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Abstract

We introduce Referring 3D Gaussian Splatting
Segmentation (R3DGS), a new task that aims to
segment target objects in a 3D Gaussian scene
based on natural language descriptions, which
often contain spatial relationships or object at-
tributes. This task requires the model to identify
newly described objects that may be occluded
or not directly visible in a novel view, posing a
significant challenge for 3D multi-modal under-
standing. Developing this capability is crucial for
advancing embodied Al. To support research in
this area, we construct the first R3DGS dataset,
Ref-LERF. Our analysis reveals that 3D multi-
modal understanding and spatial relationship mod-
eling are key challenges for R3DGS. To address
these challenges, we propose ReferSplat, a frame-
work that explicitly models 3D Gaussian points
with natural language expressions in a spatially
aware paradigm. ReferSplat achieves state-of-
the-art performance on both the newly proposed
R3DGS task and 3D open-vocabulary segmenta-
tion benchmarks. Dataset and code are available
at https://github.com/heshuting555/ReferSplat.

1. Introduction

3D Gaussian Splatting (3DGS) (Kerbl et al., 2023), a re-
cently proposed neural rendering technique, has attracted
significant attention because of its fast training, real-time
rendering capabilities, and explicit point-based represen-
tation (Keetha et al., 2024; Yang et al., 2024; Tang et al.,
2024; Zhou et al., 2024a). As 3DGS continues to advance,
text-driven 3D scene understanding has attracted more and
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Figure 1. Referring 3D Gaussian Splatting Segmentation (R3DGS)
aims at segmenting the target objects described by a given natural
language descriptions within a 3D Gaussian scene, requiring the
model to identify newly described objects that may be occluded or
not directly visible in a novel view.

more attention, particularly in open-vocabulary 3DGS seg-
mentation (3DOVS) (Qin et al., 2024; Ye et al., 2025; Zhou
et al., 2024b), which relies on fixed-pattern linguistic class
names input for segmentation.

However, despite these advancements, free-form natural
language interactions with 3D scenes remain underexplored.
The ability to interpret and localize objects based on arbi-
trary language descriptions is crucial for various real-world
applications, such as embodied Al (Shorinwa et al., 2024),
autonomous driving (Gu et al., 2024), and VR/AR sys-
tems (Jiang et al., 2024). To bridge this gap, we introduce
a new task: Referring 3D Gaussian Splatting Segmenta-
tion (R3DGS), aims at segmenting objects in a 3D Gaussian
scene based on natural language expressions that typically
encode spatial relationships and descriptive attributes. As
shown in Fig. 1, R3DGS requires the model to identify
newly described objects, even when occluded or not directly
visible in the novel view, posing a significant challenge for
3D multi-modal understanding. To support future research
in R3DGS, we construct Ref-LERF, a new dataset rich in
complex and spatially grounded language expressions.

A straightforward baseline for R3DGS is to adapt exist-
ing open-vocabulary 3D scene understanding methods by
replacing short and simple class names with complex natu-
ral language expressions. Existing open-vocabulary meth-
ods primarily project semantic features onto images for
pixel-level understanding, leveraging semantic knowledge
from pre-trained 2D vision-language models (Radford et al.,
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Figure 2. Comparison of (a) existing open-vocabulary 3DGS seg-
mentation pipeline and (b) the proposed ReferSplat for R3DGS.

2021; Kirillov et al., 2023) as ground truth feature to guide
3D scene representation learning. During inference, output
masks are obtained by matching the input open-vocabulary
class names with the rendered feature, as shown in Fig. 2 (a).
However, these methods face significant limitations when
applied to R3DGS. One major drawback is the lack of inter-
action between the text query and Gaussian representations
during training. Existing methods rely on matching the text
query with 2D rendered features instead of performing local-
ization directly in 3D space, which limits their performance
in complex scenarios. Moreover, this training paradigm
overlooks position information, as rendered feature cannot
inherently understand spatial relationships between objects
described in a sentence. Instead, it primarily focuses on
semantic understanding, making it ineffective for tasks re-
quiring spatial reasoning. This raises a question: Can we
design a network that models 3D Gaussians with language
expressions in a spatially aware paradigm?

In this work, we propose ReferSplat, an end-to-end frame-
work that models 3D Gaussian points with natural language
expressions in a spatially aware paradigm for Referring 3D
Gaussian Splatting Segmentation (R3DGS). To enable lan-
guage perception, we assign each 3D Gaussian a referring
feature vector, forming referring fields that interact with text
queries during training. Similarity is computed between
textual features and 3D Gaussian referring features, and the
rendered 2D segmentation mask is obtained accordingly,
as shown in Fig. 2 (b). For segmentation supervision, we
generate pseudo ground truth masks using a confidence-
weighted IoU strategy. The constructed 3D Gaussian Re-
ferring Fields enable the model to identify objects that are
occluded or not directly visible by leveraging 3D scene
knowledge learned from multi-view training images. To
enhance spatial reasoning, we introduce a Position-aware
Cross-Modal Interaction module that extracts position fea-
tures for both Gaussians and language descriptions. These

features are refined through position-guided attention, ef-
fectively aligning 3D Gaussian representations with text
descriptions. Despite spatial awareness, sentences with
similar semantics but different target objects may cause
confusion thus degrade performance. To address this issue,
we employ Gaussian-Text Contrastive Learning between
positive Gaussian embeddings and text embeddings, where
Gaussian embeddings are computed from selectively chosen
positive Gaussian referring features. This helps the model
differentiate fine-grained referring expressions, improving
cross-modal understanding. Extensive experiments demon-
strate that ReferSplat achieves state-of-the-art performance
on both open-vocabulary 3DGS segmentation and the newly
proposed referring 3DGS segmentation tasks.

In summary, our contributions are as follows:
* We introduce a new task termed Referring 3D Gaussian
Splatting (R3DGS) and construct a new dataset Ref-
LERF to support future research in R3DGS.

* To tackle the challenges of R3DGS, we propose Refer-
Splat, a spatially aware framework that models 3D
Gaussians based on natural language expressions,
achieving state-of-the-art performance on Ref-LERF.

* We construct 3D Gaussian Referring Fields, incor-
porating high-quality pseudo masks generated via
confidence-weighted IoU strategy as a strong pipeline.

* We design Position-aware Cross-Modal Interaction
module, which integrates position information into the
cross-modal interaction, enhancing spatial reasoning
and feature alignment between 3D Gaussians and text.

* We employ Gaussian-Text Contrastive Learning to im-
prove the model’s ability to generate discriminative
multi-modal representations, effectively distinguishing
semantically similar expressions.

2. Related Work

3D Neural Representations. Recent developments in 3D
representation have achieved notable progress, with Neural
Radiance Fields (NeRF) (Mildenhall et al., 2021) standing
out for the ability to generate high-quality novel view synthe-
sis. Despite their effectiveness, NeRF’s reliance on implicit
neural networks can lead to extended training and rendering
durations. To address these limitations, Instant-NGP (Miiller
et al., 2022) accelerates the process using hash encoding. Re-
cently, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023)
proposes an explicit way to represent 3D scenes using a
collection of 3D Gaussian distributions. Through the opti-
mization of their spatial positions and visual attributes, this
method achieves real-time, high-quality rendering. Since the
introduction of 3DGS, its superior performance has attracted
increasing attention, leading to numerous studies focusing
on enhancing rendering quality (Li et al., 2025b; Yu et al.,
2024a; Huang et al., 2024), improving scene reconstruc-
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tion accuracy (Yu et al., 2024b; Dai et al., 2024; Guédon
& Lepetit, 2024), and feed-forward optimization (Xu et al.,
2025; Chen et al., 2025; Charatan et al., 2024). In this work,
we leverage the strengths of 3D Gaussian Splatting as a
foundation for 3D neural representations, using its explicit
paradigm to achieve efficient and high-quality rendering.

3D Segmentation in Gaussian Splatting. Inspired by the
success of Gaussian Splatting (Kerbl et al., 2023; Xu et al.,
2025; Chen et al., 2025), numerous studies have explored
3D segmentation within this framework. SAGA (Cen et al.,
2025) introduces a promptable segmentation method lever-
aging 3D Gaussian Splatting to highlight its potential in
semantic understanding. Following this, various works (Hu
et al., 2024; Choi et al., 2025; Jain et al., 2024) emerged,
further advancing promptable segmentation techniques. In-
tegrating foundation models such as CLIP (Radford et al.,
2021) and SAM (Kirillov et al., 2023; Ravi et al., 2025),
several approaches (Li et al., 2025a; Zhou et al., 2024b;
Zuo et al., 2024; Ye et al., 2025; Wu et al., 2024b; Liang
et al., 2024; Shi et al., 2024; Qu et al., 2024; Ji et al., 2024,
Peng et al., 2025) extend Gaussian Splatting to semantic and
open-vocabulary 3D segmentation. While these methods in-
corporate some level of language perception, they primarily
focus on category-level segmentation and struggle to com-
prehend complex natural language queries. This gap under-
scores the necessity for methods capable of understanding
and segmenting objects based on nuanced linguistic cues.

Referring Segmentation. 2D Referring Expression Seg-
mentation (RES) (Ding et al., 2023c; 2021; 2023a;b; Liu
et al., 2023; Yang et al., 2022; Ding et al., 2025a;b)
and 3D point-based Referring Expression Segmentation
(3DRES) (Huang et al., 2021; He et al., 2024; 2023; He &
Ding, 2024; Wang et al., 2024; 2025) aim to segment a tar-
get object within a 2D image or 3D point cloud scene based
on a natural language expression. In recent years, RES and
3DRES have seen significant progress, with Transformer-
based architectures becoming the dominant choice. Among
them, Grounded SAM (Ren et al., 2024) stands out as a
robust RES method in the 2D domain, integrating two state-
of-the-art models—Grounding DINO (Liu et al., 2025) and
SAM (Kirillov et al., 2023). Besides, the emergence of
point-based benchmarks such as ScanRefer (Chen et al.,
2020) and Multi3DRefer (Zhang et al., 2023) has signifi-
cantly accelerated the progress of 3DRES. However, despite
these advances, existing methods and datasets remain con-
strained to 2D or 3D point-based representations and cannot
be directly applied to R3DGS.

3. Method
3.1. Preliminaries

In 3D Gaussian Splatting (3DGS) for RGB image rendering,
a scene is represented by a set of 3D Gaussian distributions

g = {gl}{\il where N\ is the number of Gaussians. Each
Gaussian g; is parameterized by its mean position ; € R?,
covariance matrix 3; € R3*3, opacity o; € R!, and color
¢; € R where d. = 3 for RGB color parameters.

To render an image, each 3D Gaussian is projected onto the
2D image plane, where it contributes to the pixel color based
on its opacity. The color at a given pixel v, denoted as C'(v),
is computed by blending the contributions of all Gaussians
according to their opacity. This process is formulated as:

N i—1
C(U):ZciaiH(l—aj), e))
i=1 j=1

where ¢; is the color vector of the i-th Gaussian, and «; =
0,G2P (v), G?P(v) is the 2D projection function.

3.2. Problem Statement and Method Overview

During training for Referring 3D Gaussian Splatting Seg-
mentation (R3DGS), we are given a set of RGB images
T = {I,}5_, from S different training views, along with
a set of natural language expressions 7 = {7} }},, where
each T; refers to an object visible in a single training view.
At test time, the model is given a referring expression and
a novel view, and is required to predict the corresponding
object mask. The key challenge lies in segmenting the tar-
get object in this unseen view, where it may be partially
occluded or even entirely invisible. Unlike 2D referring
segmentation, which operates on a single image and cannot
resolve occlusions, R3DGS leverages the 3D scene learned
from multi-view supervision to reason about occluded ob-
jects based on their visibility in other training views. Com-
pared to 3D referring segmentation, which relies on explicit
point clouds and annotated 3D masks, R3DGS aims to learn
from multi-view 2D training images without requiring an-
notated mask supervision. This setting makes the proposed
R3DGS task more practical for real-world applications.

An overview of our proposed approach ReferSplat is shown
in Fig. 3. The approach begins with the construction of 3D
Gaussian Referring Fields. In Sec. 3.3, we extract word
features f,, and a sentence embedding f. from the referring
expression 7 using a text encoder. To infuse language-
awareness into the 3D Gaussians, we introduce a new prop-
erty called referring features. The segmentation mask is
then obtained by modulating these referring features with
word features f,, followed by rendering and supervision
with the pseudo-mask generated. To enhance the interaction
between referring features and word features f,,, we intro-
duce a Position-aware Cross-Modal Interaction in Sec. 3.4,
which strengthens the alignment between spatial and linguis-
tic cues. Finally, in Sec. 3.5, we employ contrastive learning
to distinguish between different text queries by enforcing
semantic consistency between positive Gaussian embed-
dings with f., leading to a more robust language-guided
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Figure 3. Overview of the proposed approach ReferSplat. Firstly, to infuse language-awareness into the 3D Gaussians, we introduce a
new property called referring features, constructing 3D Gaussian Referring Fields. The segmentation mask is then obtained by modulating
these referring features with word features f,,, followed by rendering and supervision with the generated pseudo-mask. To enhance the
interaction between referring features and word features f,, we introduce a Position-aware Cross-Modal Interaction. Finally, we employ

contrastive learning to distinguish semantically similar language expressions.

segmentation in 3D Gaussian scene.

3.3. 3D Gaussian Referring Fields

Inspired by methods that incorporate semantic feature vec-
tors to construct semantic-aware fields (Qin et al., 2024;
Zhou et al., 2024b; Qu et al., 2024), we introduce a refer-
ring feature vector f,; € R4 for each 3D Gaussian, where
d, denotes the feature dimension. This forms referring
fields that equip 3D Gaussians with language perception
capabilities. In our framework, the referring feature en-
codes semantic and referring information, allowing us to
compute the text response for each Gaussian by measuring
similarity between the 3D Gaussian referring feature and
the input text. Unlike LangSplat (Qin et al., 2024), which
performs retrieval-based matching between rendered seman-
tic features and text embeddings, we directly model the
relationship between 3D Gaussians and text embeddings.
Specifically, we compute the similarity between each Gaus-
sian referring feature and the input sentence representation
by aggregating responses across all words:

m; = me‘ X fuw.js 2)

J

where m; € R! represents the overall Gaussian-language
similarity score for the i-th Gaussian, and f,, ; denotes the
feature representation of the j-th word in the sentence. To
ensure computational efficiency, both features are mapped
to the same feature dimension, denoted as D.

Next, similar to traditional Gaussian Splatting, we apply a
rasterization process. Instead of rendering RGB values, we
rasterize m;. The response on the 2D image plane at pixel v,
denoted as M (v), serves as both the projected text response

and the rendered segmentation mask, computed as:

N i—1
M(v) :ZmiaiH(l—Qj). 3)
i=1 j=1

Finally, we employ a binary cross-entropy (BCE) loss to
supervise the output mask, enforcing consistency with the
pseudo ground truth mask, which we introduce later:

Loee == [Glogy + (1 —§)log(l —y)], &

v

where §j represents the pseudo ground truth mask M (v), and
y denotes the predicted mask M (v) at pixel v.

Unlike traditional 3DGS, which primarily renders color val-
ues or predefined semantic features, our approach directly
renders Gaussian-language similarity responses, enabling
explicit interaction between textual descriptions and 3D
scene representations. As shown in Tab. 2, our method sur-
passes existing approaches, establishing a superior referring
segmentation framework in 3D Gaussian scenes. Addition-
ally, our constructed 3D Gaussian Referring Fields empower
the model to recognize occluded or non-visible objects by
leveraging 3D scene knowledge learned from multi-view
training images.

Pseudo Mask Generation. To generate high-quality 2D
pseudo masks, we input the image and referring expression
into Grounded SAM (Ren et al., 2024). Since a single object
can be described by multiple language expressions, this pro-
cess produces K candidate masks {Mk}szl, each assigned
a confidence score  that exceeds a predefined threshold
€. A naive approach selects the highest-confidence mask,
but this often fails as confidence does not always correlate
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with correctness. Our analysis reveals that while the cor-
rect mask is usually present, it does not always receive the
highest confidence score.

To improve selection, we first compute the Intersection over
Union (IoU) consistency across all K candidate masks and
select the most frequently occurring or overlapping mask.
However, this purely IoU-based approach disregards con-
fidence scores, potentially favoring low-quality masks. To
address this, we propose a confidence-weighted IoU strat-
egy, defining an overlapping score py, as:

K (’YkMk n ’Yij)
j=1 (’YkMk U ’Yij)

where Mj, and M ; are candidate masks with confidence
scores ;. and y;, respectively. This formulation prioritizes
masks with both high IoU consistency and confidence. Fi-
nally, we select the mask with the highest p; as the final
pseudo-mask M. Our pseudo Mask Generation strategy
significantly improves mask quality, enhancing accuracy
and robustness in referring segmentation in 3D Gaussians.

Pk = &)

3.4. Position-aware Cross-Modal Interaction

The accuracy of the output mask is determined by the sim-
ilarity score m; in Eq.2 that measures the relationship be-
tween Gaussian referring features and text embeddings. To
improve the accuracy of similarity score, it is essential to
establish explicit cross-modal interactions, facilitating in-
formation exchange and effectively leveraging cross-modal
dependencies for enhanced semantic understanding. Further-
more, Gaussian referring features primarily capture seman-
tic information, which helps recognize object categories and
attributes. However, comprehending a sentence like “the
red object on the left” requires not only semantic recogni-
tion (“red object”) but also spatial reasoning (“on the left”).
Therefore, position information, which represents spatial
locations and object relationships, is crucial for accurately
understanding language expressions and achieving precise
object segmentation within 3D Gaussian representations.

To address these issues, we propose a Position-aware Cross-
Modal Interaction module that injects position information
into the cross-modal attention mechanism to facilitate inter-
actions between textual entities and 3D Gaussians beyond
mere semantic alignment. This module enables a richer and
mutually informed fusion of spatial and semantic informa-
tion, strengthening the alignment between 3D Gaussians and
text embeddings. In this framework, position, semantics,
and language are interdependent: position provides spatial
context for semantics, while semantic information aids in
understanding spatial relationships, ensuring a coherent and
context-aware cross-modal representation.

Position Feature Extraction. To integrate position infor-

mation, we first extract position features from 3D Gaussian
representations. Specifically, the center coordinates { /,Li}{\il
of Gaussians are projected through an MLP layer to obtain
position embeddings f, ; € RP, serving as position-aware
representations of Gaussian referring features. Meanwhile,
understanding spatial relationships from language descrip-
tions is important. However, unlike 3D Gaussians, text
features lack explicit positional information. Since lan-
guage expressions often describe objects in relation to one
another, we infer text position information from the position
embeddings of Gaussians by leveraging their cross-modal
correspondence. To achieve this, we first compute the rela-
tionship between word features f,, and Gaussian referring
features f,;. Using this relationship, we extract the cor-
responding position information from Gaussian position
features f, ;, formulated as:

T

wdrg

VD

fpw,i = softmax

fp,i7 (6)

where D is the feature dimension, and f), ,, ; represents the
position feature aligned with the word features. In this way,
the model dynamically extracts text position information
based on textual descriptions and Gaussian referring cues.

Position-aware Attention for Feature Refinement. After
obtaining position information f, ; for Gaussian referring
features and f, ., ; for text embeddings, we further refine
the referring feature representation using a position-guided
attention mechanism. We integrate structural geometry con-
straints to guide attention computation:

(fr,q', + fp,i)(fw + fp,w,z’)T> f
vD v
(7

This formulation ensures that the updated referring feature

,.; is enriched with both position and semantic cues, im-
proving its ability to localize the target object. Besides, we
retain the original f, ; to preserve fine-grained details that
may be lost in the attention process. Then, f;z replace f, ;
in Eq.2 to obtain more accurate text response. The proposed
Position-aware Cross-Modal Interaction module establishes
a stronger relationship between Gaussian referring features
and text descriptions by explicitly integrating position in-
formation. This integration enhances spatial understanding,
and strengthens cross-modal feature alignment, enabling
more precise R3IDGS.

fr.i = fr.i + softmax (

3.5. Gaussian-Text Contrastive Learning

While the proposed Position-aware Cross-Modal Interac-
tion module effectively captures the relationship between
Gaussian representations and text descriptions, distinguish-
ing between languages with similar meanings but referring
to different objects remains a significant challenge. Such
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ambiguities can lead to confusion in referring segmentation,
particularly in complex 3D Gaussian scenes. To address
this issue, we introduce Gaussian-Text Contrastive Learn-
ing in the Gaussian feature space. This learning paradigm
enhances the model’s ability to disambiguate similar lan-
guage expressions that refer to different objects, enforcing a
stronger Gaussian-language understanding and alignment
for more robust referring segmentation.

A key challenge of Gaussian-Text Contrastive Learning lies
in extracting positive Gaussian referring features that accu-
rately match the text description. In a typical 3D Gaussian
scene, numerous Gaussians exist, and 3D mask annotations
for precisely outlining the Gaussians corresponding to the
text are unavailable. However, from Eq.2, we can obtain
the response m; of the text on the 3D Gaussians and select
Gaussian points with high similarity. Therefore, we con-
sider Gaussian referring features whose m; are within the
top-7 percentile as positive examples. The positive Gaus-
sian embedding, denoted as f,, corresponding to the text
is then obtained by averaging the features of these chosen
Gaussian referring features:

1 !
fa= 2 Fla ®)
1€NL-
where N, denotes the set of indices corresponding to the
top-7 percentile of m;, and NN is its cardinality.

After obtaining paired Gaussian embedding and text embed-
ding, we employ object-wise contrastive learning:

Z log eXp(fg'feJr)

f+€P ZféeP,N exp(fy - fL)’

Lcon = (9)

where P is the set for positive textual samples with positive
Gaussian embedding and N represents the set of negative
textual samples, which are drawn from different text queries
in the scene. This formulation encourages the model to max-
imize similarity between Gaussians and their correspond-
ing textual descriptions while ensuring sufficient separation
from unrelated textual descriptions, ultimately enhancing
accurate referring segmentation in 3D Gaussian Splatting.
The total training objective is:

ﬁloss = Ebce + >\Econa (10)

where ) is used for balancing the contrastive loss L, -

Following (Mirzaei et al., 2023), we adopt a two-stage op-
timization approach to further refine segmentation masks.
Instead of using the pseudo masks from Sec. 3.3, we lever-
age the rendered masks generated by our trained ReferSplat
model in the first stage to supervise a secondary ReferSplat
model. This progressive refinement provides more accurate
initial masks, improving segmentation performance.
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Figure 4. Dataset analysis of our constructed Ref-LERF.

4. Experiments
4.1. Ref-LERF Dataset and Evaluation Metrics

The LERF dataset (Kerr et al., 2023) is collected using
the Polycam iPhone app and consists of four diverse, com-
plex, real-world scenes. It was originally developed for
3D object localization tasks. LangSplat (Qin et al., 2024)
introduces ground truth (GT) mask annotations to enhance
its complexity, forming the LERF-OVS dataset for 3D open-
vocabulary segmentation. We introduce Ref-LERF, incor-
porating language expression annotations to further expand
its capabilities to enable R3DGS evaluation. Each scene
contains approximately five expressions per object, with 236
language descriptions used for training and 59 for testing,
totaling 295 descriptions for 59 objects. Besides, annota-
tions emphasize positional relationships, providing richer
contextual grounding for precise object segmentation.

Dataset Analysis. The word cloud of our newly proposed
Ref-LERF dataset, visualized in Fig. 4 (a), highlights its
richness in spatial and detailed descriptions. A significant
portion of the dataset consists of relative position words
such as “placed”,near”, and “next”, as well as fine-grained
object attributes like “round” and “surface”. This demon-
strates that Ref-LERF places a stronger emphasis on spatial
reasoning and detailed object understanding compared to
previous datasets. Furthermore, as illustrated in Fig. 4 (b),
Ref-LERF presents a significantly greater challenge than
LERF-OVS, featuring more complex sentences and richer
object descriptions. The average sentence length exceeds
13.6 words, making it approximately eight times longer than
those in LERF-OVS. This increased complexity ensures that
models trained on Ref-LERF must develop a deeper under-
standing of language and spatial relationships, making it a
more realistic and comprehensive benchmark for R3DGS.

Evaluation Metrics. The average IoU (mloU) is calculated
between the masks rendered from the text response on the
3D Gaussians and the GT object masks.

4.2. Implementation Details

We extract text embeddings for each sentence using
BERT (Devlin et al., 2019). Following the default configura-
tion of LangSplat (Qin et al., 2024), we first train the RGB
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Table 1. Ablation study on our method. PCMI, and GTCL de-

Table 3. Ablation study on Pseudo Mask Generation.

note components of Position-aware Cross-Modal Interaction, and Results Mask Quality
Gaussian-Text Contrastive Learning, respectively. Method | ramen  kitchen | ramen  kitchen
Components Results Top-1 23.1 15.7 47.1 42.8
Index PCMI GTCL ramen kitchen SAM2 22.6 15.5 41.2 37.8
Baseline 28.4 185 IoU w/o 253 17.1 48.2 453
1 v/ 33.5 22.8 IoU w/ v (Ours) 28.4 18.5 52.9 49.7
2 v 32.8 21.9
Ours v v 352 244
Two-stage v v 36.9 252

Table 2. Ablation study on Baseline Configuration.

Results
Method ramen kitchen
LangSplat 12.0 17.9
SPIn-NeRF 7.3 10.3
Cosine Similarity 254 16.8
Multiplication (Ours) 28.4 18.5

representation of the 3D scene and then freeze its parame-
ters before training the components of our proposed model.
We optimize the Gaussian referring features for 45,000 it-
erations, using a learning rate of 0.0025, while other pa-
rameters, such as the MLP, are trained with a learning rate
of 0.0001. The Adam optimizer (Kingma & Ba, 2015) is
used for optimization. To enable gradient back-propagation
through extended referring feature attributes, we modify the
CUDA kernel to render referring features on 3D Gaussians.
Training is conducted on an NVIDIA RTX A6000 GPU. For
hyper-parameter optimization, we set d,., D, €, and A to 16,
128, 0.3, and 0.02, respectively. While 7 varies with training,
following the schedule: 7 = 0.1 x (.6(¢teration/1000)

4.3. Ablation Study

The following ablation studies are conducted on the ramen
and kitchen scenes on the Ref-LERF dataset.

Module Effectiveness. We conduct ablation experiments
to evaluate the effectiveness of different components. As
shown in Tab. 1, incorporating PCMI (index 1) improves
mloU by 5.1% and 4.3%, respectively compared to the
baseline, which is our constructed Referring Feature Fields.
This demonstrates that PCMI enhances spatial reasoning
and strengthens feature alignment between 3D Gaussians
and text. Next, we introduce Gaussian-Text Contrastive
Learning (GTCL, index 2) to construct discriminative multi-
modal representations, improving the model’s ability to
distinguish semantically similar expressions. Incorporating
GTCL leads to 4.4% and 3.4% mloU improvement, respec-
tively. When integrating all components (index 3), referred
to as ReferSplat, we achieve a substantial performance gain,
reaching a new state-of-the-art. This result demonstrates
the effectiveness of our proposed approach. Furthermore,

Table 4. Ablation study on Cross-Modal Interaction Design.

Results
Method ramen kitchen
w/o fpiand fp w,i 279 18.1
w/o fpw,i 29.2 18.8
fp,i + fr,i 30.3 20.5
w/ fpiand fp i (Ours) 33.5 22.8

our two-stage optimization in Sec. 3.5 further refines the
generated masks through ReferSplat trained in the previ-
ous stage, improving 3D scene understanding and ensuring
more consistent and reliable segmentation results.

Baseline Evaluation. We set several baselines for compari-
son: 1) LangSplat Adaptation: we modify LangSplat (Qin
et al., 2024) from open-vocabulary segmentation to refer-
ring segmentation by replacing phrase inputs with referring
expressions during testing. 2) SPIn-NeRF Adaptation: we
adapt SPIn-NeRF (Mirzaei et al., 2023) from prompt-based
segmentation to referring segmentation by incorporating
text input and summing textual features with original se-
mantic features to generate masks. 3) Cosine Similarity: we
compute similarity m; in Eq.2 using cosine similarity for
text response. The results in Tab. 2 show that our method
significantly outperforms all baselines, demonstrating that
the proposed 3D Referring Feature Fields effectively models
the relationship between 3D Gaussians and text.

Pseudo Mask Generation. To assess the quality of the gen-
erated pseudo labels and support further research, we manu-
ally annotate ground truth masks for comparison. As shown
in Tab. 3, our method achieves about 50% mloU against
ground truth, validating the effectiveness of our pseudo
mask generation. In contrast, alternative approaches—such
as using the top-1 prediction, propagating the first-frame
mask with SAM2 (Ravi et al., 2025), or selecting masks
solely based on IoU without confidence weighting—yield
inferior results. These findings underscore our superiority.

Position-aware Cross-Modal Interaction Design. We con-
duct experiments to evaluate the impact of different cross-
modal interaction designs based on baseline. As shown
in Tab. 4, removing components f, ; and fp .,,; from Eq.7
results in performance dropping below the baseline, indicat-
ing that vanilla cross-attention alone is ineffective for our
task. Adding f, ; without f, ., ; still yields unsatisfactory
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Table 5. Analysis of Computation Costs.

Table 7. Ablation study on number of feature dims.

Method [ Training FPS  Storage  mloU
LangSplat 176min 12.4 46MB 13.9
GS-Grouping 66min 542 2.3MB 14.4
ReferSplat (Ours) 58min 26.8 3.3MB 29.2
Table 6. Choice of Language Encoder.
Method l ram. fig. tea. kit. l avg.

CLIP 23.5 232 26.2 21.0 23.5
BERT 352 25.7 31.3 244 29.2

results, suggesting that both components contribute to ef-
fective interaction. Additionally, we analyze the impact of
directly incorporating position information f, ; into the f; ;.
Although this improves performance, it remains less effec-
tive than our attention-based position modeling. Therefore,
our proposed method is crucial for accurate R3DGS.

Analysis of Computation Costs. We conduct experiments
on the ramen scene from the Ref-LERF dataset using the
same NVIDIA A6000 GPU to compare the computational
cost of our ReferSplat against SOTA methods in Tab. 5.
Results show that ReferSplat achieves significantly lower
computational complexity and faster inference speed than
LangSplat (Qin et al., 2024). While GS-Grouping (Ye et al.,
2025) excels in storage and FPS, ReferSplat outperforms
all methods in segmentation performance. ReferSplat also
has the shortest training time, thanks to a lightweight pre-
processing pipeline that avoids costly operations like lan-
guage feature compression (LangSplat) or mask association
with video tracking methods (GS-Grouping). These results
demonstrate that ReferSplat’s compact, efficient design is
well-suited for real-world applications.

Choice of Language Encoder. we conduct experiments
comparing BERT and CLIP embeddings for language fea-
tures in R3DGS in Tab. 6. Results show that BERT con-
sistently outperforms CLIP. This is likely because CLIP
focuses more on noun categories, while referring expres-
sions often involve spatial and attribute-based descriptions.

Impact of Referring Feature Dimension. We study the
effect of the referring feature dimension d,. in Tab. 7 for
each 3D Gaussian. In our experiments, we set d, to 1,
4, 16, and 32, and find that 16 achieves the best results.
Smaller dimensions (e.g., 1 or 4) lack the capacity to store
discriminative features, while larger dimensions (e.g., 32)
introduce redundancy and noise, degrading performance.

4.4. Results on the Ref-LERF Dataset

Quantitative Results. We evaluate ReferSplat against state-
of-the-art 2D and 3D methods on the Ref-LERF dataset
in Tab. 8. ReferSplat outperforms 2D-based methods like

Results
Number ramen kitchen
1 21.7 13.2
4 23.1 154
16 28.4 18.5
32 27.2 16.9

Table 8. R3DGS result on the Ref-LERF dataset.
Method | ram. fig. tea. kit. [ avg.

Grounded SAM | 14.1 16.0 16.9 162 | 15.8
LangSplat | 12.0 17.9 7.6 17.9 | 139
SPIn-NeRF | 7.3 9.7 11.7 103 | 9.8
GS-Grouping | 27.9 8.6 14.8 6.3 14.4

GOI | 27.1 16.5 229 15.7 | 20.5

ReferSplat (Ours) | 352  25.7 31.3 244 | 29.2

Grounded SAM (Ren et al., 2024) and 3D-based approaches
such as LangSplat (Qin et al., 2024) and Gaussian Group-
ing (Ye et al., 2025), demonstrating its effectiveness. Our
3D Gaussian Referring Fields enable the model to recognize
occluded or non-visible objects by leveraging multi-view 3D
scene knowledge—an inherent limitation of 2D-based meth-
ods. While Grounded-SAM generates high-quality masks
during training, it is restricted to visible objects within a
single view (Sec. 3.2). Additionally, our position-aware
cross-modal interaction and contrastive learning enhance
spatial reasoning and feature alignment, improving language
comprehension in complex 3D environments.

Qualitative Visualization. Fig. 5 qualitatively presents
that ReferSplat effectively captures the spatial relationship
between Gaussian points and text, enabling superior segmen-
tation even in challenging scenarios with heavy occlusion
or non-visible objects, as illustrated in (a) and (b).

4.5. 3D Open-Vocabulary Segmentation Result

To further validate our method, we evaluate it on 3D open-
vocabulary segmentation benchmarks, as shown in Tab. 9
and 10. Despite not being specifically designed for 3DOVS
tasks, our approach achieves state-of-the-art performance.
This can be attributed to the integration of 3D Gaussian Re-
ferring Fields, position-aware cross-modal interaction, and
gaussian-text contrastive learning, which enhance spatial
reasoning and feature alignment, significantly improving
language comprehension in complex 3D environments.

5. Conclusion

We introduce Referring 3D Gaussian Splatting Segmenta-
tion (R3DGS), a new task for segmenting target objects
in 3D Gaussian scenes using natural language descriptions
involving spatial relations and object properties. To sup-
port research in this area, we construct the first R3DGS
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Figure 5. Qualitative R3DGS comparisons on the Ref-LERF dataset. Blue masks represent spatial descriptions.

Table 9. Open-vocabulary segmentation result on the LERF-OVS.

Table 10. Open-vocabulary segmentation result on the 3D-OVS.

Method | ram. fig. tea. kit. | avg.

Method [bed bench room sofa lawn]avg.

Feature-3DGS | 43.7 58.8 40.5 39.6 | 45.7
LEGaussians | 46.0 60.3 40.8 394 | 46.6
LangSplat | 51.2 65.1 44.7 445 | 514
GS-Grouping | 45.5 60.9 40.0 38.7 | 46.3

GOI | 52.6 63.7 44.5 414 | 50.6

ReferSplat (Ours) | 55.1 67.5 50.1 48.9 | 554

Feature-3DGS | 83.5 90.7 847 86.9 934 |87.8
LEGaussians | 84.9 91.1 86.0 87.8 92.5 |88.5
LangSplat [ 92.5 942 941 90.0 96.1 |93.4
GS-Grouping | 83.0 91.5 859 873 90.6 |87.7
GOI| 894 928 91.3 856 94.1 [90.6

ReferSplat (Ours) [93.2 948 94.6 91.8 96.5 |94.1

dataset Ref-LERF. To address R3DGS challenges, we pro-
pose ReferSplat which spatially models 3D Gaussian points
based on natural language expression. Experiments show
that the proposed ReferSplat achieves state-of-the-art per-
formance on both R3DGS and 3DOVS tasks.

6. Limitation and Future Work

1) Our current method does not account for dynamic factors,
which are crucial for real-world applications. Integrating
our approach with 4D Gaussian Splatting (4DGS) (Wu et al.,
2024a) could enhance its capability to handle temporal vari-
ations and dynamic environments. 2) While we focus on 3D
referring segmentation in Gaussian Splatting, our method
does not incorporate 3D visual grounding. Extending our
framework to support precise object size estimation could
further improve its applicability in spatial reasoning and real-
world localization tasks. 3) The current dataset includes a

limited number of scenes, which restricts the model’s abil-
ity to achieve the same robust generalization as 2D-based
approaches. In the future, we aim to construct a large-scale
dataset, enabling better scene diversity and representation
learning, thereby advancing research in this field.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements

This project was supported by the National Natural Science
Foundation of China (NSFC) under Grant No. 62472104,
Shanghai Pujiang Programme 24PJD030, Natural Science
Foundation of Shanghai 25ZR1402138, and partially sup-
ported by NSFC Grant No. 62322608.



ReferSplat: Referring Segmentation in 3D Gaussian Splatting

References

Cen, J., Fang, J., Yang, C., Xie, L., Zhang, X., Shen, W.,
and Tian, Q. Segment any 3d gaussians. In Proceedings
of the AAAI conference on artificial intelligence, 2025.

Charatan, D., Li, S. L., Tagliasacchi, A., and Sitzmann,
V. pixelsplat: 3d gaussian splats from image pairs for
scalable generalizable 3d reconstruction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 19457-19467, 2024.

Chen, D. Z., Chang, A. X., and NieBner, M. Scanrefer: 3d
object localization in rgb-d scans using natural language.
In European conference on computer vision, pp. 202-221.
Springer, 2020.

Chen, Y., Xu, H., Zheng, C., Zhuang, B., Pollefeys, M.,
Geiger, A., Cham, T.-J., and Cai, J. Mvsplat: Efficient
3d gaussian splatting from sparse multi-view images. In
European Conference on Computer Vision, pp. 370-386.
Springer, 2025.

Choi, S., Song, H., Kim, J., Kim, T., and Do, H. Click-
gaussian: Interactive segmentation to any 3d gaussians.
In European Conference on Computer Vision, pp. 289—
305. Springer, 2025.

Dai, P, Xu, J., Xie, W., Liu, X., Wang, H., and Xu, W. High-
quality surface reconstruction using gaussian surfels. In
ACM SIGGRAPH 2024 Conference Papers, pp. 1-11,
2024.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, pp. 4171-4186, 2019.

Ding, H., Liu, C., Wang, S., and Jiang, X. Vision-language
transformer and query generation for referring segmen-
tation. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 16321-16330, 2021.

Ding, H., Liu, C., He, S., Jiang, X., and Loy, C. C. MeViS:
A large-scale benchmark for video segmentation with
motion expressions. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023a.

Ding, H., Liu, C., He, S., Jiang, X., Torr, P. H., and Bai,
S. MOSE: A new dataset for video object segmentation
in complex scenes. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023b.

Ding, H., Liu, C., Wang, S., and Jiang, X. VLT: Vision-
language transformer and query generation for referring
segmentation. [EEE Transactions on Pattern Analysis
and Machine Intelligence, 45(6):7900-7916, 2023c.

10

Ding, H., Liu, C., He, S., Ying, K., Jiang, X., Loy, C. C.,
and Jiang, Y.-G. MeViS: A multi-modal dataset for refer-
ring motion expression video segmentation. /EEE Trans-

actions on Pattern Analysis and Machine Intelligence,
2025a.

Ding, H., Tang, S., He, S., Liu, C., Wu, Z., and Jiang, Y.-
G. Multimodal referring segmentation: A survey. arXiv,
2025b.

Gu, Q., Kuwajerwala, A., Morin, S., Jatavallabhula, K. M.,
Sen, B., Agarwal, A., Rivera, C., Paul, W., Ellis, K.,
Chellappa, R., et al. Conceptgraphs: Open-vocabulary 3d
scene graphs for perception and planning. In 2024 IEEE
International Conference on Robotics and Automation
(ICRA), pp. 5021-5028. IEEE, 2024.

Guédon, A. and Lepetit, V. Sugar: Surface-aligned gaussian
splatting for efficient 3d mesh reconstruction and high-
quality mesh rendering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pp. 5354-5363, 2024.

He, S. and Ding, H. Refmask3d: Language-guided trans-
former for 3d referring segmentation. In Proceedings of
the 32nd ACM International Conference on Multimedia,
pp- 83168325, 2024.

He, S., Jiang, X., Jiang, W., and Ding, H. Prototype adap-
tion and projection for few-and zero-shot 3d point cloud
semantic segmentation. IEEE Transactions on Image
Processing, 32:3199-3211, 2023.

He, S., Ding, H., Jiang, X., and Wen, B. Segpoint: Segment
any point cloud via large language model. In European
Conference on Computer Vision, pp. 349-367. Springer,
2024.

Hu, X., Wang, Y., Fan, L., Fan, J., Peng, J., Lei, Z., Li, Q.,
and Zhang, Z. Semantic anything in 3d gaussians. arXiv
preprint arXiv:2401.17857, 2024.

Huang, B., Yu, Z., Chen, A., Geiger, A., and Gao, S. 2d
gaussian splatting for geometrically accurate radiance
fields. In ACM SIGGRAPH 2024 conference papers, pp.
1-11, 2024.

Huang, P.-H., Lee, H.-H., Chen, H.-T., and Liu, T.-L. Text-
guided graph neural networks for referring 3d instance
segmentation. In Proceedings of the AAAI conference on
artificial intelligence, pp. 1610-1618, 2021.

Jain, U., Mirzaei, A., and Gilitschenski, I. Gaussiancut:
Interactive segmentation via graph cut for 3d gaussian
splatting. In Advances in Neural Information Processing
Systems, 2024.



ReferSplat: Referring Segmentation in 3D Gaussian Splatting

1i, Y., Zhu, H., Tang, J., Liu, W., Zhang, Z., Xie, Y., and Tan,
X. Fastlgs: Speeding up language embedded gaussians
with feature grid mapping. In Proceedings of the AAAI
conference on artificial intelligence, 2024.

Jiang, Y., Yu, C, Xie, T., Li, X., Feng, Y., Wang, H., Li,
M., Lau, H., Gao, F.,, Yang, Y., et al. Vr-gs: A physical
dynamics-aware interactive gaussian splatting system in
virtual reality. In ACM SIGGRAPH 2024 Conference
Papers, pp. 1-1, 2024.

Keetha, N., Karhade, J., Jatavallabhula, K. M., Yang, G.,
Scherer, S., Ramanan, D., and Luiten, J. Splatam: Splat
track & map 3d gaussians for dense rgb-d slam. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 21357-21366, 2024.

Kerbl, B., Kopanas, G., Leimkiihler, T., and Drettakis, G. 3d
gaussian splatting for real-time radiance field rendering.
ACM Trans. Graph., 42(4):139-1, 2023.

Kerr, J., Kim, C. M., Goldberg, K., Kanazawa, A., and
Tancik, M. Lerf: Language embedded radiance fields. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 19729-19739, 2023.

Kingma, D. and Ba, J. Adam: A method for stochastic opti-
mization. In Proceedings of the International Conference
on Learning Representations, 2015.

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C.,
Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo,
W.-Y., et al. Segment anything. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 4015-4026, 2023.

Li, H., Wu, Y., Meng, J., Gao, Q., Zhang, Z., Wang, R.,
and Zhang, J. Instancegaussian: Appearance-semantic
joint gaussian representation for 3d instance-level percep-
tion. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2025a.

Li, Y., Lyu, C., Di, Y., Zhai, G., Lee, G. H., and Tombari,
F. Geogaussian: Geometry-aware gaussian splatting for
scene rendering. In European Conference on Computer
Vision, pp. 441-457. Springer, 2025b.

Liang, S., Wang, S., Li, K., Niemeyer, M., Gasperini, S.,
Navab, N., and Tombari, F. Supergseg: Open-vocabulary
3d segmentation with structured super-gaussians. arXiv
preprint arXiv:2412.10231, 2024.

Liu, C., Ding, H., and Jiang, X. GRES: generalized re-
ferring expression segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 23592-23601, 2023.

11

Liu, S., Zeng, Z., Ren, T., Li, F.,, Zhang, H., Yang, J., Jiang,
Q.. Li, C., Yang, J., Su, H,, et al. Grounding dino: Marry-
ing dino with grounded pre-training for open-set object
detection. In European Conference on Computer Vision,
pp- 38-55. Springer, 2025.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. Nerf: Representing scenes
as neural radiance fields for view synthesis. Communica-
tions of the ACM, 65(1):99-106, 2021.

Mirzaei, A., Aumentado-Armstrong, T., Derpanis, K. G.,
Kelly, J., Brubaker, M. A., Gilitschenski, I., and Levin-
shtein, A. Spin-nerf: Multiview segmentation and percep-
tual inpainting with neural radiance fields. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 20669-20679, 2023.

Miiller, T., Evans, A., Schied, C., and Keller, A. Instant
neural graphics primitives with a multiresolution hash
encoding. ACM transactions on graphics (TOG), 41(4):
1-15, 2022.

Peng, Q., Planche, B., Gao, Z., Zheng, M., Choudhuri,
A., Chen, T., Chen, C., and Wu, Z. 3d vision-language
gaussian splatting. In Proceedings of the International
Conference on Learning Representations, 2025.

Qin, M., Li, W., Zhou, J., Wang, H., and Pfister, H.
Langsplat: 3d language gaussian splatting. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 20051-20060, 2024.

Qu, Y, Dai, S., Li, X, Lin, J., Cao, L., Zhang, S., and
Ji, R. Goi: Find 3d gaussians of interest with an opti-
mizable open-vocabulary semantic-space hyperplane. In
Proceedings of the 32nd ACM International Conference
on Multimedia, pp. 5328-5337, 2024.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748-8763. PMLR, 2021.

Ravi, N., Gabeur, V., Hu, Y.-T., Hu, R., Ryali, C., Ma, T.,
Khedr, H., Ridle, R., Rolland, C., Gustafson, L., et al.
Sam 2: Segment anything in images and videos. In
Proceedings of the International Conference on Learning
Representations, 2025.

Ren, T., Liu, S., Zeng, A., Lin, J., Li, K., Cao, H., Chen,
J., Huang, X., Chen, Y., Yan, F,, et al. Grounded sam:
Assembling open-world models for diverse visual tasks.
arXiv preprint arXiv:2401.14159, 2024.



ReferSplat: Referring Segmentation in 3D Gaussian Splatting

Shi, J.-C., Wang, M., Duan, H.-B., and Guan, S.-H. Lan-
guage embedded 3d gaussians for open-vocabulary scene
understanding. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp.
5333-5343, 2024.

Shorinwa, O., Tucker, J., Smith, A., Swann, A., Chen, T.,
Firoozi, R., Kennedy, M. D., and Schwager, M. Splat-
mover: Multi-stage, open-vocabulary robotic manipula-
tion via editable gaussian splatting. In 8th Annual Con-
ference on Robot Learning, 2024.

Tang, J., Ren, J., Zhou, H., Liu, Z., and Zeng, G. Dream-
gaussian: Generative gaussian splatting for efficient 3d
content creation. In Proceedings of the International
Conference on Learning Representations, 2024.

Wang, C., Wu, M., Lam, S.-K., Ning, X., Yu, S., Wang,
R., Li, W,, and Srikanthan, T. Gpsformer: A global
perception and local structure fitting-based transformer
for point cloud understanding. In European Conference
on Computer Vision, pp. 75-92. Springer, 2024.

Wang, C., He, S., Fang, X., Wu, M., Lam, S.-K., and Tiwari,
P. Taylor series-inspired local structure fitting network for
few-shot point cloud semantic segmentation. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 75277535, 2025.

Wu, G, Yi, T, Fang, J., Xie, L., Zhang, X., Wei, W., Liu,
W., Tian, Q., and Wang, X. 4d gaussian splatting for
real-time dynamic scene rendering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 20310-20320, 2024a.

Wu, Y., Meng, J., Li, H., Wu, C., Shi, Y., Cheng, X., Zhao,
C., Feng, H., Ding, E., Wang, J., et al. Opengaussian:
Towards point-level 3d gaussian-based open vocabulary
understanding. In Advances in Neural Information Pro-
cessing Systems, 2024b.

Xu, H., Peng, S., Wang, F., Blum, H., Barath, D., Geiger,
A., and Pollefeys, M. Depthsplat: Connecting gaussian
splatting and depth. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2025.

Yang, Z., Wang, J., Tang, Y., Chen, K., Zhao, H., and
Torr, P. H. Lavt: Language-aware vision transformer
for referring image segmentation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 18155-18165, 2022.

Yang, Z., Gao, X., Zhou, W., Jiao, S., Zhang, Y., and Jin,
X. Deformable 3d gaussians for high-fidelity monocular
dynamic scene reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 20331-20341, 2024.

12

Ye, M., Danelljan, M., Yu, F., and Ke, L. Gaussian grouping:
Segment and edit anything in 3d scenes. In European
Conference on Computer Vision, pp. 162—179. Springer,
2025.

Yu, Z., Chen, A., Huang, B., Sattler, T., and Geiger, A. Mip-
splatting: Alias-free 3d gaussian splatting. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 19447-19456, 2024a.

Yu, Z., Sattler, T., and Geiger, A. Gaussian opacity fields:
Efficient adaptive surface reconstruction in unbounded
scenes. ACM Transactions on Graphics (TOG), 43(6):
1-13, 2024b.

Zhang, Y., Gong, Z., and Chang, A. X. Multi3drefer:
Grounding text description to multiple 3d objects. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 15225-15236, 2023.

Zhou, H., Shao, J., Xu, L., Bai, D., Qiu, W., Liu, B., Wang,
Y., Geiger, A., and Liao, Y. Hugs: Holistic urban 3d scene
understanding via gaussian splatting. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 21336-21345, 2024a.

Zhou, S., Chang, H., Jiang, S., Fan, Z., Zhu, Z., Xu, D,
Chari, P, You, S., Wang, Z., and Kadambi, A. Feature
3dgs: Supercharging 3d gaussian splatting to enable dis-
tilled feature fields. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp.- 21676-21685, 2024b.

Zuo, X., Samangouei, P, Zhou, Y., Di, Y., and Li, M. Fmgs:
Foundation model embedded 3d gaussian splatting for
holistic 3d scene understanding. International Journal of
Computer Vision, pp. 1-17, 2024.



