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Abstract001

Retrieval Augmented Generation (RAG) is a002
key component for generating accurate and hal-003
lucination free answers using Large Language004
Models (LLMs). LLMs are improving at han-005
dling long context, but still suffer from “lost in006
the middle” problem. Thus, precise and accu-007
rate retrieval is important. Current retrievers008
chunk long context into length-based manage-009
able chunks – in the process throwing away010
rich and informative semantic global structure011
in the corpus. We introduce a novel retrieval012
system STAIR that empowers an LLM to ex-013
ploit global structure in a corpus such as a Ta-014
ble of Contents (ToC) to efficiently store and015
retrieve information from its model parame-016
ters. Our thorough and careful ablation studies017
with a finetuned Differentiable Search Index018
(DSI) system show that ToC helps build a low019
hallucination (less than 0.05%) generative In-020
formation Retrieval (IR) system and can gen-021
eralize to examples where very few training022
samples are available. To further research in023
this novel direction of ToC based retrieval we024
release SearchTome – a diverse benchmark025
created from 18 books across 6 diverse do-026
mains to further research in this novel direc-027
tion. STAIR achieves a high Recall@1 score028
of 82.6% on SearchTome as compared to DSI029
(76.9%), where the difference is found to be sta-030
tistically significant. STAIR easily beats other031
strong baselines such as BM25 (59.5%), DPR032
(68.7%) and out-of-the-box Mistral (13.8%).033
The benchmark data and code used for training034
STAIR is available at https://anonymous.035
4open.science/r/s_331/README.md.036

1 Introduction037

The burgeoning interest in Retrieval Augmented038

Generation (RAG) has led to a significant surge in039

the development of advanced Information Retrieval040

(IR) systems. Large Language Models (LLMs) in041

turn can now handle large contexts (Chen et al.,042

2023; Liu et al., 2024a), though they suffer from a043

“lost in the middle” problem (Liu et al., 2024c; Bai 044

et al., 2024a,b; Li et al., 2024). Therefore, retriev- 045

ing precise information (Pipitone and Alami, 2024) 046

is extremely important to curb hallucinations (La- 047

ban et al., 2024) and generate accurate responses. 048

Current retrievers address this by creating length 049

based chunks (Setty et al., 2024) and throwing 050

away rich and informative semantic global struc- 051

ture in the corpus. This leads to a sub-optimal re- 052

trieval quality – length-based chunks compete with 053

each other due to a lack of semantic coherence and 054

boundaries. 055

In this work, we address this key limitation by 056

augmenting the retriever with a structured global 057

view of the corpus. Global structured view over a 058

long context helps knowledge ingestion (Liu et al., 059

2024b). Further, LLMs are capable of storing the 060

entire corpus in its model parameters to directly 061

generate a document identifier for a user query (Tay 062

et al., 2022). We posit that by empowering an 063

LLM with a global structure of the search corpus, it 064

can store and retrieve information more accurately 065

from its model parameters. Such a global structure 066

already exists for a Wikipedia (Wikipedia, 2024) 067

page, textbooks, and enterprise help and product 068

feature webpages (SAP, 2024) and technical re- 069

ports (SEC, 2024). 070

Figure 1 demonstrates that for a question such as 071

“What is the plurality voting system?”, it is natural 072

for a human to consult the ToC and first narrow 073

down that it could be answered by the Chapter 074

“Democracies and Democratization”. Further sub- 075

sections reveal that perhaps the Section “Institu- 076

tions within Democracy” and the subsection “Elec- 077

toral Systems & Political Parties” could contain the 078

answer. Content for this subsection indeed contains 079

the definition for the plural voting system. Text 080

content associated with ToC entries is semantically 081

coherent organized around a topic as captured by 082

the title of the ToC entry. Further, a ToC entry has 083

a clear semantic boundary with other ToC entries. 084

1

https://anonymous.4open.science/r/s_331/README.md
https://anonymous.4open.science/r/s_331/README.md
https://anonymous.4open.science/r/s_331/README.md


Figure 1: A human can answer “What is the plurality voting system?” by looking at the table of contents and
picking Section 4.2.3 without even reading the book Introduction to Comparative Government and Politics.

ToC as a unit of retrieval is a novel yet intuitive085

way of organizing long context for retrieval.086

In this work, we present STAIR (STructure087

Aware Information Retriever) for ToC based re-088

trieval, inspired by how a human searches for infor-089

mation using ToC, and the fact that LLMs can store090

the entire corpus in the model’s parameters. Our091

careful and thorough ablation studies reveal that092

empowering an LLM with ToC helps in two critical093

dimensions - curbing hallucinations and general-094

izing for content with a low number of training095

examples. STAIR achieves a high Recall@1 score096

of 82.6, which is is (+7.4%) better than its closest097

baseline Differentiable Search Index (DSI) (Tay098

et al., 2022). DSI needs to discover the book struc-099

ture (indirectly) through the completion part of100

training examples, while STAIR can use exploit the101

structure provided as part of the input to accurately102

store and retrieve information from its model’s pa-103

rameters.104

We develop and release a new multi-domain105

benchmark SearchTome, made up of 18 books of106

varying sizes across 6 domains, parsed and cleaned107

to extract their ToC mapped to the text of the per-108

tinent sections. We also release a set of train, dev109

and test queries for each book as part of the bench-110

mark, with gold ToC entries labeled for each query111

serving as the retrieval output. We believe this will112

be a first step towards promoting further research113

on ToC based retrieval, with SearchTome serving114

as a standard evaluation benchmark. We train and115

evaluate STAIR using SearchTome and compare 116

it with strong baseline retrievers like BM25 and 117

a fully fine-tuned Sequence-to-Sequence model, 118

such as DSI (Tay et al., 2022), which does not 119

utilize ToC. Our experimental results show that 120

STAIR significantly benefits from incorporating 121

ToC in its training and easily outperforms the tradi- 122

tional DSI. Our main contributions are as follows: 123

• We propose a novel direction leveraging the 124

Table of Contents (ToC) of a lengthy corpus, 125

like a book, as a valuable element for effi- 126

ciently indexing corpus knowledge and utiliz- 127

ing ToC entries as effective retrieval units. 128

• We build and release a multi-domain and di- 129

verse benchmark SearchTome, consisting of 130

18 books from 6 diverse domains for the task 131

of ToC retrieval 132

• We develop an LLM based STAIR and eval- 133

uate it on SearchTome and compare it with 134

strong competitive baselines 135

2 Related Work 136

Efficient and precise retrieval is a critical re- 137

search problem in natural language processing, 138

with a wide range of applications such as se- 139

mantic search (Guha et al., 2003), open domain 140

question answering (Chen and Yih, 2020; Zhu 141

et al., 2021) and Retrieval Augmented Genera- 142

tion(RAG) (Lewis et al., 2020) to name a few. 143

With the rise of RAG applications, precise retrieval 144

has become increasingly important, particularly in 145
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curbing hallucination in generative models. We146

can broadly classify all retrieval techniques into147

three main categories:148

Dense Retrieval (Cai et al., 2021; Karpukhin149

et al., 2020) represent a query and document150

using a dense vector and compute the similar-151

ity based on the distance between their vectors.152

DPR (Karpukhin et al., 2020) uses dual encoder,153

ColBERT (Khattab and Zaharia, 2020) represents154

every token in the query and document using dense155

vector and performs late interaction to score query156

and document pairs. Recently, Sarthi et al. (2024)157

introduced RAPTOR, a method for building a hier-158

archical tree by recursively embedding, clustering,159

and summarizing content from lengthy documents160

to retrieve relevant text at various levels of abstrac-161

tion. Our approach differs in two key aspects:162

while RAPTOR uses dense retrievers for index-163

ing and retrieval, we adopt model-based indexing.164

Additionally, we enhance model-based indexing165

by leveraging table-of-contents (ToC) structures,166

unlike RAPTOR, which relies solely on dense re-167

trievers to access information at multiple levels of168

abstraction.169

Learned Sparse Retrieval systems use sparse170

vector representation for a query and document.171

Unlike traditional sparse retrieval methods like172

BM25(Robertson and Zaragoza, 2009), which rely173

on exact token matches, these models learn to rep-174

resent queries and documents in a sparse high-175

dimensional space, allowing for efficient lexical176

matching. SPLADE (Hai et al., 2023) (Sparse177

Lexical and Expansion Model for Information Re-178

trieval) is a prominent example of such systems.179

Several other models have been developed to en-180

hance sparse retrieval, including SPLADEv2 (For-181

mal et al., 2021), DeepCT(Dai and Callan, 2019),182

uniCOIL(Lin and Ma, 2021) and DeepImpact (Bas-183

net et al., 2024).184

Model-based Indexing (Metzler et al., 2021)185

such as Differential Search Index (DSI) (Tay et al.,186

2022) embed knowledge of the entire corpus di-187

rectly into its model parameters – greatly sim-188

plifying the retrieval process. STAIR takes this189

paradigm one step further by learning to exploit a190

rich hierarchal and semantic global structure within191

the corpus.192

3 SearchTome: A new benchmark for 193

Table of Contents based retrieval 194

3.1 Breaking the Mold: Why a New 195

Benchmark Is Needed 196

There are multiple benchmarks proposed around 197

long context applications such as ContractNLI (Ko- 198

reeda and Manning, 2021) focused on NLI or 199

Scrolls (Shaham et al., 2022) with seven chal- 200

lenging tasks. However, there doesn’t exist any 201

benchmark for long context retrieval with any form 202

of structured view, which we hypothesize as the 203

key for precise retrieval. Benchmarks such as Gov- 204

Report (Huang et al., 2021), SummScreen (Chen 205

et al., 2022), and QM-Sum (Zhong et al., 2021) 206

focus on generating summaries of a length docu- 207

ment, whereas, Qasper (Dasigi et al., 2021), QuAL- 208

ITY (Pang et al., 2022) and NarrativeQA (Kočiský 209

et al., 2018) focus on the generation aspect with 210

only answers for a user query and do not con- 211

tain the gold passage for retrieval. The closest 212

benchmark is LocoV1 (Saad-Falcon et al., 2024) 213

which does include gold passages for each query. 214

However, due to lack of ToC or a global struc- 215

ture for the input document, we cannot use this 216

benchmark for our task. 217

To the best of our knowledge, SearchTome is the 218

first benchmark which provides a clean structured 219

view with Table of Contents for evaluating long 220

context retrieval with structures . 221

3.2 SearchTome: A diverse and novel 222

benchmark for ToC Retrieval 223

Our main motivation for a new benchmark is to 224

evaluate how well a global semantic structure such 225

as a ToC can help in better retrieval for long context 226

applications which is typical for technical reports or 227

voluminous books. Thus to create a clean and effec- 228

tive benchmark we turn to opentextbooks, which is 229

perhaps the largest collection of such textbooks. To 230

make the benchmark a comprehensive one across 231

domains, we picked six diverse domains namely – 232

Education, Finance, Law, Medicine, Natural Sci- 233

ences and Social Sciences and selected three books 234

from each domain (Table 1). We parsed the PDF 235

for each book and extracted Table of Contents us- 236

ing pymupdf1. A sample of the final cleaned con- 237

tent for one of the books can be viewed here. For 238

each paragraph we ask a powerful LLM Mixtral 239

8x7b model (Jiang et al., 2024) to generate multi- 240

ple questions covering all important topics in the 241

1https://pymupdf.readthedocs.io/en/latest/
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Table 1: SearchTome Book links & Statistics

Domain Book #Pages #Leaves Test Train Dev

Education
Open Music Theory 1297 429 7430 4493 1671
The Whole Child: Development in the Early Years 182 129 1746 1056 388
Teaching in a Digital Age 779 118 6150 3797 1489

Finance
Principles of Financial Accounting 318 98 4119 2395 981
Accounting in the Finance World 572 80 4481 2747 1081
Financial and Managerial Accounting 1077 107 7815 4692 1901

Law
Construction Contracting 403 103 3653 2249 866
Criminal Procedure 897 106 5610 3401 1349
Tort Law: Cases and Commentaries 948 396 18209 11174 4363

Medicine
Nursing Assistant 659 118 4586 2790 1093
Nursing Fundamentals 1327 121 9065 5493 2200
Nursing Management and Professional Concepts 599 74 3695 2277 885

Natural Sciences
Introduction to Genetics 513 70 2254 1345 527
Principles of Mechanics 179 125 2341 1418 543
Organic Chemistry 1249 321 11124 6601 2635

Social Sciences
Foundations of Aural Skills 674 118 2451 1421 559
Introduction to Comparative Government and Politics 421 189 3893 2288 898
A Practicum in Behavioral Economics 381 178 4627 2821 1073

paragraph (Zhang et al., 2024). Following the same242

technique as was proposed in DSI (Tay et al., 2022)243

to train the parametric index, we use a portion of244

these questions for training DSI (Tay et al., 2022)245

and STAIR, a small portion as development set246

which is to help us pick the best checkpoint. Ma-247

jority of the generated questions were picked as248

test questions – to thoroughly test coverage of con-249

tent by an IR system. We believe our benchmark250

SearchTome will further research in building IR251

systems which can leverage structure in a corpus252

and retrieve the most relevant chunks for a user253

query.254

4 STAIR: Table of Contents Searcher255

We now formally define the problem statement and256

the technique for retrieving a section title given a257

book and its Table of Contents (ToC)258

4.1 Notations259

We are given a long document D and its Table260

of Contents ToCD = {T1, T2, ...., Tn}. An edge261

e : Tp → Tc between two nodes Tp, Tc ∈ ToCD262

is defined as Tp = parent(Tc), if the section repre-263

sented by title Tp is further divided into multiple264

sub-sections including Tc. The set of leaf nodes265

can thus be defined as LND={Tl ∈ ToCD|∃!Tc ∈266

ToCD, Tl = parent_of(Tc)} ⊆ ToCD. Our goal267

is to retrieve the correct leaf node Tl ∈ LND whose268

content can answer a user query q.269

4.2 Training STAIR 270

Figure 2 depicts the training pipeline for STAIR 271

which learns two correlated but different tasks: 272

Corpus knowledge ingestion: STAIR needs to 273

learn the information trove D by mapping a book’s 274

text content to the corresponding section titles 275

Ti ∈ ToCD. This is facilitated by the training data, 276

which consists of a series of queries that 1) are de- 277

signed to ensure good coverage of the knowledge 278

contained in the book and 2) are linked to their cor- 279

responding section titles. Consequently, this phase 280

of training integrates the book’s knowledge into 281

the LLM’s parameters, similar to model-based in- 282

dexing systems like DSI, but with a key difference. 283

Unlike other model-based indexing systems, the 284

parameters in STAIR remember the corpus knowl- 285

edge not by a document identifier, but by using 286

fine-grained section title entries in the ToC, which 287

are likely to have a much stronger semantic connec- 288

tion with the content being ingested into parametric 289

knowledge. 290

Learning to generate from ToC: STAIR learns 291

to pick the most relevant leaf node from the com- 292

plete global structure (ToC) of a document. 293

We use the training split from SearchTome to 294

train STAIR through supervised fine-tuning. Dur- 295

ing training, we provide the query q along with 296

the complete ToCD as input. Consequently, the 297

complete input during training consists of prompt 298

+ (q,ToCD). Note that ToCD, remains consis- 299

tent across queries from the same book, while the 300

prompt remains unchanged throughout the training 301
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Figure 2: STAIR Training pipeline

process. We fine-tune the model to generate the302

correct leaf node Tl ∈ LND that corresponds to303

the query q.304

Table 2: Sample training example

Prompt
### Book: Teaching in a Digital Age
Pick the best section from the table of contents below
which can answer the user query below. Only generate
the section name, do not generate any explanation!

### Table of Contents
1 Chapter 1: Fundamental Change in Education
· · ·
leaf 12.7 Step five:master the technology
leaf 12.8 Step six:set appropriate learning goals
leaf 12.9 Step seven:design course structure and learning
· · ·
leaf 13.7 Building the future
### Query: What is the suggested time allocation
for students studying a course or program?
### Section: leaf

Completion

12.9 Step seven: design course structure and learning

5 Experiments305

We report Recall@1 (R@1), Recall@3 (R@3)306

and Normalized Discounted Cumulative Gain307

(nDCG@3) metrics on the test set for each book.308

BeIR (Thakur et al., 2021) is used for computing309

the metrics.310

5.1 Baselines311

Mistral (Out of the Box LLM): Beam search is312

used to generate the Top-K predictions for Mistral313

Instruct v0.2314

BM25 (Robertson and Zaragoza, 2009): We index315

content using Elastic Search v 8.11.2. Leaf node316

acts as a unique document identifier for a book317

DPR: We use NV-Embed-v2(Lee et al., 2024) out318

of the box with text lengths set to 512 for passages 319

and 256 for queries. NV-Embed-v2 is the leading 320

text-only embedding model with open weights on 321

the MTEB leaderboard2. The model is based on 322

Mistral-7B-v0.13, making it a suitable baseline for 323

STAIR as both are finetuned over Mistral. 324

DSI (Tay et al., 2022) infuses the entire knowledge 325

of a corpus in the parameters of an LLM and di- 326

rectly generates a document identifier. We fine-tune 327

DSI using the train split for each book. 328

5.2 Fine-tuning STAIR and DSI 329

We fine-tune Mistral Instruct v0.24 (Jiang et al., 330

2023) for a maximum of 200 epochs using a LoRA 331

adapter (Hu et al., 2021) with a r = 16 and α = 32. 332

We early stop with a patience of 20 epochs, by 333

computing Recall@1 on the dev set. We set the 334

maximum input length to 14k tokens for STAIR 335

and 512 tokens for DSI and a maximum output 336

length of 64 tokens. See Table 2 for a sample 337

training input and output for STAIR. 338

6 Results and Analysis 339

Table 4 compares STAIR with all the baselines 340

listed in Section 5.1 and addresses the following 341

two research questions: 342

• RQ1: Does ToC based training makes STAIR 343

more accurate as a retriever? 344

• RQ2: Can we finetune an LLM to learn the 345

new task of generating leaf nodes from ToC? 346

Our key findings are as follows: 347

1. STAIR outperforms strong baselines such as 348

BM25, DPR and fine-tuned DSI 349

2. R@1 for Mistral is much lower than BM25 – 350

this suggests the LLM not only needs to learn 351

2As per Jan 23’2025 MTEB Leaderboard Snapshot.
3https://huggingface.co/mistralai/Mistral-7B-v0.1
4https://huggingface.co/mistralai/Mistral-7B-Instruct-

v0.2
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Table 3: Examples of model predictions. Gold leaf is highlighted in bold in Table of Contents

Example 1:
Book: The Whole Child: Development in the Early Years
Query: How do preschoolers react when caregivers and teachers belittle their autonomous actions?

Table of Contents Content
· · ·
2 Chapter Two: Theorists and Theories of Development Initiative vs. Guilt (Preschool Years)
leaf 2.1 Theories of Development The development of courage and independence ...
2.2 Psychosocial Theory ...
leaf 2.2.1 Trust vs. Mistrust (Infancy) ...
leaf 2.2.2 Autonomy vs. Shame/Doubt (Toddlerhood) ...
leaf 2.2.3 Initiative vs. Guilt (Preschool Years)
leaf 2.2.4 Industry vs. Inferiority (Elementary Years) If caregivers and preschool teachers encourage and support
leaf 2.2.5 Identity vs. Role-Confusion (Adolescence) children’s efforts while also helping them make realistic
leaf 2.2.6 Intimacy vs. Isolation (Early Adulthood) and appropriate choices, children develop a healthy sense of initiative in
leaf 2.2.7 Generativity vs. Stagnation (Middle Adulthood) planning and undertaking activities If, instead, adults discourage the
leaf 2.2.8 Integrity vs. Despair (Older Adulthood) pursuit of independent activities or dismiss them as silly and
· · · bothersome, children develop guilt about their needs and desires.
3 Chapter Three: Domains in Development

Mistral: 8.3.3 Moral Development, leaf 7.3.2 Hitting/Scratching and Temper Tantrums, leaf 2.2.3 Initiative vs. Guilt (Preschool Years)
BM25: 8.3.2 Moral Development
DPR: 2.2.2 Autonomy vs. Shame/Doubt (Toddlerhood)
DSI: 2.2.2 Autonomy vs. Shame/Doubt (Preschool Years)
STAIR: 2.2.3 Initiative vs. Guilt (Preschool Years)

Example 2:
Book: Nursing Fundamentals
Query: In what way does a chronic illness affect an elderly person’s ability to perform daily activities?

Table of Contents Content
· · ·
leaf 30.5 Spiritual Care of Self Applying the Nursing Process
leaf 30.6 Putting It All Together ...
31 Care of the Older Adult It is also important to consider the impact of chronic disease
leaf 31.1 Care of the Older Adult Introduction on their ability to function and complete Activities of Daily Living
leaf 31.2 Basic Concepts (ADLs). older adults who are able to perform ADLs without assistance
leaf 31.3 Applying the Nursing Process consider themselves healthy.

Mistral: 31.3 Applying the Nursing Process
BM25: 11.2 Sensory Impairments Basic Concepts
DPR: 31.2 Basic Concepts
DSI: 31.2 Basic Concepts
STAIR: 31.3 Applying the Nursing Process

Example 3:
Book: Introduction to Comparative Government and Politics
Query: What are irregular armed organizations and how are they used by states?

Table of Contents Content
9 Chapter 5: Non-Democracies and Democratic Backsliding
· · · Another powerful instrument of repression are paramilitaries.
9.2 Strategies for staying in power These refer to groups with access to military-grade weapons and training
leaf 9.2.1 Institutional channels yet they are not part of the national military.
leaf 9.2.2 Cultural and ideological controls They are “irregular armed organizations that carry out acts of violence
9.3 Varieties of non-democracy against civilians on behalf of a state,”
· · ·

Mistral: 9.3.5 Illiberal and hybrid regimes
BM25: 15.3.1 Insurgencies/Civil Wars
DPR: 15.2.2 External State-Sponsored Political Violence (State-Sponsored Terrorism)
DSI: 15.2.1 Internal State-Sponsored Political Violence (Government Terrorism)
STAIR: 9.2.1 Institutional channels

the new task of picking the best section but352

also needs to ingest knowledge from the cor-353

pus354

3. DPR performs much better than BM25 but355

worse than DSI. This result is expected, as NV-356

Embed-v2 is not fine-tuned for SearchTome357

4. Tuning with ToC as input helps STAIR: The358

only difference in the input between DSI and359

STAIR is that STAIR leverages ToC. STAIR 360

outperforms DSI by 7.4%, as it is able to ac- 361

cess the entire structure of the book and better 362

align it with the queries during fine-tuning. 363

DSI on the other hand must learn the seman- 364

tic alignment between queries and sections by 365

looking at all the training data. We can thus 366

conclude that RQ1 and RQ2 are answered in 367
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Table 4: Recall@1, Recall@3 and nDCG@3 for SearchTome

Education Finance Law Med NatSci SocSci Avg

Mistral 14.8/17.8/16.6 16.4/19.4/18.2 13.6/15.7/14.9 13.7/17.0/15.7 13.1/15.3/14.4 10.9/13.4/12.4 13.8/16.4/15.4
BM25 58.7/75.8/68.8 55.0/76.8/67.8 62.0/77.7/71.3 59.6/78.7/70.8 58.7/78.1/70.1 62.8/78.3/72.0 59.5/77.6/70.1
DPR 71.5/86.8/80.6 66.4/85.5/77.7 69.6/84.1/78.2 72.7/88.8/82.2 63.0/84.1/75.7 68.8/83.1/77.3 68.7/85.4/78.6
DSI 76.2/84.1/80.9 78.1/87.8/83.9 73.3/82.9/79.0 82.1/89.9/86.8 76.2/84.7/81.3 75.4/82.2/79.4 76.9/85.3/81.9
STAIR 83.3/91.2/88.0 82.8/91.4/88.0 80.8/89.4/85.9 86.1/93.2/90.3 80.6/90.4/86.4 81.8/89.0/86.1 82.6/90.8/87.5

affirmative.368

Statistical significance testing was done for the369

Recall@1 performance difference between DSI and370

STAIR. We follow the randomization test tailored371

to retrieval systems as described in Smucker et al.372

(2007). The null hypothesis for the significance373

testing is that outputs from SystemA (DSI) and374

SystemB (STAIR) may belong to the same under-375

lying distribution and the difference of performance376

between SystemA (DSI) and SystemB (STAIR) is377

because of the sampling variance. We test the null378

hypothesis with the traditional p value of 0.05 at379

the domain level i.e. for each of the 6 domains sep-380

arately (by combining all the books from a single381

domain). The significance test results conclude that382

the difference in DSI and STAIR is indeed statis-383

tically significant for all the 6 domains where the384

null hypothesis is successfully invalidated. More385

specifically, through our sample runs for random-386

ization test, we find that the probability of seeing387

this scale of Recall@1 performance difference as388

observed in Table 4 when being randomly sampled389

from the same distribution falls below p = 0.05.390

As with any statistical significance testing, the key391

takeaway from these experiments is a confirmation392

that the performance improvement seen in STAIR393

is statistically significant and therefore, it is a prop-394

erty of the STAIR design and not because of the395

data set size or data distribution in SearchTome.396

6.1 Ablations397

We conduct ablation studies by comparing the per-398

formance of to study the impact of using ToC as399

an input. Two key conclusions are as follows:400

ToC reduces hallucinations: We define hallucina-401

tion as the generation of a non-leaf node (invalid402

document identifier). Figure 3 illustrates the num-403

ber of hallucinations per leaf node. We observed404

that the hallucination rate of STAIR remains nearly405

constant at close to zero, regardless of the number406

of training examples. This indicates that STAIR407

has effectively learned to generate outputs solely408

from the leaf nodes, making it inherently less prone409

to hallucination. In contrast, DSI, which does not410

use ToC, exhibits a higher hallucination rate than 411

STAIR, particularly for leaf nodes with fewer train- 412

ing examples. 413

Remembering the structure is hard without ToC 414

Figure 4 shows that for leaf nodes with less num- 415

ber of training examples, the Recall@1 difference 416

between DSI and STAIR is much higher. This 417

supports our hypothesis, that without ToC, DSI 418

needs to discover the book structure and also re- 419

member it within its parameters. DSI attempts to 420

learn this via the training data on query and as- 421

sociated ToC leaf node pairs. Thus, leaf nodes 422

which have low representations in training data are 423

prone to be missed by DSI. In contrast, STAIR 424

does not need to “remember” the leaf nodes. As 425

the number of training examples for a leaf node 426

increase, Recall@1 gap between DSI and STAIR 427

decreases – although STAIR consistently achieves 428

higher Recall@1 numbers. 429

6.2 Error Analysis with Anecdotal Examples 430

We observe that out-of-the-box Mistral’s error rate 431

is 86.20%, and 26.81% of its mistakes are as it 432

predicts a non-leaf node, while 23.86% are hal- 433

lucinations. This suggests that Mistral out-of-box 434

needs knowledge ingestion and task finetuning. For 435

DSI, the error rate drops to 24.31%, with 3.25% 436

of its predictions being non-leaf nodes (suggesting 437

knowledge infusion helps). STAIR has the low- 438

est error rate of 18.67%, with only 0.05% of its 439

predictions being non-leaf nodes. 440

Table 3 lists a few qualitative examples. We dis- 441

cuss next the first example “How do preschoolers 442

react when caregivers and teachers belittle their 443

autonomous actions” from the book “The Whole 444

Child: Development in the Early Years”: 445

Mistral could correctly guess that the query 446

can be answered by “2.2.3 Initiative vs. Guilt 447

(Preschool Years)” using its world knowledge. It 448

doesn’t understand that it needs to pick only one 449

option – due to lack of the task training 450

BM25 suffers from the known bias of keyword 451

matching where and picks the section “8.3.2. Moral 452

Development” purely because of highest lexical 453

7



Figure 3: As number of training examples decrease,
hallucination rate for DSI increases

Figure 4: Recall@1 for each leaf across SearchTome.
STAIR shows high accuracy even with a low number
of training examples

overlap with query tokens, which is the incorrect454

answer455

DPR is used out of the box and does a word sensed456

matching where it predicts “2.2.2 Autonomy vs.457

Shame/Doubt (Toddlerhood)” being most relevant458

to the query tokens mentioning “belittling of au-459

tonomous actions”. However, without the corpus460

specific training it falls short of identifying the cor-461

rect section.462

DSI is finetuned for the corpus but faulters to463

find the precise section. It errs just like DPR in464

this example but might have chosen a more sen-465

sible match “2.2.2 Autonomy vs. Shame/Doubt466

(Preschool years)” which takes into account the467

importance of keyword “preschool” for getting a468

better topic match. However, careful consideration469

shows this is a hallucinated header not present in 470

the input ToC. This correlates with our ablation in 471

figure 3 on DSI hallucination. 472

STAIR: Our proposed system STAIR correctly 473

identifies the gold leaf node as “Initiative vs. Guilt 474

(Preschool Years)”. 475

The comparison between DPR, DSI and STAIR 476

is interesting as they all are built on top odf the 477

same base LLM – Mistral. The difference between 478

DSI and STAIR largely points towards the impor- 479

tance of having ToC as an input during training, 480

which makes it easier for the LLM to align much 481

better to the corpus. Other anecdotal examples in 482

Table 3 also enumerate the same partial ordering 483

seen among the baselines and provide more quali- 484

tative analysis to support the claim that the design 485

of STAIR helps it do a much better retrieval. 486

7 Conclusion 487

We introduce STAIR, a novel LLM based IR sys- 488

tem that leverages ToC to store and retrieve infor- 489

mation from its parameters. Given a query, STAIR 490

generates the most probably leaf section header 491

from a ToC which could answer it. We use Mis- 492

tral Instruct v0.2 to demonstrate that it is possible 493

to instruction finetune the modern day LLMs to 494

efficiently use the ToC structure to generate the 495

correct leaf node while reducing the hallucinations 496

to almost zero. STAIR outperforms all strong 497

baselines such as BM25, finetuned DSI and DPR 498

and achieves a Recall@1 score of 82.6% which 499

is around 7.4% gain over the next best system 500

(DSI). We release a new comprehensive bench- 501

mark SearchTome across 6 domains with 18 books 502

comprising of train, dev and test splits to further 503

research in this novel direction. 504

As a future work, we want to explore directions 505

where a ToC like structure is created dynamically 506

over an unseen search corpus, as has been proposed 507

by some previous works. We envision that having a 508

ToC-based retrieval paradigm will gain more trac- 509

tion in future for agentic frameworks needing multi- 510

hop retrieval and reasoning over retrieved context. 511

To that end, we want to develop STAIR to work 512

in a complete zero shot setup where it iteratively 513

retrieves ToC leaf nodes and makes intelligent de- 514

cisions by reasoning on the content of the leaf node 515

to do precise information retrieval. 516
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8 Limitations517

Our current evaluation is limited to corpora where a518

global structure exists. While this setting is suitable519

for initial validation, it may not fully represent the520

diversity of real-world use cases. In future work,521

we plan to extend our evaluation to standard bench-522

marks by artificially inducing a Table of Contents523

structure. Additionally, we aim to test our model524

on enterprise datasets where such a structure al-525

ready exists at a very large scale (possibly millions526

of URLs in the corpus).527
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Lewis, Ledell Yu Wu, Sergey Edunov, Danqi 619
Chen, and Wen tau Yih. 2020. Dense passage re- 620
trieval for open-domain question answering. ArXiv, 621
abs/2004.04906. 622

O. Khattab and Matei A. Zaharia. 2020. Colbert: Effi- 623
cient and effective passage search via contextualized 624

9

https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://api.semanticscholar.org/CorpusID:232147859
https://api.semanticscholar.org/CorpusID:232147859
https://api.semanticscholar.org/CorpusID:232147859
https://doi.org/10.18653/v1/2020.acl-tutorials.8
https://doi.org/10.18653/v1/2020.acl-tutorials.8
https://doi.org/10.18653/v1/2020.acl-tutorials.8
https://doi.org/10.18653/v1/2022.acl-long.589
https://doi.org/10.18653/v1/2022.acl-long.589
https://doi.org/10.18653/v1/2022.acl-long.589
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.1145/775152.775250
https://doi.org/10.1145/775152.775250
https://doi.org/10.1145/775152.775250
https://api.semanticscholar.org/CorpusID:255595720
https://api.semanticscholar.org/CorpusID:255595720
https://api.semanticscholar.org/CorpusID:255595720
https://api.semanticscholar.org/CorpusID:235458009
https://api.semanticscholar.org/CorpusID:235458009
https://api.semanticscholar.org/CorpusID:235458009
https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2021.naacl-main.112
https://doi.org/10.18653/v1/2021.naacl-main.112
https://api.semanticscholar.org/CorpusID:263830494
https://api.semanticscholar.org/CorpusID:263830494
https://api.semanticscholar.org/CorpusID:263830494
https://api.semanticscholar.org/CorpusID:215737187
https://api.semanticscholar.org/CorpusID:215737187
https://api.semanticscholar.org/CorpusID:215737187
https://api.semanticscholar.org/CorpusID:216553223
https://api.semanticscholar.org/CorpusID:216553223
https://api.semanticscholar.org/CorpusID:216553223
https://api.semanticscholar.org/CorpusID:216553223


late interaction over bert. Proceedings of the 43rd625
International ACM SIGIR Conference on Research626
and Development in Information Retrieval.627
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