broader interest.
Illustrative example of Consecutive Table Readout: Given
a table of numbers and indices of two table cells (i, j)
and (k, l), the model needs to output every table entry
between these two cells in a row-major order. The input
table can be provided as an image or as text (i.e., LaTeX
code), allowing the kind of study sketched in Figure 1.
In the SIMPLE task, the length of the output sequence is
5 to 10, whereas in the HARD task, it can be as long as
30. Therefore, S2H generalization here is a type of length
generalization, a well-studied concept in LLMs (Zhou et al.,
2024a). SFT on 8× 104 SIMPLE-text examples yields 80%
accuracy on HARD-text examples. However, training on
the SIMPLE-image examples results in only 20% accuracy
on the HARD-image examples. The 60%p difference is a
measure of the modality gap or modality imbalance.

1.1. Paper Overview
We study training strategies that incorporate various types
of supervision: text-based, image-based, and combinations
of the two (Section 2.4). We find that the most reliable way
to alleviate the gap is to teach the model image reasoning
via text conversion — explicitly extracting information
from the image in text form before generating the solution
using CoT. Specifically, we find: (i) for tasks where the
model exhibits S2H generalization in the text modality,
training on image reasoning via text conversion greatly
helps to mitigate the gap (Section 3); (ii) for tasks where
the S2H generalization failed in both modalities, applying
the idea from (i) while also injecting reasoning capability
on the HARD task in the text modality leads to S2H gen-

eralization in the image modality (Section 4). The findings
in (ii) should be interpreted as suggesting that simple
image-to-text conversion could be a promising intervention
to reduce modality imbalance in future VLMs whose base
LLM does exhibit S2H generalization in the text modality.
A surprising finding is that even though explicitly training
on image-to-text conversion seems necessary for S2H
generalization, the final trained model can generate the
correct solution without explicitly extracting the image
content as text: the image-to-text conversion skill gets inter-
nalized! (This also greatly reduces the inference-time cost.)
Therefore, we try to understand the effectiveness of this key
intervention at the level of training gradients. We find that
gradients from SIMPLE-image reasoning examples can help
reduce loss on HARD-image inputs with the above interven-
tion (Section 5); this gradient alignment merits further study.
On tasks where we need to inject reasoning capability on
the HARD task, our findings about gradients inspired a more
effective two-phase training (Section 4.3). The first phase
teaches the model to do image reasoning via text conversion
on a few SIMPLE examples. We find that inclusion of this
phase substantially improves gradient alignment in the ear-
lier phases of training, when gradients have larger norms,
which allows for more effective S2H generalization on the
image modality. This finding is in accord with previous
empirical evidence that highlights the importance of visual-
language alignment in VLM training (Fan et al., 2024).
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Figure 2. Illustration of our synthetic tasks: Table Readout involves reading numbers along a specified path in a table. Grid Navigation
involves navigating a grid to collect objects while avoiding obstacles. Visual Analogy involves solving analogical reasoning queries using
two in-context examples. More details on Visual Analogy: For the example of Visual Analogy above, we only include one in-context
example for simplicity and provide annotations for clarity. In the first row, the first cell contains a rectangle, whereas the second and third
cells contain a circle and a rectangle. Therefore, the in-context example is consistent with applying the OR relation along the shape type
domain. The model then needs to identify the correct option that corresponds to applying the OR relation to the first two cells of the query
along some (potentially different) domain. See Appendix C for non-annotated example images that are provided to the model.

2. General Setup
2.1. Model
In line with Shi et al. (2025) that show the benefit of com-
bining multiple image encoders in VLMs, we trained Eagle-
X2-Llama3-8B, a variation of Eagle-X5 that uses Llama3-
8B-Instruct (Dubey et al., 2024) as the LLM backbone and
CLIP-448 (Radford et al., 2021) and ConvNeXt (Liu et al.,
2022) as visual encoders. Since the original paper found
only minor benefit beyond the two encoders, we do not use
all five visual encoders. See Appendix D for more details
on the training. In Appendix F, we replicate some of the
experiments on Qwen2.5-VL-3B-Instruct and 7B-Instruct
(Bai et al., 2025) and observe consistent results.

2.2. Tasks
We briefly describe the tasks that we consider and the SIM-
PLE and HARD setup of each task below (summarized in
Table 1; fully detailed in Appendix C).

• Table Readout: The model sequentially reads numbers
along a highlighted path in a table (given in either image
or its LaTeX code). SIMPLE examples consist of 1–4
linear segments in spiral or sinusoidal path patterns with
an average length of 12 (Figure 32). HARD examples
consist of > 4 linear segments, featuring longer and
arbitrary compositions of spiral or sinusoidal path
patterns with an average length of 35 (Figure 33).

• Consecutive Table Readout: This is a variant of Table
Readout, modified to make the reasoning simpler3.
The model sequentially reads numbers in a row major

3There is a fixed underlying rule for where the next cell should
be. The model doesn’t need to make a decision at each step.

order. The number of cells to read in SIMPLE and
HARD examples is respectively 5-10 and 25-30. Only
for this task, we additionally prepare a set of MEDIUM
difficulty level, where the number of cells to read is
15-20. Training on SIMPLE examples and evaluating on
MEDIUM examples can also measure S2H generalization.

• Grid Navigation: The model navigates in a 2D grid (given
in either image or its LaTeX code) from a designated
start cell to an end cell while collecting all specified
objects and avoiding obstacles. SIMPLE examples contain
1–2 objects and 1 type of obstacle (Figure 34). HARD
examples involve ≥ 2 distinct objects and ≥ 3 types
of obstacles (Figure 35). The task can be solved by
depth-first search (DFS). Recent works (Kim et al., 2024;
Wu et al., 2024a; Wang et al., 2024b) explored similar
synthetic tasks in LLM and VLM evaluation.

• Visual Analogy: The model reasons about attributes and
relations between geometric figures in a puzzle (given in
the image or text description). It analyzes two in-context
examples and applies an analogous reasoning to choose
1 from 4 options to complete the query. SIMPLE puzzles
have examples and query vary along the same attribute
following a common relation (Figure 36). HARD puzzles
have examples and query vary along different attributes
following a relation, and the combinations of attribute
and relation held-out from training (Figure 37). This task
is adapted from Barrett et al. (2018) and Hill et al. (2019).

• Pattern-Heldout Visual Analogy: This is a variant of
Visual Analogy, modified to make the reasoning simpler.
See Appendix G.2 for more details.
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2.3. Training Data
Formally, we let f : X → Z denote a reasoning task, where
X refers to a set of input data, further split into XSIMPLE and
XHARD, and Z refers to a set of answers. Each input x ∈ X
can be presented in text format x(t) or in image format x(i).
For each pair of data x and solution f(x), we also create
a chain-of-thought reasoning trace, which we denote by
CoT (x). We also define a prompt Pconvert that we op-
tionally prepend at the start of chain-of-thought to signal
explicit image-to-text conversion on image input4. Hence,
our training dataset is defined by input x (which can be
given either as x(t) or x(i)), chain-of-thought CoT (x), and
the final answer f(x).
For each task f , we use the same Python script and a fixed
template to generate all tuples (x(t), x(i), CoT (x), f(x)).

2.4. Types of Supervision
Our controlled experiments study the effect of the following
types of supervision on SIMPLE examples during training:

(a) Text supervision: given a text input x(t) ∈ XSIMPLE, we
train on the gold output containing a chain-of-thought
trace CoT (x) and the final answer f(x).

(b) Image supervision: given an image input x(i) ∈
XSIMPLE, we train on the gold output containing a chain-
of-thought trace CoT (x) and the final answer f(x).

(c) Image-via-Text supervision: given image input x(i) ∈
XSIMPLE, we train on the gold output containing the con-
version prompt Pconvert, converted text x(t), a chain-
of-thought trace CoT (x), and the final answer f(x).

(d) Text+Image supervision: we train on an equal mix of
Text and Image supervisions.

(e) Mix supervision: we train on an equal mix of Text,
Image, and Image-via-Text supervisions.

We train the model on one of the above supervision types
with auto-regressive loss (l) that takes in the model’s logits
on an input example and returns the average loss on a se-
lected set of tokens. For example, for Image supervision, we
will represent the input example as {x(i), CoT (x), f(x)},
and compute the loss on {CoT (x), f(x)}. During the evalu-
ation, we test whether the model predicts f(x) correctly for
a given input.
In Section 4, we will adapt some of the above supervision
strategies to also include HARD Text supervision5. The

4e.g., “Convert the provided image to text”
5Identical as Text except we use a HARD-text example, i.e.,

x(t) ∈ XHARD. We note the subtle difference between a “HARD-text
example,” which refers to the data x(t), and “HARD Text,” which
is a type of supervision with a prescribed (input, output) structure:

1 2 4 8 16
0.0

0.5

1.0

S2
H 

Ac
cu

ra
cy

MEDIUM

1 2 4 8 16

HARD

Number of Training Data (×104)

Text
Image

Mix (eval on HARD-text)
Mix (eval on HARD-image)

Figure 3. S2H Generalization of different supervisions for Con-
secutive Table Readout to MEDIUM (left) and HARD (right) ex-
amples. S2H generalization on text of Text (⋆) outperforms S2H
generalization on image of Image (▲), highlighting modality im-
balance. Mix (•) mitigates this imbalance.

adapted supervision strategies will have a + sign appended
to represent this additional component (e.g., Mix+ adapted
from Mix supervision).

3. Modality Imbalance in Consecutive Table
Readout

We use Consecutive Table Readout introduced in Section 1
and Section 2.2 to illustrate the S2H generalization gap
between different modalities and propose training strategies
needed to address it. We compare different types of
supervision by training on the prescribed SIMPLE examples
and measuring the improvements on the exact match
accuracy6 on two different difficulty levels: (a) MEDIUM:
reading 15–20 consecutive numbers and (b) HARD: 25–30
numbers (more challenging).
To demonstrate the modality imbalance, we compare
Text and Image supervision. Figure 3 shows that the S2H
generalization gap between the two is substantial. For
HARD, while Text supervision achieves 80% accuracy on
HARD-text examples, Image supervision achieves only 20%
on HARD-image examples.
In order to reduce the gap, we consider training strategies
that can leverage strong S2H generalization of Text super-
vision to help S2H generalization of Image supervision.
Two candidates are Text+Image supervision, which simply
mixes in Text and Image supervision, and Image-via-Text
supervision, which trains the model to first convert the
image input to its text format and then output the solution.
Text+Image supervision induces the model to implicitly
make the connection that the image and text formats are
equivalent, while Image-via-Text supervision makes this

{x(t), CoT (x), f(x)}. Similarly, a “HARD-image example” is
distinct from HARD Image.

6Correctness requires all generated numbers to be in the correct
order; see Appendix E.
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derperforms Mix and Image-via-Text supervision. Image-via-Text
supervision improves performance slightly but at the cost of longer
generation due to explicit image-to-text conversion at inference.

connection explicit. We compare the two training strategies
in Figure 4 and show that Image-via-Text supervision shows
much better performance on HARD-images.
However, Image-via-Text supervision has a key drawback:
trained models have significantly higher inference costs,
since the conversion of image to text before generating
the solution leads to 3× longer outputs, which limits
the real-world practicality. To address this, we propose
Mix supervision, which combines Image-via-Text and
Text+Image supervision. This teaches the model to align
the modalities, while also teaching it to not always rely on
the image-to-text conversion.

Mix can mitigate the modality imbalance by improv-
ing S2H generalization on images, while maintaining
inference cost.

Mix supervision retains most of the S2H generalization per-
formance of Image-via-Text supervision while reducing gen-
eration length by directly solving reasoning tasks from im-
ages (Figure 4). In Figure 3 (left), we show that it can almost
completely match the S2H generalization performance of
Text supervision for MEDIUM. On HARD level, even though
it does not fully close the gap between text and image in-
put (Figure 3, right), the gap can be further reduced with a
short text-only warm-up training. We discuss this further in
Section 6.

Consistent results across tasks: In Appendix G.2, we
show similar results on Pattern-Heldout Visual Analogy.

4. Full Study: Table Readout, Grid Navigation,
Visual Analogy

We now consider our three main tasks: Table Readout, Grid
Navigation, and Visual Analogy (Figure 2). These tasks
require the model to generalize to HARD examples by com-
posing reasoning patterns learned from SIMPLE training
examples, which has been known to be difficult for LLMs
(Yu et al., 2024; Zhao et al., 2024; Wu et al., 2024b; Huang
et al., 2023; Dziri et al., 2024).
These tasks are considered non S2H-generalizing because
the model struggles to generalize to HARD instances after
being trained on SIMPLE examples. In any of the three
settings, training with Text, Image, and Mix supervision
(which only include SIMPLE examples) cannot achieve more
than 25% S2H generalization on either text or image.
The failure to S2H-generalize in either input modality high-
lights the insufficient general reasoning capacity of existing
models on these tasks. We then adapt Mix supervision to
include HARD Text in training and measure whether the
improved performance on HARD-text can result in better
S2H generalization in the image modality.

4.1. Improved performance on HARD-text can transfer
to S2H generalization on image

Mix+ supervision, adapted from Mix from Section 3, trains
the model with an equal mix of HARD Text supervision and
SIMPLE Mix supervision.

Mix+ supervision shows significantly better image S2H
generalization, demonstrating an effective transfer of
reasoning capability from text to image.

With only 3× 104 data, Mix+ quickly improves the model’s
accuracy on HARD-text examples to ≥ 95%. At the same
time, Mix+ supervision leads to a significant improvement
on image S2H generalization — the model can achieve 64%,
92% and 35% S2H accuracy on HARD-images (respectively,
Table Readout, Grid Navigation, and Visual Analogy) after
being trained on 12 × 104 data (Figure 5). We conclude
that Mix+ supervision can effectively transfer the injected
reasoning on HARD-text to S2H generalization on images.

4.2. Dual capability of Mix+
Motivated by the observed benefit of Image-via-Text
supervision from Section 3, we also measure the image S2H
generalization of Image-via-Text+ supervision (an equal
mix of HARD Text supervision and SIMPLE Image-via-Text
supervision). On Table Readout and Visual Analogy, we
observe that Image-via-Text+ supervision outperforms Mix+
supervision in S2H performance on HARD-image by a
substantial (20-30%p) gap (Figure 6).
To close this gap, we prompt Mix+ models with an addi-
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Figure 6. Image-via-Text+ on Table Readout and Visual Analogy:
S2H Generalization on image (left) and Generation Length (right)
with 12× 104 training examples. Image-via-Text+ achieves good
performance but with higher inference cost. Mix+ matches the
performance of Image-via-Text+ by appending “Convert” to the
prompt (+Convert) or by adding an alignment phase (Align-Mix+).

tional inference time token, “Convert”, which appears
at the start of the Image-via-Text responses (Section 2.4).
We observe that the models respond with an accurate text
conversion before generating the reasoning tokens.

Mix+ models exhibit a dual capability in reasoning
with or without image-to-text conversion.

This is in line with the findings in Su et al. (2025) of the
dual learning capability of LLMs in short and long reason-
ing. Note that when explicitly prompting Mix+ models to
perform image reasoning via text conversion, this still in-
curs a similar cost in generation length as Image-via-Text+
(Figure 6). We discuss more in Appendix I.6.

4.3. Benefits of two-phase training
Given we previously observe that Image-via-Text supervi-
sion helps with S2H generalization, we add an initial phase
that trains the model with Text and Image-via-Text super-
vision on SIMPLE examples. The goal is to precondition
the model (via SIMPLE Image-via-Text supervision) to align
text and image reasoning on SIMPLE examples. Intuitively,
the preconditioning must be useful to generalize this
knowledge on HARD examples later when trained with Mix+
supervision. We call this two-phase approach Align-Mix+7.
Align - Mix+ significantly boosts S2H generalization on
image to an accuracy of 76%, 96%, and 56% on HARD-
images (respectively Table Readout, Grid Navigation, and
Visual Analogy) after training on 12× 104 data (Figure 5).
Align-Mix+ also maintains inference cost (Figure 6).

Align-Mix+ further improves image S2H generalization,
while maintaining inference cost.

5. A Study on Loss Dynamics and Gradient
Alignment for S2H generalization

Our findings show that S2H generalization can be trans-
ferred across modalities by simply mixing different types of
supervision. This happens without any explicit matching of
representations, which motivates us to explore training gra-
dients to obtain insights into how each strategy contributes
to S2H generalization. Here, we analyze the evaluation
loss behavior on HARD Image and HARD Image-via-Text8

examples during training. Similar gradient studies have

7For the main experiments, we use 1× 104 training examples
in the first phase. See Appendix I.3 for ablations on the number
and composition of data used in the alignment phase.

8Identical as Image and Image-via-Text except image input
x(i) ∈ XHARD.
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been proposed for measuring influence (Koh & Liang,
2017) of training data points on evaluation tasks (Park et al.,
2023; Xia et al., 2024; Engstrom et al., 2024).

5.1. A study on Consecutive Table Readout
In Section 3, we showed that Mix outperforms Text+Image
supervision in S2H generalization on images. The key
factor driving this improvement was the inclusion of
Image-via-Text supervision. Here, we show that Mix super-
vision reduces evaluation loss on HARD Image examples
(therefore improving evaluation accuracy) through a better
gradient signal. To do so, we measure the alignment
between gradients on SIMPLE and HARD Image examples.
Let l(I;S)(x) denote the loss on solution given image, i.e.,

l(I;S)(x) := l(fθ({x(i), y}), y)) (1)

where y contains both CoT (x) and the answer f(x). We
also denote the loss on solution given HARD image as

l
(H)
(I;S) := Ex∈XHARD

l(I;S)(x) (2)

If gSIMPLE and gHARD denote average gradients on
XSIMPLE and XHARD (i.e. Ex∈XSIMPLE

∇l(I;S)(x) and
Ex∈XHARD

∇l(I;S)(x) respectively)9, then we define the
gradient alignment score as 10:

⟨gSIMPLE,gHARD⟩/⟨gHARD,gHARD⟩ (3)

Intuitively, the gradient alignment score measures how
much the evaluation loss (on HARD Image) can be reduced
by taking gradient updates from the training data (SIMPLE
Image), relative to training on evaluation data directly (see
Theorem H.1 for a formal statement). In Figure 7, we
plot this score against the gradient norms on the training
data. A stronger gradient alignment at larger values of
gradient norm is preferred because the evaluation loss can
be reduced more when the training gradients are larger.

Mix achieves a high gradient alignment score, espe-
cially when gradient norms are large. This improved
alignment leads to a significant initial drop in the evalu-
ation loss (loss on solution given HARD-image), which
then continues to improve throughout training.

5.2. A study on Table Readout
In Section 4, we showed that Mix+ improves S2H general-
ization over Mix, while Align-Mix+ can further improve over
Mix+ with an additional alignment training. Here, we study
how each included component helps S2H generalization
across the training strategies.

9Following Park et al. (2023), we apply a random projection
on gradients to 4096 dimension for an efficient storage.

10In Appendix H.3, we give two alternative measures of gradient
alignment. Our takeaways remain the same.
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Figure 7. Analysis of gradients on Consecutive Table Read-
out: (Left) Average Gradient Norm on SIMPLE Image examples
(Ex∈XSIMPLE∥∇l(I;S)(x)∥2) vs. Gradient Alignment Score (Equa-
tion (3)) for different training checkpoints; (Right) Average Loss on
solution given HARD image (l(H)

(I;S)) during training. Larger gradi-
ents for Mix have higher alignment score compared to Text+Image
and Image, showing the importance of Image-via-Text supervision
for generalization.

Insights from the evaluation loss dynamics: We use the
following additional notations to report the average loss on
specific tokens on a HARD Image-via-Text example and un-
derstand which components help the model learn to reason
on HARD-images via text conversion, and how it translates
to a direct solution on HARD-image examples.

• HARD image-to-text conversion: Average loss on con-
verted text tokens given the image and the conversion
prompt 11):

l
(H)
(I#;T ) := Ex∈XHARD

l(fθ({x(i), Pconvert, x(t)}), x(t)).
(4)

• Solution given HARD image and text: Average loss on
solution tokens given the image, the conversion prompt,
and the converted text:

l
(H)
(I,#T ;S) := Ex∈XHARD

l(fθ({x(i), Pconvert, x(t), y}), y),
(5)

where y contains both CoT (x) and the answer f(x).

In Figure 8, we report the above losses for Mix, Mix+, and
Align -Mix+. Since the model does not see HARD-image
examples during training, these losses (along with l

(H)
(I;S))

evaluate the S2H generalization on image. We observe:

1. HARD image-to-text conversion loss (Equation (4)) of
Mix matches Mix+, showing that training on SIMPLE
Image-via-Text examples suffices to generalize the con-
version subtask to HARD-images.

2. There is a significant gap in the loss on solution given
HARD image and text (Equation (5)) between Mix and
Mix+. This implies that including HARD Text is neces-
sary to fully generalize reasoning to HARD-images.

11# indicates the additional conversion prompt Pconvert
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Figure 8. Analysis of evaluation losses on HARD examples on Table Readout: (Left) HARD image-to-text conversion loss (l(H)

(I#;T )

(Eq.4)); (Middle) loss on solution given HARD image and text (l(H)

(I,#T ;S) (Eq.5)); (Right) loss on solution given HARD image (l(H)

(I;S)

(Eq.2)). Mix matches Mix+ in l
(H)

(I#;T ), showing that training on SIMPLE Image-via-Text examples is sufficient for HARD image-to-text

conversion. Mix performs worse in l
(H)

(I,#T ;S), showing the need for HARD Text examples for generalization. Taking an intermediate
checkpoint of Mix and completing the training with Mix+ (Mix→Mix+) leads to evaluation loss values comparable to Mix+, suggesting
that HARD Text examples can be introduced later. Align-Mix+ starts with smaller l(H)

(I#;T ) and l
(H)

(I,#T ;S) losses, which helps the model

achieve lower l(H)

(I,#T ;S) loss than even Image-via-Text+, that reflects in lower l(H)

(I;S) loss.

As an ablation, we took an intermediate Mix checkpoint
and completed the training with Mix+ supervision12. This
transition resulted in negligible changes to HARD image-
to-text conversion loss (Equation (4)), while loss on solu-
tion given HARD image and text (Equation (5)) and loss
on solution given HARD-image (Equation (2)) decreased
significantly, approaching the values for Mix+.

3. Losses on HARD Image-via-Text examples start signifi-
cantly lower for Align-Mix+ after the alignment phase.
This shows that training on SIMPLE Image-via-Text ex-
amples can return a favorable starting point, even if they
aren’t sufficient for generalization. It then achieves a
better loss on solution given HARD image and text (Equa-
tion (5)) in the end, which also translates to an improved
loss on solution given HARD image (Equation (2)).

Insights from the gradient alignment score: We can
further quantify the differences in training strategies with
the gradient alignment score (Equation (3)) between SIMPLE
and HARD Image examples (Figure 9). Intuitively, a higher
gradient alignment at each step should accumulate to a better
generalization on HARD-images. We observe:

1. Mix exhibits lower gradient alignment compared to Mix+.
Training solely on SIMPLE examples fails to provide
gradients aligned to HARD Image. Including HARD Text
examples significantly improves gradient alignment.

2. On the other hand, Align-Mix+ has higher gradient align-
ment than Mix+ in earlier training steps, when training
gradient norms are large. We give a detailed analysis in
Figure 17 in Appendix H.

12We preserved the optimizer states and learning rate schedule.
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Figure 9. Analysis of gradients on Table Readout: Average Gra-
dient Norm on SIMPLE Image examples (Ex∈XSIMPLE∥∇l(I;S)(x)∥2)
vs. Gradient Alignment Score for different training checkpoints.
Larger gradients for Align-Mix+ have higher gradient alignment
scores. Mix+ has better gradient alignment scores than Mix.

6. Further Ablations
We perform several ablation studies to identify critical
training components that underlie our findings. We push
all the details and discussions to the appendix.

Task interactions in multi-task training: We compare
Mix, Mix+ and Align-Mix+ with an equal mix of 3 tasks in
Section 4. We observe that multi-task training significantly
boosts performance on Table Readout and Grid Navigation
but hurts on Visual Analogy, which shows the effect of task
interactions in our strategies. See Appendix I.8.

Transferring reasoning from image to text: We also
experiment with including HARD Image supervision in train-
ing and evaluating on HARD-text input, which gives much
stronger results (Table 8 in Appendix G.4),
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Text warm-up pretraining: We add a text warm-up pre-
training (TW) phase before the training of VLM to simulate
the effect of a stronger LLM backbone. This pretraining
phase completely solves the modality imbalance or further
boosts performance of Align-Mix+. See Appendix G.5.

Importance of chain-of-thought: Completely removing
or progressively internalizing CoT (Deng et al., 2024) fails
to achieve image S2H generalization, suggesting that CoT
is crucial in our strategies. See Appendix I.7.

7. Discussion, Limitations and Future work
We explore the modality imbalance in VLMs by measuring
S2H generalization. We show that on tasks where VLMs
can reliably show generalization on text input after
fine-tuning, Mix supervision can induce a similar level
of generalization on image input. We then propose 3
algorithmic tasks, where models trained on SIMPLE
examples fail to generalize to HARD examples in either
modality. Mixing HARD Text examples in training can help
the model generalize on HARD-image input, revealing S2H
generalization transfer capabilities of these models.
Related Works: Current VLM benchmarks are often
solvable without the visual input. To remove such bias, we
designed controllable tasks and provided a framework (S2H
generalization) to quantify and mitigate modality imbalance.
While S2H generalization has been extensively studied for
LLMs, similar investigations remain scarce for VLMs.
Prior strategies to address modality imbalance and cross-
modal transfer often rely on matching representations or
optimization techniques. However, through gradient align-
ment studies, we demonstrate that auto-regressive training
effectively aligns reasoning across modalities.
For a more detailed discussion, see Appendix B.
Utility to real-world benchmarks: Extending our findings
to real-world scenarios is also left for future work. It will
require real-world scenarios with precise gradation of
SIMPLE and HARD examples with respect to underlying
abstract concepts. Our work suggests that the brittleness
of VLMs could be mitigated by training them to create very
detailed descriptions of the scene (and this capability could
be internalized for faster inference).
We note that training even on our synthetically created
datasets seems useful for improving the performance of
VLMs in real-world settings. Specifically, including our
synthetic datasets during pretraining of VLMs yielded
significant improvements across different benchmarks
(Table 9 in Appendix G.6). For example, including SIMPLE
and HARD Image supervision examples from all synthetic
datasets can improve performance on MMMU (Yue et al.,
2024) by at least 3%p. Similarly, on a chart dataset (Wang
et al., 2024c), including our synthetic datasets can improve

performance by 5.1%p on descriptive questions. Therefore,
our synthetic datasets involve useful skills that can also
help improve VLMs on real-world benchmarks.
Limitations and possible future directions: We believe
Mix or Mix+ may not be the optimal approach to improve
image generalization on tasks where the model exhibits
S2H generalization in the text modality. Curriculum-based
strategies (Xie et al., 2024; Mindermann et al., 2022) that
dynamically adjust the data mixture could yield better
results. However, our goal is to emphasize the HARD
generalization gap between text and image inputs, which
can be bridged by transferring learning from the dominant
modality (text) to the weaker one (image). Therefore,
we focus on the effectiveness of our training strategies in
transferring knowledge learned on text input to image input.
In the interest of crispness, we restricted the scope of
our study with a small set of prompts and a limited (and
synthetic) image distribution. But doing so allowed a
clearer and quantitative look at modality imbalance and
how it can be bridged.
Our results highlight that chain-of-thought (CoT) reasoning
can play an important role. However, even minor modi-
fications to CoT significantly affect the transferred S2H
generalization results on image inputs, and mitigating this
brittleness through robust training strategies beyond Mix+
is crucial. Future work could focus on mechanistic insights
into our trained models to design more generalizable
strategies targeting specific model components.
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A. Appendix Structure
The appendix provides omitted experimental details, additional empirical explorations, and theoretical statements, which we
outline below.

Related works: In Appendix B, we provide an overview of relevant lines of research in VLM benchmarks and evaluations,
modality imbalance, cross-modal transfer of generalization, and simple-to-hard generalization. We highlight the contributions
that differentiate our work from the similar ones.

Experimental details: We provide all details of our synthetic data generation in Appendix C. We present our data
generation algorithm for creating training data in Appendix C.1, details on Consecutive Table Readout, Table Readout,
Visual Analogy, and Grid Navigation in Appendices C.2 to C.5 respectively. We show examples from our training data for
each synthetic setting in Figures 32 to 37. We present details on training and evaluation in Appendices D and E respectively.

Consistent results on another model family and size: We replicate some experiments from the main paper with
Qwen2.5-VL-3B-Instruct and Qwen2.5-VL-7B-Instruct. We report the results in Appendix F.

Continued discussion from main paper: We continue the discussion in the main paper in Appendix G. We present
results on Consecutive Table Readout after normalizing the number of unique samples used across training strategies
(Appendix G.1), present results on Pattern-Heldout Visual Analogy — a S2H-generalizing version of Visual Analogy
(Appendix G.2), compare training strategies on non S2H-generalizing tasks by normalizing the total number of training
data used (Appendix G.3), discuss further on transferring reasoning from image to text modality (Appendix G.4), discuss
further on text warm-up pretraining (Appendix G.5), and report the utility of our created synthetic datasets for real-world
benchmarks (Appendix G.6).

Continued discussion on gradients: We continue our discussion on gradient alignment in Appendix H. We first show
that the gradient alignment score connects to the expected drop in evaluation loss with SGD on training gradients (Theo-
rem H.1). We then propose results on additional measures — gradient cosine similarity and Adam update alignment score
(Appendix H.3) — that better capture the Adam gradient updates used for optimization.

Ablation studies: We conduct extensive ablation studies to measure the effect of each experimental design decision in our
training strategies on non S2H-generalizing tasks and report the results in Appendix I. We report the performance on other
multimodal models on our synthetic data (Appendix I.1). We study design choices in Mix+ (Appendix I.2), design choices
in Align-Mix+ (Appendix I.3), design choices in text warm-up pretraining (Appendix I.4), the effect of the choice of a text
representation (Appendix I.5), the effect of text conversion (Appendix I.6), the role of chain-of-thought (Appendix I.7), the
effect of multi-task training (Appendix I.8), and the effect of repeated training examples (Appendix I.9).

Interpretability experiments: We further conduct interpretability experiments on our trained models. We use gradient
attribution to track the focus of the model on different image pixels during chain-of-thought generation (Appendix J). We
also report failure modes of models trained on our synthetic data when evaluated on HARD examples (Appendix K).
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B. Related Works
Benchmarks and evaluations for VLMs VLMs are evaluated on benchmarks such as visual question answering
(VQA) (Antol et al., 2015), image captioning (Chen et al., 2015), zero-shot image classification (Deng et al., 2009), and
compositional reasoning (Thrush et al., 2022; Yuksekgonul et al., 2023; Hsieh et al., 2024). However, these benchmarks
often suffer from language bias, allowing solutions to use shortcuts with minimal visual information (Agrawal et al., 2016;
Goyal et al., 2017; Zhang et al., 2024c). Although recent work (Rahmanzadehgervi et al., 2024; Wang et al., 2024b; Kil et al.,
2024) proposed new benchmarks that aim to evaluate the spatial understanding and reasoning of VLM, most evaluation tasks
are in the form of VQA questions that only require “single-hop” reasoning or relatively fewer reasoning steps. To create a
controlled setting with well-defined SIMPLE and HARD tasks, we focus on algorithmic visual reasoning tasks. These tasks
allow us to precisely control the number of steps in the step-by-step reasoning process and the level of dynamic interaction
between textual and visual inputs. Closely related works have explored graph-based algorithmic reasoning in LLMs (Taylor
et al., 2024; McLeish et al., 2024; Zhang et al., 2024f; Wang et al., 2024a; Sanford et al., 2024) but such studies remain
limited for VLMs.

Modality imbalance Studies have shown that models exhibit different learning capabilities and learning speed on
multimodal inputs (Wang et al., 2020; Nguyen et al., 2024). The imbalanced contribution of individual modality to the final
prediction can result in overreliance on a few dominant, optimized modalities, while underutilizing signals of the weak ones.
Peng et al. (2022) and Lin et al. (2024) attempt to rebalance the convergence speed of all modalities by modulating the
learning rate or gradients. Fan et al. (2023) propose a representative embedding to guide the slow-learning modality and
regularize the fast-learning one. Zhang et al. (2024e) propose an alternating unimodal training to minimize interference
between modalities. Despite their success in traditional multimodal joint training, it remains challenging to repeat the same
for adapter-based VLMs due to significant differences in architecture and training pipeline. Our work aims to address this
issue specifically for VLMs from the perspective of transferring the strong learning behaviors from the dominant modality
(text) to the weak one (image).

Generalization transfer between input modes Given the high cost of training VLMs from scratch, recent research
on adapter-based VLMs has been driven primarily by the idea of leveraging pretrained LLM backbones. The success of
this approach is built on the idea of cross-modal generalization, which enables the model to harness information from the
auxiliary modality (e.g. text) to improve unimodal task on the primary modality (e.g. image classification). This knowledge
transference has been exploited for both small-scale multimodal models (Socher et al., 2013; Liang et al., 2021; Tan &
Bansal, 2020) and more recent VLMs (Monajatipoor et al., 2023; Carbune et al., 2024; Zhang et al., 2024a). However,
existing works often require explicit alignment of the modality, such as learning unified representation using contrastive
learning (Xia et al., 2023), for models to transfer knowledge across modalities. The cost of curating a large, perfectly aligned
multimodal dataset to learn the modality alignment becomes expensive as the model size increases. In our work, we find
that transfer of generalization across input modes naturally emerges from auto-regressive training.

S2H generalization Recent studies have explored simple-to-hard generalization in LLMs, with a focus on length
generalization in transformers. These works evaluate models on tasks requiring longer computations than those seen during
training, using synthetic datasets like parity, Dyck-1 languages, decimal addition, structural recursion, and finite state
automata (Anil et al., 2022; Lee et al., 2024; Jelassi et al., 2023; Li & McClelland, 2023; Kazemnejad et al., 2024; Liu
et al., 2023a; Abbe et al., 2024; Bhattamishra et al., 2020; Zhou et al., 2024b; Fan et al., 2025). Zhou et al. (2024a) connect
length generalization to the RASP programming language (Weiss et al., 2021), offering a unified perspective. Sun et al.
(2024) recently propose easy-to-hard generalization to measure generalizable verification for math and code datasets. OOD
generalization beyond human supervision remains an important open question for the advancement of current AI models
(Burns et al., 2023).
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Table 1. Summary of the SIMPLE and HARD task setup for Table Readout, Grid Navigation, and Visual Analogy

Setting Attribute SIMPLE HARD

Table Readout

Mean Length 12 35
# Turns 1− 4 > 4

Pattern Spiral Composition of
/ Sinusoidal Spiral / Sinusoidal

Grid Navigation
# DFS steps [10, 25] [26, 60]

# Objects {1, 2} {2, 3, 4, 5}
# Obstacle type {1} {3, 4, 5}

Visual Analogy
Example Patterns Same Different

Query Pattern Seen Held-out

C. Details on Synthetic Tasks
C.1. Formal description of data generation
In Algorithm 1, we provide the pseudo-code for generating the training data mixture for the main experiments. Below we
provide more details in the setup.

C.1.1. WHEN TRAINING ONLY ON SIMPLE EXAMPLES

For Consecutive Table Readout and for any type of supervision among Text, Image, Text+Image, Image-via-Text, and Mix:

• For each unique data x ∈ X and for each type of supervision — Text, Image, and Image-via-Text, we choose whether
to include it in the training data, depending on whether these types of supervision are used for training (Section 2.4).
We denote the number of unique data x used from XSIMPLE as Nu

SIMPLE.

• We compare all training strategies with the total number of training data used, given by:

NSIMPLE = Number of epochs×Nu
SIMPLE × Number of types of supervision per input

For a fair comparison, we keep the number of unique data Nu
SIMPLE fixed across Text+Image, Image-via-Text, and Mix. Then

to match NSIMPLE, we set the number of epochs to 1.5 for Text+Image (50% samples are repeated 2×), 3 for Image-via-Text,
and 1 for Mix.
Note on Text and Image for Consecutive Table Readout: Since our result depends heavily on the success of Text and
the failure of Image in Consecutive Table Readout, we carefully tune the number of training epochs to achieve optimal
performance. We conduct ablations where instead of setting Nu

SIMPLE = NSIMPLE, we also try setting Nu
SIMPLE equal to NSIMPLE

2 or
NSIMPLE

3 (respectively, the number of epochs is set at 2, 3). The results presented in Figure 3 corresponds to Nu
SIMPLE = NSIMPLE

2

for Text and Nu
SIMPLE = NSIMPLE

3 for Image. We discuss further in Appendix G.1.

C.1.2. WHEN ALSO TRAINING ON HARD EXAMPLES

For Image-via-Text+ or Mix+ on non S2H-generalizing tasks:

• We set NHARD, the number of data from the HARD task, equal to NSIMPLE, the number of data from the SIMPLE task.

• We generate a mixture of NSIMPLE examples under Image-via-Text or Mix. We include NHARD instances of HARD Text.

C.1.3. REASONING ALIGNMENT (Align-) OR TEXT WARM-UP PRETRAINING ((TW))

When generating data for the reasoning alignment phase (Align-):

• We set N = 104 and include an equal number of SIMPLE Text and SIMPLE Image-via-Text examples.

When generating data for the text warm-up pretraining phase ((TW)):

• We set N = 104 and include an equal number of SIMPLE Text and HARD Text examples.

After training on (TW) and/or Align-, we continue with the main phase of supervision (e.g., Mix+ for Align-Mix+).

18



Generalizing from SIMPLE to HARD Visual Reasoning: Can We Mitigate Modality Imbalance in VLMs?

Algorithm 1 Data generation pipeline for main experiments
Require: Task f : X → Z , Dataset X = XSIMPLE ∪ XHARD, Number of data to generate N , Type of supervision s.

if s ∈ { Text, Image } then
Initialize the number of data per difficulty NSIMPLE = N , NHARD = 0 and the number of unique examples Nu

SIMPLE = NSIMPLE

else if s ∈ { Text+Image, Image-via-Text, Mix } then
Initialize the number of data per difficulty NSIMPLE = N , NHARD = 0 and the number of unique examples Nu

SIMPLE = NSIMPLE
3

else if s ∈ { Image-via-Text+, Mix+ } then
Initialize the number of data per difficulty NSIMPLE = N

2
, NHARD = N

2
and the number of unique examples Nu

SIMPLE = NSIMPLE
3

else if s ∈ { Align- } then
Initialize the number of data per difficulty NSIMPLE = N , NHARD = 0 and the number of unique examples Nu

SIMPLE = NSIMPLE
2

else if s ∈ { (TW) } then
Initialize the number of data per difficulty NSIMPLE = N

2
, NHARD = N

2
and the number of unique examples Nu

SIMPLE = NSIMPLE

end if
Initialize S = Φ.
for t = 1→ Nu

SIMPLE do
Sample x ∼ XSIMPLE.
If s ∈ { Text, Text+Image, Image-via-Text, Mix, Image-via-Text+, Mix+, Align-, (TW) }, then S ← S ∪ ({x(t), CoT (x), f(x)}).
If s ∈ { Image, Text+Image, Image-via-Text, Mix, Image-via-Text+, Mix+ }, then S ← S ∪ ({x(i), CoT (x), f(x)}).
If s ∈ { Image-via-Text, Mix, Image-via-Text+, Mix+, Align- }, then S ← S ∪ ({x(i), Pconvert, x(t), CoT (x), f(x)}).

end for
Determine number of epochs to repeat e = NSIMPLE

|S|
Randomly shuffle S and repeat it e times (i.e., take the first e · |S| elements from repeated copies of S)
for t = 1→ NHARD do

Sample x ∼ XHARD.
S ← S ∪ ({x(t), CoT (x), f(x)}).

end for
Randomly shuffle S and return S.

Figure 10. Pseudo-code for generating data mixture: For ablation studies, the algorithm might be slightly modified.

C.2. Consecutive Table Readout
Given a table with nr rows and nc columns, a start cell (rs, cs) and an end cell (re, ce), the model is tasked to read all
numbers between the start cell and end cell following the given rules.

• If rs < re, move left-to-right within each row:

(rs, cs), (rs, cs + 1), · · · , (rs, nc), (rs + 1, 1), (rs + 1, 2), · · · , (re, 1), (re, 2), · · · , (re, ce)

• If rs > re, move right-to-left within each row:

(rs, cs), (rs, cs − 1), · · · , (rs, 1), (rs − 1, nc), (rs − 1, nc − 1), · · · , (re, nc), (re, nc − 1), · · · , (re, ce)

• If rs = re, move from (rs, cs) to (re, ce).

See example images in Figure 1.

C.3. Table Readout
Given a table with nr rows and nc columns (where nr, nc ∈ [8, 12]), a start cell (rs, cs), an end cell (re, ce), and a path of
cells P connecting the two cells (without any loops), the task is to read the numbers on the path starting from the start cell
and ending at the end cell. Each path is continuous and is a concatenation of linear segments, where consecutive segments
are separated by 90 degree turns. On the SIMPLE task, each path contains 1 − 4 linear segments, following a spiral or
sinusoidal pattern, and has an average length of 12. On the HARD task, each path contains > 4 linear segments, following a
compositional spiral or sinusoidal pattern, and has an average length of 35. See example images in Figures 32 and 33 and an
example pseudo-code to create the spiral or sinusoidal patterns in Algorithms 2 and 3.
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Algorithm 2 Spiral Path Generation that changes directions
as right→down→left→up→right→ · · ·
Require: Table with nr rows and nc columns, start cell, k linear

segments
• Initial nseg = 0
• Initialize current-cell coordinates as start cell coordinates
• Initialize current-direction to “right”
• Initialize Path= Φ.
• Direction-Change = {“right” : “down”, “down” :
“left”, “left” : “up”, “up” : “right”}
• Coordinate-Update = {“right” : (0, 1), “down” :
(1, 0), “left” : (0,−1), “up” : (−1, 0)}
while nseg ̸= k do

• Add current cell to Path.
• Compute temporary-cell by adding coordinate update vector
for current-direction from Coordinate-Update to current-cell.
• If temporary-cell is out of bounds, update current-direction
using Direction-Change and increment nseg .
• Update current-cell by adding coordinate update vector for
current-direction from Coordinate-Update to current-cell.

end while
Return Path

Algorithm 3 Sinusoidal Path Generation that changes direc-
tions as right→down→left→up→right→ · · · , where down
and up movements contain only 2 cells
Require: Table with nr rows and nc columns, start cell, k linear

segments
• Initial nseg = 0
• Initialize current-cell coordinates as start cell coordinates
• Initialize current-direction to “right”
• Initialize Path= Φ.
• Direction-Change = {“right” : “left”, “left” : “right”}
• Coordinate-Update = {“right” : (0, 1), “left” : (0,−1)}
while nseg ̸= k do

• Add current cell to Path.
• Compute temporary-cell by adding coordinate update vector
for current-direction from Coordinate-Update to current-cell.
if temporary-cell is out of bounds then

• If nseg = k − 1, break
Loop twice
• Increment column coordinate by 1 in current-cell
• Add current-cell to Path.
• Update current-direction using Direction-Change
• Increment nseg by 2.

end if
• Update current-cell by adding coordinate update vector for
current-direction from Coordinate-Update to current-cell.

end while
• Return Path

Figure 11. Pseudo-code for generating spiral and sinusoidal paths on Table Readout: For simplicity, we present a single variant of
each pattern. By permuting the Direction-Change map, the presented variants can be modified to include other direction patterns.

C.4. Grid Navigation
Given a grid with nr rows and nc columns (where nr, nc ∈ [8, 12]), a start cell (rs, cs), an end cell (re, ce), and a set of
objects and obstacles placed at various positions within the grid, the task is to find a path from the start cell to the end cell
that collects all specified objects while avoiding all obstacles.
For each generated grid, we randomly select several objects from a set of 30 possibilities: heart, crown, flag, star, flower,
umbrella, plane, phone, spark, diamond, queen, hammer, club, gear, arrow, sun, bishop, note, coffee, anchor, cloud, pawn,
castle, horse, infinity, moon, null, approx, integral, product, and sum. Each chosen object is represented as an Unicode
character, as shown in Figure 12. Obstacles are chosen from the following five symbols: dot, cross, square, triangle, and
plus. The names and representations of all these symbols—both objects and obstacles—have been verified using GPT-4o.
The SIMPLE task requires the model to collect k ∈ [1, 2] objects spread across the grid, while avoiding a single kind of
obstacle. The HARD task requires the model to collect k ∈ [2, 5] objects spread across the grid, while avoiding a composition
of o ∈ [3, 5] obstacles. The SIMPLE task requires t ∈ [10, 25] DFS steps, while the HARD task requires t ∈ [25, 60] DFS
steps.
See example images in Figures 34 and 35.

C.5. Visual Analogy
We create a multimodal visual analogy dataset based on the Procedurally Generated Matrices (PGM) data proposed
in Barrett et al. (2018) and Hill et al. (2019). Each instance consists of 2 examples of three images, a query of two
images, and four answer options. Each instance has a latent logical relation r ∈ {XOR,OR,AND,Progression} that
will be applied to both the examples and the query. There are also three latent domains d1, d2, dquery (for each example
and the query, respectively), chosen from {line type, line color, shape type, shape color, shape size,
shape quantity, shape position}. For each example i, the value of the domain di in the third image follows from
applying the relation r to the values in the first two images. The task is to choose one of the four options so that there exists
a domain dquery where applying the relation r along dquery in the first two images of the query leads to the chosen option.
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❤︎ ♔ ⚑ ★ ✿ ☂
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Figure 12. Details on Grid Navigation: Unicode characters used for specifying each object.

Table 2. List of all possible attribute values for each domain in Visual Analogy:, We reproduce Hill et al. (2019) with slight
modifications. The diverse combination of the attribute values results in high complexity of this task, testing various both OOD and
compositional generalizability of the model to a great extent.

line type
{falling diagonal line, rising diagonal line, horizontal line, vertical line,

diamond lines, circular line, V-shape facing up, V-shape facing left
V-shape facing down, V-shape facing right}

line color {0 (black), 90 (dark grey), 135 (grey), 189 (light grey)}
shape type {circle, rectangle, triangle, pentagon, hexagon}
shape color {0 (black), 90 (dark grey), 135 (grey), 189 (light grey), 255 (white)}
shape size {20, 27, 34, 41}
shape quantity {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
shape position {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}

Note that following Hill et al. (2019), we exclude all spurious correlations of the examples and query such that they follow
exactly one pattern (d, r). Furthermore, we create three nontrivial confounding options such that each of them, when
combined with the query images, is consistent with exactly one pattern (doptioni , roptioni) where roptioni ̸= rquery.
We also reserve a held-out set of combinations S = {(d, r)} that does not appear in the training images. On the SIMPLE task,
d1 = d2 = dquery and the query pattern (dquery, rquery) is never chosen from the held-out set. On the HARD task, d1, d2, dquery
are distinct and both (di, ri) and (dquery, rquery) are always chosen from the held-out set S.
See example images in Figures 36 and 37 and the complete list of all possible attribute values in Table 2.

C.6. Issues during synthetic data creation
Here, we outline the primary issues that we faced while creating the synthetic datasets, which might be of value to the
general community.

C.6.1. Consecutive Table Readout, Table Readout

The primary issue that we faced during creation of these datasets were as follows:

• Resolution issues: For images, we found that representing numbers as their English names (e.g. 9 represented as NINE)
improved the OCR performance substantially. When represented as numerics, the model often confused between pairs
(7, 9), and (0, 8). These issues were largely mitigated by replacing numerics with English names.

• Color: The model’s S2H generalization can vary drastically depending on the color used to highlight the cells. On
HARD (15-20) images, the performance of the model trained with Image supervision can vary from 30% to 70%
depending on which color (e.g. purple or yellow) was used.

• CoT Trace: Our original CoT Trace simply outlined the numbers on the path, without any mention of the row number,
column number, row name, and column name of the cells in the highlighted path. This resulted in poor performance of
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the model when trained with images. We then switched to a more verbose CoT, where the model was provided with the
above details at each step of traversing the highlighted path, and the model’s performance substantially improved.

For Consecutive Table Readout, we find that the verbose CoT trace shows S2H generalization, and not the final
solution that the model reports. Hence, we report our evaluation performance for Consecutive Table Readout on the CoT
trace.

C.6.2. Grid Navigation

The major issue that we faced in Grid Navigation was the design of chain-of-thought reasoning steps to represent the Depth
First Search trace. At multiple points, we found that current VLMs are fragile to read image inputs, and our CoT trace
needed to be very explicit to train the model effectively on SIMPLE examples.

An initial version of Grid Navigation: In our first version, we designed an extremely simple dataset, where the grids only
had a source cell, a destination cell, and a few cells marked by red color that represented obstacles.

• Models failed to train on image-input without verbose details in CoT: Our initial CoT would only provide the
following at each DFS step: ”[current cell]: [proposed next action]” without iterating through all invalid actions
considered before proposing this action. e.g., a 3-step DFS step would look as follows:

– (1, 1): right
– (1, 2): down
– (2, 2): backtrack

where we don’t explain why we need to ”backtrack” at (2, 2). This made the model learn the following:

1. answer formatting
2. knowing how to retrieve the current location (row, col index) and the destination location
3. knowing which action is preferred (the one that minimizes the distance towards destination)

but the model never picked up on why we sometimes backtrack or sometimes take an action that is not the most
preferred. At generation, it would ignore all obstacles and try to take the most preferred action.

On the other hand, we observed that the model could still recognize the reasoning for “backtracking” on text
input and could get 100% accuracy on SIMPLE text for Text supervision, and also 100% accuracy on SIMPLE
images for Mix supervision. Thus, for cases where the model couldn’t train with image-input but could train with text
input, Mix was useful to train the model even for improving accuracy on in-domain examples. However, this setting
was slightly different from our S2H generalization view, and so we decided to make the CoT more verbose.

• In later attempts, we switched to a more verbose CoT: We iterate through all possible actions at each state, giving
reasons why that action is valid / invalid. e.g. a 3-step DFS trace that starts from cell (1, 1) will look as follows

– Current cell: (1, 1): right would lead to (1, 2) which is available and not visited yet, so we can move right.
– Current cell: (1, 2): down would lead to (2, 2) which is available and not visited yet, so we can move down
– Current cell: (2, 2): right would lead to (2, 3) but it has an obstacle; down would lead to (3, 2) but it has an

obstacle; left would lead to (2, 1) but it has an obstacle; we have no more action left, so backtrack

The model now gets almost perfect S2H generalization on both text / image no matter which supervision we give. So
we couldn’t really compare the performance of different types of supervision. This was because once the model learns
how to iterate through different actions and determine its validity, length generalization was trivial.

Thus, we switched to our current version of Grid Navigation, where the task additionally involved spatial reasoning of
different combinations of objects and obstacles spread across the grid.

C.6.3. Visual Analogy

Here, the main challenge is to recreate the Procedurally Generated Matrices (PGM) dataset first introduced in Hill et al. (2019)
and Barrett et al. (2018), as the data generation code is not publicly available. Therefore, we try our best to recreate the data
set with slight adaptations. Specifically, we have 10 variations in the attribute values for line type, shape quantity,
and shape position as in the original paper. For the rest of attributes line color, shape type, and shape size,
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we only include ≤ 5 variations of attribute values. Meanwhile, as the original papers do not list all the attribute values used
in the original data generation, nor was the source code publicly available, we decide upon the list of possible attribute
values based on the consideration that they are clearly differentiable from a human perspective.
The original papers claim that solving PGM puzzles is a challenging vision task. While we acknowledge that our recreated
version of the data reduces the complexity compared to the original version, we note that our adaptations do not qualitatively
change the challenging nature of this task. As mentioned in Barrett et al. (2018), the challenge of effective knowledge
composition comes mainly from the necessity to represent abstract logical rules in discrete symbolic explanations. They
show that training with auxiliary information of meta-targets vectors that encode the relation, object, and attribute types as a
binary string significantly helps abstract reasoning performance, and in particular, in terms of compositional generalization.
Our text representations are inspired by the construction of the meta-targets vectors with many tweaks to fit into the context
length of the model. We observe that by including the discrete representation of knowledge in the form of Image-via-Text
supervision, Mix and Mix+ show a much better S2H generalization on image input, which aligns with previous observations
in Barrett et al. (2018).
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D. Training Details
We first prepare Eagle-X2-Llama3-8B, a variation of Eagle-X5-8B (Shi et al., 2025). We choose Llama3-8B-Instruct (Dubey
et al., 2024) as the LLM backbone for its good reasoning capability. We choose CLIP-448 (Radford et al., 2021) and
ConvNeXt (Liu et al., 2022) as the visual encoders because previous works show that combining the two leads to a significant
improvement, whereas any additional visual encoder leads to marginal improvement (Shi et al., 2025).
At the beginning of the project, the codebase released by Shi et al. (2025) was incomplete. To incorporate the Llama3-8B
model architecture and the tokenizer, we adapt the codebase from Tong et al. (2024).
We use the same 595k pretraining data from Liu et al. (2023b) and 1.8M finetuning (visual instruction tuning) data from Shi
et al. (2025). We use Deepspeed ZeRO Stage 2 (Rasley et al., 2020) for a Distributed Data Parallel (DDP) training on 8
GPUs on a HPC Cluster. We use the AdamW optimizer with no weight decay (i.e., equivalent to Adam), a learning rate
schedule with a linear warmup of 0.03 and cosine decay to zero. We truncate the trail of any text that exceeds the maximum
number of text tokens (2048). During pretraining, only the adapter is trained, whereas in all other stages of training, all
weights in the model are unfrozen.
With this Eagle-X2-Llama3-8B as the base model, we then continuously finetune it on different data mixtures across our
synthetic tasks. In Table 3, we report some key hyperparameters.

Table 3. Hyperparameter settings: For all values not reported here, we use the same values as in Shi et al. (2025).

Batch Size LR Epochs Total # Data Max # Text Tokens

Pretraining 256 1e-3 1 595k 2048

Finetuning 128 2e-5 1 1,809k 2048

Finetuning on Task 128 2e-5 experiment-specific 2048
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E. Evaluation Details
We extend the VLMEvalKit (Duan et al., 2024) to evaluate the finetuned Eagle-X2-Llama3-8B on held-out data. For
generation, we apply greedy decoding and generate up to 2048 tokens.

E.1. Evaluation on Consecutive Table Readout and Table Readout
CoT (x) visits each cell sequentially on the path, by giving the row and column index, row and column names, and the value
in the cell (see Figures 32 and 33). The final answer f(x) gives the list of numbers again, and also sum of the numbers.
We evaluate by simply checking whether the list of numbers are correct. Furthermore, because this list of numbers can be
extracted from both the final answer and also the CoT, we report the best performance out of the two. On Consecutive Table
Readout, we find that we get the best performance on HARD examples by extracting the numbers from CoT. On the other
hand, for Table Readout, there isn’t much difference between extracting numbers from CoT and extracting them from the
final answer.

E.2. Evaluation on Grid Navigation
CoT (x) records the sequence of visited cells during a depth-first search (DFS) from the start to the end cell. At each visited
cell, the trace includes a full description of neighboring cells and whether they are available for the next step. The DFS
algorithm always prefers directions that minimize the distance towards the nearest uncollected object, or the destination (if
all objects are collected). If no directions are possible, we backtrack to the most previously visited cell. The final answer
f(x) is a simplified sequence of directions (left, right, up, down) that connect the start and destination cells, where all
backtrack movements are removed from the stack (see Figures 34 and 35). We evaluate by simulating the movements in
the sequence returned by the model and checking if we arrive at the destination after collecting all objects and avoiding
obstacles.

E.3. Evaluation on Visual Analogy
CoT (x) enumerates all the values of the tasks-relevant attributes for each panel with the conclusion of whether there exists
a logical pattern among those values for each attribute domain in the examples. The trace includes a summary sentence
of what (domain, relation) pattern the two examples demonstrate. After that, the trace performs the same enumeration
process for the query panels. It then looks at the options and checks whether it is consistent with the desired relation given
the attribute values in the query panels. The final answer f(x) identifies the pattern in the form of (domain, relation) (e.g.
(line type, XOR)) for all examples and the query combined with each option, as well as the final answer of the correct
option. The evaluation checks whether the identified patterns and the final answer are correct.
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F. Consistent Results on Another Model Family and Size
F.1. Training Details
We take Qwen2.5-VL-3B-Instruct and 7B-Instruct (Bai et al., 2025) as the base model and finetune it with on different data
mixtures across our synthetic tasks.
We use the SFTTrainer class in the trl package. We employ FSDP (Zhao et al., 2023) for training on 8 GPUs on a
HPC Cluster. We use the AdamW optimizer with no weight decay (i.e., equivalent to Adam), a learning rate schedule with a
linear warmup of 0.03 and cosine decay to zero.
Due to a deficiency in the trl package, we slightly modify Algorithm 1 to ensure that each gradient computation (before
gradient accumulation) includes a training example with x(i) unless we train exclusively on x(t) (while also maintaining
randomness in the data). Instead of concatenating and randomly shuffling the entire dataset, we first shuffle the examples
within each supervision, then interleave the individually shuffled data. For example, to construct Mix+, we first shuffle Text,
Image, Image-via-Text, and HARD-Text individually, then construct the final dataset by repeatedly taking the next examples
from (Text, Image, Image-via-Text, HARD-Text, HARD-Text, HARD-Text) respectively.
In Table 4, we report some key hyperparameters. Note that Bai et al. (2025) do not report the hyperparameters for their
internal training, so we used the hyperparameters for Eagle-X2-Llama-8B as closely as possible. However, we noticed that
for Qwen2.5-VL-7B, training on Grid Navigation or Visual Analogy with a learning rate of 2e-5 often broke the model (e.g.,
model starts outputting Chinese tokens), so we had to adjust the learning rate to 5e-6 or 2e-6.

Table 4. Hyperparameter settings for Qwen2.5-VL.

Model Size Task Batch Size LR Epochs Total # Data

3B All 128 2e-5 experiment-specific

7B Consecutive Table Readout 128 2e-5 experiment-specific
7B Table Readout 128 2e-5 experiment-specific
7B Grid Navigation 128 2e-6, 5e-6 experiment-specific
7B Visual Analogy 128 2e-6, 5e-6 experiment-specific

F.2. Evaluation Details
We extend the VLMEvalKit (Duan et al., 2024) to evaluate the finetuned Qwen2.5-VL-3B-Instruct and 7B-Instruct on the
same held-out data as used for the main experiments. For generation, we apply the default setting for the Qwen2.5-VL
family (top p=0.001 and temperature=0.01) and generate up to 2048 tokens. We set the maximum number of pixels to be
1280× 28× 28.

F.3. Results
In Tables 5 and 6, we report the S2H-generalization on image for most supervision types we consider.
For Consecutive Table Readout, we find that Qwen2.5-VL (both 3B and 7B models) completely fail to solve HARD-text
examples even when HARD Text is a part of the training data (e.g., Mix+). For this reason, we relax the definition of hardness
and instead train with MEDIUM-text (if applicable) and evaluate on MEDIUM-text and MEDIUM-image (see Section 3 for the
definitions of MEDIUM and HARD). Even then, Qwen2.5-VL-3B-Instruct fail to solve MEDIUM-text examples even when it is
explicitly trained with MEDIUM Text. Therefore, none of our proposed methods can improve S2H-generalization on image.
However, we find that even though Qwen2.5-VL-7B-Instruct does not S2H-generalize on text (which is understandable since
different models can S2H-generalize on different tasks), our proposed supervision types for non-S2H generalizing tasks
(Mix+ and Align-Mix+) successfully improve the S2H-generalization on image.
For the other 3 tasks (Table Readout, Grid Navigation, and Visual Analogy), we generally observe a consistent result from
the main text: 1) the models do not S2H-generalize on either text or image; 2) Mix+ improves S2H-generalization on image
by transferring the injected reasoning on HARD-text; 3) Align-Mix+ further improves this generalization. Note that for Grid
Navigation, and Visual Analogy on Qwen2.5-VL-7B-Instruct, we report the best result between the two learning rates (2e-6,
5e-6).
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Table 5. Results for Qwen2.5-VL-3B-Instruct: For Text supervision, we evaluate on HARD-text, but for all other supervision types, we
evaluate on HARD-image. For Consecutive Table Readout, we train with MEDIUM Text (if applicable) and evaluate on MEDIUM-image.

Consecutive Table Readout Table Readout Grid Navigation Visual Analogy
Supervision 30k 30k 60k 30k 60k 30k 60k

Text (eval on HARD-text) 3 8 11 0 15 0 0
Image 0 11 10 22 22 0 0
Text+Image 1 7 6 0 14 0 0
Image-via-Text 1 12 8 13 14 0 0
Mix 1 11 10 14 16 0 1
Image-via-Text+ 0 81 90 67 58 48 48
Mix+ 4 78 86 77 91 20 27
Align-Mix+ - 66 91 80 91 38 42

Table 6. Results for Qwen2.5-VL-7B-Instruct: For Text supervision, we evaluate on HARD-text, but for all other supervision types, we
evaluate on HARD-image. For Consecutive Table Readout, we train with MEDIUM Text (if applicable) and evaluate on MEDIUM-image.

Consecutive Table Readout Table Readout Grid Navigation Visual Analogy
Supervision 30k 30k 60k 30k 60k 30k 60k

Text (eval on HARD-text) 1 22 2 15 18 1 0
Image 0 18 17 14 29 0 0
Text+Image 4 8 5 6 11 0 0
Image-via-Text 36 9 13 13 18 0 0
Mix 52 8 17 15 12 0 0
Image-via-Text+ 73 82 88 75 67 41 44
Mix+ 72 13 66 69 85 12 17
Align-Mix+ - 93 92 36 58 25 34
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G. Continued Discussion From Main Paper
G.1. Comparisons at equal unique samples for Consecutive Table Readout
In Figure 3, we compare Text, Image, and Mix under the same NSIMPLE, the total number of training data. Note that Mix
is trained for only a single epoch, while the reported results for Text and Image are based on 2 and 3 epochs of training,
respectively. We make these choices because, for Text, the S2H generalization performance peaks at 2 epochs and then
declines sharply, whereas for Image, the S2H generalization performance sees a slight improvement between 2 and 3 epochs.
As an illustrative example, Figure 13 shows the performance of Text and Image when Nu

SIMPLE, the number of unique samples,
is fixed at 4× 104. Consequently, in Figure 14, we revisit the results of Figure 3, this time explicitly indicating the number
of unique samples Nu

SIMPLE used.
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SIMPLE = 40k)

MEDIUM HARD

Figure 13. Ablation on the number of epochs on Consecutive Table Readout: We measure the S2H generalization performance of Text
on HARD-text and Image on HARD-image with multi-epoch training, when Nu

SIMPLE is fixed as 4× 104. We observe that the generalization
performance of Text supervision peaks at 2 epoch training, after which it drastically drops, while the generalization performance of Image
supervision increases slightly between 2 and 3 epochs of training.

G.2. Additional setting for an S2H-generalizing task
Here, we consider Pattern-Heldout Visual Analogy — a S2H-generalizing version of Visual Analogy — by defining an
alternative version of HARD examples. We keep the definition of SIMPLE examples from Section 4 and Appendix C.5, but
modify HARD instances to only measure analogical reasoning on held-out reasoning patterns, without requiring the domain
to be different across the in-context examples.
That is, let d1, d2, dquery denote the latent domains of the examples and the query, r denote the latent logical relation to
be applied on the latent domains, and S denote a held-out set of combinations (d, r). The SIMPLE task contains puzzles
where d1 = d2 = dquery and (dquery, rquery) ̸∈ S, whereas the HARD task contains puzzles where d1 = d2 = dquery and
(dquery, rquery) ∈ S . Note that in Visual Analogy, we had additionally required d1, d2, dquery to be distinct for HARD puzzles.
In Table 7, we compare the S2H generalization performance of Text, Image, and Mix supervision on Pattern-Heldout Visual
Analogy. The model learns the task more easily on text than on image: while the image S2H generalization for Image
supervision is bounded by 32%, the text S2H generalization for Text supervision can reach 49% when trained on 24× 104

data.
On the other hand, Mix supervision can transfer the S2H generalization from text to image and improve the performance on
HARD-image (41% with 12× 104 training data).

G.3. Comparison at equal FLOPs for non S2H-generalizing tasks
Align -Mix+ uses an additional phase over Mix+, where training sequences from SIMPLE split are utilized. In Figure 5,
however, we compare Mix+ and Align-Mix+ only in terms of the amount of training data used in the final phase. This raises a
potential concern that Align-Mix+ might only appear stronger because it involves more total training FLOPs. To address
this, Figure 15 presents a revised comparison, plotting Align-Mix+ against Mix+ in terms of the total training data employed
across all stages. Under these conditions, Align-Mix+ still consistently outperforms Mix+.
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Figure 14. Results on Consecutive Table Readout based on the number of unique samples Nu
SIMPLE: Our observations from Section 3

hold true even when different types of supervision are compared at the same value Nu
SIMPLE, instead of NSIMPLE.

Table 7. Results on Pattern-Heldout Visual Analogy: S2H generalization for Text, Image, and Mix supervision are reported on HARD-text
and HARD-image examples after varying the number of training data in each strategy. S2H generalization on HARD-images under Image
supervision peaks at 36%, while for HARD-text examples under Text supervision, it reaches 45.6% after 24 × 104 training examples.
Leveraging the better performance on HARD-text, Mix supervision improves S2H generalization on HARD-images to 41% with 12× 104

examples.

S2H accuracy on HARD-text S2H accuracy on HARD-image
Number of training data Number of training data

Supervision 30k 60k 120k 240k 30k 60k 120k 240k

Text - 37.2 32.6 45.6 0.0 0.0 0.0 0.0
Image 0.0 0.0 0.0 0.0 - 27.0 35.6 34.0
Mix 31.2 42.4 49.0 39.8 24.6 35.0 41.0 39.6
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Figure 15. Results on non S2H-generalizing tasks based on the total number of training data (Figure 6 but including the amount of
data in the alignment stage): Align-Mix+ still outperforms Mix+ when compared at the same amount of total training data.

G.4. Transferring reasoning from image to text
In the main experiments, we tested whether S2H generalization can transfer from text inputs to image inputs. In Table 8, we
observe that the transfer can happen in the opposite direction as well. After 24× 104 training samples that now includes
training data from HARD Image instead of HARD Text, a modified version of Mix+ achieves S2H generalization accuracy of
86.0% on HARD-text input on Table Readout and 85.6% on HARD-text input on Visual Analogy. As a comparison, when
trained with the same number of data, Mix+ shows S2H generalization accuracy of 73.2% on HARD-image input on Table
Readout and 35.4% on HARD-image input on Visual Analogy.
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Table 8. Ablation on transferring reasoning from image to text: We modify Mix+ to include HARD Image examples in training, instead
of HARD Text examples, while keeping the same SIMPLE Mix supervision. Evaluation is now performed on HARD-text input. We observe
that improving generalization performance on HARD-image input strongly transfers to HARD-text input.

Table Readout Visual Analogy

Number of HARD-image HARD-text HARD-image HARD-text
training examples (Included in training) (Excluded in training) (Included in training) (Excluded in training)

3× 104 72.0 34.0 86.8 81.4
6× 104 98.2 70.4 97.8 80.0
12× 104 99.4 76.4 94.6 86.4
24× 104 99.8 86.0 99.6 85.6
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Figure 16. Effect of text warm-up pretraining: We report the S2H generalization on image with/without text warm-up before Mix+
(Consecutive Table Readout) or Align-Mix+ (Table Readout and Visual Analogy). S2H generalization on text from Text supervision serves
as a reference (in gray dashed line). Text warm-up enhances image S2H generalization across tasks. (TW) Mix closes the text-image
generalization gap on the HARD task for Consecutive Table Readout, while (TW) Align-Mix+ outperforms Align-Mix+ for Visual Analogy.

G.5. Text warm-up pretraining
In Section 4, we observe that Mix fails to improve image generalization when the LLM backbone does not show strong
generalization on text modality. Furthermore, models trained with Mix+ show significantly better image generalization when
the text reasoning capability of the LLM backbone is strengthened by fine-tuning on HARD Text examples. Hence, one
may expect that the reasoning capability of the LLM backbone on HARD examples is a crucial factor for the reasoning
capability to transfer to the image inputs. In this section, we investigate the effect of text generalization of the LLM backbone.
Specifically, we simulate different levels of text reasoning ability by including a pretraining stage of the model on SIMPLE
and HARD Text examples. We call this text-only training (during which only the LLM backbone is updated) before full
finetuning of the VLM model text warm-up pretraining (TW). This stage of training only uses a small set of 104 text
examples (equal mix of SIMPLE and HARD for non S2H-generalizable tasks, just SIMPLE examples for Consecutive Table
Readout). Our results are shown in Figure 16.
We observe that the additional TW training further boosts the image generalization. In particular, (TW) Mix closes the
modality imbalance, reflected by the image-text generalization gap on the HARD (25-30) task for Consecutive Table Readout.
On Visual Analogy, (TW) Align-Mix+ outperforms Align-Mix+ by 15%p with 12× 104 training data. These results suggest
that future stronger LLM backbone can further close the generalization gap between text and image modalities using our
proposed strategy.

G.6. Utility of our synthetic datasets for existing evaluation benchmarks
Existing evaluation benchmarks test the ability of VLMs to perform OCR, chart interpretation, image reasoning, and caption
generation. However, they primarily test the ability to generate short answers on a given question. On the other hand, our
created tasks evaluate long form reasoning generation from models. As such, our fine-tuned models quickly forget to return
short responses during training and struggle on existing benchmarks.
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Nonetheless, we assess the utility of our synthetic datasets to existing benchmarks by including them during visual instruction
tuning. That is, we prepare two different versions of an alternate base model Eagle+Synthetic-X2-Llama-8B: 1) where 30 /
60 / 120k of our Image training mixture (equal mix of SIMPLE and HARD) has been mixed in with the 1.8M finetuning data;
or where 240k of our Mix+ training mixture (80k for each synthetic task) has been mixed in with the 1.8M finetuning data.
Results in Table 9 demonstrate consistent improvements across tasks such as OCR, chart interpretation, and multimodal
understanding. However, a decline in performance is also observed on binary classification (yes/no response) benchmarks,
such as MME. These findings indicate that the proposed synthetic datasets can be valuable for future research. Further
investigation is necessary to determine how long reasoning datasets like our proposed tasks can be best leveraged to enhance
general reasoning capabilities (e.g. Gao et al. (2024)).

Table 9. Utility of our synthetic data: We compare the benchmark results of Eagle-X2-Llama-8B, solely instruction tuned on Eagle-1.8M
dataset, and Eagle+Synthetic-X2-Llama-8B, instruction tuned on a mixture of Eagle-1.8M and our synthetic data mixture. Including our
data can improve model’s performance on OCR and chart reasoning benchmarks, but may hurt performance on benchmarks where models
need to output a yes/no answer (marked with *) or a short phrase (marked with **). †: performance reported on validation set.

Visual Instruction Tuning Dataset

Evaluation
Benchmark Eagle-1.8M

Eagle-1.8M Eagle-1.8M
+ SIMPLE Image and HARD Image + Mix+ mixture
(30k) (60k) (120k) (240k)

MMMU† 35.4 38.2 38.8 38.7 36.3
MME* 1529 1242 1377 1376 1364
MMBench 67.6 69.2 68.4 67.5 69.2

POPE* 86.6 88.7 88.9 87.6 87.5
TextVQA** 66.8 66.5 66.9 66.8 65.8
OCR(Bench) 47.3 50.9 50.4 47.0 48.2

ChartQA 69.6 71.6 69.8 70.5 69.4
CharXiv-Reasoning† 16.8 16.4 16.5 17.0 17.2
CharXiv-Descriptive† 30.7 28.3 35.8 31.1 34.4

Reported benchmarks: Here is a summary of the reported evaluation benchmarks.

• MMMU (Yue et al., 2024): Evaluates on multi-discipline tasks measuring college-level subject knowledge and
reasoning.

• MME (Fu et al., 2023): Evaluates both perception and cognition abilities across 14 subtasks with yes/no answers.

• MMBench (Liu et al., 2025): Evaluates on VQA, which includes both multiple-choice and free-form answers.

• POPE (Li et al., 2023): Evaluates object hallucination with yes/no answers.

• TextVQA (Singh et al., 2019): Evaluates understanding and reading text within images with short-phrase answers.

• OCR(Bench) (Liu et al., 2024b): Evaluates on Character Recognition (OCR) capabilities across 29 datasets covering
text / handwritten mathematical expression recognition, key information extraction, and scene text / document VQA.

• CharXiv (Wang et al., 2024c): Evaluates on chart understanding based on 2323 charts from arXiv papers, paired with
descriptive and reasoning questions, covering 8 major academic subjects.
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H. Continued Discussion on Gradient Alignment
Augmentation in notation: Suppose the current model parameters are given by θ. We will slightly augment our notation to
include the model’s current parameters. At model parameter θ, we will use l(I;S)(x; θ) to denote the loss on Image example
for data x and loss l(H)

(I;S)(θ) = Ex∈XHARD
l(I;S)(x; θ). Then, gSIMPLE(θ) and gHARD(θ) denote average gradients on XSIMPLE and

XHARD, i.e.
gSIMPLE(θ) = Ex∈XSIMPLE

∇l(I;S)(x; θ), gHARD(θ) = Ex∈XHARD
∇l(I;S)(x; θ)

Recall that the gradient alignment score from Equation (3) is given by

⟨gSIMPLE(θ),gHARD(θ)⟩/⟨gHARD(θ),gHARD(θ)⟩. (6)

In the following theorem, we show that the gradient alignment score quantifies the amount of loss that we can decrease in
expectation on HARD Image examples by taking gradients on SIMPLE Image examples, relative to taking gradients on HARD
Image examples.
Theorem H.1. Suppose for a model fθ with parameter θ, loss l(I;S) is Lipschitz and has bounded gradient norm on X
around parameters θ, with ∥gHARD(θ)∥2 ̸= 0. The following holds true for expected drop in l

(H)
(I;S) with SGD when using a

random training sample from the SIMPLE task, compared to using a random training sample from the HARD task:

lim
η→0

E x∈XSIMPLE

g:=∇l(I;S)(x;θ)

[
l
(H)
(I;S)(θ − ηg)− l

(H)
(I;S)(θ)

]
E x∈XHARD

g̃:=∇l(I;S)(x;θ)

[
l
(H)
(I;S)(θ − ηg̃)− l

(H)
(I;S)(θ)

] = ⟨gHARD(θ),gSIMPLE(θ)⟩/⟨gHARD(θ),gHARD(θ)⟩.

The proof follows from standard convergence analysis of gradient descent algorithm (Nesterov, 2018).

H.1. Proof of Theorem H.1
Proof. Say g = ∇l(I;S)(x; θ). By Taylor’s theorem, we have the following for a small enough learning rate η,

l
(H)
(I;S)(θ − ηg)− l

(H)
(I;S)(θ) = −η⟨∇l

(H)
(I;S)(θ),g⟩+ η2g⊺

(
∇2l

(H)
(I;S)(θ − η0g)

)
g

for some η0 ∈ [0, η]. We first note that∇l(H)
(I;S)(θ) = gHARD(θ). Next, since the loss is assumed to be Lipschitz,∣∣∣g⊺

(
∇2l

(H)
(I;S)(θ − η0g)

)
g
∣∣∣ ≤ L∥g∥22

where L is the Lipschitz constant for the loss. Since the gradient norms are also assumed to be bounded, we have

l
(H)
(I;S)(θ − ηg)− l

(H)
(I;S)(θ) = −η⟨gHARD(θ),g⟩+O(η2),

First assume x ∈ XSIMPLE. By taking expectation over x,

E x∈XSIMPLE

g:=∇l(I;S)(x;θ)

[
l
(H)
(I;S)(θ − ηg)− l

(H)
(I;S)(θ)

]
= −η

〈
gHARD(θ),Ex∈XSIMPLE

∇l(I;S)(x; θ)
〉
+O(η2)

= −η ⟨gHARD(θ),gSIMPLE(θ)⟩+O(η2)

Similarly, assume g̃ = ∇l(I;S)(x; θ) where x ∈ XHARD. By taking expectation over x,

E x∈XHARD

g̃:=∇l(I;S)(x;θ)

[
l
(H)
(I;S)(θ − ηg̃)− l

(H)
(I;S)(θ)

]
= −η

〈
gHARD(θ),Ex∈XHARD

∇l(I;S)(x; θ)
〉
+O(η2)

= −η ⟨gHARD(θ),gHARD(θ)⟩+O(η2)

Therefore, we have

E x∈XSIMPLE

g:=∇l(I;S)(x;θ)

[
l
(H)
(I;S)(θ − ηg)− l

(H)
(I;S)(θ)

]
E x∈XHARD

g̃:=∇l(I;S)(x;θ)

[
l
(H)
(I;S)(θ − ηg̃)− l

(H)
(I;S)(θ)

] =
−η ⟨gHARD(θ),gSIMPLE(θ)⟩+O(η2)
−η ⟨gHARD(θ),gHARD(θ)⟩+O(η2)

=
⟨gHARD(θ),gSIMPLE(θ)⟩+O(η)
⟨gHARD(θ),gHARD(θ)⟩+O(η)

Note that gHARD(θ) and gSIMPLE(θ) do not depend on the value of η. Furthermore, by assumption, ∥gHARD(θ)∥2 ̸= 0. We
conclude by taking η → 0 on both sides of the equation above.
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Figure 17. Analysis of gradients on Table Readout (additional plots for Figure 9): (Left) Gradient Alignment Score (Equation (3));
(Right) Average Gradient Norm on SIMPLE Image examples Ex∈XSIMPLE∥∇l(I;S)(x)∥2. Align-Mix+ has higher gradient alignment score in
the initial phases of training, where it also has higher gradient norm. Mix+ shows higher gradient alignment score than Mix during the
course of training.
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Figure 18. Analysis of gradients on Table Readout (replacing gradient alignment score from Figures 9 and 17 with gradient
cosine similarity): (Left) Average Gradient Norm on SIMPLE Image examples (Ex∈XSIMPLE∥∇l(I;S)(x)∥2) vs. Gradient Cosine Similarity
(Equation (7)) for different training checkpoints; (Middle) Gradient Cosine Similarity; (Right) Average Gradient Norm. Similar results
hold.

H.2. Additional measure 1: gradient cosine similarity
We additionally define the gradient cosine similarity score as the cosine similarity of gradients from XSIMPLE and XHARD:

Gradient Cosine Similarity:
⟨gSIMPLE(θ),gHARD(θ)⟩√

⟨gHARD(θ),gHARD(θ)⟩ · ⟨gSIMPLE(θ),gSIMPLE(θ)⟩
(7)

Note that this measure ignores the norm of the gradients on XSIMPLE that the model uses during training. Hence, this measure
is not an entirely faithful measure on the alignment of the training updates to the loss on HARD Image examples. Figure 18
shows the gradient cosine similarity score across training strategies for Table Readout, which follows a similar pattern as the
gradient alignment score in Figure 17.

H.3. Additional measure 2: Adam update alignment
The gradient alignment score we defined earlier does not account for the fact that we use Adam optimizer (Kingma & Ba,
2015) during our experiments.
Brief definition of Adam: The Adam optimizer maintains two additional states, each representing the running average of
the gradients and their squares during training. If mt and vt denote the two states, then the update rule at training step t
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with a gradient gt and learning rate η is given by

θ ← θ − ηh(gt), where h(gt) =
(1− β1)gt + β1mt−1√

(1− β2)gt ⊙ gt + β2vt−1 + ϵ

mt ← (1− β1)gt + β1mt−1, vt ← (1− β2)gt ⊙ gt + β2vt−1

Here, (β1, β2, ϵ) are hyperparameters for the Adam optimizer and are set at (0.9, 0.999, 10−8).
Adam Update Alignment: A true measure of alignment between SIMPLE and HARD training would be to compare h(·), the
update vector under the Adam optimizer. However, that requires saving the Adam optimizer states throughout training. For
storage efficiency purposes13, we propose an alternate approximate measure called the Adam update alignment score. We
compute the following two quantities for model fθ with parameters θ:

m(θ) := Ex∈XSIMPLE

[
∇l(I;S)(x; θ)

]
v(θ) := Ex∈XSIMPLE

[
∇l(I;S)(x; θ)⊙∇l(I;S)(x; θ)

]
m and v are proxy measures for the Adam optimizer states. Then, we measure the alignment between gradients for XHARD

and XSIMPLE as

Adam Update Alignment Score:

E x∈XSIMPLE

g:=∇l(I;S)(x;θ)
⟨h(g),gHARD(θ)⟩

E x∈XHARD

g̃:=∇l(I;S)(x;θ)
⟨h(g̃),gHARD(θ)⟩

(8)

where h(g) =
(1− β1)g + β1m(θ)√

(1− β2)g ⊙ g + β2v(θ) + ϵ
for any vector g

Intuitively, this measures how much the loss l(H)
(I;S) can be reduced in expectation by taking a gradient update step with Adam

using SIMPLE Image examples, compared to taking a gradient update step with HARD Image examples, while maintaining
the current Adam optimizer states. This can be formalized in the following theorem.
Theorem H.2. Suppose for a model fθ with parameter θ, loss l(I;S) is Lipschitz and has bounded gradient norm on X
around parameters θ, with ∥gHARD(θ)∥2 ̸= 0. Consider a modified Adam update with learning rate η with an arbitrary
gradient g, as follows:

θ ← θ − ηh(g)

where h(g) =
(1− β1)g + β1m(θ)√

(1− β2)g ⊙ g + β2v(θ) + ϵ
.

The following holds true for expected drop in l
(H)
(I;S) with modified Adam update when using a random training sample from

the SIMPLE task, compared to using a random training sample from the HARD task:

lim
η→0

E x∈XSIMPLE

g:=∇l(I;S)(x;θ)

[
l
(H)
(I;S)(θ − ηh(g))− l

(H)
(I;S)(θ)

]
E x∈XHARD

g̃:=∇l(I;S)(x;θ)

[
l
(H)
(I;S)(θ − ηh(g̃))− l

(H)
(I;S)(θ)

] =

E x∈XSIMPLE

g:=∇l(I;S)(x;θ)
⟨h(g),gHARD(θ)⟩

E x∈XHARD

g̃:=∇l(I;S)(x;θ)
⟨h(g̃),gHARD(θ)⟩

The proof is similar to that of Theorem H.1.

H.4. Experimental results
In Figure 19, we present the analysis of gradients for different types of supervision on Consecutive Table Readout. Similar
to the behavior of gradient alignment score in Figure 7, we observe that when measured against norm of gradients on
SIMPLE Image examples, Mix achieves a higher Adam update alignment score than both Text+Image and Image. This shows
that Image-via-Text supervision improves the alignment between SIMPLE and HARD Image gradients, when taking Adam
gradient updates into account.
Similarly, for Table Readout in Figure 20, Mix+ has a larger Adam update alignment during training. Align-Mix+ further
improves the Adam update alignment score when gradient norms are large during training.

13Remark: retrieving the actual Adam optimizer states requires an additional storage of 138GB per checkpoint.
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Figure 19. Analysis of gradients on Consecutive Table Readout (replacing gradient alignment score from Figure 7 with Adam
update alignment score): (Left) Average Gradient Norm on SIMPLE Image examples (Ex∈XSIMPLE∥∇l(I;S)(x)∥2) vs. Adam Update
Alignment Score (Equation (8)) for different training checkpoints; (Right) Average Loss on solution given HARD image (l(H)

(I;S)) during
training. Similar results hold.
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Figure 20. Analysis of gradients on Table Readout (replacing gradient alignment score from Figures 9 and 17 with Adam update
alignment score): (Left) Average Gradient Norm on SIMPLE Image examples (Ex∈XSIMPLE∥∇l(I;S)(x)∥2) vs. Adam Update Alignment
Score (Equation (8)) for different training checkpoints; (Middle) Adam Update Alignment Score; (Right) Average Gradient Norm. Similar
results hold.
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I. Additional Ablations
I.1. Performance of other multimodal models
In Table 10, we present the performance of three closed source and two open source multimodal models on our three non
S2H-generalizing tasks. Since we do not train these models, the format of the outputs is more flexible. For convenience, we
propose alternative metrics to extract and evaluate on the models’ predictions. For Table Readout, we instead evaluate with
the final answer (sum of the sequence of numbers)14. For Grid Navigation, we evaluate with the same metric as in the main
part of the paper — whether the proposed path can move from the start cell to the end without running into obstacles. For
Visual Analogy, we evaluate with just the final option, which is a more lenient metric than the one suggested in the main part
of the paper. Note that a random choice baseline should get 25%.

Table 10. Performance of other multimodal models: For convenience, we evaluate the models on a slightly different metric.

Table Readout Grid Navigation Visual Analogy

Models SIMPLE HARD SIMPLE HARD SIMPLE HARD

Claude-3.5 Sonnet 30.0 0.0 0.0 0.0 35.0 29.8
GPT-4o 19.0 0.0 0.0 0.0 19.8 18.4
OpenAI o1 29.0 - 0.0 - 30.6 -
Llama3.2-11B-Vision-Instruct 4.0 0.0 0.0 0.0 16.2 17.8
Pixtral-12B (Agrawal et al., 2024) 9.0 0.2 0.0 0.0 24.6 21.2

I.2. Ablation of the Mix+ supervision
The dataset composition of the Mix+ supervision consists of three types of supervision in the SIMPLE task: Text, Image, and
Image-via-Text. In this section, we ablate on the importance of each component of the data mixture in the training of Mix+,
(TW)Mix+, and (TW) Align-Mix+. In Figure 22, we report the S2H generalization performance on image when the SIMPLE
Mix supervision is replaced with a varying data composition.
In single-stage training (no text warm-up or alignment), Image-via-Text is the key component of success, as evidenced by the
strong performance of Image-via-Text+ supervision. As noted in Section 4, Mix+ can match the performance by explicitly
prompting the resulting model to convert the image first, which comes at a cost of around 1.7x generated tokens at inference
time.
In multi-stage training (either (TW) or (TW) Align-), the benefits of Mix+ are more significant. Specifically, among all
other types of supervision with text warm-up, (TW)Mix+ is able to outperform the others by at least 1.7x, while retaining
efficient inference costs, unlike (TW) Image-via-Text+. Among all types of supervision with text warm-up and alignment,
(TW) Align-Mix+ achieves the highest performance.

I.3. Ablation of the reasoning alignment phase (Align-)
We perform two ablations for the first phase of the Align-Mix+ supervision. In Figure 23, we report the S2H generalization
generalization performance on image of models trained with a varying amount of data in the first phase of Align-Mix+,
with the amount of Mix+ data fixed in the second phase. We don’t observe a monotonic improvement in performance when
increasing the amount of data in the first phase. In Table 11, we report the S2H generalization generalization performance
on image of models trained with a varying data composition in the first phase of Align -Mix+. Our choice of Text and
Image-via-Text from the main section gives the best performance on average on Table Readout and Visual Analogy.

I.4. Ablation of the text warm-up pretraining phase (TW):
We ablate on the effect of the training data size during the text warm-up. In particular, we are interested in whether models
with better reasoning capability on text can achieve better image generalization. To do so, we vary the number of training
data used for text warm-up between {1, 2, 3}×104 and plot the performance of the warmed-up LLM on HARD-text examples
against the performance of the final trained model on HARD-image examples. We report the performance on Visual Analogy
in Figure 24. We observe that model’s text performance improves with more training data being used for the text warm-up as
expected. However, there is no clear linear correlation between the text capability of the model checkpoint after the warm-up

14The closed source models have access to tool-use, so in theory, this should be an equivalent, if not more lenient, metric.
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Figure 22. Ablation on the SIMPLE data composition of Mix+ on Visual Analogy: Instead of Mix, we use different types of SIMPLE

supervision in (Left) Mix+; (Middle) (TW)Mix+; (Right) (TW) Align-Mix+. The main phase (Mix+) uses 12× 104 training data.
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Figure 23. Ablation on the amount of data for the
alignment phase of Align -Mix+ on Table Readout:
Second phase (Mix+) uses 12× 104 training data. We
don’t observe a monotonic improvement in generaliza-
tion performance with increasing number of training
samples in the first phase.

Corresponding Name SIMPLE data composition Accuracy
in phase 1 (Align-Mix+) (after phase 2)
Table Readout

Align- Text, Image-via-Text 0.76
Text+Image Text, Image 0.52

Image-via-Text Image-via-Text 0.77
Mix Text, Image, Image-via-Text 0.74

Visual Analogy
Align- Text, Image-via-Text 0.66

Text+Image Text, Image 0.19
Image-via-Text Image-via-Text 0.51

Mix Text, Image, Image-via-Text 0.46

Table 11. Ablation on the SIMPLE data composition for the alignment
phase of Align-Mix+: Amount of data for the alignment phase is fixed at 104.
Second phase (Mix+) uses 12× 104 training data. Performance is reported
on a validation set with 100 HARD-image examples. Our composition of
Text and Image-via-Text on the SIMPLE task performs best on average on
Table Readout and Visual Analogy.

training stage and image S2H generalization of the final model. Specifically, a model with 3× 104 warm-up performs the
best for the (TW)Mix+ supervision, while a 104 warm-up works the best with the (TW) Align-Mix+ supervision. Meanwhile,
we observe that (TW) Align-Mix+ supervision can universally achieve better S2H generalization on image than the (TW)
Mix+ across all data scales. We conclude that an improved text capability by itself is insufficient to guarantee good transfer
to image modality. We expect future VLMs with both stronger LLM backbone and better modality alignment can further
leverage the text performance and transfer it to images.

I.5. Requirement of text representation
One potential limitation of our proposed training strategies is the requirement of a text representation corresponding to the
image. In Consecutive Table Readout, Table Readout, and Grid Navigation, we use the LaTeX code of the table or grid,
which is considered to be perfectly aligned with the image. In reality, it may be challenging to find an exactly equivalent text
description or representation of a real-world image, as many minute visual features cannot be captured by language. We
show that our proposed training strategy does not require perfect alignment between the text and the image representation
to work. For Visual Analogy experiments, the text description of the puzzle in the image is lossy: it only enumerates
unique values of all task-relevant attributes without encoding the object to which each corresponds, so one cannot recover
the original image given the description (see examples in Figures 36 and 37). Models trained with our proposed training
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Figure 24. Ablation on the amount of data for the text warm-up phase on Visual Analogy: Second phase (Mix+) uses 12 × 104

training data. Using more data for the warm-up stage results in a stronger LLM backbone with better HARD-text performance (gray
dashed line), but does not necessarily lead to better image S2H generalization of the final model trained with our proposed strategy. This
suggests that a stronger text capability is not the only factor that induces S2H generalization on image.

strategies (Mix+, Align-Mix+, (TW) Align-Mix+) all demonstrate significant improvements in image generalization (Figure 6),
testifying that our methods work with lossy text representation.

Lossless text representation for Visual Analogy: We additionally conduct experiments where the text representation of
the puzzle in the image is a lossless representation. We represent the panels in the puzzle as a code defining each object
as a set of attributes. Each geometric object is represented by the values its 5 attributes: {shape type, shape color,
shape size, shape quantity, shape position}, while lines are defined by their 2 attributes: {line type,
line color}. In order to fit to the context length of the VLM, we describe each object in shorthand notations. For example,
for a panel in the puxxle that contains a circle and 2 rectangles, with attribute values {45 (gray-scale), 42 (pixels), 1, top-left}
and {{0, 90}, {21, 21}, 2, top-right, bottom-left}, we will represent the panel as

CIR-45-42-TL;RECT-0-21-TR;RECT-90-21-BL

We give all details on how to parse the shorthand codes in the prompt. On the other hand, for the same example, the (Lossy)
text representation would have been

type: circle, rectangle
color: 0,90
size: 21,42
quantity: 1,2
position: top-left, top-right, bottom-left

This substantially reduces the context length on average on our training dataset, and further removes the necessity of parsing
a code. However, this isn’t an exact representation of the image of the puzzle.

Performance on lossy and lossless Visual Analogy tasks: In Figure 25, we compare Mix+, Align -Mix+, and (TW)
Align -Mix+ for lossless and lossy Visual Analogy tasks at 12 × 104 training examples in the final phase (Mix+). Our
observations reveal that a lossless text representation enhances S2H generalization performance on images for Mix+.
However, for Align-Mix+ and (TW) Align-Mix+, the lossy text representation leads to better S2H generalization performance
on images. This discrepancy could be attributed to the complexity of the shorthand code in the lossless text representation,
which requires additional parsing. We did not investigate this phenomenon further.
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Figure 25. Ablation on lossy vs. lossless Visual Analogy: We measure the image S2H generalization of different types of supervision
for two different versions of text representation for Visual Analogy. Models can perform better on Lossless Visual Analogy with Mix+.
However, the trend can change with Align-Mix+ and (TW) Align-Mix+.

I.6. Explicit and implicit text conversion
In Appendix I.2, we find that explicit text conversion (Image-via-Text) is the key component in the data composition of the
Mix+ supervision. At inference time, however, models trained with Mix+ reason directly on HARD images, without explicit
text conversion. In Table 12, we observe that the trained models can still perform reasoning with explicit text conversion and
that the conversion ability helps it reason.

Mix+ models can convert image to text when prompted. If only an image input x(i) is provided, Mix+ models will
always directly predict CoT (x) and f(x), never converting image to text (under greedy decoding). However, since the
prompts used in the Image and Image-via-Text examples are the same, we can induce explicit text conversion in the final
trained model by additionally providing the first word “Convert” of Pconvert. We find that all trained model are always
able to continue with explicit text conversion — they will generate the rest of Pconvert and an attempted conversion x(t)
before CoT (x). The conversion accuracy is around 50% on Visual Analogy and is almost 100% on Table Readout.

Explicit text conversion generally helps the model to reason on image data. Noticeably, the Mix+ (240k) model
improves S2H generalization accuracy from 73.2% to 96.6% with almost perfect text conversion accuracy of 99.2% on
Table Readout. On Visual Analogy, the Mix+ (120k) model improves S2H generalization accuracy from 35.4% to 51.8%
with a text conversion accuracy of 47%. The benefit of explicit text conversion gradually diminishes with multi-stage
training strategies.
We also observe a slight drop in performance with prompted text conversion for models trained with (TW) Align-Mix+ on
Visual Analogy, which corresponds to a minor decline in reasoning performance with explicit text conversion. This suggests
that the text warm-up training and alignment phase enable the model to close the gap between direct reasoning and reasoning
with explicit text conversion, where the model learns to rely more equally on both text and image modalities, and doesn’t
require explicit text conversion for improved generalization performance.

Models are robust against potential errors in the prompted text conversion. For models that are prompted to perform
text conversion, we examine any negative side effects of this step. When the model does not correctly convert the image
to its text format, we investigate whether to what extent the model’s reasoning can be affected by the additional noises
introduced by the text conversion step. Interestingly, we find that our final trained models are generally robust to such noises.
On Visual Analogy, we find that the models trained with Mix+, (TW)Mix+, and (TW) Align-Mix+ are still able to arrive at
the correct reasoning solutions with accuracy 44.3%, 35.4%, and 63.1% respectively on evaluation examples where the
trained models make a mistake in text conversion.

I.7. Explicit and implicit CoT
We use chain-of-thought (CoT) as a technique to boost the model’s reasoning ability in all our experiments. In this section,
we explore the role of CoT in our proposed strategies, as well as the possibility of transferring the reasoning capability
from text to image modality without CoT. In Table 13, we report our observations on Visual Analogy. We note that similar
observations hold for Consecutive Table Readout and Table Readout.
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Table 12. Ablation on explicitly prompting for text conversion: When models are additionally prompted with “Convert,” they exhibit
the retained ability of text conversion. The conversion accuracy is near perfect on Table Readout. The S2H generalization performance
with an additional prompt “Convert” (Prompted) improves from direct inference (Direct). The improvement margin diminishes with
stronger Direct performance. All evaluations are on 500 HARD-image examples.

Task Supervision (Number of Training Data) Direct Prompted Conversion acc

Table Readout
Mix+ (240k) 73.2 96.6 99.2
Align-Mix+ (240k) 87.6 98.0 100.0
(TW) Align-Mix+ (240k) 86.2 97.8 99.4

Visual Analogy
Mix+ (120k) 35.4 51.8 47.0
(TW)Mix+ (120k) 55.2 62.8 49.0
(TW) Align-Mix+ (120k) 73.6 70.2 49.6

I.7.1. REMOVING COT COMPLETELY

We first consider completely removing CoT from Mix+ and observe the drop in performance measured by image S2H
generalization. We experiment with Mix+, (TW)Mix+, and (TW) Align-Mix+ supervision, in which we completely remove
CoT from the last phase of training which has the Mix+ supervision, while preserving the full CoT in the text warm-up (TW)
and/or reasoning alignment (Align-) phases.

Model does not learn when CoT is completely removed: When CoT is completely removed from Mix+, performance
drops to almost 0% for all three types of supervision. We manually inspect the model’s output and find that the generated
reasoning on HARD-image inputs is identical to the expected behavior for SIMPLE instances, which indicates that the
reasoning capability on HARD instances failed completely to transfer from the text to image modality.

I.7.2. PROGRESSIVELY INTERNALIZING COT THROUGHOUT TRAINING

The failure above can be expected: for Mix+ supervision, CoT may serve as a crucial technique to elicit good reasoning
behaviors while for (TW)Mix+ and (TW) Align-Mix+, the transition from training with full CoT to training without CoT
can be too drastic for the model to adapt. Therefore, we consider a milder approach that trains the model to internalize
reasoning by progressively removing CoT from the training (Deng et al., 2024). We train on the first 30% of 12× 104 Mix+
examples with full CoT, the next 40% of examples with progressively less CoT15, and the last 30% of examples with no
CoT.

Internalizing CoT during the Mix+ phase also fails: In this scenario, we also observe that the model completely fails on
image S2H generalization, getting almost 0% S2H generalization on HARD-image examples for all three types of supervision
strategies.

I.7.3. INTERNALIZING COT DURING TEXT WARM-UP BEFORE REMOVING COT COMPLETELY

We also try a variant for the multi-phase approaches, where we internalize the CoT on the text input during a text warm-up
((TW)) stage and continue with Mix+ with CoT completely removed.

CoT can be internalized on text inputs: We internalize the CoT on the text input during a slightly modified text warm-up
phase of (TW) Mix+. Specifically, with 104 training data that consists of an equal mix of SIMPLE Text, HARD Text
supervision, and Eagle instruction tuning data (randomly sampled from 1.8M examples (Shi et al., 2025)), we train on the
first 30% examples with full CoT, the next 40% examples with progressively less CoT, and the last 30% examples without
CoT as in previous experiments. After the warm-up phase of training, the model can achieve 97.8% accuracy on HARD-text
examples, which shows the model’s ability to internalize reasoning on text inputs.

Explicit CoT is “necessary” for the internalized reasoning to transfer to image: We then continue with the Mix+
supervision with all CoT removed. The final trained model completely fails with 0% accuracy on the HARD-image examples.
Similarly, examining model outputs reveals that the reasoning capability on HARD instances failed completely to transfer
from the text to the image modality. Therefore, we conclude that CoT is “necessary” for the cross-modal transfer of
knowledge to happen in our setting.

15split into 101 subsets of equal length, each training with 100%, 99%, · · · , 0% of total characters in the CoT.
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Table 13. Ablation on removing or internalizing CoT on Visual Analogy: Preliminary attempts to completely or progressively remove
CoT during the Mix+ phase fails to generalize to HARD images, which shows the importance of CoT in our proposed strategies. full, none,
internalizing CoT refer to including full CoT, completely removing CoT, and progressively removing CoT respectively. ‘-’ means the
corresponding phase was not included during training. Unless specified, all evaluations are reported on HARD-image examples.

Type of supervision Type of CoT S2H accuracy (%)
(TW) (10k) Align- (10k) Mix+ (120k)

Mix+ - - none 0.6
(TW)Mix+ full - none 0.0

(TW) Align-Mix+ full full none 3.6

Mix+ - - internalizing 0.0
(TW)Mix+ full - internalizing 0.0

(TW) Align-Mix+ full full internalizing 3.4

(TW)Mix+ internalizing - - 97.8 (HARD-text)
(TW) Mix+ internalizing - none 0.0
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Figure 26. Ablation on jointly training on all three non S2H-generalizing tasks: (Left) Average S2H Generalization on image; (Middle,
Right) Comparison of Trained Jointly vs. Individually. Similar to training on each task individually, Mix+ and Image-via-Text+ outperform
Image, and Align-Mix+ matches the performance of Image-via-Text+. Multi-task SFT boosts image S2H generalization for Table Readout
and Grid Navigation, while Visual Analogy performance remains unchanged or slightly declines, indicating task interactions drive the
cross-modal transfer of reasoning capabilities in multi-task training.

All results testify to our claim that CoT is important in our proposed training strategies. As the techniques used to internalize
or remove the CoT dependency in our experiments are very preliminary, we are not eliminating the possibility of internalizing
CoT in our setting. We note that to do so may require more careful, post hoc approaches, which we leave to future work.

I.8. Multi-task training: jointly training on all three non S2H-generalizing tasks
In the main experiments, we have trained on each non S2H-generalizing task separately. In this section, we explore the
ablation where we combine and randomly shuffle the training data for Table Readout, Grid Navigation, and Visual Analogy.
In Figure 26, we compare the image S2H generalization performance when jointly training on all 3 tasks against training on
each task separately.
Similar to training on each task individually, the average S2H generalization on image across all 3 tasks is strongest for
Image-via-Text+, followed by Align-Mix+ and Mix+. When analyzing the effect of multi-task training on each task, we
observe that it benefits the model’s performance on Table Readout and Grid Navigation but hurts performance on Visual
Analogy. This is likely because Table Readout and Grid Navigation are similar in nature. They are both represented by
LaTeX code in the text modality, require the model to identify the current location in a table / grid, and reason about
neighboring cells. On the other hand, the skills required for Visual Analogy are quite distinct. This suggests that the
interactions between tasks during a multi-task training can also affect how much reasoning can transfer across modalities.
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Figure 27. Ablation on the number of repetitions of unique HARD examples, while maintaining the total amount of HARD training
data, on Table Readout and Visual Analogy: Image S2H generalization degrades with more repetitions of HARD Text examples, with
the effect on Mix+ being more drastic. Here, the amount of training data is fixed at 12× 104, with 6× 104 examples sampled from the
HARD task. Interestingly, performance of Align-Mix+ peaks at 3× repetitions, implying the number of unique HARD Text examples can be
reduced by 3× for Align-Mix+.

I.9. Ablation on repeated HARD examples
In the experiments reported in the main paper (summarized in Figure 5), we kept all HARD Text examples unique. In
Figure 27, we present the ablation where we repeat each HARD Text example during training, while keeping the total number
of training data fixed. Our primary observations are:

• Repeating HARD Text examples harms the performance of Mix+. Halving the number of unique HARD Text examples
and repeating each example 2 times can drop the performance on HARD-image by at least 10%p on Table Readout.

• On the other hand, Align-Mix+ is quite robust to repetitions on Table Readout. The number of unique HARD Text
examples can be reduced by 10× (and repeating each example 10×) with the performance on HARD-image dropping
by no more than 1-2%p.

• On Visual Analogy, while the performance of Align-Mix+ drops with large number of repetitions, the drop in performance
is within 1-2%p if the number of repetitions is up to 3.

• Interestingly, the image S2H generalization performance reaches its peak at exactly 3 repetitions for Align-Mix+ on
both Table Readout and Visual Analogy. This suggests that we may only require 3× less unique HARD Text examples
than reported in Figure 5.
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J. Interpretability Experiments
We use gradient attribution to identify which pixel in the image is important when generating each token in the CoT. For a
given data x ∈ X and its corresponding image format x(i), we label the set of pixels in the image as {x(i)j }. For a given gold
output y = {CoT (x), f(x)}, we label the sequence of CoT tokens as {yk}, where y:k refers to the subsequence of the CoT
tokens, up to the k-th token.

For each pixel x(i)j ∈ x(i) and each CoT token yk, we compute the attribution score as:

Pixel Attribute Score:
〈
∇x(i)j

l(fθ({x(i), y:k}), yk), x(i)j

〉
Informally, on Image examples, we take the gradient of the loss of the model’s output (up to the k-th CoT token) with respect
to each pixel, and project on the pixel values. Pixels that show positive alignment with the gradients are marked important
for the model’s prediction for the token yk.
In Figure 28, we plot the pixel attribute values, averaged across tokens that correspond to different segments of a highlighted
path of an example image from Table Readout. We observe that Align-Mix+ improves over Mix+ models by having more
focused and concise pixel attributes around the path of highlighted cells and their corresponding row/column names. In
Figure 29, we also show pixel attribute scores on Visual Analogy, where the pixel attributes are more aligned with objects of
interest scattered around the grid.
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Figure 28. Visualization of pixel attribute scores on Table Readout: (Top) Mix+; (Bottom) Align-Mix+. Models are trained with 24×104

training data. Pixel attribute scores are averaged across CoT tokens that belong to the first 5 pixels roughly in the 10th column (left), the
next 6 cells in the 8th column (middle), and the last 6 cells in the 6-th column (right). We show the top-1% pixels with the highest pixel
attribution scores (marked as red). Mix+ has more diffused pixel attributions in the image, while Align-Mix+ focuses more on the path of
cells (and their corresponding row/column names).

Figure 29. Visualization of pixel attribute scores on Visual Analogy: The model is trained with 12 × 104 training data of (TW)
Align-Mix+. Pixel attribute scores are averaged across CoT tokens that belong to Example 1 (left), Example 2 (middle), and the query
(right) respectively. We show the top-1% pixels with the highest pixel attribution scores (marked as red). The pixel attributes are focused
on relevant objects across the grid. Interestingly, when reading relevant object attributes in Example 2, the model still attends to objects
from Example 1.
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K. Analysis of Failure Modes
In this section, we briefly discuss the common failure modes of models trained on our synthetic data, when evaluated on
examples from the HARD split.

K.1. Table Readout
We analyze the outputs of Text on HARD-text, Image on HARD-image, and Mix+ on both HARD-text and HARD-image,
where all models have been trained on 24× 104 examples.
Since the models perform almost perfectly on the SIMPLE examples, where the total length of the sequence is around 12,
one may expect the models to read off the first 12 numbers from tables of the HARD split equivalently well but start making
errors after the sequence length it was trained on. We find that this is not the case by analyzing the index of the first error;
i.e., how many numbers the model reads off correctly before making the first mistake. Although the average index of the
first error is around 14.7, about 56% of incorrect generations (equivalently, 26% of total generations) contain a mistake
before the 12th number in the sequence.

Text Image Mix+ (text) Mix+ (image)
Type of Supervision

0.6

0.7

0.8

0.9

1.0

Precision Recall

Figure 30. Analysis of failure modes on Table Readout: (Left) Precision and Recall; (Right) Example of a common mistake. Models are
trained on 24× 104 examples of Text, Image and Mix+ supervision and evaluated on corresponding inputs from HARD. Models often
hallucinate a “shortcut.” In this case, precision would be 12/13 and recall would be 12/29.

To further analyze the behavior of the model when it makes a mistake, we extend the definition of precision and recall:

Precision =
Total # correctly listed

Total # listed
Recall =

Total # correctly listed
Total # highlighted

where we take the sum in the numerator and denominator across all test examples and mark a cell as correctly listed only if
the model generation contains it, regardless of the exact position in the sequence. See left of Figure 30 for the evaluation
results. Note that for Text and Image, precision is significantly higher than recall, meaning that it rarely hallucinates that a
cell is highlighted (when it is not), but it fails to list off many of the numbers that were highlighted. We find that this is
mainly because once the model derails from the highlighted path, it just moves directly towards the destination cell, until it
rejoins the path, unintentionally creating a “shortcut” that skips around 15 cells on the original path on average. See right of
Figure 30 for a visualization. However, the recall improves significantly on both HARD-text and HARD-image when trained
with Mix+.

K.2. Grid Navigation
In Figure 31, we analyze the outputs of Text supervision on HARD-text, Image supervision on HARD-image, and Mix+
supervision on HARD-image, where all models have been trained on a varying number of examples.
A successful evaluation on Grid Navigation requires completing multiple intermediate subtasks. The model first needs to
correctly identify the source and destination cells from the grid and parse the row/column indices. We observe that the
models can easily learn this subtask. Under any of the three types of supervision, the model can get at least 98% accuracy
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on parsing the location of the source and destination cells with only 1.5× 104 examples. With 6× 104 or more examples,
the accuracy is always 100%.
Next, we analyze whether the model returns a sequence of actions that leads from the source to the destination (ignoring any
object or obstacle). We observe that there is some “phase transition” at 3× 104 examples, where the model’s accuracy on
this subtask increases sharply. However, whereas Mix+ continues to improve accuracy on this subtask, exceeding 90% at
6× 104 examples, Text and Image supervision fail to achieve 90% even with 24× 104 examples.
We then analyze the average fraction of objects collected while navigating the grid. The evaluation on this subtask also
follows a similar “phase transition” at 3× 104 examples. However, whereas Mix+ immediately achieves 90% at 3× 104

examples and continues to improve to 96% at 24 × 104 examples, Text and Image supervision fail to improve beyond
50-70%. This subtask becomes a strong bottleneck for Text and Image supervision which prevents them from improving
S2H generalization performance.
Finally, we analyze the average number of obstacles that the model passes through. Across any of the three types of
supervision, the metric improves with more training data. However, this metric drops as low as 0.12 for Mix+ at 24× 104

examples, whereas Text supervision only achieves 0.78 and Image supervision achieves 0.67.

0.5 1.5 3 6 12 240.0

0.5

1.0 Reach Destination?

0.5 1.5 3 6 12 24
Number of Training Data (×104)

0.0

0.5

1.0 Avg. Fraction of Objects

0.5 1.5 3 6 12 240

2

4

Avg. Number of Obstacles

Text Image Mix+

Figure 31. Analysis of failure modes on Grid Navigation: (Left) Whether model generates a sequence of actions that leads to the
destination; (Middle) Average fraction of objects collected; (Right) Average number of obstacles passed through. Models trained with
Text and Image fail to improve beyond a certain threshold for all three subtasks.

K.3. Visual Analogy
We analyze the outputs of Text on HARD-text, Image on HARD-image, and Mix+ on both HARD-text and HARD-image,
where all models have been trained on 12× 104 examples. Specifically, we analyze the CoT trace, focusing on the following
structural steps as introduced in Appendix E.3 earlier:

• To reason about examples:

1. given an attribute (e.g. shape type), the model first needs to correctly enumerate the attribute values (e.g.
circle) for each image in the examples;

2. the model then needs to decide whether the values in all three images of that example are consistent with a logical
relation (e.g. XOR);

3. after repeating the process for both in-context examples, the model summarizes the two relational patterns (d1, r1)
and (d2, r2) for the examples;

4. finally, the model needs to identify the target relation r1 = r2 = rquery from the examples.

• To reason about the query: the model needs to correctly enumerate the attribute values for each image in the query
similarly.

• To reason about the options:

1. assuming the query when combined with each option follows a relational pattern (domain d, relation r) (e.g.
(line type, XOR), the model needs to identify the correct values of the attribute domain d for each option
image and the correct relation r;

2. the model also needs to reason whether the identified relation r is the desired target relation rquery.
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Table 14. Analysis of failure modes on Visual Analogy: Models are trained on 12× 104 examples of Text, Image, and Mix+ supervision
and evaluated on corresponding HARD inputs. ∗ means the evaluation is considered in-domain, as Mix+ supervision contains HARD-text
examples in training. To evaluate the entire CoT (second to last row), we check if the generated output contains all the correct values in
reasoning steps about the examples, query, and options. The main sources of errors for each type of supervision are highlighted.

Types of failures Error rate (%)
Text (text) Image (image) Mix+ (text∗ / image)

Reasoning about examples

type values 0.0 0.0 0.0 / 0.0
color values 0.0 0.0 0.0 / 0.0
size values 29.6 26.6 0.0 / 39

quantity values 29.6 26.2 0.0 / 37.4
position values 29.6 26.2 0.0 / 37.4
held-out (di, ri) 86.8 81.0 0.0 / 42.2

d1 ̸= d2 86.8 80.8 0.0 / 23.8
relation 35.2 34.4 0.0 / 0.8

Reasoning about query

type values 0.0 0.0 0.0 / 0.0
color values 0.0 0.0 0.0 / 0.0
size values 0.4 7.6 0.0 / 16.8

quantity values 0.4 7.6 0.0 / 16.2
position values 0.4 7.6 0.0 / 16.2

Reasoning about options

attribute domain 79.8 65.2 0.4 / 44.2
attribute values 8.4 32.0 0.0 / 65.0

relation 71.4 82.4 0.2 / 45.0
identify solution 45.2 51.8 0.2 / 21.0

CoT 100.0 100.0 0.4 / 79.8

Exact match 100.0 100.0 0.4 / 64.6

Mix+ supervision enables significant improvement on reasoning steps that require compositional generalization where
Text and Image supervision fail: As shown in Table 14, we observe that models trained with Text and Image struggle
primarily to identify the correct held-out relational pattern (di, ri) for in-context examples, and in particular to recognize
d1 ̸= d2, that is, the two examples vary along different attributes, with both error rates ≥ 80%. These two sources of error
correspond exactly to the differences between the SIMPLE and HARD split of Visual Analogy, which requires the model to
generalize in a compositional manner. With Mix+ supervision, the model significantly improves on these steps with a much
smaller error rate of 42.2% in identifying the held-out (di, ri) and 23.8% in recognizing d1 ̸= d2.

Visual Analogy focuses more on abstract relational reasoning rather than object detection: We observe that even
with a consistently higher error rate in identifying attribute values, models with Mix+ supervision can achieve a lower error
rate in both CoT and exact match compared to their counterparts with Text and Image supervision. This makes sense since
reasoning depends more on identifying the correct logical relation than on identifying the correct attribute values. Although
achieving the latter can be an important reasoning step, it is not a necessary condition to arrive at the correct solution.
We also note that the error rate of CoT can be higher than the error rate in exact match. This indicates that in some cases the
model can still arrive at the correct solution even though it makes slight mistakes in the reasoning trace: for example, it can
still conclude with the correct relational pattern without identifying all the attribute values correctly.

Even with Mix+ supervision, the model still exhibits sensitivity to CoT templates and hallucinations: Interestingly,
we find that the error rate in identifying values of size, quantity, and position consistently similar. Upon manual
inspection of the model output, we find that models fail to switch between different reasoning templates about shape and line
objects: while the general templates for the two object types are similar, the model needs to reason about five attributes for
shapes and only type and color for lines. With Mix+ supervision, models can still be sensitive to this small difference
in CoT templates and hallucinate about undefined size, quantity, and position attributes of the line objects. This
highlights that models with Mix+ supervision are still brittle.
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May January October March June February August April

  RadiateTool ONE FOUR TWO SEVEN NINE NINE NINE SIX EIGHT EIGHT

  OmicronInstrument ONE ONE FOUR SIX NINE ZERO FIVE ZERO FOUR ONE

  ShimmerApparatus ZERO TWO FIVE ONE FOUR EIGHT FOUR SIX NINE SIX

  XiTool ONE ONE NINE FOUR ZERO ZERO ONE NINE SEVEN ONE

  EmberGadget SEVEN FOUR SIX SEVEN SEVEN EIGHT NINE THREE THREE SIX

  SizzleContrapBon ONE SEVEN ZERO THREE FIVE FIVE SIX EIGHT ONE THREE

  ParamountInstrument THREE EIGHT SIX ZERO NINE EIGHT TWO THREE EIGHT NINE

  SuperiorGadget ZERO FIVE TWO TWO EIGHT FIVE NINE FIVE FOUR SIX

  QuantumApparatus THREE TWO TWO SIX THREE EIGHT EIGHT NINE NINE FOUR

The image shows the sales data of different products in different months. For readability, 
values in the cells have been replaced by their English names, e.g. 0 is represented by 
ZERO. There is a path of highlighted cells (colored in yellow) starting from (RadiateTool, 
January) and ending at (EmberGadget, August). Please return the total of all values in the 
highlighted cells. Provide the final answer as 'Answer: [total]'.

Question

Convert the image into a latex code of the given table, where highlighted cells (colored in 
yellow) are marked with a * symbol next to the values. 

\begin{tabular}{lrrlllllllr} 
 & May & November & January & December & October & March & June & February 
& August & April \\ 
 RadiateTool & 1 & 4 & 2 * & 7 & 9 & 9 & 9 & 6 & 8 & 8 \\ 
 OmicronInstrument & 1 & 1 & 4 * & 6 & 9 & 0 & 5 & 0 & 4 & 1 \\ 
 ShimmerApparatus & 0 & 2 & 5 * & 1 & 4 & 8 & 4 & 6 & 9 & 6 \\ 
 XiTool & 1 & 1 & 9 * & 4 & 0 & 0 & 1 & 9 & 7 & 1 \\ 
 EmberGadget & 7 & 4 & 6 * & 7 & 7 & 8 & 9 & 3 & 3 * & 6 \\ 
 SizzleContraption & 1 & 7 & 0 * & 3 & 5 & 5 & 6 & 8 & 1 * & 3 \\ 
 ParamountInstrument & 3 & 8 & 6 * & 0 & 9 & 8 & 2 & 3 & 8 * & 9 \\ 
 SuperiorGadget & 0 & 5 & 2 * & 2 & 8 & 5 & 9 & 5 & 4 * & 6 \\ 
 QuantumApparatus & 3 & 2 & 2 * & 6 * & 3 * & 8 * & 8 * & 9 * & 9 * & 4 \\ 
 \end{tabular} 
\caption{Business Sales Data for products in different months} 
\label{tab:business_sales} 
\end{table}

1. Text Conversion

2. CoT
We enumerate the relevant row indices, column indices, row names, column names, and their 
corresponding values. 

Row Index, Column Index, Row Name, Column Name, Value 
1 3 RadiateTool                     January 2 
2 3 OmnicronInstrument       January 4 
3 3 ShimmerApparatus         January 5 
4 3 XiTool                             December 9 
5 3 EmberGadget           January 6 
…… 
9 9 QuantumApparatus         August 9 
8 9 SuperiorGadget           August 4 
7 9 ParamountInstrument      August 8 
6 9 SizzleContraption           August 1 
5 9 EmberGadget           August 3

3. Prediction

The total is 2 + 4 + 5 + 9 + 6 + 0 + 6 + 2 + 2 + 6 + 3 + 8 + 8 + 9 + 9 + 4 + 8 + 1 + 3 = 95. 

Answer: 95

November December

Figure 32. A SIMPLE example from Table Readout.
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The image shows the sales data of different products in different months. For readability, 
values in the cells have been replaced by their English names, e.g. 0 is represented by 
ZERO. There is a path of highlighted cells (colored in yellow) starting from (PsiDevice, 
September) and ending at (DeltaTool, June). Please return the total of all values in the 
highlighted cells. Provide the final answer as 'Answer: [total]'.

Question

September December July October February November June May January March

  ShineDevice ONE FOUR ONE SEVEN FOUR FIVE ZERO SIX TWO NINE

  WaveTool SEVEN ZERO EIGHT ZERO FIVE THREE ZERO FOUR THREE THREE

  FlashTool THREE SIX FOUR SEVEN TWO FOUR FOUR TWO FOUR ONE

  ScorchMachine SIX THREE NINE ZERO FIVE TWO ONE ZERO SIX EIGHT

  EliteMechanism NINE SIX ONE EIGHT ZERO EIGHT FOUR TWO TWO ONE

  EpsilonInstrument EIGHT TWO ZERO ONE ONE ONE THREE SIX FOUR SIX

  DeltaTool EIGHT ONE NINE THREE FIVE ZERO ONE ONE ONE NINE

  ApexWidget FIVE ONE ONE EIGHT SEVEN THREE THREE NINE ZERO TWO

  EmberGadget ZERO TWO EIGHT FIVE THREE TWO FIVE THREE SEVEN THREE

  PsiDevice FOUR NINE FOUR ZERO SIX FOUR SEVEN FIVE ZERO SEVEN

Convert the image into a latex code of the given table, where highlighted cells (colored in yellow) 
are marked with a * symbol next to the values. 
\begin{table}[ht] 
\centering 
\begin{tabular}{lllllllllll} 
 & September & December & July & October & February & November & June & May 
& January & March \\ 
 ShineDevice & 1 * & 4 * & 1 * & 7 * & 4 * & 5 * & 0 * & 6 * & 2 * & 9 * \\ 
 WaveTool & 7 * & 0 & 8 & 0 & 5 & 3 & 0 & 4 & 3 & 3 * \\ 
 FlashTool & 3 * & 6 & 4 * & 7 * & 2 * & 4 * & 4 * & 2 * & 4 * & 1 * \\ 
 ScorchMachine & 2 * & 3 & 9 * & 0 & 5 & 2 & 1 & 0 & 6 & 8 \\ 
 EliteMechanism & 9 * & 6 & 1 * & 1 & 0 * & 8 * & 4 * & 2 * & 2 * & 1 * \\ 
 EpsilonInstrument & 8 * & 2 & 0 * & 1 & 1 * & 1 & 3 & 6 & 4 & 6 * \\ 
 DeltaTool & 8 * & 1 & 9 * & 3 & 5 * & 0 & 1 * & 1 * & 6 & 9 * \\ 
 ApexWidget & 5 * & 1 & 1 * & 8 & 7 * & 3 & 3 & 9 * & 0 & 2 * \\ 
 EmberGadget & 0 * & 2 & 8 * & 5 & 3 * & 2 & 5 & 3 * & 7 & 3 * \\ 
 PsiDevice & 4 * & 9 & 4 * & 0 * & 6 * & 4 & 7 & 5 * & 0 * & 7 * \\ 
 \end{tabular} 
\caption{Business Sales Data for products in different months} 
\label{tab:business_sales} 
\end{table}

1. Text Conversion

2. CoT
We enumerate the relevant row indices, column indices, row names, column names, and their 
corresponding values. 

Row Index, Column Index, Row Name, Column Name, Value 
10 1 PsiDevice September 4 
9 1 EmberGadget September 0 
8 1 ApexWidget September 5 
7 1 DeltaTool September 8 
6 1 EpsilonInstrument September 8 
…… 
10 8 PsiDevice May 5 
9 8 EmberGadget May 3 
8 8 ApexWidget May 9 
7 8 DeltaTool May 1 
7 7 DeltaTool June 1 

3. Prediction
The total is 4 + 0 + 5 + 8 + 8 + 9 + 2 + 3 + 7 + 1 + 4 + 1 + 7 + 4 + 5 + 0 + 6 + 2 + 9 + 3 + 1 + 4 + 2 + 4 + 
4 + 2 + 7 + 4 + 9 + 1 + 0 + 9 + 1 + 8 + 4 + 0 + 6 + 3 + 7 + 5 + 1 + 0 + 8 + 4 + 2 + 2 + 1 + 6 + 9 + 2 + 3 + 
7 + 0 + 5 + 3 + 9 + 1 + 1 = 233. 

Answer: 233

Figure 33. A HARD example from Table Readout.
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September

Convert the image into a text version of a table, where 
cells colored in blue, green are respectively marked as 
S, D. Blank cells are given by O. Objects and obstacles 
are mentioned by their names. 
& a & b & c & d & e & f & g & h 
 a & O & O & O & O & O & O & square & square 
 b & square & square & square & O & square & O & O & O 
 c & O & O & O & square & O & square & O & square 
 d & square & square & square & O & O & flag & O & O 
 e & O & D & O & square & O & O & square & square 
 f & O & square & O & O & square & O & O & square 
 g & square & O & O & O & O & square & O & O 
 h & square & square & square & O & O & O & S & O

Question

We follow a depth first search, 
always moving towards the 
destination. 
Source:( h, g) Destination:( e, b) 
Collect objects: flag( d, f) 
Avoid square 
 h, g: 
 up: g, g okay 
 g, g: 
 up: f, g okay 
 f, g: 
 up: e, g closed( square) 
 left: f, f okay 
 f, f: 
 up: e, f okay 
 e, f: 

2. CoT

3. Prediction

Answer: up up left up up 
left down right down 
right down down left left 
up left up left up left

The image shows a 2 dimensional grid. The grid is filled up with objects, which you will be 
asked to recognize and collect, and obstacles, which you should avoid. Possible objects and 
obstacles are given as follows: 
Objects: heart, crown, flag, star, flower, umbrella, plane, phone, spark, diamond, queen, 
hammer, club, gear, arrow, sun, bishop, note, coffee, anchor, cloud, pawn, castle, horse, 
infinity, moon, null, approx, integral, product, sum 
Obstacles: dot, cross, square, triangle, plus 
Cells that don't contain any object or obstacle are left  
blank. A traveller starts at the source (colored in blue)  
and wishes to go to the destination (colored in green).  
Your task is to give a list of actions ( left right up down)  
each indicating a movement by 1 cell that the traveller  
needs to follow. The traveller must recognize all objects  
in the grid, collect them but avoid obstacles in the  
process. Provide the final answer as 'Answer: [list of  
actions]'. If no path exists, output 'Answer: No path exists'.

a

b

c

d

e

f

g

h

eda b c f g h

◼ 
 ◼ 


◼ 
 ◼ 
 ◼ 
 ◼ 


◼ 
 ◼ 
 ◼ 


◼ 
 ◼ 
 ◼ 
 ⚑

◼ 
 ◼ 
 ◼ 


◼ 
 ◼ 
 ◼ 


◼ 
 ◼ 


◼ 
 ◼ 
 ◼ 


1. Text Conversion

 up: d, f okay 
 d, f: Collect flag 
 left: d, e okay 
 d, e: 
 left: d, d okay 
 d, d: 
 left: d, c closed( square) 
 down: e, d closed( square) 
 up: c, d closed( square) 
 right: d, e visited 
 No available actions. 
 retrace 1 step 
 d, e: 
 left: d, d visited 
 down: e, e okay 
 e, e:

 left: e, d closed( square) 
 up: d, e visited 
 down: f, e closed( square) 
 right: e, f okay 
 e, f: 
 left: e, e visited 
 up: d, f visited 
 down: f, f okay 
 f, f: 
 left: f, e closed( square) 
 up: e, f visited 
 down: g, f closed( square) 
 right: f, g okay 
 f, g: 
 left: f, f visited 
 up: e, g closed( square)

 down: g, g okay 
 g, g: 
 left: g, f closed( square) 
 up: f, g visited 
 down: h, g okay 
 h, g: 
 g, e: 
 left: g, d okay 
 g, d: 
 up: f, d okay 
 f, d: 
 left: f, c okay 
 f, c: 
 up: e, c okay 
 e, c: 
 left: e, b okay

Figure 34. A SIMPLE example from Grid Navigation.
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We follow a depth first search, always 
moving towards the destination. 
Source:( g, d) Destination:( c, k) 
Collect objects: gear( i, e) spark( i, h) 
castle( d, g) queen( a, g) sun( d, b) 
Avoid cross triangle plus 
 g, d: 
 down: h, d closed( plus) 
 right: g, e closed( plus) 
 left: g, c okay 
 g, c: 
 down: h, c closed( cross) 
 right: g, d visited 
 up: f, c okay 
 f, c: 
 down: g, c visited 
 right: f, d closed( triangle) 
 left: f, b okay 
 f, b: 
 down: g, b okay 
 g, b: 
 right: g, c visited 
 down: h, b okay 
 h, b: 
 right: h, c closed( cross) 
 down: i, b okay 
 i, b: 
 right: i, c okay

2. CoT
 i, c: 
 right: i, d okay 
 i, d: 
 right: i, e okay 
 i, e: Collect gear 
 right: i, f okay 
 i, f: 
 right: i, g okay 
 i, g: 
 right: i, h okay 
 i, h: Collect spark 
 up: h, h okay 
 h, h: 
 up: g, h closed( cross) 
 left: h, g okay 
 h, g: 
 up: g, g okay 
 g, g: 
 up: f, g okay 
 f, g: 
 up: e, g okay 
 e, g: 
 up: d, g okay 
 d, g: Collect castle 
 up: c, g okay 
 c, g: 
 up: b, g okay 
 b, g:

 up: a, g okay 
 a, g: Collect queen 
 left: a, f okay  
 a, f: 
 left: a, e okay 
 a, e: 
 down: b, e okay 
 b, e: 
 left: b, d closed( cross) 
 down: c, e okay 
 c, e: 
 left: c, d okay 
 c, d: 
 left: c, c okay 
 c, c: 
 down: d, c okay 
 d, c: 
 left: d, b okay 
 d, b: Collect sun 
 right: d, c okay 
 d, c: 
 right: d, d closed( triangle) 
 up: c, c okay 
 c, c: 
 right: c, d okay 
 c, d: 
 right: c, e okay 
 c, e:

September

The image shows a 2 dimensional grid. The grid is filled up with objects, which you will be 
asked to recognize and collect, and obstacles, which you should avoid. Possible objects and 
obstacles are given as follows: 
Objects: heart, crown, flag, star, flower, umbrella, plane, phone, spark, diamond, queen, 
hammer, club, gear, arrow, sun, bishop, note, coffee, anchor, cloud, pawn, castle, horse, 
infinity, moon, null, approx, integral, product, sum 
Obstacles: dot, cross, square, triangle, plus 
Cells that don't contain any object or obstacle  
are left blank. A traveller starts at the source  
(colored in blue) and wishes to go to the  
destination (colored in green). Your task is to  
give a list of actions ( left right up down) each  
indicating a movement by 1 cell that the  
traveller needs to follow. The traveller must  
recognize all objects in the grid, collect them  
but avoid obstacles in the process. Provide the  
final answer as 'Answer: [list of actions]'. If no  
path exists, output 'Answer: No path exists'.

Convert the image into a text version of a table, where cells colored 
in blue, green are respectively marked as S, D. Blank cells are 
given by O. Objects and obstacles are mentioned by their names. 
& a & b & c & d & e & f & g & h & i & j & k 
 a & O & plus & O & O & O & O & queen & O & O & O & cross 
 b & O & plus & O & cross & O & O & O & O & cross & O & O 
 c & O & O & O & O & O & O & O & plus & O & O & D 
 d & cross & sun & O & triangle & O & cross & castle & O & O & cross & O 
 e & O & O & O & O & O & O & O & cross & cross & O & O 
 f & O & O & O & triangle & O & O & O & cross & triangle & O & O 
 g & O & O & O & S & plus & O & O & cross & O & O & triangle 
 h & cross & O & cross & plus & O & O & O & O & O & O & cross 
 i & O & O & O & O & gear & O & O & spark & O & O & O

Question

3. Prediction

Answer: left up left 
down down down right 
right right right right 
right up left up up up up 
up up up left left down 
down left left down left 
right up right right right 
right up right up right 
right down down right

1. Text Conversion

eda b c f g h i kj

i

✚ ♛ ✖

✚ ✖ ✖

✚
✖ ☀ ▲ ✖ ♖ ✖

✖ ✖

▲ ✖ ▲
✚ ✖ ▲

✖ ✖ ✚ ✖

⚙ ✦

a

b

c

d

e

f

g

h

 right: c, f okay 
 c, f:  
 right: c, g okay 
 c, g: 
 right: c, h closed( plus) 
 up: b, g okay 
 b, g: 
 right: b, h okay 
 b, h: 
 right: b, i closed( cross) 
 down: c, h closed( plus) 
 up: a, h okay 
 a, h: 
 right: a, i okay 
 a, i: 
 down: b, i closed( cross) 
 right: a, j okay 
 a, j: 
 down: b, j okay 
 b, j: 
 down: c, j okay 
 c, j: 
 right: c, k okay

Figure 35. A HARD example from Grid Navigation.
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The image shows a a puzzle in a 3 by 3 grid followed by 4 options. The puzzle 
consists of 2 examples (row 1 and 2), a query (row 3), and four options. Each 
example contains three images following a relation along certain attribute, and 
this relation is consistent across all examples. 
The query contains two images. Analyze the  
changes in the following attributes for each  
example: line type, line color, shape type,  
shape color, shape size, shape quantity, shape  
position, and consider the relations: Progression,  
XOR, OR, and AND. Progression requires the  
value of a certain attribute to strictly increase  
or decrease, but not necessarily by a fixed  
amount. Please provide your predictions in the  
format 'Example i: (attribute, relation)' for each  
example and similarly for options. Provide  
the final answer as 'Answer: [correct option]'.

?

Convert the image into a text 
version of the puzzle. 
Example 1: 
Panel 1: 
2 shapes; type: circle, … color: 
90, 255, size: 27, position: (1, 0), 
(0, 2) 
Panel 2: … 
Example 2: 
Panel 1: 
… 
Query: 
Panel 1: 
… 
Options: 
Option 1: 
4 shapes; type: pentagon 
…

Question

1. Text Conversion

We first analyze the examples by considering the applicable attributes 
and relations: 
Example 1: 
type: 
Image 1: circle, triangle 
Image 2: triangle, rectangle 
Image 3: circle 
No pattern. 
… 
position: 
Image 1: (1, 0), (0, 2) 
Image 2: (0, 2), (1, 1) 
Image 3: (0, 2) 
This suggests the AND relation. 
Example 2: … 
The examples suggest the following patterns: (shape position, AND), 
(shape position, AND). 
We conclude that AND is the common relation. 
Now, we analyze the images in the query: 
type: 
Image 1: hexagon, triangle 
Image 2: triangle, rectangle 
color: … 
Looking at the options, we find: 
Option 1 has shape color of 189, 90, 0, so it is consistent with the OR 
relation on shape color, but OR is not the target relation. 
… 
Option 4 has shape position of (1, 1), so it is consistent with the AND 
relation on shape position, and AND is the target relation. 
We conclude that option 4 is the answer since it is consistent with the 
AND relation.

2. CoT

3. Prediction
Example 1: (shape position, AND) 
Example 2: (shape position, AND) 
Option 1: (shape color, OR), not consistent 
Option 2: (shape color, XOR), not consistent 
Option 3: (shape type, XOR), not consistent 
Option 4: (shape position, AND), consistent 
Answer: 4

Figure 36. A SIMPLE example from Visual Analogy: The common relation is r = AND and the domains are d1 = d2 = dquery =
shape quantity, and the combinations (d, r) are not in the held-out set S = {(line type,XOR), (line color,OR),
(shape type,AND), (shape size,XOR), (shape color,Progression), (shape position,OR), (line type,AND),
(line color,Progression)}.

52
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The image shows a a puzzle in a 3 by 3 grid followed by 4 options. The puzzle 
consists of 2 examples (row 1 and 2), a query (row 3), and four options. Each 
example contains three images following a relation along certain attribute, and 
this relation is consistent across all examples. 
The query contains two images. Analyze the  
changes in the following attributes for each  
example: line type, line color, shape type,  
shape color, shape size, shape quantity, shape  
position, and consider the relations: Progression,  
XOR, OR, and AND. Progression requires the  
value of a certain attribute to strictly increase  
or decrease, but not necessarily by a fixed  
amount. Please provide your predictions in the  
format 'Example i: (attribute, relation)' for each  
example and similarly for options. Provide  
the final answer as 'Answer: [correct option]'.

?

Convert the image into a text 
version of the puzzle. 
Example 1: 
Panel 1: 
type: diamond lines, horizontal 
line, color: 189, 135 
… 
Example 2: 
Panel 1: 
2 shapes; type: pentagon, … 
… 
Query: 
Panel 1: 
… 
Options: 
Option 1: 
type: V-shape facing left, color: 
…

Question

1. Text Conversion
We first analyze the examples by considering the applicable attributes 
and relations: 
Example 1: 
type: 
Image 1: diamond lines, horizontal line 
Image 2: vertical line 
Image 3: falling diagonal line 
No pattern. 
color: 
Image 1: 189, 135 
Image 2: 189 
Image 3: 189 
This suggests the AND relation. 
Example 2: … 
The examples suggest the following patterns: (line color, AND), 
(shape color, AND). 
We conclude that AND is the common relation. 
Now, we analyze the images in the query: 
type: 
Image 1: falling diagonal line, V-shape facing down 
Image 2: horizontal line, falling diagonal line 
color: … 
Looking at the options, we find: 
Option 1 has line color of 135, so it is consistent with the XOR 
relation on line color, but XOR is not the target relation. 
… 
Option 4 has line color of 0, so it is consistent with the AND relation 
on line color, and AND is the target relation. 
We conclude that option 4 is the answer since it is consistent with the 
AND relation.

2. CoT

3. Prediction
Example 1: (line color, AND) 
Example 2: (shape color, AND) 
Option 1: (line color, XOR), not consistent 
Option 2: (line color, OR), not consistent 
Option 3: (line type, XOR), not consistent 
Option 4: (line color, AND), consistent 
Answer: 4

Figure 37. A HARD example from Visual Analogy: The common relation is r = AND and the domains are distinct: d1 = line color,
d2 = shape position, dquery = line color, and the combinations (d, r) are in the held-out set S = {(line type,XOR),
(line color,OR), (shape type,AND), (shape size,XOR), (shape color,Progression), (shape position,OR),
(line type,AND), (line color,Progression)}. Note that the pattern for the confounding options may not be in S.
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